| 1 | /* |
| 2 | * Software MMU support |
| 3 | * |
| 4 | * Generate helpers used by TCG for qemu_ld/st ops and code load |
| 5 | * functions. |
| 6 | * |
| 7 | * Included from target op helpers and exec.c. |
| 8 | * |
| 9 | * Copyright (c) 2003 Fabrice Bellard |
| 10 | * |
| 11 | * This library is free software; you can redistribute it and/or |
| 12 | * modify it under the terms of the GNU Lesser General Public |
| 13 | * License as published by the Free Software Foundation; either |
| 14 | * version 2 of the License, or (at your option) any later version. |
| 15 | * |
| 16 | * This library is distributed in the hope that it will be useful, |
| 17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 19 | * Lesser General Public License for more details. |
| 20 | * |
| 21 | * You should have received a copy of the GNU Lesser General Public |
| 22 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| 23 | */ |
| 24 | #include "qemu/timer.h" |
| 25 | #include "exec/address-spaces.h" |
| 26 | #include "exec/memory.h" |
| 27 | |
| 28 | #define DATA_SIZE (1 << SHIFT) |
| 29 | |
| 30 | #if DATA_SIZE == 8 |
| 31 | #define SUFFIX q |
| 32 | #define LSUFFIX q |
| 33 | #define SDATA_TYPE int64_t |
| 34 | #define DATA_TYPE uint64_t |
| 35 | #elif DATA_SIZE == 4 |
| 36 | #define SUFFIX l |
| 37 | #define LSUFFIX l |
| 38 | #define SDATA_TYPE int32_t |
| 39 | #define DATA_TYPE uint32_t |
| 40 | #elif DATA_SIZE == 2 |
| 41 | #define SUFFIX w |
| 42 | #define LSUFFIX uw |
| 43 | #define SDATA_TYPE int16_t |
| 44 | #define DATA_TYPE uint16_t |
| 45 | #elif DATA_SIZE == 1 |
| 46 | #define SUFFIX b |
| 47 | #define LSUFFIX ub |
| 48 | #define SDATA_TYPE int8_t |
| 49 | #define DATA_TYPE uint8_t |
| 50 | #else |
| 51 | #error unsupported data size |
| 52 | #endif |
| 53 | |
| 54 | |
| 55 | /* For the benefit of TCG generated code, we want to avoid the complication |
| 56 | of ABI-specific return type promotion and always return a value extended |
| 57 | to the register size of the host. This is tcg_target_long, except in the |
| 58 | case of a 32-bit host and 64-bit data, and for that we always have |
| 59 | uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */ |
| 60 | #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8 |
| 61 | # define WORD_TYPE DATA_TYPE |
| 62 | # define USUFFIX SUFFIX |
| 63 | #else |
| 64 | # define WORD_TYPE tcg_target_ulong |
| 65 | # define USUFFIX glue(u, SUFFIX) |
| 66 | # define SSUFFIX glue(s, SUFFIX) |
| 67 | #endif |
| 68 | |
| 69 | #ifdef SOFTMMU_CODE_ACCESS |
| 70 | #define READ_ACCESS_TYPE 2 |
| 71 | #define ADDR_READ addr_code |
| 72 | #else |
| 73 | #define READ_ACCESS_TYPE 0 |
| 74 | #define ADDR_READ addr_read |
| 75 | #endif |
| 76 | |
| 77 | #if DATA_SIZE == 8 |
| 78 | # define BSWAP(X) bswap64(X) |
| 79 | #elif DATA_SIZE == 4 |
| 80 | # define BSWAP(X) bswap32(X) |
| 81 | #elif DATA_SIZE == 2 |
| 82 | # define BSWAP(X) bswap16(X) |
| 83 | #else |
| 84 | # define BSWAP(X) (X) |
| 85 | #endif |
| 86 | |
| 87 | #ifdef TARGET_WORDS_BIGENDIAN |
| 88 | # define TGT_BE(X) (X) |
| 89 | # define TGT_LE(X) BSWAP(X) |
| 90 | #else |
| 91 | # define TGT_BE(X) BSWAP(X) |
| 92 | # define TGT_LE(X) (X) |
| 93 | #endif |
| 94 | |
| 95 | #if DATA_SIZE == 1 |
| 96 | # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX) |
| 97 | # define helper_be_ld_name helper_le_ld_name |
| 98 | # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX) |
| 99 | # define helper_be_lds_name helper_le_lds_name |
| 100 | # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX) |
