]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * PowerPC emulation helpers for qemu. | |
3 | * | |
4 | * Copyright (c) 2003-2007 Jocelyn Mayer | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | #include <string.h> | |
20 | #include "cpu.h" | |
21 | #include "dyngen-exec.h" | |
22 | #include "host-utils.h" | |
23 | #include "helper.h" | |
24 | ||
25 | #include "helper_regs.h" | |
26 | ||
27 | #if !defined(CONFIG_USER_ONLY) | |
28 | #include "softmmu_exec.h" | |
29 | #endif /* !defined(CONFIG_USER_ONLY) */ | |
30 | ||
31 | //#define DEBUG_OP | |
32 | //#define DEBUG_EXCEPTIONS | |
33 | //#define DEBUG_SOFTWARE_TLB | |
34 | ||
35 | #ifdef DEBUG_SOFTWARE_TLB | |
36 | # define LOG_SWTLB(...) qemu_log(__VA_ARGS__) | |
37 | #else | |
38 | # define LOG_SWTLB(...) do { } while (0) | |
39 | #endif | |
40 | ||
41 | ||
42 | /*****************************************************************************/ | |
43 | /* Exceptions processing helpers */ | |
44 | ||
45 | void helper_raise_exception_err (uint32_t exception, uint32_t error_code) | |
46 | { | |
47 | #if 0 | |
48 | printf("Raise exception %3x code : %d\n", exception, error_code); | |
49 | #endif | |
50 | env->exception_index = exception; | |
51 | env->error_code = error_code; | |
52 | cpu_loop_exit(env); | |
53 | } | |
54 | ||
55 | void helper_raise_exception (uint32_t exception) | |
56 | { | |
57 | helper_raise_exception_err(exception, 0); | |
58 | } | |
59 | ||
60 | /*****************************************************************************/ | |
61 | /* SPR accesses */ | |
62 | void helper_load_dump_spr (uint32_t sprn) | |
63 | { | |
64 | qemu_log("Read SPR %d %03x => " TARGET_FMT_lx "\n", sprn, sprn, | |
65 | env->spr[sprn]); | |
66 | } | |
67 | ||
68 | void helper_store_dump_spr (uint32_t sprn) | |
69 | { | |
70 | qemu_log("Write SPR %d %03x <= " TARGET_FMT_lx "\n", sprn, sprn, | |
71 | env->spr[sprn]); | |
72 | } | |
73 | ||
74 | target_ulong helper_load_tbl (void) | |
75 | { | |
76 | return (target_ulong)cpu_ppc_load_tbl(env); | |
77 | } | |
78 | ||
79 | target_ulong helper_load_tbu (void) | |
80 | { | |
81 | return cpu_ppc_load_tbu(env); | |
82 | } | |
83 | ||
84 | target_ulong helper_load_atbl (void) | |
85 | { | |
86 | return (target_ulong)cpu_ppc_load_atbl(env); | |
87 | } | |
88 | ||
89 | target_ulong helper_load_atbu (void) | |
90 | { | |
91 | return cpu_ppc_load_atbu(env); | |
92 | } | |
93 | ||
94 | #if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) | |
95 | target_ulong helper_load_purr (void) | |
96 | { | |
97 | return (target_ulong)cpu_ppc_load_purr(env); | |
98 | } | |
99 | #endif | |
100 | ||
101 | target_ulong helper_load_601_rtcl (void) | |
102 | { | |
103 | return cpu_ppc601_load_rtcl(env); | |
104 | } | |
105 | ||
106 | target_ulong helper_load_601_rtcu (void) | |
107 | { | |
108 | return cpu_ppc601_load_rtcu(env); | |
109 | } | |
110 | ||
111 | #if !defined(CONFIG_USER_ONLY) | |
112 | #if defined (TARGET_PPC64) | |
113 | void helper_store_asr (target_ulong val) | |
114 | { | |
115 | ppc_store_asr(env, val); | |
116 | } | |
117 | #endif | |
118 | ||
119 | void helper_store_sdr1 (target_ulong val) | |
120 | { | |
121 | ppc_store_sdr1(env, val); | |
122 | } | |
123 | ||
124 | void helper_store_tbl (target_ulong val) | |
125 | { | |
126 | cpu_ppc_store_tbl(env, val); | |
127 | } | |
128 | ||
129 | void helper_store_tbu (target_ulong val) | |
130 | { | |
131 | cpu_ppc_store_tbu(env, val); | |
132 | } | |
133 | ||
134 | void helper_store_atbl (target_ulong val) | |
135 | { | |
136 | cpu_ppc_store_atbl(env, val); | |
137 | } | |
138 | ||
139 | void helper_store_atbu (target_ulong val) | |
140 | { | |
141 | cpu_ppc_store_atbu(env, val); | |
142 | } | |
143 | ||
144 | void helper_store_601_rtcl (target_ulong val) | |
145 | { | |
146 | cpu_ppc601_store_rtcl(env, val); | |
147 | } | |
148 | ||
149 | void helper_store_601_rtcu (target_ulong val) | |
150 | { | |
151 | cpu_ppc601_store_rtcu(env, val); | |
152 | } | |
153 | ||
154 | target_ulong helper_load_decr (void) | |
155 | { | |
156 | return cpu_ppc_load_decr(env); | |
157 | } | |
158 | ||
159 | void helper_store_decr (target_ulong val) | |
160 | { | |
161 | cpu_ppc_store_decr(env, val); | |
162 | } | |
163 | ||
164 | void helper_store_hid0_601 (target_ulong val) | |
165 | { | |
166 | target_ulong hid0; | |
167 | ||
168 | hid0 = env->spr[SPR_HID0]; | |
169 | if ((val ^ hid0) & 0x00000008) { | |
170 | /* Change current endianness */ | |
171 | env->hflags &= ~(1 << MSR_LE); | |
172 | env->hflags_nmsr &= ~(1 << MSR_LE); | |
173 | env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE); | |
174 | env->hflags |= env->hflags_nmsr; | |
175 | qemu_log("%s: set endianness to %c => " TARGET_FMT_lx "\n", __func__, | |
176 | val & 0x8 ? 'l' : 'b', env->hflags); | |
177 | } | |
178 | env->spr[SPR_HID0] = (uint32_t)val; | |
179 | } | |
180 | ||
181 | void helper_store_403_pbr (uint32_t num, target_ulong value) | |
182 | { | |
183 | if (likely(env->pb[num] != value)) { | |
184 | env->pb[num] = value; | |
185 | /* Should be optimized */ | |
186 | tlb_flush(env, 1); | |
187 | } | |
188 | } | |
189 | ||
190 | target_ulong helper_load_40x_pit (void) | |
191 | { | |
192 | return load_40x_pit(env); | |
193 | } | |
194 | ||
195 | void helper_store_40x_pit (target_ulong val) | |
196 | { | |
197 | store_40x_pit(env, val); | |
198 | } | |
199 | ||
200 | void helper_store_40x_dbcr0 (target_ulong val) | |
201 | { | |
202 | store_40x_dbcr0(env, val); | |
203 | } | |
204 | ||
205 | void helper_store_40x_sler (target_ulong val) | |
206 | { | |
207 | store_40x_sler(env, val); | |
208 | } | |
209 | ||
210 | void helper_store_booke_tcr (target_ulong val) | |
211 | { | |
212 | store_booke_tcr(env, val); | |
213 | } | |
214 | ||
215 | void helper_store_booke_tsr (target_ulong val) | |
216 | { | |
217 | store_booke_tsr(env, val); | |
218 | } | |
219 | ||
220 | void helper_store_ibatu (uint32_t nr, target_ulong val) | |
221 | { | |
222 | ppc_store_ibatu(env, nr, val); | |
223 | } | |
224 | ||
225 | void helper_store_ibatl (uint32_t nr, target_ulong val) | |
226 | { | |
227 | ppc_store_ibatl(env, nr, val); | |
228 | } | |
229 | ||
230 | void helper_store_dbatu (uint32_t nr, target_ulong val) | |
231 | { | |
232 | ppc_store_dbatu(env, nr, val); | |
233 | } | |
234 | ||
235 | void helper_store_dbatl (uint32_t nr, target_ulong val) | |
236 | { | |
237 | ppc_store_dbatl(env, nr, val); | |
238 | } | |
239 | ||
240 | void helper_store_601_batl (uint32_t nr, target_ulong val) | |
241 | { | |
242 | ppc_store_ibatl_601(env, nr, val); | |
243 | } | |
244 | ||
245 | void helper_store_601_batu (uint32_t nr, target_ulong val) | |
246 | { | |
247 | ppc_store_ibatu_601(env, nr, val); | |
248 | } | |
249 | #endif | |
250 | ||
251 | /*****************************************************************************/ | |
252 | /* Memory load and stores */ | |
253 | ||
254 | static inline target_ulong addr_add(target_ulong addr, target_long arg) | |
255 | { | |
256 | #if defined(TARGET_PPC64) | |
257 | if (!msr_sf) | |
258 | return (uint32_t)(addr + arg); | |
259 | else | |
260 | #endif | |
261 | return addr + arg; | |
262 | } | |
263 | ||
264 | void helper_lmw (target_ulong addr, uint32_t reg) | |
265 | { | |
266 | for (; reg < 32; reg++) { | |
267 | if (msr_le) | |
268 | env->gpr[reg] = bswap32(ldl(addr)); | |
269 | else | |
270 | env->gpr[reg] = ldl(addr); | |
271 | addr = addr_add(addr, 4); | |
272 | } | |
273 | } | |
274 | ||
275 | void helper_stmw (target_ulong addr, uint32_t reg) | |
276 | { | |
277 | for (; reg < 32; reg++) { | |
278 | if (msr_le) | |
279 | stl(addr, bswap32((uint32_t)env->gpr[reg])); | |
280 | else | |
281 | stl(addr, (uint32_t)env->gpr[reg]); | |
282 | addr = addr_add(addr, 4); | |
283 | } | |
284 | } | |
285 | ||
286 | void helper_lsw(target_ulong addr, uint32_t nb, uint32_t reg) | |
287 | { | |
288 | int sh; | |
289 | for (; nb > 3; nb -= 4) { | |
290 | env->gpr[reg] = ldl(addr); | |
291 | reg = (reg + 1) % 32; | |
292 | addr = addr_add(addr, 4); | |
293 | } | |
294 | if (unlikely(nb > 0)) { | |
295 | env->gpr[reg] = 0; | |
296 | for (sh = 24; nb > 0; nb--, sh -= 8) { | |
297 | env->gpr[reg] |= ldub(addr) << sh; | |
298 | addr = addr_add(addr, 1); | |
299 | } | |
300 | } | |
301 | } | |
302 | /* PPC32 specification says we must generate an exception if | |
303 | * rA is in the range of registers to be loaded. | |
304 | * In an other hand, IBM says this is valid, but rA won't be loaded. | |
305 | * For now, I'll follow the spec... | |
306 | */ | |
307 | void helper_lswx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb) | |
308 | { | |
309 | if (likely(xer_bc != 0)) { | |
310 | if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) || | |
311 | (reg < rb && (reg + xer_bc) > rb))) { | |
312 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, | |
313 | POWERPC_EXCP_INVAL | | |
314 | POWERPC_EXCP_INVAL_LSWX); | |
315 | } else { | |
316 | helper_lsw(addr, xer_bc, reg); | |
317 | } | |
318 | } | |
319 | } | |
320 | ||
321 | void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg) | |
322 | { | |
323 | int sh; | |
324 | for (; nb > 3; nb -= 4) { | |
325 | stl(addr, env->gpr[reg]); | |
326 | reg = (reg + 1) % 32; | |
327 | addr = addr_add(addr, 4); | |
328 | } | |
329 | if (unlikely(nb > 0)) { | |
330 | for (sh = 24; nb > 0; nb--, sh -= 8) { | |
331 | stb(addr, (env->gpr[reg] >> sh) & 0xFF); | |
332 | addr = addr_add(addr, 1); | |
333 | } | |
334 | } | |
335 | } | |
336 | ||
337 | static void do_dcbz(target_ulong addr, int dcache_line_size) | |
338 | { | |
339 | addr &= ~(dcache_line_size - 1); | |
340 | int i; | |
341 | for (i = 0 ; i < dcache_line_size ; i += 4) { | |
342 | stl(addr + i , 0); | |
343 | } | |
344 | if (env->reserve_addr == addr) | |
345 | env->reserve_addr = (target_ulong)-1ULL; | |
346 | } | |
347 | ||
348 | void helper_dcbz(target_ulong addr) | |
349 | { | |
350 | do_dcbz(addr, env->dcache_line_size); | |
351 | } | |
352 | ||
353 | void helper_dcbz_970(target_ulong addr) | |
354 | { | |
355 | if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) | |
356 | do_dcbz(addr, 32); | |
357 | else | |
358 | do_dcbz(addr, env->dcache_line_size); | |
359 | } | |
360 | ||
361 | void helper_icbi(target_ulong addr) | |
362 | { | |
363 | addr &= ~(env->dcache_line_size - 1); | |
364 | /* Invalidate one cache line : | |
365 | * PowerPC specification says this is to be treated like a load | |
366 | * (not a fetch) by the MMU. To be sure it will be so, | |
367 | * do the load "by hand". | |
368 | */ | |
369 | ldl(addr); | |
370 | } | |
371 | ||
372 | // XXX: to be tested | |
373 | target_ulong helper_lscbx (target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb) | |
374 | { | |
375 | int i, c, d; | |
376 | d = 24; | |
377 | for (i = 0; i < xer_bc; i++) { | |
378 | c = ldub(addr); | |
379 | addr = addr_add(addr, 1); | |
380 | /* ra (if not 0) and rb are never modified */ | |
381 | if (likely(reg != rb && (ra == 0 || reg != ra))) { | |
382 | env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d); | |
383 | } | |
384 | if (unlikely(c == xer_cmp)) | |
385 | break; | |
386 | if (likely(d != 0)) { | |
387 | d -= 8; | |
388 | } else { | |
389 | d = 24; | |
390 | reg++; | |
391 | reg = reg & 0x1F; | |
392 | } | |
393 | } | |
394 | return i; | |
395 | } | |
396 | ||
397 | /*****************************************************************************/ | |
398 | /* Fixed point operations helpers */ | |
399 | #if defined(TARGET_PPC64) | |
400 | ||
401 | /* multiply high word */ | |
402 | uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2) | |
403 | { | |
404 | uint64_t tl, th; | |
405 | ||
406 | muls64(&tl, &th, arg1, arg2); | |
407 | return th; | |
408 | } | |
409 | ||
410 | /* multiply high word unsigned */ | |
411 | uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2) | |
412 | { | |
413 | uint64_t tl, th; | |
414 | ||
415 | mulu64(&tl, &th, arg1, arg2); | |
416 | return th; | |
417 | } | |
418 | ||
419 | uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2) | |
420 | { | |
421 | int64_t th; | |
422 | uint64_t tl; | |
423 | ||
424 | muls64(&tl, (uint64_t *)&th, arg1, arg2); | |
425 | /* If th != 0 && th != -1, then we had an overflow */ | |
426 | if (likely((uint64_t)(th + 1) <= 1)) { | |
427 | env->xer &= ~(1 << XER_OV); | |
428 | } else { | |
429 | env->xer |= (1 << XER_OV) | (1 << XER_SO); | |
430 | } | |
431 | return (int64_t)tl; | |
432 | } | |
433 | #endif | |
434 | ||
435 | target_ulong helper_cntlzw (target_ulong t) | |
436 | { | |
437 | return clz32(t); | |
438 | } | |
439 | ||
440 | #if defined(TARGET_PPC64) | |
441 | target_ulong helper_cntlzd (target_ulong t) | |
442 | { | |
443 | return clz64(t); | |
444 | } | |
445 | #endif | |
446 | ||
447 | /* shift right arithmetic helper */ | |
448 | target_ulong helper_sraw (target_ulong value, target_ulong shift) | |
449 | { | |
450 | int32_t ret; | |
451 | ||
452 | if (likely(!(shift & 0x20))) { | |
453 | if (likely((uint32_t)shift != 0)) { | |
454 | shift &= 0x1f; | |
455 | ret = (int32_t)value >> shift; | |
456 | if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { | |
457 | env->xer &= ~(1 << XER_CA); | |
458 | } else { | |
459 | env->xer |= (1 << XER_CA); | |
460 | } | |
461 | } else { | |
462 | ret = (int32_t)value; | |
463 | env->xer &= ~(1 << XER_CA); | |
464 | } | |
465 | } else { | |
466 | ret = (int32_t)value >> 31; | |
467 | if (ret) { | |
468 | env->xer |= (1 << XER_CA); | |
469 | } else { | |
470 | env->xer &= ~(1 << XER_CA); | |
471 | } | |
472 | } | |
473 | return (target_long)ret; | |
474 | } | |
475 | ||
476 | #if defined(TARGET_PPC64) | |
477 | target_ulong helper_srad (target_ulong value, target_ulong shift) | |
478 | { | |
479 | int64_t ret; | |
480 | ||
481 | if (likely(!(shift & 0x40))) { | |
482 | if (likely((uint64_t)shift != 0)) { | |
483 | shift &= 0x3f; | |
484 | ret = (int64_t)value >> shift; | |
485 | if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { | |
486 | env->xer &= ~(1 << XER_CA); | |
487 | } else { | |
488 | env->xer |= (1 << XER_CA); | |
489 | } | |
490 | } else { | |
491 | ret = (int64_t)value; | |
492 | env->xer &= ~(1 << XER_CA); | |
493 | } | |
494 | } else { | |
495 | ret = (int64_t)value >> 63; | |
496 | if (ret) { | |
497 | env->xer |= (1 << XER_CA); | |
498 | } else { | |
499 | env->xer &= ~(1 << XER_CA); | |
500 | } | |
501 | } | |
502 | return ret; | |
503 | } | |
504 | #endif | |
505 | ||
506 | #if defined(TARGET_PPC64) | |
507 | target_ulong helper_popcntb (target_ulong val) | |
508 | { | |
509 | val = (val & 0x5555555555555555ULL) + ((val >> 1) & | |
510 | 0x5555555555555555ULL); | |
511 | val = (val & 0x3333333333333333ULL) + ((val >> 2) & | |
512 | 0x3333333333333333ULL); | |
513 | val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & | |
514 | 0x0f0f0f0f0f0f0f0fULL); | |
515 | return val; | |
516 | } | |
517 | ||
518 | target_ulong helper_popcntw (target_ulong val) | |
519 | { | |
520 | val = (val & 0x5555555555555555ULL) + ((val >> 1) & | |
521 | 0x5555555555555555ULL); | |
522 | val = (val & 0x3333333333333333ULL) + ((val >> 2) & | |
523 | 0x3333333333333333ULL); | |
524 | val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & | |
525 | 0x0f0f0f0f0f0f0f0fULL); | |
526 | val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) & | |
527 | 0x00ff00ff00ff00ffULL); | |
528 | val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) & | |
529 | 0x0000ffff0000ffffULL); | |
530 | return val; | |
531 | } | |
532 | ||
533 | target_ulong helper_popcntd (target_ulong val) | |
534 | { | |
535 | return ctpop64(val); | |
536 | } | |
537 | #else | |
538 | target_ulong helper_popcntb (target_ulong val) | |
539 | { | |
540 | val = (val & 0x55555555) + ((val >> 1) & 0x55555555); | |
541 | val = (val & 0x33333333) + ((val >> 2) & 0x33333333); | |
542 | val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f); | |
543 | return val; | |
544 | } | |
545 | ||
546 | target_ulong helper_popcntw (target_ulong val) | |
547 | { | |
548 | val = (val & 0x55555555) + ((val >> 1) & 0x55555555); | |
549 | val = (val & 0x33333333) + ((val >> 2) & 0x33333333); | |
550 | val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f); | |
551 | val = (val & 0x00ff00ff) + ((val >> 8) & 0x00ff00ff); | |
552 | val = (val & 0x0000ffff) + ((val >> 16) & 0x0000ffff); | |
553 | return val; | |
554 | } | |
555 | #endif | |
556 | ||
557 | /*****************************************************************************/ | |
558 | /* Floating point operations helpers */ | |
559 | uint64_t helper_float32_to_float64(uint32_t arg) | |
560 | { | |
561 | CPU_FloatU f; | |
562 | CPU_DoubleU d; | |
563 | f.l = arg; | |
564 | d.d = float32_to_float64(f.f, &env->fp_status); | |
565 | return d.ll; | |
566 | } | |
567 | ||
568 | uint32_t helper_float64_to_float32(uint64_t arg) | |
569 | { | |
570 | CPU_FloatU f; | |
571 | CPU_DoubleU d; | |
572 | d.ll = arg; | |
573 | f.f = float64_to_float32(d.d, &env->fp_status); | |
574 | return f.l; | |
575 | } | |
576 | ||
577 | static inline int isden(float64 d) | |
578 | { | |
579 | CPU_DoubleU u; | |
580 | ||
581 | u.d = d; | |
582 | ||
583 | return ((u.ll >> 52) & 0x7FF) == 0; | |
584 | } | |
585 | ||
586 | uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf) | |
587 | { | |
588 | CPU_DoubleU farg; | |
589 | int isneg; | |
590 | int ret; | |
591 | farg.ll = arg; | |
592 | isneg = float64_is_neg(farg.d); | |
593 | if (unlikely(float64_is_any_nan(farg.d))) { | |
594 | if (float64_is_signaling_nan(farg.d)) { | |
595 | /* Signaling NaN: flags are undefined */ | |