| 101 | # define helper_be_st_name helper_le_st_name |
| 102 | #else |
| 103 | # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX) |
| 104 | # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX) |
| 105 | # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX) |
| 106 | # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX) |
| 107 | # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX) |
| 108 | # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX) |
| 109 | #endif |
| 110 | |
| 111 | #ifdef TARGET_WORDS_BIGENDIAN |
| 112 | # define helper_te_ld_name helper_be_ld_name |
| 113 | # define helper_te_st_name helper_be_st_name |
| 114 | #else |
| 115 | # define helper_te_ld_name helper_le_ld_name |
| 116 | # define helper_te_st_name helper_le_st_name |
| 117 | #endif |
| 118 | |
| 119 | /* macro to check the victim tlb */ |
| 120 | #define VICTIM_TLB_HIT(ty) \ |
| 121 | ({ \ |
| 122 | /* we are about to do a page table walk. our last hope is the \ |
| 123 | * victim tlb. try to refill from the victim tlb before walking the \ |
| 124 | * page table. */ \ |
| 125 | int vidx; \ |
| 126 | hwaddr tmpiotlb; \ |
| 127 | CPUTLBEntry tmptlb; \ |
| 128 | for (vidx = CPU_VTLB_SIZE-1; vidx >= 0; --vidx) { \ |
| 129 | if (env->tlb_v_table[mmu_idx][vidx].ty == (addr & TARGET_PAGE_MASK)) {\ |
| 130 | /* found entry in victim tlb, swap tlb and iotlb */ \ |
| 131 | tmptlb = env->tlb_table[mmu_idx][index]; \ |
| 132 | env->tlb_table[mmu_idx][index] = env->tlb_v_table[mmu_idx][vidx]; \ |
| 133 | env->tlb_v_table[mmu_idx][vidx] = tmptlb; \ |
| 134 | tmpiotlb = env->iotlb[mmu_idx][index]; \ |
| 135 | env->iotlb[mmu_idx][index] = env->iotlb_v[mmu_idx][vidx]; \ |
| 136 | env->iotlb_v[mmu_idx][vidx] = tmpiotlb; \ |
| 137 | break; \ |
| 138 | } \ |
| 139 | } \ |
| 140 | /* return true when there is a vtlb hit, i.e. vidx >=0 */ \ |
| 141 | vidx >= 0; \ |
| 142 | }) |
| 143 | |
| 144 | #ifndef SOFTMMU_CODE_ACCESS |
| 145 | static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env, |
| 146 | hwaddr physaddr, |
| 147 | target_ulong addr, |
| 148 | uintptr_t retaddr) |
| 149 | { |
| 150 | uint64_t val; |
| 151 | CPUState *cpu = ENV_GET_CPU(env); |
| 152 | MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr); |
| 153 | |
| 154 | physaddr = (physaddr & TARGET_PAGE_MASK) + addr; |
| 155 | cpu->mem_io_pc = retaddr; |
| 156 | if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) { |
| 157 | cpu_io_recompile(cpu, retaddr); |
| 158 | } |
| 159 | |
| 160 | cpu->mem_io_vaddr = addr; |
| 161 | io_mem_read(mr, physaddr, &val, 1 << SHIFT); |
| 162 | return val; |
| 163 | } |
| 164 | #endif |
| 165 | |
| 166 | #ifdef SOFTMMU_CODE_ACCESS |
| 167 | static __attribute__((unused)) |
| 168 | #endif |
| 169 | WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx, |
| 170 | uintptr_t retaddr) |
| 171 | { |
| 172 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| 173 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; |
| 174 | uintptr_t haddr; |
| 175 | DATA_TYPE res; |
| 176 | |
| 177 | /* Adjust the given return address. */ |
| 178 | retaddr -= GETPC_ADJ; |
| 179 | |
| 180 | /* If the TLB entry is for a different page, reload and try again. */ |
| 181 | if ((addr & TARGET_PAGE_MASK) |
| 182 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
| 183 | #ifdef ALIGNED_ONLY |
| 184 | if ((addr & (DATA_SIZE - 1)) != 0) { |
| 185 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
| 186 | mmu_idx, retaddr); |
| 187 | } |
| 188 | #endif |
| 189 | if (!VICTIM_TLB_HIT(ADDR_READ)) { |
| 190 | tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
| 191 | mmu_idx, retaddr); |
| 192 | } |
| 193 | tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; |
| 194 | } |
| 195 | |
| 196 | /* Handle an IO access. */ |
| 197 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { |
| 198 | hwaddr ioaddr; |
| 199 | if ((addr & (DATA_SIZE - 1)) != 0) { |
| 200 | goto do_unaligned_access; |
| 201 | } |
| 202 | ioaddr = env->iotlb[mmu_idx][index]; |
| 203 | |
| 204 | /* ??? Note that the io helpers always read data in the target |
| 205 | byte ordering. We should push the LE/BE request down into io. */ |
| 206 | res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr); |
| 207 | res = TGT_LE(res); |
| 208 | return res; |
| 209 | } |
| 210 | |
| 211 | /* Handle slow unaligned access (it spans two pages or IO). */ |
| 212 | if (DATA_SIZE > 1 |
| 213 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 |
| 214 | >= TARGET_PAGE_SIZE)) { |
| 215 | target_ulong addr1, addr2; |
| 216 | DATA_TYPE res1, res2; |
| 217 | unsigned shift; |
| 218 | do_unaligned_access: |
| 219 | #ifdef ALIGNED_ONLY |
| 220 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
| 221 | mmu_idx, retaddr); |
| 222 | #endif |
| 223 | addr1 = addr & ~(DATA_SIZE - 1); |
| 224 | addr2 = addr1 + DATA_SIZE; |
| 225 | /* Note the adjustment at the beginning of the function. |
| 226 | Undo that for the recursion. */ |
| 227 | res1 = helper_le_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ); |
| 228 | res2 = helper_le_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ); |
| 229 | shift = (addr & (DATA_SIZE - 1)) * 8; |
| 230 | |
| 231 | /* Little-endian combine. */ |
| 232 | res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift)); |
| 233 | return res; |
| 234 | } |
| 235 | |
| 236 | /* Handle aligned access or unaligned access in the same page. */ |
| 237 | #ifdef ALIGNED_ONLY |
| 238 | if ((addr & (DATA_SIZE - 1)) != 0) { |
| 239 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
| 240 | mmu_idx, retaddr); |
| 241 | } |
| 242 | #endif |
| 243 | |
| 244 | haddr = addr + env->tlb_table[mmu_idx][index].addend; |
| 245 | #if DATA_SIZE == 1 |
| 246 | res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr); |
| 247 | #else |
| 248 | res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr); |
| 249 | #endif |
| 250 | return res; |
| 251 | } |
| 252 | |
| 253 | #if DATA_SIZE > 1 |
| 254 | #ifdef SOFTMMU_CODE_ACCESS |
| 255 | static __attribute__((unused)) |
| 256 | #endif |
| 257 | WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx, |
| 258 | uintptr_t retaddr) |
| 259 | { |
| 260 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| 261 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; |
| 262 | uintptr_t haddr; |
| 263 | DATA_TYPE res; |
| 264 | |
| 265 | /* Adjust the given return address. */ |
| 266 | retaddr -= GETPC_ADJ; |
| 267 | |
| 268 | /* If the TLB entry is for a different page, reload and try again. */ |
| 269 | if ((addr & TARGET_PAGE_MASK) |
| 270 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
| 271 | #ifdef ALIGNED_ONLY |
| 272 | if ((addr & (DATA_SIZE - 1)) != 0) { |
| 273 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
| 274 | mmu_idx, retaddr); |
| 275 | } |
| 276 | #endif |
| 277 | if (!VICTIM_TLB_HIT(ADDR_READ)) { |
| 278 | tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
| 279 | mmu_idx, retaddr); |
| 280 | } |
| 281 | tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; |
| 282 | } |
| 283 | |
| 284 | /* Handle an IO access. */ |