596 | ret = 0x00; | |
597 | } else { | |
598 | /* Quiet NaN */ | |
599 | ret = 0x11; | |
600 | } | |
601 | } else if (unlikely(float64_is_infinity(farg.d))) { | |
602 | /* +/- infinity */ | |
603 | if (isneg) | |
604 | ret = 0x09; | |
605 | else | |
606 | ret = 0x05; | |
607 | } else { | |
608 | if (float64_is_zero(farg.d)) { | |
609 | /* +/- zero */ | |
610 | if (isneg) | |
611 | ret = 0x12; | |
612 | else | |
613 | ret = 0x02; | |
614 | } else { | |
615 | if (isden(farg.d)) { | |
616 | /* Denormalized numbers */ | |
617 | ret = 0x10; | |
618 | } else { | |
619 | /* Normalized numbers */ | |
620 | ret = 0x00; | |
621 | } | |
622 | if (isneg) { | |
623 | ret |= 0x08; | |
624 | } else { | |
625 | ret |= 0x04; | |
626 | } | |
627 | } | |
628 | } | |
629 | if (set_fprf) { | |
630 | /* We update FPSCR_FPRF */ | |
631 | env->fpscr &= ~(0x1F << FPSCR_FPRF); | |
632 | env->fpscr |= ret << FPSCR_FPRF; | |
633 | } | |
634 | /* We just need fpcc to update Rc1 */ | |
635 | return ret & 0xF; | |
636 | } | |
637 | ||
638 | /* Floating-point invalid operations exception */ | |
639 | static inline uint64_t fload_invalid_op_excp(int op) | |
640 | { | |
641 | uint64_t ret = 0; | |
642 | int ve; | |
643 | ||
644 | ve = fpscr_ve; | |
645 | switch (op) { | |
646 | case POWERPC_EXCP_FP_VXSNAN: | |
647 | env->fpscr |= 1 << FPSCR_VXSNAN; | |
648 | break; | |
649 | case POWERPC_EXCP_FP_VXSOFT: | |
650 | env->fpscr |= 1 << FPSCR_VXSOFT; | |
651 | break; | |
652 | case POWERPC_EXCP_FP_VXISI: | |
653 | /* Magnitude subtraction of infinities */ | |
654 | env->fpscr |= 1 << FPSCR_VXISI; | |
655 | goto update_arith; | |
656 | case POWERPC_EXCP_FP_VXIDI: | |
657 | /* Division of infinity by infinity */ | |
658 | env->fpscr |= 1 << FPSCR_VXIDI; | |
659 | goto update_arith; | |
660 | case POWERPC_EXCP_FP_VXZDZ: | |
661 | /* Division of zero by zero */ | |
662 | env->fpscr |= 1 << FPSCR_VXZDZ; | |
663 | goto update_arith; | |
664 | case POWERPC_EXCP_FP_VXIMZ: | |
665 | /* Multiplication of zero by infinity */ | |
666 | env->fpscr |= 1 << FPSCR_VXIMZ; | |
667 | goto update_arith; | |
668 | case POWERPC_EXCP_FP_VXVC: | |
669 | /* Ordered comparison of NaN */ | |
670 | env->fpscr |= 1 << FPSCR_VXVC; | |
671 | env->fpscr &= ~(0xF << FPSCR_FPCC); | |
672 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
673 | /* We must update the target FPR before raising the exception */ | |
674 | if (ve != 0) { | |
675 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
676 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; | |
677 | /* Update the floating-point enabled exception summary */ | |
678 | env->fpscr |= 1 << FPSCR_FEX; | |
679 | /* Exception is differed */ | |
680 | ve = 0; | |
681 | } | |
682 | break; | |
683 | case POWERPC_EXCP_FP_VXSQRT: | |
684 | /* Square root of a negative number */ | |
685 | env->fpscr |= 1 << FPSCR_VXSQRT; | |
686 | update_arith: | |
687 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
688 | if (ve == 0) { | |
689 | /* Set the result to quiet NaN */ | |
690 | ret = 0x7FF8000000000000ULL; | |
691 | env->fpscr &= ~(0xF << FPSCR_FPCC); | |
692 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
693 | } | |
694 | break; | |
695 | case POWERPC_EXCP_FP_VXCVI: | |
696 | /* Invalid conversion */ | |
697 | env->fpscr |= 1 << FPSCR_VXCVI; | |
698 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
699 | if (ve == 0) { | |
700 | /* Set the result to quiet NaN */ | |
701 | ret = 0x7FF8000000000000ULL; | |
702 | env->fpscr &= ~(0xF << FPSCR_FPCC); | |
703 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
704 | } | |
705 | break; | |
706 | } | |
707 | /* Update the floating-point invalid operation summary */ | |
708 | env->fpscr |= 1 << FPSCR_VX; | |
709 | /* Update the floating-point exception summary */ | |
710 | env->fpscr |= 1 << FPSCR_FX; | |
711 | if (ve != 0) { | |
712 | /* Update the floating-point enabled exception summary */ | |
713 | env->fpscr |= 1 << FPSCR_FEX; | |
714 | if (msr_fe0 != 0 || msr_fe1 != 0) | |
715 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op); | |
716 | } | |
717 | return ret; | |
718 | } | |
719 | ||
720 | static inline void float_zero_divide_excp(void) | |
721 | { | |
722 | env->fpscr |= 1 << FPSCR_ZX; | |
723 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
724 | /* Update the floating-point exception summary */ | |
725 | env->fpscr |= 1 << FPSCR_FX; | |
726 | if (fpscr_ze != 0) { | |
727 | /* Update the floating-point enabled exception summary */ | |
728 | env->fpscr |= 1 << FPSCR_FEX; | |
729 | if (msr_fe0 != 0 || msr_fe1 != 0) { | |
730 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, | |
731 | POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX); | |
732 | } | |
733 | } | |
734 | } | |
735 | ||
736 | static inline void float_overflow_excp(void) | |
737 | { | |
738 | env->fpscr |= 1 << FPSCR_OX; | |
739 | /* Update the floating-point exception summary */ | |
740 | env->fpscr |= 1 << FPSCR_FX; | |
741 | if (fpscr_oe != 0) { | |
742 | /* XXX: should adjust the result */ | |
743 | /* Update the floating-point enabled exception summary */ | |
744 | env->fpscr |= 1 << FPSCR_FEX; | |
745 | /* We must update the target FPR before raising the exception */ | |
746 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
747 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | |
748 | } else { | |
749 | env->fpscr |= 1 << FPSCR_XX; | |
750 | env->fpscr |= 1 << FPSCR_FI; | |
751 | } | |
752 | } | |
753 | ||
754 | static inline void float_underflow_excp(void) | |
755 | { | |
756 | env->fpscr |= 1 << FPSCR_UX; | |
757 | /* Update the floating-point exception summary */ | |
758 | env->fpscr |= 1 << FPSCR_FX; | |
759 | if (fpscr_ue != 0) { | |
760 | /* XXX: should adjust the result */ | |
761 | /* Update the floating-point enabled exception summary */ | |
762 | env->fpscr |= 1 << FPSCR_FEX; | |
763 | /* We must update the target FPR before raising the exception */ | |
764 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
765 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | |
766 | } | |
767 | } | |
768 | ||
769 | static inline void float_inexact_excp(void) | |
770 | { | |
771 | env->fpscr |= 1 << FPSCR_XX; | |
772 | /* Update the floating-point exception summary */ | |
773 | env->fpscr |= 1 << FPSCR_FX; | |
774 | if (fpscr_xe != 0) { | |
775 | /* Update the floating-point enabled exception summary */ | |
776 | env->fpscr |= 1 << FPSCR_FEX; | |
777 | /* We must update the target FPR before raising the exception */ | |
778 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
779 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | |
780 | } | |
781 | } | |
782 | ||
783 | static inline void fpscr_set_rounding_mode(void) | |
784 | { | |
785 | int rnd_type; | |
786 | ||
787 | /* Set rounding mode */ | |
788 | switch (fpscr_rn) { | |
789 | case 0: | |
790 | /* Best approximation (round to nearest) */ | |
791 | rnd_type = float_round_nearest_even; | |
792 | break; | |
793 | case 1: | |
794 | /* Smaller magnitude (round toward zero) */ | |
795 | rnd_type = float_round_to_zero; | |
796 | break; | |
797 | case 2: | |
798 | /* Round toward +infinite */ | |
799 | rnd_type = float_round_up; | |
800 | break; | |
801 | default: | |
802 | case 3: | |
803 | /* Round toward -infinite */ | |
804 | rnd_type = float_round_down; | |
805 | break; | |
806 | } | |
807 | set_float_rounding_mode(rnd_type, &env->fp_status); | |
808 | } | |
809 | ||
810 | void helper_fpscr_clrbit (uint32_t bit) | |
811 | { | |
812 | int prev; | |
813 | ||
814 | prev = (env->fpscr >> bit) & 1; | |
815 | env->fpscr &= ~(1 << bit); | |
816 | if (prev == 1) { | |
817 | switch (bit) { | |
818 | case FPSCR_RN1: | |
819 | case FPSCR_RN: | |
820 | fpscr_set_rounding_mode(); | |
821 | break; | |
822 | default: | |
823 | break; | |
824 | } | |
825 | } | |
826 | } | |
827 | ||
828 | void helper_fpscr_setbit (uint32_t bit) | |
829 | { | |
830 | int prev; | |
831 | ||
832 | prev = (env->fpscr >> bit) & 1; | |
833 | env->fpscr |= 1 << bit; | |
834 | if (prev == 0) { | |
835 | switch (bit) { | |
836 | case FPSCR_VX: | |
837 | env->fpscr |= 1 << FPSCR_FX; | |
838 | if (fpscr_ve) | |
839 | goto raise_ve; | |
840 | case FPSCR_OX: | |
841 | env->fpscr |= 1 << FPSCR_FX; | |
842 | if (fpscr_oe) | |
843 | goto raise_oe; | |
844 | break; | |
845 | case FPSCR_UX: | |
846 | env->fpscr |= 1 << FPSCR_FX; | |
847 | if (fpscr_ue) | |
848 | goto raise_ue; | |
849 | break; | |
850 | case FPSCR_ZX: | |
851 | env->fpscr |= 1 << FPSCR_FX; | |
852 | if (fpscr_ze) | |
853 | goto raise_ze; | |
854 | break; | |
855 | case FPSCR_XX: | |
856 | env->fpscr |= 1 << FPSCR_FX; | |
857 | if (fpscr_xe) | |
858 | goto raise_xe; | |
859 | break; | |
860 | case FPSCR_VXSNAN: | |
861 | case FPSCR_VXISI: | |
862 | case FPSCR_VXIDI: | |
863 | case FPSCR_VXZDZ: | |
864 | case FPSCR_VXIMZ: | |
865 | case FPSCR_VXVC: | |
866 | case FPSCR_VXSOFT: | |
867 | case FPSCR_VXSQRT: | |
868 | case FPSCR_VXCVI: | |
869 | env->fpscr |= 1 << FPSCR_VX; | |
870 | env->fpscr |= 1 << FPSCR_FX; | |
871 | if (fpscr_ve != 0) | |
872 | goto raise_ve; | |
873 | break; | |
874 | case FPSCR_VE: | |
875 | if (fpscr_vx != 0) { | |
876 | raise_ve: | |
877 | env->error_code = POWERPC_EXCP_FP; | |
878 | if (fpscr_vxsnan) | |
879 | env->error_code |= POWERPC_EXCP_FP_VXSNAN; | |
880 | if (fpscr_vxisi) | |
881 | env->error_code |= POWERPC_EXCP_FP_VXISI; | |
882 | if (fpscr_vxidi) | |
883 | env->error_code |= POWERPC_EXCP_FP_VXIDI; | |
884 | if (fpscr_vxzdz) | |
885 | env->error_code |= POWERPC_EXCP_FP_VXZDZ; | |
886 | if (fpscr_vximz) | |
887 | env->error_code |= POWERPC_EXCP_FP_VXIMZ; | |
888 | if (fpscr_vxvc) | |
889 | env->error_code |= POWERPC_EXCP_FP_VXVC; | |
890 | if (fpscr_vxsoft) | |
891 | env->error_code |= POWERPC_EXCP_FP_VXSOFT; | |
892 | if (fpscr_vxsqrt) | |
893 | env->error_code |= POWERPC_EXCP_FP_VXSQRT; | |
894 | if (fpscr_vxcvi) | |
895 | env->error_code |= POWERPC_EXCP_FP_VXCVI; | |
896 | goto raise_excp; | |
897 | } | |
898 | break; | |
899 | case FPSCR_OE: | |
900 | if (fpscr_ox != 0) { | |
901 | raise_oe: | |
902 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | |
903 | goto raise_excp; | |
904 | } | |
905 | break; | |
906 | case FPSCR_UE: | |
907 | if (fpscr_ux != 0) { | |
908 | raise_ue: | |
909 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | |
910 | goto raise_excp; | |
911 | } | |
912 | break; | |
913 | case FPSCR_ZE: | |
914 | if (fpscr_zx != 0) { | |
915 | raise_ze: | |
916 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; | |
917 | goto raise_excp; | |
918 | } | |
919 | break; | |
920 | case FPSCR_XE: | |
921 | if (fpscr_xx != 0) { | |
922 | raise_xe: | |
923 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | |
924 | goto raise_excp; | |
925 | } | |
926 | break; | |
927 | case FPSCR_RN1: | |
928 | case FPSCR_RN: | |
929 | fpscr_set_rounding_mode(); | |
930 | break; | |
931 | default: | |
932 | break; | |
933 | raise_excp: | |
934 | /* Update the floating-point enabled exception summary */ | |
935 | env->fpscr |= 1 << FPSCR_FEX; | |
936 | /* We have to update Rc1 before raising the exception */ | |
937 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
938 | break; | |
939 | } | |
940 | } | |
941 | } | |
942 | ||
943 | void helper_store_fpscr (uint64_t arg, uint32_t mask) | |
944 | { | |
945 | /* | |
946 | * We use only the 32 LSB of the incoming fpr | |
947 | */ | |
948 | uint32_t prev, new; | |
949 | int i; | |
950 | ||
951 | prev = env->fpscr; | |
952 | new = (uint32_t)arg; | |
953 | new &= ~0x60000000; | |
954 | new |= prev & 0x60000000; | |
955 | for (i = 0; i < 8; i++) { | |
956 | if (mask & (1 << i)) { | |
957 | env->fpscr &= ~(0xF << (4 * i)); | |
958 | env->fpscr |= new & (0xF << (4 * i)); | |
959 | } | |
960 | } | |
961 | /* Update VX and FEX */ | |
962 | if (fpscr_ix != 0) | |
963 | env->fpscr |= 1 << FPSCR_VX; | |
964 | else | |
965 | env->fpscr &= ~(1 << FPSCR_VX); | |
966 | if ((fpscr_ex & fpscr_eex) != 0) { | |
967 | env->fpscr |= 1 << FPSCR_FEX; | |
968 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
969 | /* XXX: we should compute it properly */ | |
970 | env->error_code = POWERPC_EXCP_FP; | |
971 | } | |
972 | else | |
973 | env->fpscr &= ~(1 << FPSCR_FEX); | |
974 | fpscr_set_rounding_mode(); | |
975 | } | |
976 | ||
977 | void helper_float_check_status (void) | |
978 | { | |
979 | if (env->exception_index == POWERPC_EXCP_PROGRAM && | |
980 | (env->error_code & POWERPC_EXCP_FP)) { | |
981 | /* Differred floating-point exception after target FPR update */ | |
982 | if (msr_fe0 != 0 || msr_fe1 != 0) | |
983 | helper_raise_exception_err(env->exception_index, env->error_code); | |
984 | } else { | |
985 | int status = get_float_exception_flags(&env->fp_status); | |
986 | if (status & float_flag_divbyzero) { | |
987 | float_zero_divide_excp(); | |
988 | } else if (status & float_flag_overflow) { | |
989 | float_overflow_excp(); | |
990 | } else if (status & float_flag_underflow) { | |
991 | float_underflow_excp(); | |
992 | } else if (status & float_flag_inexact) { | |
993 | float_inexact_excp(); | |
994 | } | |
995 | } | |
996 | } | |
997 | ||
998 | void helper_reset_fpstatus (void) | |
999 | { | |
1000 | set_float_exception_flags(0, &env->fp_status); | |
1001 | } | |
1002 | ||
1003 | /* fadd - fadd. */ | |
1004 | uint64_t helper_fadd (uint64_t arg1, uint64_t arg2) | |
1005 | { | |
1006 | CPU_DoubleU farg1, farg2; | |
1007 | ||
1008 | farg1.ll = arg1; | |
1009 | farg2.ll = arg2; | |
1010 | ||
1011 | if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) && | |
1012 | float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) { | |
1013 | /* Magnitude subtraction of infinities */ | |
1014 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
1015 | } else { | |
1016 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1017 | float64_is_signaling_nan(farg2.d))) { | |
1018 | /* sNaN addition */ | |
1019 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1020 | } | |
1021 | farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status); | |
1022 | } | |
1023 | ||
1024 | return farg1.ll; | |
1025 | } | |
1026 | ||
1027 | /* fsub - fsub. */ | |
1028 | uint64_t helper_fsub (uint64_t arg1, uint64_t arg2) | |
1029 | { | |
1030 | CPU_DoubleU farg1, farg2; | |
1031 | ||
1032 | farg1.ll = arg1; | |
1033 | farg2.ll = arg2; | |
1034 | ||
1035 | if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) && | |
1036 | float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) { | |
1037 | /* Magnitude subtraction of infinities */ | |
1038 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
1039 | } else { | |
1040 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1041 | float64_is_signaling_nan(farg2.d))) { | |
1042 | /* sNaN subtraction */ | |
1043 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1044 | } | |
1045 | farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status); | |
1046 | } | |
1047 | ||
1048 | return farg1.ll; | |
1049 | } | |
1050 | ||
1051 | /* fmul - fmul. */ | |
1052 | uint64_t helper_fmul (uint64_t arg1, uint64_t arg2) | |
1053 | { | |
1054 | CPU_DoubleU farg1, farg2; | |
1055 | ||
1056 | farg1.ll = arg1; | |
1057 | farg2.ll = arg2; | |
1058 | ||
1059 | if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || | |
1060 | (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { | |
1061 | /* Multiplication of zero by infinity */ | |
1062 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); | |
1063 | } else { | |
1064 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1065 | float64_is_signaling_nan(farg2.d))) { | |
1066 | /* sNaN multiplication */ | |
1067 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1068 | } | |
1069 | farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); | |
1070 | } | |
1071 | ||
1072 | return farg1.ll; | |
1073 | } | |
1074 | ||
1075 | /* fdiv - fdiv. */ | |
1076 | uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2) | |
1077 | { | |
1078 | CPU_DoubleU farg1, farg2; | |
1079 | ||
1080 | farg1.ll = arg1; | |
1081 | farg2.ll = arg2; | |
1082 | ||
1083 | if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d))) { | |
1084 | /* Division of infinity by infinity */ | |
1085 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI); | |
1086 | } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) { | |
1087 | /* Division of zero by zero */ | |
1088 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ); | |
1089 | } else { | |
1090 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1091 | float64_is_signaling_nan(farg2.d))) { | |
1092 | /* sNaN division */ | |
1093 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1094 | } | |
1095 | farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status); | |
1096 | } | |
1097 | ||
1098 | return farg1.ll; | |
1099 | } | |
1100 | ||
1101 | /* fabs */ | |
1102 | uint64_t helper_fabs (uint64_t arg) | |
1103 | { | |
1104 | CPU_DoubleU farg; | |
1105 | ||
1106 | farg.ll = arg; | |
1107 | farg.d = float64_abs(farg.d); | |
1108 | return farg.ll; | |
1109 | } | |
1110 | ||
1111 | /* fnabs */ | |
1112 | uint64_t helper_fnabs (uint64_t arg) | |
1113 | { | |
1114 | CPU_DoubleU farg; | |
1115 | ||
1116 | farg.ll = arg; | |
1117 | farg.d = float64_abs(farg.d); | |
1118 | farg.d = float64_chs(farg.d); | |
1119 | return farg.ll; | |
1120 | } | |
1121 | ||
1122 | /* fneg */ | |
1123 | uint64_t helper_fneg (uint64_t arg) | |
1124 | { | |
1125 | CPU_DoubleU farg; | |
1126 | ||
1127 | farg.ll = arg; | |
1128 | farg.d = float64_chs(farg.d); | |
1129 | return farg.ll; | |
1130 | } | |
1131 | ||
1132 | /* fctiw - fctiw. */ | |
1133 | uint64_t helper_fctiw (uint64_t arg) | |
1134 | { | |
1135 | CPU_DoubleU farg; | |
1136 | farg.ll = arg; | |
1137 | ||
1138 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1139 | /* sNaN conversion */ | |
1140 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1141 | } else if (unlikely(float64_is_quiet_nan(farg.d) || float64_is_infinity(farg.d))) { | |
1142 | /* qNan / infinity conversion */ | |
1143 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1144 | } else { | |
1145 | farg.ll = float64_to_int32(farg.d, &env->fp_status); | |
1146 | /* XXX: higher bits are not supposed to be significant. | |
1147 | * to make tests easier, return the same as a real PowerPC 750 | |
1148 | */ | |
1149 | farg.ll |= 0xFFF80000ULL << 32; | |
1150 | } | |
1151 | return farg.ll; | |
1152 | } | |
1153 | ||
1154 | /* fctiwz - fctiwz. */ | |
1155 | uint64_t helper_fctiwz (uint64_t arg) | |
1156 | { | |
1157 | CPU_DoubleU farg; | |
1158 | farg.ll = arg; | |
1159 | ||
1160 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1161 | /* sNaN conversion */ | |
1162 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1163 | } else if (unlikely(float64_is_quiet_nan(farg.d) || float64_is_infinity(farg.d))) { | |
1164 | /* qNan / infinity conversion */ | |
1165 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1166 | } else { | |
1167 | farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status); | |
1168 | /* XXX: higher bits are not supposed to be significant. | |
1169 | * to make tests easier, return the same as a real PowerPC 750 | |
1170 | */ | |
1171 | farg.ll |= 0xFFF80000ULL << 32; | |
1172 | } | |
1173 | return farg.ll; | |
1174 | } | |
1175 | ||
1176 | #if defined(TARGET_PPC64) | |
1177 | /* fcfid - fcfid. */ | |
1178 | uint64_t helper_fcfid (uint64_t arg) | |
1179 | { | |
1180 | CPU_DoubleU farg; | |
1181 | farg.d = int64_to_float64(arg, &env->fp_status); | |
1182 | return farg.ll; | |
1183 | } | |
1184 | ||
1185 | /* fctid - fctid. */ | |
1186 | uint64_t helper_fctid (uint64_t arg) | |
1187 | { | |
1188 | CPU_DoubleU farg; | |
1189 | farg.ll = arg; | |
1190 | ||
1191 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1192 | /* sNaN conversion */ | |
1193 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1194 | } else if (unlikely(float64_is_quiet_nan(farg.d) || float64_is_infinity(farg.d))) { | |
1195 | /* qNan / infinity conversion */ | |
1196 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1197 | } else { | |
1198 | farg.ll = float64_to_int64(farg.d, &env->fp_status); | |
1199 | } | |
1200 | return farg.ll; | |
1201 | } | |
1202 | ||
1203 | /* fctidz - fctidz. */ | |
1204 | uint64_t helper_fctidz (uint64_t arg) | |
1205 | { | |
1206 | CPU_DoubleU farg; | |
1207 | farg.ll = arg; | |
1208 | ||
1209 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1210 | /* sNaN conversion */ | |
1211 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1212 | } else if (unlikely(float64_is_quiet_nan(farg.d) || float64_is_infinity(farg.d))) { | |
1213 | /* qNan / infinity conversion */ | |
1214 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1215 | } else { | |
1216 | farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status); | |
1217 | } | |
1218 | return farg.ll; | |
1219 | } | |
1220 | ||
1221 | #endif | |
1222 | ||
1223 | static inline uint64_t do_fri(uint64_t arg, int rounding_mode) | |
1224 | { | |
1225 | CPU_DoubleU farg; | |
1226 | farg.ll = arg; | |
1227 | ||
1228 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1229 | /* sNaN round */ | |
1230 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1231 | } else if (unlikely(float64_is_quiet_nan(farg.d) || float64_is_infinity(farg.d))) { | |
1232 | /* qNan / infinity round */ | |
1233 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1234 | } else { | |
1235 | set_float_rounding_mode(rounding_mode, &env->fp_status); | |
1236 | farg.ll = float64_round_to_int(farg.d, &env->fp_status); | |
1237 | /* Restore rounding mode from FPSCR */ | |
1238 | fpscr_set_rounding_mode(); | |
1239 | } | |
1240 | return farg.ll; | |
1241 | } | |
1242 | ||
1243 | uint64_t helper_frin (uint64_t arg) | |
1244 | { | |
1245 | return do_fri(arg, float_round_nearest_even); | |
1246 | } | |
1247 | ||
1248 | uint64_t helper_friz (uint64_t arg) | |
1249 | { | |
1250 | return do_fri(arg, float_round_to_zero); | |
1251 | } | |
1252 | ||
1253 | uint64_t helper_frip (uint64_t arg) | |
1254 | { | |
1255 | return do_fri(arg, float_round_up); | |
1256 | } | |
1257 | ||
1258 | uint64_t helper_frim (uint64_t arg) | |
1259 | { | |
1260 | return do_fri(arg, float_round_down); | |
1261 | } | |
1262 | ||
1263 | /* fmadd - fmadd. */ | |
1264 | uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3) | |
1265 | { | |
1266 | CPU_DoubleU farg1, farg2, farg3; | |
1267 | ||
1268 | farg1.ll = arg1; | |
1269 | farg2.ll = arg2; | |
1270 | farg3.ll = arg3; | |
1271 | ||
1272 | if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || | |
1273 | (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { | |
1274 | /* Multiplication of zero by infinity */ | |
1275 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); | |
1276 | } else { | |
1277 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1278 | float64_is_signaling_nan(farg2.d) || | |
1279 | float64_is_signaling_nan(farg3.d))) { | |
1280 | /* sNaN operation */ | |
1281 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1282 | } | |
1283 | /* This is the way the PowerPC specification defines it */ | |
1284 | float128 ft0_128, ft1_128; | |
1285 | ||
1286 | ft0_128 = float64_to_float128(farg1.d, &env->fp_status); | |
1287 | ft1_128 = float64_to_float128(farg2.d, &env->fp_status); | |
1288 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1289 | if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && | |
1290 | float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) { | |
1291 | /* Magnitude subtraction of infinities */ | |
1292 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
1293 | } else { | |
1294 | ft1_128 = float64_to_float128(farg3.d, &env->fp_status); | |
1295 | ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); | |
1296 | farg1.d = float128_to_float64(ft0_128, &env->fp_status); | |
1297 | } | |
1298 | } | |
1299 | ||
1300 | return farg1.ll; | |
1301 | } | |
1302 | ||
1303 | /* fmsub - fmsub. */ | |
1304 | uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3) | |
1305 | { | |
1306 | CPU_DoubleU farg1, farg2, farg3; | |
1307 | ||
1308 | farg1.ll = arg1; | |
1309 | farg2.ll = arg2; | |
1310 | farg3.ll = arg3; | |
1311 | ||
1312 | if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || | |
1313 | (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { | |
1314 | /* Multiplication of zero by infinity */ | |
1315 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); | |
1316 | } else { | |
1317 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1318 | float64_is_signaling_nan(farg2.d) || | |
1319 | float64_is_signaling_nan(farg3.d))) { | |
1320 | /* sNaN operation */ | |
1321 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1322 | } | |
1323 | /* This is the way the PowerPC specification defines it */ | |
1324 | float128 ft0_128, ft1_128; | |
1325 | ||
1326 | ft0_128 = float64_to_float128(farg1.d, &env->fp_status); | |
1327 | ft1_128 = float64_to_float128(farg2.d, &env->fp_status); | |
1328 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1329 | if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && | |
1330 | float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) { | |
1331 | /* Magnitude subtraction of infinities */ | |
1332 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
1333 | } else { | |
1334 | ft1_128 = float64_to_float128(farg3.d, &env->fp_status); | |
1335 | ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); | |
1336 | farg1.d = float128_to_float64(ft0_128, &env->fp_status); | |
1337 | } | |
1338 | } | |
1339 | return farg1.ll; | |
1340 | } | |
1341 | ||
1342 | /* fnmadd - fnmadd. */ | |
1343 | uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3) | |
1344 | { | |
1345 | CPU_DoubleU farg1, farg2, farg3; | |
1346 | ||
1347 | farg1.ll = arg1; | |
1348 | farg2.ll = arg2; | |
1349 | farg3.ll = arg3; | |
1350 | ||
1351 | if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || | |
1352 | (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { | |
1353 | /* Multiplication of zero by infinity */ | |
1354 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); | |
1355 | } else { | |
1356 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1357 | float64_is_signaling_nan(farg2.d) || | |
1358 | float64_is_signaling_nan(farg3.d))) { | |
1359 | /* sNaN operation */ | |
1360 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1361 | } | |
1362 | /* This is the way the PowerPC specification defines it */ | |
1363 | float128 ft0_128, ft1_128; | |
1364 | ||
1365 | ft0_128 = float64_to_float128(farg1.d, &env->fp_status); | |
1366 | ft1_128 = float64_to_float128(farg2.d, &env->fp_status); | |
1367 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1368 | if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && | |
1369 | float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) { | |
1370 | /* Magnitude subtraction of infinities */ | |
1371 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
1372 | } else { | |
1373 | ft1_128 = float64_to_float128(farg3.d, &env->fp_status); | |
1374 | ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); | |
1375 | farg1.d = float128_to_float64(ft0_128, &env->fp_status); | |
1376 | } | |
1377 | if (likely(!float64_is_any_nan(farg1.d))) { | |
1378 | farg1.d = float64_chs(farg1.d); | |
1379 | } | |
1380 | } | |
1381 | return farg1.ll; | |
1382 | } | |
1383 | ||
1384 | /* fnmsub - fnmsub. */ | |
1385 | uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3) | |
1386 | { | |
1387 | CPU_DoubleU farg1, farg2, farg3; | |
1388 | ||
1389 | farg1.ll = arg1; | |
1390 | farg2.ll = arg2; | |
1391 | farg3.ll = arg3; | |
1392 | ||
1393 | if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || | |
1394 | (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { | |
1395 | /* Multiplication of zero by infinity */ | |
1396 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); | |
1397 | } else { | |
1398 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1399 | float64_is_signaling_nan(farg2.d) || | |
1400 | float64_is_signaling_nan(farg3.d))) { | |
1401 | /* sNaN operation */ | |
1402 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1403 | } | |
1404 | /* This is the way the PowerPC specification defines it */ | |
1405 | float128 ft0_128, ft1_128; | |
1406 | ||
1407 | ft0_128 = float64_to_float128(farg1.d, &env->fp_status); | |
1408 | ft1_128 = float64_to_float128(farg2.d, &env->fp_status); | |
1409 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1410 | if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && | |
1411 | float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) { | |
1412 | /* Magnitude subtraction of infinities */ | |
1413 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
1414 | } else { | |
1415 | ft1_128 = float64_to_float128(farg3.d, &env->fp_status); | |
1416 | ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); | |
1417 | farg1.d = float128_to_float64(ft0_128, &env->fp_status); | |
1418 | } | |
1419 | if (likely(!float64_is_any_nan(farg1.d))) { | |
1420 | farg1.d = float64_chs(farg1.d); | |
1421 | } | |
1422 | } | |
1423 | return farg1.ll; | |
1424 | } | |
1425 | ||
1426 | /* frsp - frsp. */ | |
1427 | uint64_t helper_frsp (uint64_t arg) | |
1428 | { | |
1429 | CPU_DoubleU farg; | |
1430 | float32 f32; | |
1431 | farg.ll = arg; | |
1432 | ||
1433 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1434 | /* sNaN square root */ | |
1435 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1436 | } | |
1437 | f32 = float64_to_float32(farg.d, &env->fp_status); | |
1438 | farg.d = float32_to_float64(f32, &env->fp_status); | |
1439 | ||
1440 | return farg.ll; | |
1441 | } | |
1442 | ||
1443 | /* fsqrt - fsqrt. */ | |
1444 | uint64_t helper_fsqrt (uint64_t arg) | |
1445 | { | |
1446 | CPU_DoubleU farg; | |
1447 | farg.ll = arg; | |
1448 | ||
1449 | if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) { | |
1450 | /* Square root of a negative nonzero number */ | |
1451 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); | |
1452 | } else { | |
1453 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1454 | /* sNaN square root */ | |
1455 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1456 | } | |
1457 | farg.d = float64_sqrt(farg.d, &env->fp_status); | |
1458 | } | |
1459 | return farg.ll; | |
1460 | } | |
1461 | ||
1462 | /* fre - fre. */ | |
1463 | uint64_t helper_fre (uint64_t arg) | |
1464 | { | |
1465 | CPU_DoubleU farg; | |
1466 | farg.ll = arg; | |
1467 | ||
1468 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1469 | /* sNaN reciprocal */ | |
1470 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1471 | } | |
1472 | farg.d = float64_div(float64_one, farg.d, &env->fp_status); | |
1473 | return farg.d; | |
1474 | } | |
1475 | ||
1476 | /* fres - fres. */ | |
1477 | uint64_t helper_fres (uint64_t arg) | |
1478 | { | |
1479 | CPU_DoubleU farg; | |
1480 | float32 f32; | |
1481 | farg.ll = arg; | |
1482 | ||
1483 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1484 | /* sNaN reciprocal */ | |
1485 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1486 | } | |
1487 | farg.d = float64_div(float64_one, farg.d, &env->fp_status); | |
1488 | f32 = float64_to_float32(farg.d, &env->fp_status); | |
1489 | farg.d = float32_to_float64(f32, &env->fp_status); | |
1490 | ||
1491 | return farg.ll; | |
1492 | } | |
1493 | ||
1494 | /* frsqrte - frsqrte. */ | |
1495 | uint64_t helper_frsqrte (uint64_t arg) | |
1496 | { | |
1497 | CPU_DoubleU farg; | |
1498 | float32 f32; | |
1499 | farg.ll = arg; | |
1500 | ||
1501 | if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) { | |
1502 | /* Reciprocal square root of a negative nonzero number */ | |
1503 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); | |
1504 | } else { | |
1505 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1506 | /* sNaN reciprocal square root */ | |
1507 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1508 | } | |
1509 | farg.d = float64_sqrt(farg.d, &env->fp_status); | |
1510 | farg.d = float64_div(float64_one, farg.d, &env->fp_status); | |
1511 | f32 = float64_to_float32(farg.d, &env->fp_status); | |
1512 | farg.d = float32_to_float64(f32, &env->fp_status); | |
1513 | } | |
1514 | return farg.ll; | |
1515 | } | |
1516 | ||
1517 | /* fsel - fsel. */ | |
1518 | uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3) | |
1519 | { | |
1520 | CPU_DoubleU farg1; | |
1521 | ||
1522 | farg1.ll = arg1; | |
1523 | ||
1524 | if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && !float64_is_any_nan(farg1.d)) { | |
1525 | return arg2; | |
1526 | } else { | |
1527 | return arg3; | |
1528 | } | |
1529 | } | |
1530 | ||
1531 | void helper_fcmpu (uint64_t arg1, uint64_t arg2, uint32_t crfD) | |
1532 | { | |
1533 | CPU_DoubleU farg1, farg2; | |
1534 | uint32_t ret = 0; | |
1535 | farg1.ll = arg1; | |
1536 | farg2.ll = arg2; | |
1537 | ||
1538 | if (unlikely(float64_is_any_nan(farg1.d) || | |
1539 | float64_is_any_nan(farg2.d))) { | |
1540 | ret = 0x01UL; | |
1541 | } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { | |
1542 | ret = 0x08UL; | |
1543 | } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { | |
1544 | ret = 0x04UL; | |
1545 | } else { | |
1546 | ret = 0x02UL; | |
1547 | } | |
1548 | ||
1549 | env->fpscr &= ~(0x0F << FPSCR_FPRF); | |
1550 | env->fpscr |= ret << FPSCR_FPRF; | |
1551 | env->crf[crfD] = ret; | |
1552 | if (unlikely(ret == 0x01UL | |
1553 | && (float64_is_signaling_nan(farg1.d) || | |
1554 | float64_is_signaling_nan(farg2.d)))) { | |
1555 | /* sNaN comparison */ | |
1556 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1557 | } | |
1558 | } | |
1559 | ||
1560 | void helper_fcmpo (uint64_t arg1, uint64_t arg2, uint32_t crfD) | |
1561 | { | |
1562 | CPU_DoubleU farg1, farg2; | |
1563 | uint32_t ret = 0; | |
1564 | farg1.ll = arg1; | |
1565 | farg2.ll = arg2; | |
1566 | ||
1567 | if (unlikely(float64_is_any_nan(farg1.d) || | |
1568 | float64_is_any_nan(farg2.d))) { | |
1569 | ret = 0x01UL; | |
1570 | } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { | |
1571 | ret = 0x08UL; | |
1572 | } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { | |
1573 | ret = 0x04UL; | |
1574 | } else { | |
1575 | ret = 0x02UL; | |
1576 | } | |
1577 | ||
1578 | env->fpscr &= ~(0x0F << FPSCR_FPRF); | |
1579 | env->fpscr |= ret << FPSCR_FPRF; | |
1580 | env->crf[crfD] = ret; | |
1581 | if (unlikely (ret == 0x01UL)) { | |
1582 | if (float64_is_signaling_nan(farg1.d) || | |
1583 | float64_is_signaling_nan(farg2.d)) { | |
1584 | /* sNaN comparison */ | |
1585 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | | |
1586 | POWERPC_EXCP_FP_VXVC); | |
1587 | } else { | |
1588 | /* qNaN comparison */ | |
1589 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC); | |
1590 | } | |
1591 | } | |
1592 | } | |
1593 | ||
1594 | #if !defined (CONFIG_USER_ONLY) | |
1595 | void helper_store_msr (target_ulong val) | |
1596 | { | |
1597 | val = hreg_store_msr(env, val, 0); | |
1598 | if (val != 0) { | |
1599 | env->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
1600 | helper_raise_exception(val); | |
1601 | } | |
1602 | } | |
1603 | ||