| 285 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { |
| 286 | hwaddr ioaddr; |
| 287 | if ((addr & (DATA_SIZE - 1)) != 0) { |
| 288 | goto do_unaligned_access; |
| 289 | } |
| 290 | ioaddr = env->iotlb[mmu_idx][index]; |
| 291 | |
| 292 | /* ??? Note that the io helpers always read data in the target |
| 293 | byte ordering. We should push the LE/BE request down into io. */ |
| 294 | res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr); |
| 295 | res = TGT_BE(res); |
| 296 | return res; |
| 297 | } |
| 298 | |
| 299 | /* Handle slow unaligned access (it spans two pages or IO). */ |
| 300 | if (DATA_SIZE > 1 |
| 301 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 |
| 302 | >= TARGET_PAGE_SIZE)) { |
| 303 | target_ulong addr1, addr2; |
| 304 | DATA_TYPE res1, res2; |
| 305 | unsigned shift; |
| 306 | do_unaligned_access: |
| 307 | #ifdef ALIGNED_ONLY |
| 308 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
| 309 | mmu_idx, retaddr); |
| 310 | #endif |
| 311 | addr1 = addr & ~(DATA_SIZE - 1); |
| 312 | addr2 = addr1 + DATA_SIZE; |
| 313 | /* Note the adjustment at the beginning of the function. |
| 314 | Undo that for the recursion. */ |
| 315 | res1 = helper_be_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ); |
| 316 | res2 = helper_be_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ); |
| 317 | shift = (addr & (DATA_SIZE - 1)) * 8; |
| 318 | |
| 319 | /* Big-endian combine. */ |
| 320 | res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift)); |
| 321 | return res; |
| 322 | } |
| 323 | |
| 324 | /* Handle aligned access or unaligned access in the same page. */ |
| 325 | #ifdef ALIGNED_ONLY |
| 326 | if ((addr & (DATA_SIZE - 1)) != 0) { |
| 327 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
| 328 | mmu_idx, retaddr); |
| 329 | } |
| 330 | #endif |
| 331 | |
| 332 | haddr = addr + env->tlb_table[mmu_idx][index].addend; |
| 333 | res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr); |
| 334 | return res; |
| 335 | } |
| 336 | #endif /* DATA_SIZE > 1 */ |
| 337 | |
| 338 | DATA_TYPE |
| 339 | glue(glue(helper_ld, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr, |
| 340 | int mmu_idx) |
| 341 | { |
| 342 | return helper_te_ld_name (env, addr, mmu_idx, GETRA()); |
| 343 | } |
| 344 | |
| 345 | #ifndef SOFTMMU_CODE_ACCESS |
| 346 | |
| 347 | /* Provide signed versions of the load routines as well. We can of course |
| 348 | avoid this for 64-bit data, or for 32-bit data on 32-bit host. */ |
| 349 | #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS |
| 350 | WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr, |
| 351 | int mmu_idx, uintptr_t retaddr) |
| 352 | { |
| 353 | return (SDATA_TYPE)helper_le_ld_name(env, addr, mmu_idx, retaddr); |
| 354 | } |
| 355 | |
| 356 | # if DATA_SIZE > 1 |
| 357 | WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr, |
| 358 | int mmu_idx, uintptr_t retaddr) |
| 359 | { |
| 360 | return (SDATA_TYPE)helper_be_ld_name(env, addr, mmu_idx, retaddr); |
| 361 | } |
| 362 | # endif |
| 363 | #endif |
| 364 | |
| 365 | static inline void glue(io_write, SUFFIX)(CPUArchState *env, |
| 366 | hwaddr physaddr, |
| 367 | DATA_TYPE val, |
| 368 | target_ulong addr, |
| 369 | uintptr_t retaddr) |
| 370 | { |
| 371 | CPUState *cpu = ENV_GET_CPU(env); |
| 372 | MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr); |
| 373 | |
| 374 | physaddr = (physaddr & TARGET_PAGE_MASK) + addr; |
| 375 | if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) { |
| 376 | cpu_io_recompile(cpu, retaddr); |
| 377 | } |
| 378 | |