1604 | static inline void do_rfi(target_ulong nip, target_ulong msr, | |
1605 | target_ulong msrm, int keep_msrh) | |
1606 | { | |
1607 | #if defined(TARGET_PPC64) | |
1608 | if (msr & (1ULL << MSR_SF)) { | |
1609 | nip = (uint64_t)nip; | |
1610 | msr &= (uint64_t)msrm; | |
1611 | } else { | |
1612 | nip = (uint32_t)nip; | |
1613 | msr = (uint32_t)(msr & msrm); | |
1614 | if (keep_msrh) | |
1615 | msr |= env->msr & ~((uint64_t)0xFFFFFFFF); | |
1616 | } | |
1617 | #else | |
1618 | nip = (uint32_t)nip; | |
1619 | msr &= (uint32_t)msrm; | |
1620 | #endif | |
1621 | /* XXX: beware: this is false if VLE is supported */ | |
1622 | env->nip = nip & ~((target_ulong)0x00000003); | |
1623 | hreg_store_msr(env, msr, 1); | |
1624 | #if defined (DEBUG_OP) | |
1625 | cpu_dump_rfi(env->nip, env->msr); | |
1626 | #endif | |
1627 | /* No need to raise an exception here, | |
1628 | * as rfi is always the last insn of a TB | |
1629 | */ | |
1630 | env->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
1631 | } | |
1632 | ||
1633 | void helper_rfi (void) | |
1634 | { | |
1635 | do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], | |
1636 | ~((target_ulong)0x783F0000), 1); | |
1637 | } | |
1638 | ||
1639 | #if defined(TARGET_PPC64) | |
1640 | void helper_rfid (void) | |
1641 | { | |
1642 | do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], | |
1643 | ~((target_ulong)0x783F0000), 0); | |
1644 | } | |
1645 | ||
1646 | void helper_hrfid (void) | |
1647 | { | |
1648 | do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1], | |
1649 | ~((target_ulong)0x783F0000), 0); | |
1650 | } | |
1651 | #endif | |
1652 | #endif | |
1653 | ||
1654 | void helper_tw (target_ulong arg1, target_ulong arg2, uint32_t flags) | |
1655 | { | |
1656 | if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) || | |
1657 | ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) || | |
1658 | ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) || | |
1659 | ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) || | |
1660 | ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) { | |
1661 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); | |
1662 | } | |
1663 | } | |
1664 | ||
1665 | #if defined(TARGET_PPC64) | |
1666 | void helper_td (target_ulong arg1, target_ulong arg2, uint32_t flags) | |
1667 | { | |
1668 | if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) || | |
1669 | ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) || | |
1670 | ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) || | |
1671 | ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) || | |
1672 | ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01))))) | |
1673 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); | |
1674 | } | |
1675 | #endif | |
1676 | ||
1677 | /*****************************************************************************/ | |
1678 | /* PowerPC 601 specific instructions (POWER bridge) */ | |
1679 | ||
1680 | target_ulong helper_clcs (uint32_t arg) | |
1681 | { | |
1682 | switch (arg) { | |
1683 | case 0x0CUL: | |
1684 | /* Instruction cache line size */ | |
1685 | return env->icache_line_size; | |
1686 | break; | |
1687 | case 0x0DUL: | |
1688 | /* Data cache line size */ | |
1689 | return env->dcache_line_size; | |
1690 | break; | |
1691 | case 0x0EUL: | |
1692 | /* Minimum cache line size */ | |
1693 | return (env->icache_line_size < env->dcache_line_size) ? | |
1694 | env->icache_line_size : env->dcache_line_size; | |
1695 | break; | |
1696 | case 0x0FUL: | |
1697 | /* Maximum cache line size */ | |
1698 | return (env->icache_line_size > env->dcache_line_size) ? | |
1699 | env->icache_line_size : env->dcache_line_size; | |
1700 | break; | |
1701 | default: | |
1702 | /* Undefined */ | |
1703 | return 0; | |
1704 | break; | |
1705 | } | |
1706 | } | |
1707 | ||
1708 | target_ulong helper_div (target_ulong arg1, target_ulong arg2) | |
1709 | { | |
1710 | uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; | |
1711 | ||
1712 | if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || | |
1713 | (int32_t)arg2 == 0) { | |
1714 | env->spr[SPR_MQ] = 0; | |
1715 | return INT32_MIN; | |
1716 | } else { | |
1717 | env->spr[SPR_MQ] = tmp % arg2; | |
1718 | return tmp / (int32_t)arg2; | |
1719 | } | |
1720 | } | |
1721 | ||
1722 | target_ulong helper_divo (target_ulong arg1, target_ulong arg2) | |
1723 | { | |
1724 | uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; | |
1725 | ||
1726 | if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || | |
1727 | (int32_t)arg2 == 0) { | |
1728 | env->xer |= (1 << XER_OV) | (1 << XER_SO); | |
1729 | env->spr[SPR_MQ] = 0; | |
1730 | return INT32_MIN; | |
1731 | } else { | |
1732 | env->spr[SPR_MQ] = tmp % arg2; | |
1733 | tmp /= (int32_t)arg2; | |
1734 | if ((int32_t)tmp != tmp) { | |
1735 | env->xer |= (1 << XER_OV) | (1 << XER_SO); | |
1736 | } else { | |
1737 | env->xer &= ~(1 << XER_OV); | |
1738 | } | |
1739 | return tmp; | |
1740 | } | |
1741 | } | |
1742 | ||
1743 | target_ulong helper_divs (target_ulong arg1, target_ulong arg2) | |
1744 | { | |
1745 | if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || | |
1746 | (int32_t)arg2 == 0) { | |
1747 | env->spr[SPR_MQ] = 0; | |
1748 | return INT32_MIN; | |
1749 | } else { | |
1750 | env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; | |
1751 | return (int32_t)arg1 / (int32_t)arg2; | |
1752 | } | |
1753 | } | |
1754 | ||
1755 | target_ulong helper_divso (target_ulong arg1, target_ulong arg2) | |
1756 | { | |
1757 | if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || | |
1758 | (int32_t)arg2 == 0) { | |
1759 | env->xer |= (1 << XER_OV) | (1 << XER_SO); | |
1760 | env->spr[SPR_MQ] = 0; | |
1761 | return INT32_MIN; | |
1762 | } else { | |
1763 | env->xer &= ~(1 << XER_OV); | |
1764 | env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; | |
1765 | return (int32_t)arg1 / (int32_t)arg2; | |
1766 | } | |
1767 | } | |
1768 | ||
1769 | #if !defined (CONFIG_USER_ONLY) | |
1770 | target_ulong helper_rac (target_ulong addr) | |
1771 | { | |
1772 | mmu_ctx_t ctx; | |
1773 | int nb_BATs; | |
1774 | target_ulong ret = 0; | |
1775 | ||
1776 | /* We don't have to generate many instances of this instruction, | |
1777 | * as rac is supervisor only. | |
1778 | */ | |
1779 | /* XXX: FIX THIS: Pretend we have no BAT */ | |
1780 | nb_BATs = env->nb_BATs; | |
1781 | env->nb_BATs = 0; | |
1782 | if (get_physical_address(env, &ctx, addr, 0, ACCESS_INT) == 0) | |
1783 | ret = ctx.raddr; | |
1784 | env->nb_BATs = nb_BATs; | |
1785 | return ret; | |
1786 | } | |
1787 | ||
1788 | void helper_rfsvc (void) | |
1789 | { | |
1790 | do_rfi(env->lr, env->ctr, 0x0000FFFF, 0); | |
1791 | } | |
1792 | #endif | |
1793 | ||
1794 | /*****************************************************************************/ | |
1795 | /* 602 specific instructions */ | |
1796 | /* mfrom is the most crazy instruction ever seen, imho ! */ | |
1797 | /* Real implementation uses a ROM table. Do the same */ | |
1798 | /* Extremly decomposed: | |
1799 | * -arg / 256 | |
1800 | * return 256 * log10(10 + 1.0) + 0.5 | |
1801 | */ | |
1802 | #if !defined (CONFIG_USER_ONLY) | |
1803 | target_ulong helper_602_mfrom (target_ulong arg) | |
1804 | { | |
1805 | if (likely(arg < 602)) { | |
1806 | #include "mfrom_table.c" | |
1807 | return mfrom_ROM_table[arg]; | |
1808 | } else { | |
1809 | return 0; | |
1810 | } | |
1811 | } | |
1812 | #endif | |
1813 | ||
1814 | /*****************************************************************************/ | |
1815 | /* Embedded PowerPC specific helpers */ | |
1816 | ||
1817 | /* XXX: to be improved to check access rights when in user-mode */ | |
1818 | target_ulong helper_load_dcr (target_ulong dcrn) | |
1819 | { | |
1820 | uint32_t val = 0; | |
1821 | ||
1822 | if (unlikely(env->dcr_env == NULL)) { | |
1823 | qemu_log("No DCR environment\n"); | |
1824 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, | |
1825 | POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); | |
1826 | } else if (unlikely(ppc_dcr_read(env->dcr_env, (uint32_t)dcrn, &val) != 0)) { | |
1827 | qemu_log("DCR read error %d %03x\n", (uint32_t)dcrn, (uint32_t)dcrn); | |
1828 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, | |
1829 | POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); | |
1830 | } | |
1831 | return val; | |
1832 | } | |
1833 | ||
1834 | void helper_store_dcr (target_ulong dcrn, target_ulong val) | |
1835 | { | |
1836 | if (unlikely(env->dcr_env == NULL)) { | |
1837 | qemu_log("No DCR environment\n"); | |
1838 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, | |
1839 | POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); | |
1840 | } else if (unlikely(ppc_dcr_write(env->dcr_env, (uint32_t)dcrn, (uint32_t)val) != 0)) { | |
1841 | qemu_log("DCR write error %d %03x\n", (uint32_t)dcrn, (uint32_t)dcrn); | |
1842 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, | |
1843 | POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); | |
1844 | } | |
1845 | } | |
1846 | ||
1847 | #if !defined(CONFIG_USER_ONLY) | |
1848 | void helper_40x_rfci (void) | |
1849 | { | |
1850 | do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3], | |
1851 | ~((target_ulong)0xFFFF0000), 0); | |
1852 | } | |
1853 | ||
1854 | void helper_rfci (void) | |
1855 | { | |
1856 | do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1, | |
1857 | ~((target_ulong)0x3FFF0000), 0); | |
1858 | } | |
1859 | ||
1860 | void helper_rfdi (void) | |
1861 | { | |
1862 | do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1, | |
1863 | ~((target_ulong)0x3FFF0000), 0); | |
1864 | } | |
1865 | ||
1866 | void helper_rfmci (void) | |
1867 | { | |
1868 | do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1, | |
1869 | ~((target_ulong)0x3FFF0000), 0); | |
1870 | } | |
1871 | #endif | |
1872 | ||
1873 | /* 440 specific */ | |
1874 | target_ulong helper_dlmzb (target_ulong high, target_ulong low, uint32_t update_Rc) | |
1875 | { | |
1876 | target_ulong mask; | |
1877 | int i; | |
1878 | ||
1879 | i = 1; | |
1880 | for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { | |
1881 | if ((high & mask) == 0) { | |
1882 | if (update_Rc) { | |
1883 | env->crf[0] = 0x4; | |
1884 | } | |
1885 | goto done; | |
1886 | } | |
1887 | i++; | |
1888 | } | |
1889 | for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { | |
1890 | if ((low & mask) == 0) { | |
1891 | if (update_Rc) { | |
1892 | env->crf[0] = 0x8; | |
1893 | } | |
1894 | goto done; | |
1895 | } | |
1896 | i++; | |
1897 | } | |
1898 | if (update_Rc) { | |
1899 | env->crf[0] = 0x2; | |
1900 | } | |
1901 | done: | |
1902 | env->xer = (env->xer & ~0x7F) | i; | |
1903 | if (update_Rc) { | |
1904 | env->crf[0] |= xer_so; | |
1905 | } | |
1906 | return i; | |
1907 | } | |
1908 | ||
1909 | /*****************************************************************************/ | |
1910 | /* Altivec extension helpers */ | |
1911 | #if defined(HOST_WORDS_BIGENDIAN) | |
1912 | #define HI_IDX 0 | |
1913 | #define LO_IDX 1 | |
1914 | #else | |
1915 | #define HI_IDX 1 | |
1916 | #define LO_IDX 0 | |
1917 | #endif | |
1918 | ||
1919 | #if defined(HOST_WORDS_BIGENDIAN) | |
1920 | #define VECTOR_FOR_INORDER_I(index, element) \ | |
1921 | for (index = 0; index < ARRAY_SIZE(r->element); index++) | |
1922 | #else | |
1923 | #define VECTOR_FOR_INORDER_I(index, element) \ | |
1924 | for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--) | |
1925 | #endif | |
1926 | ||
1927 | /* If X is a NaN, store the corresponding QNaN into RESULT. Otherwise, | |
1928 | * execute the following block. */ | |
1929 | #define DO_HANDLE_NAN(result, x) \ | |
1930 | if (float32_is_any_nan(x)) { \ | |
1931 | CPU_FloatU __f; \ | |
1932 | __f.f = x; \ | |
1933 | __f.l = __f.l | (1 << 22); /* Set QNaN bit. */ \ | |
1934 | result = __f.f; \ | |
1935 | } else | |
1936 | ||
1937 | #define HANDLE_NAN1(result, x) \ | |
1938 | DO_HANDLE_NAN(result, x) | |
1939 | #define HANDLE_NAN2(result, x, y) \ | |
1940 | DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) | |
1941 | #define HANDLE_NAN3(result, x, y, z) \ | |
1942 | DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) DO_HANDLE_NAN(result, z) | |
1943 | ||
1944 | /* Saturating arithmetic helpers. */ | |
1945 | #define SATCVT(from, to, from_type, to_type, min, max) \ | |
1946 | static inline to_type cvt##from##to(from_type x, int *sat) \ | |
1947 | { \ | |
1948 | to_type r; \ | |
1949 | if (x < (from_type)min) { \ | |
1950 | r = min; \ | |
1951 | *sat = 1; \ | |
1952 | } else if (x > (from_type)max) { \ | |
1953 | r = max; \ | |
1954 | *sat = 1; \ | |
1955 | } else { \ | |
1956 | r = x; \ | |
1957 | } \ | |
1958 | return r; \ | |
1959 | } | |
1960 | #define SATCVTU(from, to, from_type, to_type, min, max) \ | |
1961 | static inline to_type cvt##from##to(from_type x, int *sat) \ | |
1962 | { \ | |
1963 | to_type r; \ | |
1964 | if (x > (from_type)max) { \ | |
1965 | r = max; \ | |
1966 | *sat = 1; \ | |
1967 | } else { \ | |
1968 | r = x; \ | |
1969 | } \ | |
1970 | return r; \ | |
1971 | } | |
1972 | SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX) | |
1973 | SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX) | |
1974 | SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX) | |
1975 | ||
1976 | SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX) | |
1977 | SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX) | |
1978 | SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX) | |
1979 | SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX) | |
1980 | SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX) | |
1981 | SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX) | |
1982 | #undef SATCVT | |
1983 | #undef SATCVTU | |
1984 | ||
1985 | #define LVE(name, access, swap, element) \ | |
1986 | void helper_##name (ppc_avr_t *r, target_ulong addr) \ | |
1987 | { \ | |
1988 | size_t n_elems = ARRAY_SIZE(r->element); \ | |
1989 | int adjust = HI_IDX*(n_elems-1); \ | |
1990 | int sh = sizeof(r->element[0]) >> 1; \ | |
1991 | int index = (addr & 0xf) >> sh; \ | |
1992 | if(msr_le) { \ | |
1993 | r->element[LO_IDX ? index : (adjust - index)] = swap(access(addr)); \ | |
1994 | } else { \ | |
1995 | r->element[LO_IDX ? index : (adjust - index)] = access(addr); \ | |
1996 | } \ | |
1997 | } | |
1998 | #define I(x) (x) | |
1999 | LVE(lvebx, ldub, I, u8) | |
2000 | LVE(lvehx, lduw, bswap16, u16) | |
2001 | LVE(lvewx, ldl, bswap32, u32) | |
2002 | #undef I | |
2003 | #undef LVE | |
2004 | ||
2005 | void helper_lvsl (ppc_avr_t *r, target_ulong sh) | |
2006 | { | |
2007 | int i, j = (sh & 0xf); | |
2008 | ||
2009 | VECTOR_FOR_INORDER_I (i, u8) { | |
2010 | r->u8[i] = j++; | |
2011 | } | |
2012 | } | |
2013 | ||
2014 | void helper_lvsr (ppc_avr_t *r, target_ulong sh) | |
2015 | { | |
2016 | int i, j = 0x10 - (sh & 0xf); | |
2017 | ||
2018 | VECTOR_FOR_INORDER_I (i, u8) { | |
2019 | r->u8[i] = j++; | |
2020 | } | |
2021 | } | |
2022 | ||
2023 | #define STVE(name, access, swap, element) \ | |
2024 | void helper_##name (ppc_avr_t *r, target_ulong addr) \ | |
2025 | { \ | |
2026 | size_t n_elems = ARRAY_SIZE(r->element); \ | |
2027 | int adjust = HI_IDX*(n_elems-1); \ | |
2028 | int sh = sizeof(r->element[0]) >> 1; \ | |
2029 | int index = (addr & 0xf) >> sh; \ | |
2030 | if(msr_le) { \ | |
2031 | access(addr, swap(r->element[LO_IDX ? index : (adjust - index)])); \ | |
2032 | } else { \ | |
2033 | access(addr, r->element[LO_IDX ? index : (adjust - index)]); \ | |
2034 | } \ | |
2035 | } | |
2036 | #define I(x) (x) | |
2037 | STVE(stvebx, stb, I, u8) | |
2038 | STVE(stvehx, stw, bswap16, u16) | |
2039 | STVE(stvewx, stl, bswap32, u32) | |
2040 | #undef I | |
2041 | #undef LVE | |
2042 | ||
2043 | void helper_mtvscr (ppc_avr_t *r) | |
2044 | { | |
2045 | #if defined(HOST_WORDS_BIGENDIAN) | |
2046 | env->vscr = r->u32[3]; | |
2047 | #else | |
2048 | env->vscr = r->u32[0]; | |
2049 | #endif | |
2050 | set_flush_to_zero(vscr_nj, &env->vec_status); | |
2051 | } | |
2052 | ||
2053 | void helper_vaddcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2054 | { | |
2055 | int i; | |
2056 | for (i = 0; i < ARRAY_SIZE(r->u32); i++) { | |
2057 | r->u32[i] = ~a->u32[i] < b->u32[i]; | |
2058 | } | |
2059 | } | |
2060 | ||
2061 | #define VARITH_DO(name, op, element) \ | |
2062 | void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2063 | { \ | |
2064 | int i; \ | |
2065 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2066 | r->element[i] = a->element[i] op b->element[i]; \ | |
2067 | } \ | |
2068 | } | |
2069 | #define VARITH(suffix, element) \ | |
2070 | VARITH_DO(add##suffix, +, element) \ | |
2071 | VARITH_DO(sub##suffix, -, element) | |
2072 | VARITH(ubm, u8) | |
2073 | VARITH(uhm, u16) | |
2074 | VARITH(uwm, u32) | |
2075 | #undef VARITH_DO | |
2076 | #undef VARITH | |
2077 | ||
2078 | #define VARITHFP(suffix, func) \ | |
2079 | void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2080 | { \ | |
2081 | int i; \ | |
2082 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ | |
2083 | HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \ | |
2084 | r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \ | |
2085 | } \ | |
2086 | } \ | |
2087 | } | |
2088 | VARITHFP(addfp, float32_add) | |
2089 | VARITHFP(subfp, float32_sub) | |
2090 | #undef VARITHFP | |
2091 | ||
2092 | #define VARITHSAT_CASE(type, op, cvt, element) \ | |
2093 | { \ | |
2094 | type result = (type)a->element[i] op (type)b->element[i]; \ | |
2095 | r->element[i] = cvt(result, &sat); \ | |
2096 | } | |
2097 | ||
2098 | #define VARITHSAT_DO(name, op, optype, cvt, element) \ | |
2099 | void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2100 | { \ | |
2101 | int sat = 0; \ | |
2102 | int i; \ | |
2103 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2104 | switch (sizeof(r->element[0])) { \ | |
2105 | case 1: VARITHSAT_CASE(optype, op, cvt, element); break; \ | |
2106 | case 2: VARITHSAT_CASE(optype, op, cvt, element); break; \ | |
2107 | case 4: VARITHSAT_CASE(optype, op, cvt, element); break; \ | |
2108 | } \ | |
2109 | } \ | |
2110 | if (sat) { \ | |
2111 | env->vscr |= (1 << VSCR_SAT); \ | |
2112 | } \ | |
2113 | } | |
2114 | #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \ | |
2115 | VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \ | |
2116 | VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element) | |
2117 | #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \ | |
2118 | VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \ | |
2119 | VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element) | |
2120 | VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb) | |
2121 | VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh) | |
2122 | VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw) | |
2123 | VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub) | |
2124 | VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh) | |
2125 | VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw) | |
2126 | #undef VARITHSAT_CASE | |
2127 | #undef VARITHSAT_DO | |
2128 | #undef VARITHSAT_SIGNED | |
2129 | #undef VARITHSAT_UNSIGNED | |
2130 | ||
2131 | #define VAVG_DO(name, element, etype) \ | |
2132 | void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2133 | { \ | |
2134 | int i; \ | |
2135 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2136 | etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \ | |
2137 | r->element[i] = x >> 1; \ | |
2138 | } \ | |
2139 | } | |
2140 | ||
2141 | #define VAVG(type, signed_element, signed_type, unsigned_element, unsigned_type) \ | |
2142 | VAVG_DO(avgs##type, signed_element, signed_type) \ | |
2143 | VAVG_DO(avgu##type, unsigned_element, unsigned_type) | |
2144 | VAVG(b, s8, int16_t, u8, uint16_t) | |
2145 | VAVG(h, s16, int32_t, u16, uint32_t) | |
2146 | VAVG(w, s32, int64_t, u32, uint64_t) | |
2147 | #undef VAVG_DO | |
2148 | #undef VAVG | |
2149 | ||
2150 | #define VCF(suffix, cvt, element) \ | |
2151 | void helper_vcf##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \ | |
2152 | { \ | |
2153 | int i; \ | |
2154 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ | |
2155 | float32 t = cvt(b->element[i], &env->vec_status); \ | |
2156 | r->f[i] = float32_scalbn (t, -uim, &env->vec_status); \ | |
2157 | } \ | |
2158 | } | |
2159 | VCF(ux, uint32_to_float32, u32) | |
2160 | VCF(sx, int32_to_float32, s32) | |
2161 | #undef VCF | |
2162 | ||
2163 | #define VCMP_DO(suffix, compare, element, record) \ | |
2164 | void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2165 | { \ | |
2166 | uint32_t ones = (uint32_t)-1; \ | |
2167 | uint32_t all = ones; \ | |
2168 | uint32_t none = 0; \ | |
2169 | int i; \ | |
2170 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2171 | uint32_t result = (a->element[i] compare b->element[i] ? ones : 0x0); \ | |
2172 | switch (sizeof (a->element[0])) { \ | |
2173 | case 4: r->u32[i] = result; break; \ | |
2174 | case 2: r->u16[i] = result; break; \ | |
2175 | case 1: r->u8[i] = result; break; \ | |
2176 | } \ | |
2177 | all &= result; \ | |
2178 | none |= result; \ | |
2179 | } \ | |
2180 | if (record) { \ | |
2181 | env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \ | |
2182 | } \ | |
2183 | } | |
2184 | #define VCMP(suffix, compare, element) \ | |
2185 | VCMP_DO(suffix, compare, element, 0) \ | |
2186 | VCMP_DO(suffix##_dot, compare, element, 1) | |
2187 | VCMP(equb, ==, u8) | |
2188 | VCMP(equh, ==, u16) | |
2189 | VCMP(equw, ==, u32) | |
2190 | VCMP(gtub, >, u8) | |
2191 | VCMP(gtuh, >, u16) | |
2192 | VCMP(gtuw, >, u32) | |
2193 | VCMP(gtsb, >, s8) | |
2194 | VCMP(gtsh, >, s16) | |
2195 | VCMP(gtsw, >, s32) | |
2196 | #undef VCMP_DO | |
2197 | #undef VCMP | |
2198 | ||
2199 | #define VCMPFP_DO(suffix, compare, order, record) \ | |
2200 | void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2201 | { \ | |
2202 | uint32_t ones = (uint32_t)-1; \ | |
2203 | uint32_t all = ones; \ | |
2204 | uint32_t none = 0; \ | |
2205 | int i; \ | |
2206 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ | |
2207 | uint32_t result; \ | |
2208 | int rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status); \ | |
2209 | if (rel == float_relation_unordered) { \ | |
2210 | result = 0; \ | |
2211 | } else if (rel compare order) { \ | |
2212 | result = ones; \ | |
2213 | } else { \ | |
2214 | result = 0; \ | |
2215 | } \ | |
2216 | r->u32[i] = result; \ | |
2217 | all &= result; \ | |
2218 | none |= result; \ | |
2219 | } \ | |
2220 | if (record) { \ | |
2221 | env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \ | |
2222 | } \ | |
2223 | } | |
2224 | #define VCMPFP(suffix, compare, order) \ | |
2225 | VCMPFP_DO(suffix, compare, order, 0) \ | |
2226 | VCMPFP_DO(suffix##_dot, compare, order, 1) | |
2227 | VCMPFP(eqfp, ==, float_relation_equal) | |
2228 | VCMPFP(gefp, !=, float_relation_less) | |
2229 | VCMPFP(gtfp, ==, float_relation_greater) | |
2230 | #undef VCMPFP_DO | |
2231 | #undef VCMPFP | |
2232 | ||
2233 | static inline void vcmpbfp_internal(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, | |
2234 | int record) | |
2235 | { | |
2236 | int i; | |
2237 | int all_in = 0; | |
2238 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | |
2239 | int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status); | |
2240 | if (le_rel == float_relation_unordered) { | |
2241 | r->u32[i] = 0xc0000000; | |
2242 | /* ALL_IN does not need to be updated here. */ | |
2243 | } else { | |
2244 | float32 bneg = float32_chs(b->f[i]); | |
2245 | int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status); | |
2246 | int le = le_rel != float_relation_greater; | |
2247 | int ge = ge_rel != float_relation_less; | |
2248 | r->u32[i] = ((!le) << 31) | ((!ge) << 30); | |
2249 | all_in |= (!le | !ge); | |
2250 | } | |
2251 | } | |
2252 | if (record) { | |
2253 | env->crf[6] = (all_in == 0) << 1; | |
2254 | } | |
2255 | } | |
2256 | ||
2257 | void helper_vcmpbfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2258 | { | |
2259 | vcmpbfp_internal(r, a, b, 0); | |
2260 | } | |
2261 | ||
2262 | void helper_vcmpbfp_dot (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2263 | { | |
2264 | vcmpbfp_internal(r, a, b, 1); | |
2265 | } | |
2266 | ||
2267 | #define VCT(suffix, satcvt, element) \ | |
2268 | void helper_vct##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \ | |
2269 | { \ | |
2270 | int i; \ | |
2271 | int sat = 0; \ | |
2272 | float_status s = env->vec_status; \ | |
2273 | set_float_rounding_mode(float_round_to_zero, &s); \ | |
2274 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ | |
2275 | if (float32_is_any_nan(b->f[i])) { \ | |
2276 | r->element[i] = 0; \ | |
2277 | } else { \ | |
2278 | float64 t = float32_to_float64(b->f[i], &s); \ | |
2279 | int64_t j; \ | |
2280 | t = float64_scalbn(t, uim, &s); \ | |
2281 | j = float64_to_int64(t, &s); \ | |
2282 | r->element[i] = satcvt(j, &sat); \ | |
2283 | } \ | |
2284 | } \ | |
2285 | if (sat) { \ | |
2286 | env->vscr |= (1 << VSCR_SAT); \ | |
2287 | } \ | |
2288 | } | |
2289 | VCT(uxs, cvtsduw, u32) | |
2290 | VCT(sxs, cvtsdsw, s32) | |
2291 | #undef VCT | |
2292 | ||
2293 | void helper_vmaddfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2294 | { | |
2295 | int i; | |
2296 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | |
2297 | HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) { | |
2298 | /* Need to do the computation in higher precision and round | |
2299 | * once at the end. */ | |
2300 | float64 af, bf, cf, t; | |
2301 | af = float32_to_float64(a->f[i], &env->vec_status); | |
2302 | bf = float32_to_float64(b->f[i], &env->vec_status); | |
2303 | cf = float32_to_float64(c->f[i], &env->vec_status); | |
2304 | t = float64_mul(af, cf, &env->vec_status); | |
2305 | t = float64_add(t, bf, &env->vec_status); | |
2306 | r->f[i] = float64_to_float32(t, &env->vec_status); | |
2307 | } | |
2308 | } | |
2309 | } | |
2310 | ||
2311 | void helper_vmhaddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2312 | { | |
2313 | int sat = 0; | |
2314 | int i; | |
2315 | ||
2316 | for (i = 0; i < ARRAY_SIZE(r->s16); i++) { | |
2317 | int32_t prod = a->s16[i] * b->s16[i]; | |
2318 | int32_t t = (int32_t)c->s16[i] + (prod >> 15); | |
2319 | r->s16[i] = cvtswsh (t, &sat); | |
2320 | } | |
2321 | ||
2322 | if (sat) { | |
2323 | env->vscr |= (1 << VSCR_SAT); | |
2324 | } | |
2325 | } | |
2326 | ||
2327 | void helper_vmhraddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2328 | { | |
2329 | int sat = 0; | |
2330 | int i; | |
2331 | ||
2332 | for (i = 0; i < ARRAY_SIZE(r->s16); i++) { | |
2333 | int32_t prod = a->s16[i] * b->s16[i] + 0x00004000; | |
2334 | int32_t t = (int32_t)c->s16[i] + (prod >> 15); | |
2335 | r->s16[i] = cvtswsh (t, &sat); | |
2336 | } | |
2337 | ||
2338 | if (sat) { | |
2339 | env->vscr |= (1 << VSCR_SAT); | |
2340 | } | |
2341 | } | |
2342 | ||
2343 | #define VMINMAX_DO(name, compare, element) \ | |
2344 | void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2345 | { \ | |
2346 | int i; \ | |
2347 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2348 | if (a->element[i] compare b->element[i]) { \ | |
2349 | r->element[i] = b->element[i]; \ | |
2350 | } else { \ | |
2351 | r->element[i] = a->element[i]; \ | |
2352 | } \ | |
2353 | } \ | |
2354 | } | |
2355 | #define VMINMAX(suffix, element) \ | |
2356 | VMINMAX_DO(min##suffix, >, element) \ | |
2357 | VMINMAX_DO(max##suffix, <, element) | |
2358 | VMINMAX(sb, s8) | |
2359 | VMINMAX(sh, s16) | |
2360 | VMINMAX(sw, s32) | |
2361 | VMINMAX(ub, u8) | |
2362 | VMINMAX(uh, u16) | |
2363 | VMINMAX(uw, u32) | |
2364 | #undef VMINMAX_DO | |
2365 | #undef VMINMAX | |
2366 | ||
2367 | #define VMINMAXFP(suffix, rT, rF) \ | |
2368 | void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2369 | { \ | |
2370 | int i; \ | |
2371 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ | |
2372 | HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \ | |
2373 | if (float32_lt_quiet(a->f[i], b->f[i], &env->vec_status)) { \ | |
2374 | r->f[i] = rT->f[i]; \ | |
2375 | } else { \ | |
2376 | r->f[i] = rF->f[i]; \ | |
2377 | } \ | |
2378 | } \ | |
2379 | } \ | |
2380 | } | |
2381 | VMINMAXFP(minfp, a, b) | |
2382 | VMINMAXFP(maxfp, b, a) | |
2383 | #undef VMINMAXFP | |
2384 | ||
2385 | void helper_vmladduhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2386 | { | |
2387 | int i; | |
2388 | for (i = 0; i < ARRAY_SIZE(r->s16); i++) { | |
2389 | int32_t prod = a->s16[i] * b->s16[i]; | |
2390 | r->s16[i] = (int16_t) (prod + c->s16[i]); | |
2391 | } | |
2392 | } | |
2393 | ||
2394 | #define VMRG_DO(name, element, highp) \ | |
2395 | void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2396 | { \ | |
2397 | ppc_avr_t result; \ | |
2398 | int i; \ | |
2399 | size_t n_elems = ARRAY_SIZE(r->element); \ | |
2400 | for (i = 0; i < n_elems/2; i++) { \ | |
2401 | if (highp) { \ | |
2402 | result.element[i*2+HI_IDX] = a->element[i]; \ | |
2403 | result.element[i*2+LO_IDX] = b->element[i]; \ | |
2404 | } else { \ | |
2405 | result.element[n_elems - i*2 - (1+HI_IDX)] = b->element[n_elems - i - 1]; \ | |
2406 | result.element[n_elems - i*2 - (1+LO_IDX)] = a->element[n_elems - i - 1]; \ | |
2407 | } \ | |
2408 | } \ | |
2409 | *r = result; \ | |
2410 | } | |
2411 | #if defined(HOST_WORDS_BIGENDIAN) | |
2412 | #define MRGHI 0 | |
2413 | #define MRGLO 1 | |
2414 | #else | |
2415 | #define MRGHI 1 | |
2416 | #define MRGLO 0 | |
2417 | #endif | |
2418 | #define VMRG(suffix, element) \ | |
2419 | VMRG_DO(mrgl##suffix, element, MRGHI) \ | |
2420 | VMRG_DO(mrgh##suffix, element, MRGLO) | |
2421 | VMRG(b, u8) | |
2422 | VMRG(h, u16) | |
2423 | VMRG(w, u32) | |
2424 | #undef VMRG_DO | |
2425 | #undef VMRG | |
2426 | #undef MRGHI | |
2427 | #undef MRGLO | |
2428 | ||
2429 | void helper_vmsummbm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2430 | { | |
2431 | int32_t prod[16]; | |
2432 | int i; | |
2433 | ||
2434 | for (i = 0; i < ARRAY_SIZE(r->s8); i++) { | |
2435 | prod[i] = (int32_t)a->s8[i] * b->u8[i]; | |
2436 | } | |
2437 | ||
2438 | VECTOR_FOR_INORDER_I(i, s32) { | |
2439 | r->s32[i] = c->s32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3]; | |
2440 | } | |
2441 | } | |
2442 | ||
2443 | void helper_vmsumshm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2444 | { | |
2445 | int32_t prod[8]; | |
2446 | int i; | |
2447 | ||
2448 | for (i = 0; i < ARRAY_SIZE(r->s16); i++) { | |
2449 | prod[i] = a->s16[i] * b->s16[i]; | |
2450 | } | |
2451 | ||
2452 | VECTOR_FOR_INORDER_I(i, s32) { | |
2453 | r->s32[i] = c->s32[i] + prod[2*i] + prod[2*i+1]; | |
2454 | } | |
2455 | } | |
2456 | ||
2457 | void helper_vmsumshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2458 | { | |
2459 | int32_t prod[8]; | |
2460 | int i; | |
2461 | int sat = 0; | |
2462 | ||
2463 | for (i = 0; i < ARRAY_SIZE(r->s16); i++) { | |
2464 | prod[i] = (int32_t)a->s16[i] * b->s16[i]; | |
2465 | } | |
2466 | ||
2467 | VECTOR_FOR_INORDER_I (i, s32) { | |
2468 | int64_t t = (int64_t)c->s32[i] + prod[2*i] + prod[2*i+1]; | |
2469 | r->u32[i] = cvtsdsw(t, &sat); | |
2470 | } | |
2471 | ||
2472 | if (sat) { | |
2473 | env->vscr |= (1 << VSCR_SAT); | |
2474 | } | |
2475 | } | |
2476 | ||
2477 | void helper_vmsumubm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2478 | { | |
2479 | uint16_t prod[16]; | |
2480 | int i; | |
2481 | ||
2482 | for (i = 0; i < ARRAY_SIZE(r->u8); i++) { | |
2483 | prod[i] = a->u8[i] * b->u8[i]; | |
2484 | } | |
2485 | ||
2486 | VECTOR_FOR_INORDER_I(i, u32) { | |
2487 | r->u32[i] = c->u32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3]; | |
2488 | } | |
2489 | } | |
2490 | ||
2491 | void helper_vmsumuhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2492 | { | |
2493 | uint32_t prod[8]; | |
2494 | int i; | |
2495 | ||
2496 | for (i = 0; i < ARRAY_SIZE(r->u16); i++) { | |
2497 | prod[i] = a->u16[i] * b->u16[i]; | |
2498 | } | |
2499 | ||
2500 | VECTOR_FOR_INORDER_I(i, u32) { | |
2501 | r->u32[i] = c->u32[i] + prod[2*i] + prod[2*i+1]; | |
2502 | } | |
2503 | } | |
2504 | ||
2505 | void helper_vmsumuhs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2506 | { | |
2507 | uint32_t prod[8]; | |
2508 | int i; | |
2509 | int sat = 0; | |
2510 | ||
2511 | for (i = 0; i < ARRAY_SIZE(r->u16); i++) { | |
2512 | prod[i] = a->u16[i] * b->u16[i]; | |
2513 | } | |
2514 | ||
2515 | VECTOR_FOR_INORDER_I (i, s32) { | |
2516 | uint64_t t = (uint64_t)c->u32[i] + prod[2*i] + prod[2*i+1]; | |
2517 | r->u32[i] = cvtuduw(t, &sat); | |
2518 | } | |
2519 | ||
2520 | if (sat) { | |
2521 | env->vscr |= (1 << VSCR_SAT); | |
2522 | } | |
2523 | } | |
2524 | ||
2525 | #define VMUL_DO(name, mul_element, prod_element, evenp) \ | |
2526 | void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2527 | { \ | |
2528 | int i; \ | |
2529 | VECTOR_FOR_INORDER_I(i, prod_element) { \ | |
2530 | if (evenp) { \ | |
2531 | r->prod_element[i] = a->mul_element[i*2+HI_IDX] * b->mul_element[i*2+HI_IDX]; \ | |
2532 | } else { \ | |
2533 | r->prod_element[i] = a->mul_element[i*2+LO_IDX] * b->mul_element[i*2+LO_IDX]; \ | |
2534 | } \ | |
2535 | } \ | |
2536 | } | |
2537 | #define VMUL(suffix, mul_element, prod_element) \ | |
2538 | VMUL_DO(mule##suffix, mul_element, prod_element, 1) \ | |
2539 | VMUL_DO(mulo##suffix, mul_element, prod_element, 0) | |
2540 | VMUL(sb, s8, s16) | |
2541 | VMUL(sh, s16, s32) | |
2542 | VMUL(ub, u8, u16) | |
2543 | VMUL(uh, u16, u32) | |
2544 | #undef VMUL_DO | |
2545 | #undef VMUL | |
2546 | ||
2547 | void helper_vnmsubfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2548 | { | |
2549 | int i; | |
2550 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | |
2551 | HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) { | |
2552 | /* Need to do the computation is higher precision and round | |
2553 | * once at the end. */ | |
2554 | float64 af, bf, cf, t; | |
2555 | af = float32_to_float64(a->f[i], &env->vec_status); | |
2556 | bf = float32_to_float64(b->f[i], &env->vec_status); | |
2557 | cf = float32_to_float64(c->f[i], &env->vec_status); | |
2558 | t = float64_mul(af, cf, &env->vec_status); | |
2559 | t = float64_sub(t, bf, &env->vec_status); | |
2560 | t = float64_chs(t); | |
2561 | r->f[i] = float64_to_float32(t, &env->vec_status); | |
2562 | } | |
2563 | } | |
2564 | } | |
2565 | ||
2566 | void helper_vperm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2567 | { | |
2568 | ppc_avr_t result; | |
2569 | int i; | |
2570 | VECTOR_FOR_INORDER_I (i, u8) { | |
2571 | int s = c->u8[i] & 0x1f; | |
2572 | #if defined(HOST_WORDS_BIGENDIAN) | |
2573 | int index = s & 0xf; | |
2574 | #else | |
2575 | int index = 15 - (s & 0xf); | |
2576 | #endif | |
2577 | if (s & 0x10) { | |
2578 | result.u8[i] = b->u8[index]; | |
2579 | } else { | |
2580 | result.u8[i] = a->u8[index]; | |
2581 | } | |
2582 | } | |
2583 | *r = result; | |
2584 | } | |
2585 | ||
2586 | #if defined(HOST_WORDS_BIGENDIAN) | |
2587 | #define PKBIG 1 | |
2588 | #else | |
2589 | #define PKBIG 0 | |
2590 | #endif | |
2591 | void helper_vpkpx (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2592 | { | |
2593 | int i, j; | |