| 379 | cpu->mem_io_vaddr = addr; |
| 380 | cpu->mem_io_pc = retaddr; |
| 381 | io_mem_write(mr, physaddr, val, 1 << SHIFT); |
| 382 | } |
| 383 | |
| 384 | void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, |
| 385 | int mmu_idx, uintptr_t retaddr) |
| 386 | { |
| 387 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| 388 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; |
| 389 | uintptr_t haddr; |
| 390 | |
| 391 | /* Adjust the given return address. */ |
| 392 | retaddr -= GETPC_ADJ; |
| 393 | |
| 394 | /* If the TLB entry is for a different page, reload and try again. */ |
| 395 | if ((addr & TARGET_PAGE_MASK) |
| 396 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
| 397 | #ifdef ALIGNED_ONLY |
| 398 | if ((addr & (DATA_SIZE - 1)) != 0) { |
| 399 | cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr); |
| 400 | } |
| 401 | #endif |
| 402 | if (!VICTIM_TLB_HIT(addr_write)) { |
| 403 | tlb_fill(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr); |
| 404 | } |
| 405 | tlb_addr = env->tlb_table[mmu_idx][index].addr_write; |
| 406 | } |
| 407 | |
| 408 | /* Handle an IO access. */ |
| 409 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { |
| 410 | hwaddr ioaddr; |
| 411 | if ((addr & (DATA_SIZE - 1)) != 0) { |
| 412 | goto do_unaligned_access; |
| 413 | } |
| 414 | ioaddr = env->iotlb[mmu_idx][index]; |
| 415 | |
| 416 | /* ??? Note that the io helpers always read data in the target |
| 417 | byte ordering. We should push the LE/BE request down into io. */ |
| 418 | val = TGT_LE(val); |
| 419 | glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr); |
| 420 | return; |
| 421 | } |
| 422 | |
| 423 | /* Handle slow unaligned access (it spans two pages or IO). */ |
| 424 | if (DATA_SIZE > 1 |
| 425 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 |
| 426 | >= TARGET_PAGE_SIZE)) { |
| 427 | int i; |
| 428 | do_unaligned_access: |
| 429 | #ifdef ALIGNED_ONLY |
| 430 | cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr); |
| 431 | #endif |
| 432 | /* XXX: not efficient, but simple */ |
| 433 | /* Note: relies on the fact that tlb_fill() does not remove the |
| 434 | * previous page from the TLB cache. */ |
| 435 | for (i = DATA_SIZE - 1; i >= 0; i--) { |
| 436 | /* Little-endian extract. */ |
| 437 | uint8_t val8 = val >> (i * 8); |
| 438 | /* Note the adjustment at the beginning of the function. |
| 439 | Undo that for the recursion. */ |
| 440 | glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, |
| 441 | mmu_idx, retaddr + GETPC_ADJ); |
| 442 | } |
| 443 | return; |
| 444 | } |
| 445 | |
| 446 | /* Handle aligned access or unaligned access in the same page. */ |
| 447 | #ifdef ALIGNED_ONLY |
| 448 | if ((addr & (DATA_SIZE - 1)) != 0) { |
| 449 | cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr); |
| 450 | } |
| 451 | #endif |
| 452 | |
| 453 | haddr = addr + env->tlb_table[mmu_idx][index].addend; |
| 454 | #if DATA_SIZE == 1 |
| 455 | glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val); |
| 456 | #else |
| 457 | glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val); |
| 458 | #endif |
| 459 | } |
| 460 | |
| 461 | #if DATA_SIZE > 1 |
| 462 | void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, |
| 463 | int mmu_idx, uintptr_t retaddr) |
| 464 | { |
| 465 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| 466 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; |
| 467 | uintptr_t haddr; |
| 468 | |
| 469 | /* Adjust the given return address. */ |
| 470 | retaddr -= GETPC_ADJ; |
| 471 | |