2594 | ppc_avr_t result; | |
2595 | #if defined(HOST_WORDS_BIGENDIAN) | |
2596 | const ppc_avr_t *x[2] = { a, b }; | |
2597 | #else | |
2598 | const ppc_avr_t *x[2] = { b, a }; | |
2599 | #endif | |
2600 | ||
2601 | VECTOR_FOR_INORDER_I (i, u64) { | |
2602 | VECTOR_FOR_INORDER_I (j, u32){ | |
2603 | uint32_t e = x[i]->u32[j]; | |
2604 | result.u16[4*i+j] = (((e >> 9) & 0xfc00) | | |
2605 | ((e >> 6) & 0x3e0) | | |
2606 | ((e >> 3) & 0x1f)); | |
2607 | } | |
2608 | } | |
2609 | *r = result; | |
2610 | } | |
2611 | ||
2612 | #define VPK(suffix, from, to, cvt, dosat) \ | |
2613 | void helper_vpk##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2614 | { \ | |
2615 | int i; \ | |
2616 | int sat = 0; \ | |
2617 | ppc_avr_t result; \ | |
2618 | ppc_avr_t *a0 = PKBIG ? a : b; \ | |
2619 | ppc_avr_t *a1 = PKBIG ? b : a; \ | |
2620 | VECTOR_FOR_INORDER_I (i, from) { \ | |
2621 | result.to[i] = cvt(a0->from[i], &sat); \ | |
2622 | result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \ | |
2623 | } \ | |
2624 | *r = result; \ | |
2625 | if (dosat && sat) { \ | |
2626 | env->vscr |= (1 << VSCR_SAT); \ | |
2627 | } \ | |
2628 | } | |
2629 | #define I(x, y) (x) | |
2630 | VPK(shss, s16, s8, cvtshsb, 1) | |
2631 | VPK(shus, s16, u8, cvtshub, 1) | |
2632 | VPK(swss, s32, s16, cvtswsh, 1) | |
2633 | VPK(swus, s32, u16, cvtswuh, 1) | |
2634 | VPK(uhus, u16, u8, cvtuhub, 1) | |
2635 | VPK(uwus, u32, u16, cvtuwuh, 1) | |
2636 | VPK(uhum, u16, u8, I, 0) | |
2637 | VPK(uwum, u32, u16, I, 0) | |
2638 | #undef I | |
2639 | #undef VPK | |
2640 | #undef PKBIG | |
2641 | ||
2642 | void helper_vrefp (ppc_avr_t *r, ppc_avr_t *b) | |
2643 | { | |
2644 | int i; | |
2645 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | |
2646 | HANDLE_NAN1(r->f[i], b->f[i]) { | |
2647 | r->f[i] = float32_div(float32_one, b->f[i], &env->vec_status); | |
2648 | } | |
2649 | } | |
2650 | } | |
2651 | ||
2652 | #define VRFI(suffix, rounding) \ | |
2653 | void helper_vrfi##suffix (ppc_avr_t *r, ppc_avr_t *b) \ | |
2654 | { \ | |
2655 | int i; \ | |
2656 | float_status s = env->vec_status; \ | |
2657 | set_float_rounding_mode(rounding, &s); \ | |
2658 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ | |
2659 | HANDLE_NAN1(r->f[i], b->f[i]) { \ | |
2660 | r->f[i] = float32_round_to_int (b->f[i], &s); \ | |
2661 | } \ | |
2662 | } \ | |
2663 | } | |
2664 | VRFI(n, float_round_nearest_even) | |
2665 | VRFI(m, float_round_down) | |
2666 | VRFI(p, float_round_up) | |
2667 | VRFI(z, float_round_to_zero) | |
2668 | #undef VRFI | |
2669 | ||
2670 | #define VROTATE(suffix, element) \ | |
2671 | void helper_vrl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2672 | { \ | |
2673 | int i; \ | |
2674 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2675 | unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \ | |
2676 | unsigned int shift = b->element[i] & mask; \ | |
2677 | r->element[i] = (a->element[i] << shift) | (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \ | |
2678 | } \ | |
2679 | } | |
2680 | VROTATE(b, u8) | |
2681 | VROTATE(h, u16) | |
2682 | VROTATE(w, u32) | |
2683 | #undef VROTATE | |
2684 | ||
2685 | void helper_vrsqrtefp (ppc_avr_t *r, ppc_avr_t *b) | |
2686 | { | |
2687 | int i; | |
2688 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | |
2689 | HANDLE_NAN1(r->f[i], b->f[i]) { | |
2690 | float32 t = float32_sqrt(b->f[i], &env->vec_status); | |
2691 | r->f[i] = float32_div(float32_one, t, &env->vec_status); | |
2692 | } | |
2693 | } | |
2694 | } | |
2695 | ||
2696 | void helper_vsel (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2697 | { | |
2698 | r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]); | |
2699 | r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]); | |
2700 | } | |
2701 | ||
2702 | void helper_vexptefp (ppc_avr_t *r, ppc_avr_t *b) | |
2703 | { | |
2704 | int i; | |
2705 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | |
2706 | HANDLE_NAN1(r->f[i], b->f[i]) { | |
2707 | r->f[i] = float32_exp2(b->f[i], &env->vec_status); | |
2708 | } | |
2709 | } | |
2710 | } | |
2711 | ||
2712 | void helper_vlogefp (ppc_avr_t *r, ppc_avr_t *b) | |
2713 | { | |
2714 | int i; | |
2715 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | |
2716 | HANDLE_NAN1(r->f[i], b->f[i]) { | |
2717 | r->f[i] = float32_log2(b->f[i], &env->vec_status); | |
2718 | } | |
2719 | } | |
2720 | } | |
2721 | ||
2722 | #if defined(HOST_WORDS_BIGENDIAN) | |
2723 | #define LEFT 0 | |
2724 | #define RIGHT 1 | |
2725 | #else | |
2726 | #define LEFT 1 | |
2727 | #define RIGHT 0 | |
2728 | #endif | |
2729 | /* The specification says that the results are undefined if all of the | |
2730 | * shift counts are not identical. We check to make sure that they are | |
2731 | * to conform to what real hardware appears to do. */ | |
2732 | #define VSHIFT(suffix, leftp) \ | |
2733 | void helper_vs##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2734 | { \ | |
2735 | int shift = b->u8[LO_IDX*15] & 0x7; \ | |
2736 | int doit = 1; \ | |
2737 | int i; \ | |
2738 | for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \ | |
2739 | doit = doit && ((b->u8[i] & 0x7) == shift); \ | |
2740 | } \ | |
2741 | if (doit) { \ | |
2742 | if (shift == 0) { \ | |
2743 | *r = *a; \ | |
2744 | } else if (leftp) { \ | |
2745 | uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \ | |
2746 | r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \ | |
2747 | r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \ | |
2748 | } else { \ | |
2749 | uint64_t carry = a->u64[HI_IDX] << (64 - shift); \ | |
2750 | r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \ | |
2751 | r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \ | |
2752 | } \ | |
2753 | } \ | |
2754 | } | |
2755 | VSHIFT(l, LEFT) | |
2756 | VSHIFT(r, RIGHT) | |
2757 | #undef VSHIFT | |
2758 | #undef LEFT | |
2759 | #undef RIGHT | |
2760 | ||
2761 | #define VSL(suffix, element) \ | |
2762 | void helper_vsl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2763 | { \ | |
2764 | int i; \ | |
2765 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2766 | unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \ | |
2767 | unsigned int shift = b->element[i] & mask; \ | |
2768 | r->element[i] = a->element[i] << shift; \ | |
2769 | } \ | |
2770 | } | |
2771 | VSL(b, u8) | |
2772 | VSL(h, u16) | |
2773 | VSL(w, u32) | |
2774 | #undef VSL | |
2775 | ||
2776 | void helper_vsldoi (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift) | |
2777 | { | |
2778 | int sh = shift & 0xf; | |
2779 | int i; | |
2780 | ppc_avr_t result; | |
2781 | ||
2782 | #if defined(HOST_WORDS_BIGENDIAN) | |
2783 | for (i = 0; i < ARRAY_SIZE(r->u8); i++) { | |
2784 | int index = sh + i; | |
2785 | if (index > 0xf) { | |
2786 | result.u8[i] = b->u8[index-0x10]; | |
2787 | } else { | |
2788 | result.u8[i] = a->u8[index]; | |
2789 | } | |
2790 | } | |
2791 | #else | |
2792 | for (i = 0; i < ARRAY_SIZE(r->u8); i++) { | |
2793 | int index = (16 - sh) + i; | |
2794 | if (index > 0xf) { | |
2795 | result.u8[i] = a->u8[index-0x10]; | |
2796 | } else { | |
2797 | result.u8[i] = b->u8[index]; | |
2798 | } | |
2799 | } | |
2800 | #endif | |
2801 | *r = result; | |
2802 | } | |
2803 | ||
2804 | void helper_vslo (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2805 | { | |
2806 | int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf; | |
2807 | ||
2808 | #if defined (HOST_WORDS_BIGENDIAN) | |
2809 | memmove (&r->u8[0], &a->u8[sh], 16-sh); | |
2810 | memset (&r->u8[16-sh], 0, sh); | |
2811 | #else | |
2812 | memmove (&r->u8[sh], &a->u8[0], 16-sh); | |
2813 | memset (&r->u8[0], 0, sh); | |
2814 | #endif | |
2815 | } | |
2816 | ||
2817 | /* Experimental testing shows that hardware masks the immediate. */ | |
2818 | #define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1)) | |
2819 | #if defined(HOST_WORDS_BIGENDIAN) | |
2820 | #define SPLAT_ELEMENT(element) _SPLAT_MASKED(element) | |
2821 | #else | |
2822 | #define SPLAT_ELEMENT(element) (ARRAY_SIZE(r->element)-1 - _SPLAT_MASKED(element)) | |
2823 | #endif | |
2824 | #define VSPLT(suffix, element) \ | |
2825 | void helper_vsplt##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \ | |
2826 | { \ | |
2827 | uint32_t s = b->element[SPLAT_ELEMENT(element)]; \ | |
2828 | int i; \ | |
2829 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2830 | r->element[i] = s; \ | |
2831 | } \ | |
2832 | } | |
2833 | VSPLT(b, u8) | |
2834 | VSPLT(h, u16) | |
2835 | VSPLT(w, u32) | |
2836 | #undef VSPLT | |
2837 | #undef SPLAT_ELEMENT | |
2838 | #undef _SPLAT_MASKED | |
2839 | ||
2840 | #define VSPLTI(suffix, element, splat_type) \ | |
2841 | void helper_vspltis##suffix (ppc_avr_t *r, uint32_t splat) \ | |
2842 | { \ | |
2843 | splat_type x = (int8_t)(splat << 3) >> 3; \ | |
2844 | int i; \ | |
2845 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2846 | r->element[i] = x; \ | |
2847 | } \ | |
2848 | } | |
2849 | VSPLTI(b, s8, int8_t) | |
2850 | VSPLTI(h, s16, int16_t) | |
2851 | VSPLTI(w, s32, int32_t) | |
2852 | #undef VSPLTI | |
2853 | ||
2854 | #define VSR(suffix, element) \ | |
2855 | void helper_vsr##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2856 | { \ | |
2857 | int i; \ | |
2858 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2859 | unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \ | |
2860 | unsigned int shift = b->element[i] & mask; \ | |
2861 | r->element[i] = a->element[i] >> shift; \ | |
2862 | } \ | |
2863 | } | |
2864 | VSR(ab, s8) | |
2865 | VSR(ah, s16) | |
2866 | VSR(aw, s32) | |
2867 | VSR(b, u8) | |
2868 | VSR(h, u16) | |
2869 | VSR(w, u32) | |
2870 | #undef VSR | |
2871 | ||
2872 | void helper_vsro (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2873 | { | |
2874 | int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf; | |
2875 | ||
2876 | #if defined (HOST_WORDS_BIGENDIAN) | |
2877 | memmove (&r->u8[sh], &a->u8[0], 16-sh); | |
2878 | memset (&r->u8[0], 0, sh); | |
2879 | #else | |
2880 | memmove (&r->u8[0], &a->u8[sh], 16-sh); | |
2881 | memset (&r->u8[16-sh], 0, sh); | |
2882 | #endif | |
2883 | } | |
2884 | ||
2885 | void helper_vsubcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2886 | { | |
2887 | int i; | |
2888 | for (i = 0; i < ARRAY_SIZE(r->u32); i++) { | |
2889 | r->u32[i] = a->u32[i] >= b->u32[i]; | |
2890 | } | |
2891 | } | |
2892 | ||
2893 | void helper_vsumsws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2894 | { | |
2895 | int64_t t; | |
2896 | int i, upper; | |
2897 | ppc_avr_t result; | |
2898 | int sat = 0; | |
2899 | ||
2900 | #if defined(HOST_WORDS_BIGENDIAN) | |
2901 | upper = ARRAY_SIZE(r->s32)-1; | |
2902 | #else | |
2903 | upper = 0; | |
2904 | #endif | |
2905 | t = (int64_t)b->s32[upper]; | |
2906 | for (i = 0; i < ARRAY_SIZE(r->s32); i++) { | |
2907 | t += a->s32[i]; | |
2908 | result.s32[i] = 0; | |
2909 | } | |
2910 | result.s32[upper] = cvtsdsw(t, &sat); | |
2911 | *r = result; | |
2912 | ||
2913 | if (sat) { | |
2914 | env->vscr |= (1 << VSCR_SAT); | |
2915 | } | |
2916 | } | |
2917 | ||
2918 | void helper_vsum2sws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2919 | { | |
2920 | int i, j, upper; | |
2921 | ppc_avr_t result; | |
2922 | int sat = 0; | |
2923 | ||
2924 | #if defined(HOST_WORDS_BIGENDIAN) | |
2925 | upper = 1; | |
2926 | #else | |
2927 | upper = 0; | |
2928 | #endif | |
2929 | for (i = 0; i < ARRAY_SIZE(r->u64); i++) { | |
2930 | int64_t t = (int64_t)b->s32[upper+i*2]; | |
2931 | result.u64[i] = 0; | |
2932 | for (j = 0; j < ARRAY_SIZE(r->u64); j++) { | |
2933 | t += a->s32[2*i+j]; | |
2934 | } | |
2935 | result.s32[upper+i*2] = cvtsdsw(t, &sat); | |
2936 | } | |
2937 | ||
2938 | *r = result; | |
2939 | if (sat) { | |
2940 | env->vscr |= (1 << VSCR_SAT); | |
2941 | } | |
2942 | } | |
2943 | ||
2944 | void helper_vsum4sbs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2945 | { | |
2946 | int i, j; | |
2947 | int sat = 0; | |
2948 | ||
2949 | for (i = 0; i < ARRAY_SIZE(r->s32); i++) { | |
2950 | int64_t t = (int64_t)b->s32[i]; | |
2951 | for (j = 0; j < ARRAY_SIZE(r->s32); j++) { | |
2952 | t += a->s8[4*i+j]; | |
2953 | } | |
2954 | r->s32[i] = cvtsdsw(t, &sat); | |
2955 | } | |
2956 | ||
2957 | if (sat) { | |
2958 | env->vscr |= (1 << VSCR_SAT); | |
2959 | } | |
2960 | } | |
2961 | ||
2962 | void helper_vsum4shs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2963 | { | |
2964 | int sat = 0; | |
2965 | int i; | |
2966 | ||
2967 | for (i = 0; i < ARRAY_SIZE(r->s32); i++) { | |
2968 | int64_t t = (int64_t)b->s32[i]; | |
2969 | t += a->s16[2*i] + a->s16[2*i+1]; | |
2970 | r->s32[i] = cvtsdsw(t, &sat); | |
2971 | } | |
2972 | ||
2973 | if (sat) { | |
2974 | env->vscr |= (1 << VSCR_SAT); | |
2975 | } | |
2976 | } | |
2977 | ||
2978 | void helper_vsum4ubs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2979 | { | |
2980 | int i, j; | |
2981 | int sat = 0; | |
2982 | ||
2983 | for (i = 0; i < ARRAY_SIZE(r->u32); i++) { | |
2984 | uint64_t t = (uint64_t)b->u32[i]; | |
2985 | for (j = 0; j < ARRAY_SIZE(r->u32); j++) { | |
2986 | t += a->u8[4*i+j]; | |
2987 | } | |
2988 | r->u32[i] = cvtuduw(t, &sat); | |
2989 | } | |
2990 | ||
2991 | if (sat) { | |
2992 | env->vscr |= (1 << VSCR_SAT); | |
2993 | } | |
2994 | } | |
2995 | ||
2996 | #if defined(HOST_WORDS_BIGENDIAN) | |
2997 | #define UPKHI 1 | |
2998 | #define UPKLO 0 | |
2999 | #else | |
3000 | #define UPKHI 0 | |
3001 | #define UPKLO 1 | |
3002 | #endif | |
3003 | #define VUPKPX(suffix, hi) \ | |
3004 | void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \ | |
3005 | { \ | |
3006 | int i; \ | |
3007 | ppc_avr_t result; \ | |
3008 | for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \ | |
3009 | uint16_t e = b->u16[hi ? i : i+4]; \ | |
3010 | uint8_t a = (e >> 15) ? 0xff : 0; \ | |
3011 | uint8_t r = (e >> 10) & 0x1f; \ | |
3012 | uint8_t g = (e >> 5) & 0x1f; \ | |
3013 | uint8_t b = e & 0x1f; \ | |
3014 | result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \ | |
3015 | } \ | |
3016 | *r = result; \ | |
3017 | } | |
3018 | VUPKPX(lpx, UPKLO) | |
3019 | VUPKPX(hpx, UPKHI) | |
3020 | #undef VUPKPX | |
3021 | ||
3022 | #define VUPK(suffix, unpacked, packee, hi) \ | |
3023 | void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \ | |
3024 | { \ | |
3025 | int i; \ | |
3026 | ppc_avr_t result; \ | |
3027 | if (hi) { \ | |
3028 | for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \ | |
3029 | result.unpacked[i] = b->packee[i]; \ | |
3030 | } \ | |
3031 | } else { \ | |
3032 | for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); i++) { \ | |
3033 | result.unpacked[i-ARRAY_SIZE(r->unpacked)] = b->packee[i]; \ | |
3034 | } \ | |
3035 | } \ | |
3036 | *r = result; \ | |
3037 | } | |
3038 | VUPK(hsb, s16, s8, UPKHI) | |
3039 | VUPK(hsh, s32, s16, UPKHI) | |
3040 | VUPK(lsb, s16, s8, UPKLO) | |
3041 | VUPK(lsh, s32, s16, UPKLO) | |
3042 | #undef VUPK | |
3043 | #undef UPKHI | |
3044 | #undef UPKLO | |
3045 | ||
3046 | #undef DO_HANDLE_NAN | |
3047 | #undef HANDLE_NAN1 | |
3048 | #undef HANDLE_NAN2 | |
3049 | #undef HANDLE_NAN3 | |
3050 | #undef VECTOR_FOR_INORDER_I | |
3051 | #undef HI_IDX | |
3052 | #undef LO_IDX | |
3053 | ||
3054 | /*****************************************************************************/ | |
3055 | /* SPE extension helpers */ | |
3056 | /* Use a table to make this quicker */ | |
3057 | static uint8_t hbrev[16] = { | |
3058 | 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, | |
3059 | 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, | |
3060 | }; | |
3061 | ||
3062 | static inline uint8_t byte_reverse(uint8_t val) | |
3063 | { | |
3064 | return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); | |
3065 | } | |
3066 | ||
3067 | static inline uint32_t word_reverse(uint32_t val) | |
3068 | { | |
3069 | return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | | |
3070 | (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); | |
3071 | } | |
3072 | ||
3073 | #define MASKBITS 16 // Random value - to be fixed (implementation dependant) | |
3074 | target_ulong helper_brinc (target_ulong arg1, target_ulong arg2) | |
3075 | { | |
3076 | uint32_t a, b, d, mask; | |
3077 | ||
3078 | mask = UINT32_MAX >> (32 - MASKBITS); | |
3079 | a = arg1 & mask; | |
3080 | b = arg2 & mask; | |
3081 | d = word_reverse(1 + word_reverse(a | ~b)); | |
3082 | return (arg1 & ~mask) | (d & b); | |
3083 | } | |
3084 | ||
3085 | uint32_t helper_cntlsw32 (uint32_t val) | |
3086 | { | |
3087 | if (val & 0x80000000) | |
3088 | return clz32(~val); | |
3089 | else | |
3090 | return clz32(val); | |
3091 | } | |
3092 | ||
3093 | uint32_t helper_cntlzw32 (uint32_t val) | |
3094 | { | |
3095 | return clz32(val); | |
3096 | } | |
3097 | ||
3098 | /* Single-precision floating-point conversions */ | |
3099 | static inline uint32_t efscfsi(uint32_t val) | |
3100 | { | |
3101 | CPU_FloatU u; | |
3102 | ||
3103 | u.f = int32_to_float32(val, &env->vec_status); | |
3104 | ||
3105 | return u.l; | |
3106 | } | |
3107 | ||
3108 | static inline uint32_t efscfui(uint32_t val) | |
3109 | { | |
3110 | CPU_FloatU u; | |
3111 | ||
3112 | u.f = uint32_to_float32(val, &env->vec_status); | |
3113 | ||
3114 | return u.l; | |
3115 | } | |
3116 | ||
3117 | static inline int32_t efsctsi(uint32_t val) | |
3118 | { | |
3119 | CPU_FloatU u; | |
3120 | ||
3121 | u.l = val; | |
3122 | /* NaN are not treated the same way IEEE 754 does */ | |
3123 | if (unlikely(float32_is_quiet_nan(u.f))) | |
3124 | return 0; | |
3125 | ||
3126 | return float32_to_int32(u.f, &env->vec_status); | |
3127 | } | |