| 472 | /* If the TLB entry is for a different page, reload and try again. */ |
| 473 | if ((addr & TARGET_PAGE_MASK) |
| 474 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
| 475 | #ifdef ALIGNED_ONLY |
| 476 | if ((addr & (DATA_SIZE - 1)) != 0) { |
| 477 | cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr); |
| 478 | } |
| 479 | #endif |
| 480 | if (!VICTIM_TLB_HIT(addr_write)) { |
| 481 | tlb_fill(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr); |
| 482 | } |
| 483 | tlb_addr = env->tlb_table[mmu_idx][index].addr_write; |
| 484 | } |
| 485 | |
| 486 | /* Handle an IO access. */ |
| 487 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { |
| 488 | hwaddr ioaddr; |
| 489 | if ((addr & (DATA_SIZE - 1)) != 0) { |
| 490 | goto do_unaligned_access; |
| 491 | } |
| 492 | ioaddr = env->iotlb[mmu_idx][index]; |
| 493 | |
| 494 | /* ??? Note that the io helpers always read data in the target |
| 495 | byte ordering. We should push the LE/BE request down into io. */ |
| 496 | val = TGT_BE(val); |
| 497 | glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr); |
| 498 | return; |
| 499 | } |
| 500 | |
| 501 | /* Handle slow unaligned access (it spans two pages or IO). */ |
| 502 | if (DATA_SIZE > 1 |
| 503 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 |
| 504 | >= TARGET_PAGE_SIZE)) { |
| 505 | int i; |
| 506 | do_unaligned_access: |
| 507 | #ifdef ALIGNED_ONLY |
| 508 | cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr); |
| 509 | #endif |
| 510 | /* XXX: not efficient, but simple */ |
| 511 | /* Note: relies on the fact that tlb_fill() does not remove the |
| 512 | * previous page from the TLB cache. */ |
| 513 | for (i = DATA_SIZE - 1; i >= 0; i--) { |
| 514 | /* Big-endian extract. */ |
| 515 | uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8)); |
| 516 | /* Note the adjustment at the beginning of the function. |
| 517 | Undo that for the recursion. */ |
| 518 | glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, |
| 519 | mmu_idx, retaddr + GETPC_ADJ); |
| 520 | } |
| 521 | return; |
| 522 | } |
| 523 | |
| 524 | /* Handle aligned access or unaligned access in the same page. */ |
| 525 | #ifdef ALIGNED_ONLY |
| 526 | if ((addr & (DATA_SIZE - 1)) != 0) { |
| 527 | cpu_unaligned_access(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr); |
| 528 | } |
| 529 | #endif |
| 530 | |
| 531 | haddr = addr + env->tlb_table[mmu_idx][index].addend; |
| 532 | glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val); |
| 533 | } |
| 534 | #endif /* DATA_SIZE > 1 */ |
| 535 | |
| 536 | void |
| 537 | glue(glue(helper_st, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr, |
| 538 | DATA_TYPE val, int mmu_idx) |
| 539 | { |
| 540 | helper_te_st_name(env, addr, val, mmu_idx, GETRA()); |
| 541 | } |
| 542 | |
| 543 | #endif /* !defined(SOFTMMU_CODE_ACCESS) */ |
| 544 | |
| 545 | #undef READ_ACCESS_TYPE |
| 546 | #undef SHIFT |
| 547 | #undef DATA_TYPE |
| 548 | #undef SUFFIX |
| 549 | #undef LSUFFIX |
| 550 | #undef DATA_SIZE |
| 551 | #undef ADDR_READ |
| 552 | #undef WORD_TYPE |
| 553 | #undef SDATA_TYPE |
| 554 | #undef USUFFIX |
| 555 | #undef SSUFFIX |
| 556 | #undef BSWAP |
| 557 | #undef TGT_BE |
| 558 | #undef TGT_LE |
| 559 | #undef CPU_BE |
| 560 | #undef CPU_LE |
| 561 | #undef helper_le_ld_name |
| 562 | #undef helper_be_ld_name |
| 563 | #undef helper_le_lds_name |
| 564 | #undef helper_be_lds_name |
| 565 | #undef helper_le_st_name |
| 566 | #undef helper_be_st_name |
| 567 | #undef helper_te_ld_name |
| 568 | #undef helper_te_st_name |