3128 | ||
3129 | static inline uint32_t efsctui(uint32_t val) | |
3130 | { | |
3131 | CPU_FloatU u; | |
3132 | ||
3133 | u.l = val; | |
3134 | /* NaN are not treated the same way IEEE 754 does */ | |
3135 | if (unlikely(float32_is_quiet_nan(u.f))) | |
3136 | return 0; | |
3137 | ||
3138 | return float32_to_uint32(u.f, &env->vec_status); | |
3139 | } | |
3140 | ||
3141 | static inline uint32_t efsctsiz(uint32_t val) | |
3142 | { | |
3143 | CPU_FloatU u; | |
3144 | ||
3145 | u.l = val; | |
3146 | /* NaN are not treated the same way IEEE 754 does */ | |
3147 | if (unlikely(float32_is_quiet_nan(u.f))) | |
3148 | return 0; | |
3149 | ||
3150 | return float32_to_int32_round_to_zero(u.f, &env->vec_status); | |
3151 | } | |
3152 | ||
3153 | static inline uint32_t efsctuiz(uint32_t val) | |
3154 | { | |
3155 | CPU_FloatU u; | |
3156 | ||
3157 | u.l = val; | |
3158 | /* NaN are not treated the same way IEEE 754 does */ | |
3159 | if (unlikely(float32_is_quiet_nan(u.f))) | |
3160 | return 0; | |
3161 | ||
3162 | return float32_to_uint32_round_to_zero(u.f, &env->vec_status); | |
3163 | } | |
3164 | ||
3165 | static inline uint32_t efscfsf(uint32_t val) | |
3166 | { | |
3167 | CPU_FloatU u; | |
3168 | float32 tmp; | |
3169 | ||
3170 | u.f = int32_to_float32(val, &env->vec_status); | |
3171 | tmp = int64_to_float32(1ULL << 32, &env->vec_status); | |
3172 | u.f = float32_div(u.f, tmp, &env->vec_status); | |
3173 | ||
3174 | return u.l; | |
3175 | } | |
3176 | ||
3177 | static inline uint32_t efscfuf(uint32_t val) | |
3178 | { | |
3179 | CPU_FloatU u; | |
3180 | float32 tmp; | |
3181 | ||
3182 | u.f = uint32_to_float32(val, &env->vec_status); | |
3183 | tmp = uint64_to_float32(1ULL << 32, &env->vec_status); | |
3184 | u.f = float32_div(u.f, tmp, &env->vec_status); | |
3185 | ||
3186 | return u.l; | |
3187 | } | |
3188 | ||
3189 | static inline uint32_t efsctsf(uint32_t val) | |
3190 | { | |
3191 | CPU_FloatU u; | |
3192 | float32 tmp; | |
3193 | ||
3194 | u.l = val; | |
3195 | /* NaN are not treated the same way IEEE 754 does */ | |
3196 | if (unlikely(float32_is_quiet_nan(u.f))) | |
3197 | return 0; | |
3198 | tmp = uint64_to_float32(1ULL << 32, &env->vec_status); | |
3199 | u.f = float32_mul(u.f, tmp, &env->vec_status); | |
3200 | ||
3201 | return float32_to_int32(u.f, &env->vec_status); | |
3202 | } | |
3203 | ||
3204 | static inline uint32_t efsctuf(uint32_t val) | |
3205 | { | |
3206 | CPU_FloatU u; | |
3207 | float32 tmp; | |
3208 | ||
3209 | u.l = val; | |
3210 | /* NaN are not treated the same way IEEE 754 does */ | |
3211 | if (unlikely(float32_is_quiet_nan(u.f))) | |
3212 | return 0; | |
3213 | tmp = uint64_to_float32(1ULL << 32, &env->vec_status); | |
3214 | u.f = float32_mul(u.f, tmp, &env->vec_status); | |
3215 | ||
3216 | return float32_to_uint32(u.f, &env->vec_status); | |
3217 | } | |
3218 | ||
3219 | #define HELPER_SPE_SINGLE_CONV(name) \ | |
3220 | uint32_t helper_e##name (uint32_t val) \ | |
3221 | { \ | |
3222 | return e##name(val); \ | |
3223 | } | |
3224 | /* efscfsi */ | |
3225 | HELPER_SPE_SINGLE_CONV(fscfsi); | |
3226 | /* efscfui */ | |
3227 | HELPER_SPE_SINGLE_CONV(fscfui); | |
3228 | /* efscfuf */ | |
3229 | HELPER_SPE_SINGLE_CONV(fscfuf); | |
3230 | /* efscfsf */ | |
3231 | HELPER_SPE_SINGLE_CONV(fscfsf); | |
3232 | /* efsctsi */ | |
3233 | HELPER_SPE_SINGLE_CONV(fsctsi); | |
3234 | /* efsctui */ | |
3235 | HELPER_SPE_SINGLE_CONV(fsctui); | |
3236 | /* efsctsiz */ | |
3237 | HELPER_SPE_SINGLE_CONV(fsctsiz); | |
3238 | /* efsctuiz */ | |
3239 | HELPER_SPE_SINGLE_CONV(fsctuiz); | |
3240 | /* efsctsf */ | |
3241 | HELPER_SPE_SINGLE_CONV(fsctsf); | |
3242 | /* efsctuf */ | |
3243 | HELPER_SPE_SINGLE_CONV(fsctuf); | |
3244 | ||
3245 | #define HELPER_SPE_VECTOR_CONV(name) \ | |
3246 | uint64_t helper_ev##name (uint64_t val) \ | |
3247 | { \ | |
3248 | return ((uint64_t)e##name(val >> 32) << 32) | \ | |
3249 | (uint64_t)e##name(val); \ | |
3250 | } | |
3251 | /* evfscfsi */ | |
3252 | HELPER_SPE_VECTOR_CONV(fscfsi); | |
3253 | /* evfscfui */ | |
3254 | HELPER_SPE_VECTOR_CONV(fscfui); | |
3255 | /* evfscfuf */ | |
3256 | HELPER_SPE_VECTOR_CONV(fscfuf); | |
3257 | /* evfscfsf */ | |
3258 | HELPER_SPE_VECTOR_CONV(fscfsf); | |
3259 | /* evfsctsi */ | |
3260 | HELPER_SPE_VECTOR_CONV(fsctsi); | |
3261 | /* evfsctui */ | |
3262 | HELPER_SPE_VECTOR_CONV(fsctui); | |
3263 | /* evfsctsiz */ | |
3264 | HELPER_SPE_VECTOR_CONV(fsctsiz); | |
3265 | /* evfsctuiz */ | |
3266 | HELPER_SPE_VECTOR_CONV(fsctuiz); | |
3267 | /* evfsctsf */ | |
3268 | HELPER_SPE_VECTOR_CONV(fsctsf); | |
3269 | /* evfsctuf */ | |
3270 | HELPER_SPE_VECTOR_CONV(fsctuf); | |
3271 | ||
3272 | /* Single-precision floating-point arithmetic */ | |
3273 | static inline uint32_t efsadd(uint32_t op1, uint32_t op2) | |
3274 | { | |
3275 | CPU_FloatU u1, u2; | |
3276 | u1.l = op1; | |
3277 | u2.l = op2; | |
3278 | u1.f = float32_add(u1.f, u2.f, &env->vec_status); | |
3279 | return u1.l; | |
3280 | } | |
3281 | ||
3282 | static inline uint32_t efssub(uint32_t op1, uint32_t op2) | |
3283 | { | |
3284 | CPU_FloatU u1, u2; | |
3285 | u1.l = op1; | |
3286 | u2.l = op2; | |
3287 | u1.f = float32_sub(u1.f, u2.f, &env->vec_status); | |
3288 | return u1.l; | |
3289 | } | |
3290 | ||
3291 | static inline uint32_t efsmul(uint32_t op1, uint32_t op2) | |
3292 | { | |
3293 | CPU_FloatU u1, u2; | |
3294 | u1.l = op1; | |
3295 | u2.l = op2; | |
3296 | u1.f = float32_mul(u1.f, u2.f, &env->vec_status); | |
3297 | return u1.l; | |
3298 | } | |
3299 | ||
3300 | static inline uint32_t efsdiv(uint32_t op1, uint32_t op2) | |
3301 | { | |
3302 | CPU_FloatU u1, u2; | |
3303 | u1.l = op1; | |
3304 | u2.l = op2; | |
3305 | u1.f = float32_div(u1.f, u2.f, &env->vec_status); | |
3306 | return u1.l; | |
3307 | } | |
3308 | ||
3309 | #define HELPER_SPE_SINGLE_ARITH(name) \ | |
3310 | uint32_t helper_e##name (uint32_t op1, uint32_t op2) \ | |
3311 | { \ | |
3312 | return e##name(op1, op2); \ | |
3313 | } | |
3314 | /* efsadd */ | |
3315 | HELPER_SPE_SINGLE_ARITH(fsadd); | |
3316 | /* efssub */ | |
3317 | HELPER_SPE_SINGLE_ARITH(fssub); | |
3318 | /* efsmul */ | |
3319 | HELPER_SPE_SINGLE_ARITH(fsmul); | |
3320 | /* efsdiv */ | |
3321 | HELPER_SPE_SINGLE_ARITH(fsdiv); | |
3322 | ||
3323 | #define HELPER_SPE_VECTOR_ARITH(name) \ | |
3324 | uint64_t helper_ev##name (uint64_t op1, uint64_t op2) \ | |
3325 | { \ | |
3326 | return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) | \ | |
3327 | (uint64_t)e##name(op1, op2); \ | |
3328 | } | |
3329 | /* evfsadd */ | |
3330 | HELPER_SPE_VECTOR_ARITH(fsadd); | |
3331 | /* evfssub */ | |
3332 | HELPER_SPE_VECTOR_ARITH(fssub); | |
3333 | /* evfsmul */ | |
3334 | HELPER_SPE_VECTOR_ARITH(fsmul); | |
3335 | /* evfsdiv */ | |
3336 | HELPER_SPE_VECTOR_ARITH(fsdiv); | |
3337 | ||
3338 | /* Single-precision floating-point comparisons */ | |
3339 | static inline uint32_t efscmplt(uint32_t op1, uint32_t op2) | |
3340 | { | |
3341 | CPU_FloatU u1, u2; | |
3342 | u1.l = op1; | |
3343 | u2.l = op2; | |
3344 | return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0; | |
3345 | } | |
3346 | ||
3347 | static inline uint32_t efscmpgt(uint32_t op1, uint32_t op2) | |
3348 | { | |
3349 | CPU_FloatU u1, u2; | |
3350 | u1.l = op1; | |
3351 | u2.l = op2; | |
3352 | return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4; | |
3353 | } | |
3354 | ||
3355 | static inline uint32_t efscmpeq(uint32_t op1, uint32_t op2) | |
3356 | { | |
3357 | CPU_FloatU u1, u2; | |
3358 | u1.l = op1; | |
3359 | u2.l = op2; | |
3360 | return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0; | |
3361 | } | |
3362 | ||
3363 | static inline uint32_t efststlt(uint32_t op1, uint32_t op2) | |
3364 | { | |
3365 | /* XXX: TODO: ignore special values (NaN, infinites, ...) */ | |
3366 | return efscmplt(op1, op2); | |
3367 | } | |
3368 | ||
3369 | static inline uint32_t efststgt(uint32_t op1, uint32_t op2) | |
3370 | { | |
3371 | /* XXX: TODO: ignore special values (NaN, infinites, ...) */ | |
3372 | return efscmpgt(op1, op2); | |
3373 | } | |
3374 | ||
3375 | static inline uint32_t efststeq(uint32_t op1, uint32_t op2) | |
3376 | { | |
3377 | /* XXX: TODO: ignore special values (NaN, infinites, ...) */ | |
3378 | return efscmpeq(op1, op2); | |
3379 | } | |
3380 | ||
3381 | #define HELPER_SINGLE_SPE_CMP(name) \ | |
3382 | uint32_t helper_e##name (uint32_t op1, uint32_t op2) \ | |
3383 | { \ | |
3384 | return e##name(op1, op2) << 2; \ | |
3385 | } | |
3386 | /* efststlt */ | |
3387 | HELPER_SINGLE_SPE_CMP(fststlt); | |
3388 | /* efststgt */ | |
3389 | HELPER_SINGLE_SPE_CMP(fststgt); | |
3390 | /* efststeq */ | |
3391 | HELPER_SINGLE_SPE_CMP(fststeq); | |
3392 | /* efscmplt */ | |
3393 | HELPER_SINGLE_SPE_CMP(fscmplt); | |
3394 | /* efscmpgt */ | |
3395 | HELPER_SINGLE_SPE_CMP(fscmpgt); | |
3396 | /* efscmpeq */ | |
3397 | HELPER_SINGLE_SPE_CMP(fscmpeq); | |
3398 | ||
3399 | static inline uint32_t evcmp_merge(int t0, int t1) | |
3400 | { | |
3401 | return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); | |
3402 | } | |
3403 | ||
3404 | #define HELPER_VECTOR_SPE_CMP(name) \ | |
3405 | uint32_t helper_ev##name (uint64_t op1, uint64_t op2) \ | |
3406 | { \ | |
3407 | return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2)); \ | |
3408 | } | |
3409 | /* evfststlt */ | |
3410 | HELPER_VECTOR_SPE_CMP(fststlt); | |
3411 | /* evfststgt */ | |
3412 | HELPER_VECTOR_SPE_CMP(fststgt); | |
3413 | /* evfststeq */ | |
3414 | HELPER_VECTOR_SPE_CMP(fststeq); | |
3415 | /* evfscmplt */ | |
3416 | HELPER_VECTOR_SPE_CMP(fscmplt); | |
3417 | /* evfscmpgt */ | |
3418 | HELPER_VECTOR_SPE_CMP(fscmpgt); | |
3419 | /* evfscmpeq */ | |
3420 | HELPER_VECTOR_SPE_CMP(fscmpeq); | |
3421 | ||
3422 | /* Double-precision floating-point conversion */ | |
3423 | uint64_t helper_efdcfsi (uint32_t val) | |
3424 | { | |
3425 | CPU_DoubleU u; | |
3426 | ||
3427 | u.d = int32_to_float64(val, &env->vec_status); | |
3428 | ||
3429 | return u.ll; | |
3430 | } | |
3431 | ||
3432 | uint64_t helper_efdcfsid (uint64_t val) | |
3433 | { | |
3434 | CPU_DoubleU u; | |
3435 | ||
3436 | u.d = int64_to_float64(val, &env->vec_status); | |
3437 | ||
3438 | return u.ll; | |
3439 | } | |
3440 | ||
3441 | uint64_t helper_efdcfui (uint32_t val) | |
3442 | { | |
3443 | CPU_DoubleU u; | |
3444 | ||
3445 | u.d = uint32_to_float64(val, &env->vec_status); | |
3446 | ||
3447 | return u.ll; | |
3448 | } | |
3449 | ||
3450 | uint64_t helper_efdcfuid (uint64_t val) | |
3451 | { | |
3452 | CPU_DoubleU u; | |
3453 | ||
3454 | u.d = uint64_to_float64(val, &env->vec_status); | |
3455 | ||
3456 | return u.ll; | |
3457 | } | |
3458 | ||
3459 | uint32_t helper_efdctsi (uint64_t val) | |
3460 | { | |
3461 | CPU_DoubleU u; | |
3462 | ||
3463 | u.ll = val; | |
3464 | /* NaN are not treated the same way IEEE 754 does */ | |
3465 | if (unlikely(float64_is_any_nan(u.d))) { | |
3466 | return 0; | |
3467 | } | |
3468 | ||
3469 | return float64_to_int32(u.d, &env->vec_status); | |
3470 | } | |
3471 | ||
3472 | uint32_t helper_efdctui (uint64_t val) | |
3473 | { | |
3474 | CPU_DoubleU u; | |
3475 | ||
3476 | u.ll = val; | |
3477 | /* NaN are not treated the same way IEEE 754 does */ | |
3478 | if (unlikely(float64_is_any_nan(u.d))) { | |
3479 | return 0; | |
3480 | } | |
3481 | ||
3482 | return float64_to_uint32(u.d, &env->vec_status); | |
3483 | } | |
3484 | ||
3485 | uint32_t helper_efdctsiz (uint64_t val) | |
3486 | { | |
3487 | CPU_DoubleU u; | |
3488 | ||
3489 | u.ll = val; | |
3490 | /* NaN are not treated the same way IEEE 754 does */ | |
3491 | if (unlikely(float64_is_any_nan(u.d))) { | |
3492 | return 0; | |
3493 | } | |
3494 | ||
3495 | return float64_to_int32_round_to_zero(u.d, &env->vec_status); | |
3496 | } | |
3497 | ||
3498 | uint64_t helper_efdctsidz (uint64_t val) | |
3499 | { | |
3500 | CPU_DoubleU u; | |
3501 | ||
3502 | u.ll = val; | |
3503 | /* NaN are not treated the same way IEEE 754 does */ | |
3504 | if (unlikely(float64_is_any_nan(u.d))) { | |
3505 | return 0; | |
3506 | } | |
3507 | ||
3508 | return float64_to_int64_round_to_zero(u.d, &env->vec_status); | |
3509 | } | |
3510 | ||
3511 | uint32_t helper_efdctuiz (uint64_t val) | |
3512 | { | |
3513 | CPU_DoubleU u; | |
3514 | ||
3515 | u.ll = val; | |
3516 | /* NaN are not treated the same way IEEE 754 does */ | |
3517 | if (unlikely(float64_is_any_nan(u.d))) { | |
3518 | return 0; | |
3519 | } | |
3520 | ||
3521 | return float64_to_uint32_round_to_zero(u.d, &env->vec_status); | |
3522 | } | |
3523 | ||
3524 | uint64_t helper_efdctuidz (uint64_t val) | |
3525 | { | |
3526 | CPU_DoubleU u; | |
3527 | ||
3528 | u.ll = val; | |
3529 | /* NaN are not treated the same way IEEE 754 does */ | |
3530 | if (unlikely(float64_is_any_nan(u.d))) { | |
3531 | return 0; | |
3532 | } | |
3533 | ||
3534 | return float64_to_uint64_round_to_zero(u.d, &env->vec_status); | |
3535 | } | |
3536 | ||
3537 | uint64_t helper_efdcfsf (uint32_t val) | |
3538 | { | |
3539 | CPU_DoubleU u; | |
3540 | float64 tmp; | |
3541 | ||
3542 | u.d = int32_to_float64(val, &env->vec_status); | |
3543 | tmp = int64_to_float64(1ULL << 32, &env->vec_status); | |
3544 | u.d = float64_div(u.d, tmp, &env->vec_status); | |
3545 | ||
3546 | return u.ll; | |
3547 | } | |
3548 | ||
3549 | uint64_t helper_efdcfuf (uint32_t val) | |
3550 | { | |
3551 | CPU_DoubleU u; | |
3552 | float64 tmp; | |
3553 | ||
3554 | u.d = uint32_to_float64(val, &env->vec_status); | |
3555 | tmp = int64_to_float64(1ULL << 32, &env->vec_status); | |
3556 | u.d = float64_div(u.d, tmp, &env->vec_status); | |
3557 | ||
3558 | return u.ll; | |
3559 | } | |
3560 | ||
3561 | uint32_t helper_efdctsf (uint64_t val) | |
3562 | { | |
3563 | CPU_DoubleU u; | |
3564 | float64 tmp; | |
3565 | ||
3566 | u.ll = val; | |
3567 | /* NaN are not treated the same way IEEE 754 does */ | |
3568 | if (unlikely(float64_is_any_nan(u.d))) { | |
3569 | return 0; | |
3570 | } | |
3571 | tmp = uint64_to_float64(1ULL << 32, &env->vec_status); | |
3572 | u.d = float64_mul(u.d, tmp, &env->vec_status); | |
3573 | ||
3574 | return float64_to_int32(u.d, &env->vec_status); | |
3575 | } | |
3576 | ||
3577 | uint32_t helper_efdctuf (uint64_t val) | |
3578 | { | |
3579 | CPU_DoubleU u; | |
3580 | float64 tmp; | |
3581 | ||
3582 | u.ll = val; | |
3583 | /* NaN are not treated the same way IEEE 754 does */ | |
3584 | if (unlikely(float64_is_any_nan(u.d))) { | |
3585 | return 0; | |
3586 | } | |
3587 | tmp = uint64_to_float64(1ULL << 32, &env->vec_status); | |
3588 | u.d = float64_mul(u.d, tmp, &env->vec_status); | |
3589 | ||
3590 | return float64_to_uint32(u.d, &env->vec_status); | |
3591 | } | |
3592 | ||
3593 | uint32_t helper_efscfd (uint64_t val) | |
3594 | { | |
3595 | CPU_DoubleU u1; | |
3596 | CPU_FloatU u2; | |
3597 | ||
3598 | u1.ll = val; | |
3599 | u2.f = float64_to_float32(u1.d, &env->vec_status); | |
3600 | ||
3601 | return u2.l; | |
3602 | } | |
3603 | ||
3604 | uint64_t helper_efdcfs (uint32_t val) | |
3605 | { | |
3606 | CPU_DoubleU u2; | |
3607 | CPU_FloatU u1; | |
3608 | ||
3609 | u1.l = val; | |
3610 | u2.d = float32_to_float64(u1.f, &env->vec_status); | |
3611 | ||
3612 | return u2.ll; | |
3613 | } | |
3614 | ||
3615 | /* Double precision fixed-point arithmetic */ | |
3616 | uint64_t helper_efdadd (uint64_t op1, uint64_t op2) | |
3617 | { | |
3618 | CPU_DoubleU u1, u2; | |
3619 | u1.ll = op1; | |
3620 | u2.ll = op2; | |
3621 | u1.d = float64_add(u1.d, u2.d, &env->vec_status); | |
3622 | return u1.ll; | |
3623 | } | |
3624 | ||
3625 | uint64_t helper_efdsub (uint64_t op1, uint64_t op2) | |
3626 | { | |
3627 | CPU_DoubleU u1, u2; | |
3628 | u1.ll = op1; | |
3629 | u2.ll = op2; | |
3630 | u1.d = float64_sub(u1.d, u2.d, &env->vec_status); | |
3631 | return u1.ll; | |
3632 | } | |
3633 | ||
3634 | uint64_t helper_efdmul (uint64_t op1, uint64_t op2) | |
3635 | { | |
3636 | CPU_DoubleU u1, u2; | |
3637 | u1.ll = op1; | |
3638 | u2.ll = op2; | |
3639 | u1.d = float64_mul(u1.d, u2.d, &env->vec_status); | |
3640 | return u1.ll; | |
3641 | } | |
3642 | ||
3643 | uint64_t helper_efddiv (uint64_t op1, uint64_t op2) | |
3644 | { | |
3645 | CPU_DoubleU u1, u2; | |
3646 | u1.ll = op1; | |
3647 | u2.ll = op2; | |
3648 | u1.d = float64_div(u1.d, u2.d, &env->vec_status); | |
3649 | return u1.ll; | |
3650 | } | |
3651 | ||
3652 | /* Double precision floating point helpers */ | |
3653 | uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2) | |
3654 | { | |
3655 | CPU_DoubleU u1, u2; | |
3656 | u1.ll = op1; | |
3657 | u2.ll = op2; | |
3658 | return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0; | |
3659 | } | |
3660 | ||
3661 | uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2) | |
3662 | { | |
3663 | CPU_DoubleU u1, u2; | |
3664 | u1.ll = op1; | |
3665 | u2.ll = op2; | |
3666 | return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4; | |
3667 | } | |
3668 | ||
3669 | uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2) | |
3670 | { | |
3671 | CPU_DoubleU u1, u2; | |
3672 | u1.ll = op1; | |
3673 | u2.ll = op2; | |
3674 | return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0; | |
3675 | } | |
3676 | ||
3677 | uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2) | |
3678 | { | |
3679 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
3680 | return helper_efdtstlt(op1, op2); | |
3681 | } | |
3682 | ||
3683 | uint32_t helper_efdcmpgt (uint64_t op1, uint64_t op2) | |
3684 | { | |
3685 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
3686 | return helper_efdtstgt(op1, op2); | |
3687 | } | |
3688 | ||
3689 | uint32_t helper_efdcmpeq (uint64_t op1, uint64_t op2) | |
3690 | { | |
3691 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
3692 | return helper_efdtsteq(op1, op2); | |
3693 | } | |
3694 | ||
3695 | /*****************************************************************************/ | |
3696 | /* Softmmu support */ | |
3697 | #if !defined (CONFIG_USER_ONLY) | |
3698 | ||
3699 | #define MMUSUFFIX _mmu | |
3700 | ||
3701 | #define SHIFT 0 | |
3702 | #include "softmmu_template.h" | |
3703 | ||
3704 | #define SHIFT 1 | |
3705 | #include "softmmu_template.h" | |
3706 | ||
3707 | #define SHIFT 2 | |
3708 | #include "softmmu_template.h" | |
3709 | ||
3710 | #define SHIFT 3 | |
3711 | #include "softmmu_template.h" | |
3712 | ||
3713 | /* try to fill the TLB and return an exception if error. If retaddr is | |
3714 | NULL, it means that the function was called in C code (i.e. not | |
3715 | from generated code or from helper.c) */ | |
3716 | /* XXX: fix it to restore all registers */ | |
3717 | void tlb_fill(CPUState *env1, target_ulong addr, int is_write, int mmu_idx, | |
3718 | void *retaddr) | |
3719 | { | |
3720 | TranslationBlock *tb; | |
3721 | CPUState *saved_env; | |
3722 | unsigned long pc; | |
3723 | int ret; | |
3724 | ||
3725 | saved_env = env; | |
3726 | env = env1; | |
3727 | ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx); | |
3728 | if (unlikely(ret != 0)) { | |
3729 | if (likely(retaddr)) { | |
3730 | /* now we have a real cpu fault */ | |
3731 | pc = (unsigned long)retaddr; | |
3732 | tb = tb_find_pc(pc); | |
3733 | if (likely(tb)) { | |
3734 | /* the PC is inside the translated code. It means that we have | |
3735 | a virtual CPU fault */ | |
3736 | cpu_restore_state(tb, env, pc); | |
3737 | } | |
3738 | } | |
3739 | helper_raise_exception_err(env->exception_index, env->error_code); | |
3740 | } | |
3741 | env = saved_env; | |
3742 | } | |
3743 | ||
3744 | /* Segment registers load and store */ | |
3745 | target_ulong helper_load_sr (target_ulong sr_num) | |
3746 | { | |
3747 | #if defined(TARGET_PPC64) | |
3748 | if (env->mmu_model & POWERPC_MMU_64) | |
3749 | return ppc_load_sr(env, sr_num); | |
3750 | #endif | |
3751 | return env->sr[sr_num]; | |
3752 | } | |
3753 | ||
3754 | void helper_store_sr (target_ulong sr_num, target_ulong val) | |
3755 | { | |
3756 | ppc_store_sr(env, sr_num, val); | |
3757 | } | |
3758 | ||
3759 | /* SLB management */ | |
3760 | #if defined(TARGET_PPC64) | |
3761 | void helper_store_slb (target_ulong rb, target_ulong rs) | |
3762 | { | |
3763 | if (ppc_store_slb(env, rb, rs) < 0) { | |
3764 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL); | |
3765 | } | |
3766 | } | |
3767 | ||
3768 | target_ulong helper_load_slb_esid (target_ulong rb) | |
3769 | { | |
3770 | target_ulong rt; | |
3771 | ||
3772 | if (ppc_load_slb_esid(env, rb, &rt) < 0) { | |
3773 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL); | |
3774 | } | |
3775 | return rt; | |
3776 | } | |
3777 | ||
3778 | target_ulong helper_load_slb_vsid (target_ulong rb) | |
3779 | { | |
3780 | target_ulong rt; | |
3781 | ||
3782 | if (ppc_load_slb_vsid(env, rb, &rt) < 0) { | |
3783 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL); | |
3784 | } | |
3785 | return rt; | |
3786 | } | |
3787 | ||
3788 | void helper_slbia (void) | |
3789 | { | |
3790 | ppc_slb_invalidate_all(env); | |
3791 | } | |
3792 | ||
3793 | void helper_slbie (target_ulong addr) | |
3794 | { | |
3795 | ppc_slb_invalidate_one(env, addr); | |
3796 | } | |
3797 | ||
3798 | #endif /* defined(TARGET_PPC64) */ | |
3799 | ||
3800 | /* TLB management */ | |
3801 | void helper_tlbia (void) | |
3802 | { | |
3803 | ppc_tlb_invalidate_all(env); | |
3804 | } | |
3805 | ||
3806 | void helper_tlbie (target_ulong addr) | |
3807 | { | |
3808 | ppc_tlb_invalidate_one(env, addr); | |
3809 | } | |
3810 | ||
3811 | /* Software driven TLBs management */ | |
3812 | /* PowerPC 602/603 software TLB load instructions helpers */ | |
3813 | static void do_6xx_tlb (target_ulong new_EPN, int is_code) | |
3814 | { | |
3815 | target_ulong RPN, CMP, EPN; | |
3816 | int way; | |
3817 | ||
3818 | RPN = env->spr[SPR_RPA]; | |
3819 | if (is_code) { | |
3820 | CMP = env->spr[SPR_ICMP]; | |
3821 | EPN = env->spr[SPR_IMISS]; | |
3822 | } else { | |
3823 | CMP = env->spr[SPR_DCMP]; | |
3824 | EPN = env->spr[SPR_DMISS]; | |
3825 | } | |
3826 | way = (env->spr[SPR_SRR1] >> 17) & 1; | |
3827 | (void)EPN; /* avoid a compiler warning */ | |
3828 | LOG_SWTLB("%s: EPN " TARGET_FMT_lx " " TARGET_FMT_lx " PTE0 " TARGET_FMT_lx | |
3829 | " PTE1 " TARGET_FMT_lx " way %d\n", __func__, new_EPN, EPN, CMP, | |
3830 | RPN, way); | |
3831 | /* Store this TLB */ | |
3832 | ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK), | |
3833 | way, is_code, CMP, RPN); | |
3834 | } | |
3835 | ||
3836 | void helper_6xx_tlbd (target_ulong EPN) | |
3837 | { | |
3838 | do_6xx_tlb(EPN, 0); | |
3839 | } | |
3840 | ||
3841 | void helper_6xx_tlbi (target_ulong EPN) | |
3842 | { | |
3843 | do_6xx_tlb(EPN, 1); | |
3844 | } | |
3845 | ||
3846 | /* PowerPC 74xx software TLB load instructions helpers */ | |
3847 | static void do_74xx_tlb (target_ulong new_EPN, int is_code) | |
3848 | { | |
3849 | target_ulong RPN, CMP, EPN; | |
3850 | int way; | |
3851 | ||
3852 | RPN = env->spr[SPR_PTELO]; | |
3853 | CMP = env->spr[SPR_PTEHI]; | |
3854 | EPN = env->spr[SPR_TLBMISS] & ~0x3; | |
3855 | way = env->spr[SPR_TLBMISS] & 0x3; | |
3856 | (void)EPN; /* avoid a compiler warning */ | |
3857 | LOG_SWTLB("%s: EPN " TARGET_FMT_lx " " TARGET_FMT_lx " PTE0 " TARGET_FMT_lx | |
3858 | " PTE1 " TARGET_FMT_lx " way %d\n", __func__, new_EPN, EPN, CMP, | |
3859 | RPN, way); | |
3860 | /* Store this TLB */ | |
3861 | ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK), | |
3862 | way, is_code, CMP, RPN); | |
3863 | } | |
3864 | ||
3865 | void helper_74xx_tlbd (target_ulong EPN) | |
3866 | { | |
3867 | do_74xx_tlb(EPN, 0); | |
3868 | } | |
3869 | ||
3870 | void helper_74xx_tlbi (target_ulong EPN) | |
3871 | { | |
3872 | do_74xx_tlb(EPN, 1); | |
3873 | } | |
3874 | ||
3875 | static inline target_ulong booke_tlb_to_page_size(int size) | |
3876 | { | |
3877 | return 1024 << (2 * size); | |
3878 | } | |
3879 | ||
3880 | static inline int booke_page_size_to_tlb(target_ulong page_size) | |
3881 | { | |
3882 | int size; | |
3883 | ||
3884 | switch (page_size) { | |
3885 | case 0x00000400UL: | |
3886 | size = 0x0; | |
3887 | break; | |
3888 | case 0x00001000UL: | |
3889 | size = 0x1; | |
3890 | break; | |
3891 | case 0x00004000UL: | |
3892 | size = 0x2; | |
3893 | break; | |
3894 | case 0x00010000UL: | |
3895 | size = 0x3; | |
3896 | break; | |
3897 | case 0x00040000UL: | |
3898 | size = 0x4; | |
3899 | break; | |
3900 | case 0x00100000UL: | |
3901 | size = 0x5; | |
3902 | break; | |
3903 | case 0x00400000UL: | |
3904 | size = 0x6; | |
3905 | break; | |
3906 | case 0x01000000UL: | |
3907 | size = 0x7; | |
3908 | break; | |
3909 | case 0x04000000UL: | |
3910 | size = 0x8; | |
3911 | break; | |
3912 | case 0x10000000UL: | |
3913 | size = 0x9; | |
3914 | break; | |
3915 | case 0x40000000UL: | |
3916 | size = 0xA; | |
3917 | break; | |
3918 | #if defined (TARGET_PPC64) | |
3919 | case 0x000100000000ULL: | |
3920 | size = 0xB; | |
3921 | break; | |
3922 | case 0x000400000000ULL: | |
3923 | size = 0xC; | |
3924 | break; | |
3925 | case 0x001000000000ULL: | |
3926 | size = 0xD; | |
3927 | break; | |
3928 | case 0x004000000000ULL: | |
3929 | size = 0xE; | |
3930 | break; | |
3931 | case 0x010000000000ULL: | |
3932 | size = 0xF; | |
3933 | break; | |
3934 | #endif | |
3935 | default: | |
3936 | size = -1; | |
3937 | break; | |
3938 | } | |
3939 | ||
3940 | return size; | |
3941 | } | |
3942 | ||
3943 | /* Helpers for 4xx TLB management */ | |
3944 | #define PPC4XX_TLB_ENTRY_MASK 0x0000003f /* Mask for 64 TLB entries */ | |
3945 | ||
3946 | #define PPC4XX_TLBHI_V 0x00000040 | |
3947 | #define PPC4XX_TLBHI_E 0x00000020 | |
3948 | #define PPC4XX_TLBHI_SIZE_MIN 0 | |
3949 | #define PPC4XX_TLBHI_SIZE_MAX 7 | |
3950 | #define PPC4XX_TLBHI_SIZE_DEFAULT 1 | |
3951 | #define PPC4XX_TLBHI_SIZE_SHIFT 7 | |
3952 | #define PPC4XX_TLBHI_SIZE_MASK 0x00000007 | |
3953 | ||
3954 | #define PPC4XX_TLBLO_EX 0x00000200 | |
3955 | #define PPC4XX_TLBLO_WR 0x00000100 | |
3956 | #define PPC4XX_TLBLO_ATTR_MASK 0x000000FF | |
3957 | #define PPC4XX_TLBLO_RPN_MASK 0xFFFFFC00 | |
3958 | ||
3959 | target_ulong helper_4xx_tlbre_hi (target_ulong entry) | |
3960 | { | |
3961 | ppcemb_tlb_t *tlb; | |
3962 | target_ulong ret; | |
3963 | int size; | |
3964 | ||
3965 | entry &= PPC4XX_TLB_ENTRY_MASK; | |
3966 | tlb = &env->tlb.tlbe[entry]; | |
3967 | ret = tlb->EPN; | |
3968 | if (tlb->prot & PAGE_VALID) { | |
3969 | ret |= PPC4XX_TLBHI_V; | |
3970 | } | |
3971 | size = booke_page_size_to_tlb(tlb->size); | |
3972 | if (size < PPC4XX_TLBHI_SIZE_MIN || size > PPC4XX_TLBHI_SIZE_MAX) { | |
3973 | size = PPC4XX_TLBHI_SIZE_DEFAULT; | |
3974 | } | |
3975 | ret |= size << PPC4XX_TLBHI_SIZE_SHIFT; | |
3976 | env->spr[SPR_40x_PID] = tlb->PID; | |
3977 | return ret; | |
3978 | } | |
3979 | ||
3980 | target_ulong helper_4xx_tlbre_lo (target_ulong entry) | |
3981 | { | |
3982 | ppcemb_tlb_t *tlb; | |
3983 | target_ulong ret; | |
3984 | ||
3985 | entry &= PPC4XX_TLB_ENTRY_MASK; | |
3986 | tlb = &env->tlb.tlbe[entry]; | |
3987 | ret = tlb->RPN; | |
3988 | if (tlb->prot & PAGE_EXEC) { | |
3989 | ret |= PPC4XX_TLBLO_EX; | |
3990 | } | |
3991 | if (tlb->prot & PAGE_WRITE) { | |
3992 | ret |= PPC4XX_TLBLO_WR; | |
3993 | } | |
3994 | return ret; | |
3995 | } | |
3996 | ||
3997 | void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val) | |
3998 | { | |
3999 | ppcemb_tlb_t *tlb; | |
4000 | target_ulong page, end; | |
4001 | ||
4002 | LOG_SWTLB("%s entry %d val " TARGET_FMT_lx "\n", __func__, (int)entry, | |
4003 | val); | |
4004 | entry &= PPC4XX_TLB_ENTRY_MASK; | |
4005 | tlb = &env->tlb.tlbe[entry]; | |
4006 | /* Invalidate previous TLB (if it's valid) */ | |
4007 | if (tlb->prot & PAGE_VALID) { | |
4008 | end = tlb->EPN + tlb->size; | |
4009 | LOG_SWTLB("%s: invalidate old TLB %d start " TARGET_FMT_lx " end " | |
4010 | TARGET_FMT_lx "\n", __func__, (int)entry, tlb->EPN, end); | |
4011 | for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) { | |
4012 | tlb_flush_page(env, page); | |
4013 | } | |
4014 | } | |
4015 | tlb->size = booke_tlb_to_page_size((val >> PPC4XX_TLBHI_SIZE_SHIFT) | |
4016 | & PPC4XX_TLBHI_SIZE_MASK); | |
4017 | /* We cannot handle TLB size < TARGET_PAGE_SIZE. | |
4018 | * If this ever occurs, one should use the ppcemb target instead | |
4019 | * of the ppc or ppc64 one | |
4020 | */ | |
4021 | if ((val & PPC4XX_TLBHI_V) && tlb->size < TARGET_PAGE_SIZE) { | |
4022 | cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u " | |
4023 | "are not supported (%d)\n", | |
4024 | tlb->size, TARGET_PAGE_SIZE, (int)((val >> 7) & 0x7)); | |
4025 | } | |
4026 | tlb->EPN = val & ~(tlb->size - 1); | |
4027 | if (val & PPC4XX_TLBHI_V) { | |
4028 | tlb->prot |= PAGE_VALID; | |
4029 | if (val & PPC4XX_TLBHI_E) { | |
4030 | /* XXX: TO BE FIXED */ | |
4031 | cpu_abort(env, | |
4032 | "Little-endian TLB entries are not supported by now\n"); | |
4033 | } | |
4034 | } else { | |
4035 | tlb->prot &= ~PAGE_VALID; | |
4036 | } | |
4037 | tlb->PID = env->spr[SPR_40x_PID]; /* PID */ | |
4038 | LOG_SWTLB("%s: set up TLB %d RPN " TARGET_FMT_plx " EPN " TARGET_FMT_lx | |
4039 | " size " TARGET_FMT_lx " prot %c%c%c%c PID %d\n", __func__, | |
4040 | (int)entry, tlb->RPN, tlb->EPN, tlb->size, | |
4041 | tlb->prot & PAGE_READ ? 'r' : '-', | |
4042 | tlb->prot & PAGE_WRITE ? 'w' : '-', | |
4043 | tlb->prot & PAGE_EXEC ? 'x' : '-', | |
4044 | tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); | |
4045 | /* Invalidate new TLB (if valid) */ | |
4046 | if (tlb->prot & PAGE_VALID) { | |
4047 | end = tlb->EPN + tlb->size; | |
4048 | LOG_SWTLB("%s: invalidate TLB %d start " TARGET_FMT_lx " end " | |
4049 | TARGET_FMT_lx "\n", __func__, (int)entry, tlb->EPN, end); | |
4050 | for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) { | |
4051 | tlb_flush_page(env, page); | |
4052 | } | |
4053 | } | |
4054 | } | |
4055 | ||
4056 | void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val) | |
4057 | { | |
4058 | ppcemb_tlb_t *tlb; | |
4059 | ||
4060 | LOG_SWTLB("%s entry %i val " TARGET_FMT_lx "\n", __func__, (int)entry, | |
4061 | val); | |
4062 | entry &= PPC4XX_TLB_ENTRY_MASK; | |
4063 | tlb = &env->tlb.tlbe[entry]; | |
4064 | tlb->attr = val & PPC4XX_TLBLO_ATTR_MASK; | |
4065 | tlb->RPN = val & PPC4XX_TLBLO_RPN_MASK; | |
4066 | tlb->prot = PAGE_READ; | |
4067 | if (val & PPC4XX_TLBLO_EX) { | |
4068 | tlb->prot |= PAGE_EXEC; | |
4069 | } | |
4070 | if (val & PPC4XX_TLBLO_WR) { | |
4071 | tlb->prot |= PAGE_WRITE; | |
4072 | } | |
4073 | LOG_SWTLB("%s: set up TLB %d RPN " TARGET_FMT_plx " EPN " TARGET_FMT_lx | |
4074 | " size " TARGET_FMT_lx " prot %c%c%c%c PID %d\n", __func__, | |
4075 | (int)entry, tlb->RPN, tlb->EPN, tlb->size, | |
4076 | tlb->prot & PAGE_READ ? 'r' : '-', | |
4077 | tlb->prot & PAGE_WRITE ? 'w' : '-', | |
4078 | tlb->prot & PAGE_EXEC ? 'x' : '-', | |
4079 | tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); | |
4080 | } | |
4081 | ||
4082 | target_ulong helper_4xx_tlbsx (target_ulong address) | |
4083 | { | |
4084 | return ppcemb_tlb_search(env, address, env->spr[SPR_40x_PID]); | |
4085 | } | |
4086 | ||
4087 | /* PowerPC 440 TLB management */ | |
4088 | void helper_440_tlbwe (uint32_t word, target_ulong entry, target_ulong value) | |
4089 | { | |
4090 | ppcemb_tlb_t *tlb; | |
4091 | target_ulong EPN, RPN, size; | |
4092 | int do_flush_tlbs; | |
4093 | ||
4094 | LOG_SWTLB("%s word %d entry %d value " TARGET_FMT_lx "\n", | |
4095 | __func__, word, (int)entry, value); | |
4096 | do_flush_tlbs = 0; | |
4097 | entry &= 0x3F; | |
4098 | tlb = &env->tlb.tlbe[entry]; | |
4099 | switch (word) { | |
4100 | default: | |
4101 | /* Just here to please gcc */ | |
4102 | case 0: | |
4103 | EPN = value & 0xFFFFFC00; | |
4104 | if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN) | |
4105 | do_flush_tlbs = 1; | |
4106 | tlb->EPN = EPN; | |
4107 | size = booke_tlb_to_page_size((value >> 4) & 0xF); | |
4108 | if ((tlb->prot & PAGE_VALID) && tlb->size < size) | |
4109 | do_flush_tlbs = 1; | |
4110 | tlb->size = size; | |
4111 | tlb->attr &= ~0x1; | |
4112 | tlb->attr |= (value >> 8) & 1; | |
4113 | if (value & 0x200) { | |
4114 | tlb->prot |= PAGE_VALID; | |
4115 | } else { | |
4116 | if (tlb->prot & PAGE_VALID) { | |
4117 | tlb->prot &= ~PAGE_VALID; | |
4118 | do_flush_tlbs = 1; | |
4119 | } | |
4120 | } | |
4121 | tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF; | |
4122 | if (do_flush_tlbs) | |
4123 | tlb_flush(env, 1); | |
4124 | break; | |
4125 | case 1: | |
4126 | RPN = value & 0xFFFFFC0F; | |
4127 | if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN) | |
4128 | tlb_flush(env, 1); | |
4129 | tlb->RPN = RPN; | |
4130 | break; | |
4131 | case 2: | |
4132 | tlb->attr = (tlb->attr & 0x1) | (value & 0x0000FF00); | |
4133 | tlb->prot = tlb->prot & PAGE_VALID; | |
4134 | if (value & 0x1) | |
4135 | tlb->prot |= PAGE_READ << 4; | |
4136 | if (value & 0x2) | |
4137 | tlb->prot |= PAGE_WRITE << 4; | |
4138 | if (value & 0x4) | |
4139 | tlb->prot |= PAGE_EXEC << 4; | |
4140 | if (value & 0x8) | |
4141 | tlb->prot |= PAGE_READ; | |
4142 | if (value & 0x10) | |
4143 | tlb->prot |= PAGE_WRITE; | |
4144 | if (value & 0x20) | |
4145 | tlb->prot |= PAGE_EXEC; | |
4146 | break; | |
4147 | } | |
4148 | } | |
4149 | ||
4150 | target_ulong helper_440_tlbre (uint32_t word, target_ulong entry) | |
4151 | { | |
4152 | ppcemb_tlb_t *tlb; | |
4153 | target_ulong ret; | |
4154 | int size; | |
4155 | ||
4156 | entry &= 0x3F; | |
4157 | tlb = &env->tlb.tlbe[entry]; | |
4158 | switch (word) { | |
4159 | default: | |
4160 | /* Just here to please gcc */ | |
4161 | case 0: | |
4162 | ret = tlb->EPN; | |
4163 | size = booke_page_size_to_tlb(tlb->size); | |
4164 | if (size < 0 || size > 0xF) | |
4165 | size = 1; | |
4166 | ret |= size << 4; | |
4167 | if (tlb->attr & 0x1) | |
4168 | ret |= 0x100; | |
4169 | if (tlb->prot & PAGE_VALID) | |
4170 | ret |= 0x200; | |
4171 | env->spr[SPR_440_MMUCR] &= ~0x000000FF; | |
4172 | env->spr[SPR_440_MMUCR] |= tlb->PID; | |
4173 | break; | |
4174 | case 1: | |
4175 | ret = tlb->RPN; | |
4176 | break; | |
4177 | case 2: | |
4178 | ret = tlb->attr & ~0x1; | |
4179 | if (tlb->prot & (PAGE_READ << 4)) | |
4180 | ret |= 0x1; | |
4181 | if (tlb->prot & (PAGE_WRITE << 4)) | |
4182 | ret |= 0x2; | |
4183 | if (tlb->prot & (PAGE_EXEC << 4)) | |
4184 | ret |= 0x4; | |
4185 | if (tlb->prot & PAGE_READ) | |
4186 | ret |= 0x8; | |
4187 | if (tlb->prot & PAGE_WRITE) | |
4188 | ret |= 0x10; | |
4189 | if (tlb->prot & PAGE_EXEC) | |
4190 | ret |= 0x20; | |
4191 | break; | |
4192 | } | |
4193 | return ret; | |
4194 | } | |
4195 | ||
4196 | target_ulong helper_440_tlbsx (target_ulong address) | |
4197 | { | |
4198 | return ppcemb_tlb_search(env, address, env->spr[SPR_440_MMUCR] & 0xFF); | |
4199 | } | |
4200 | ||
4201 | /* PowerPC BookE 2.06 TLB management */ | |
4202 | ||
4203 | static ppcmas_tlb_t *booke206_cur_tlb(CPUState *env) | |
4204 | { | |
4205 | uint32_t tlbncfg = 0; | |
4206 | int esel = (env->spr[SPR_BOOKE_MAS0] & MAS0_ESEL_MASK) >> MAS0_ESEL_SHIFT; | |
4207 | int ea = (env->spr[SPR_BOOKE_MAS2] & MAS2_EPN_MASK); | |
4208 | int tlb; | |
4209 | ||
4210 | tlb = (env->spr[SPR_BOOKE_MAS0] & MAS0_TLBSEL_MASK) >> MAS0_TLBSEL_SHIFT; | |
4211 | tlbncfg = env->spr[SPR_BOOKE_TLB0CFG + tlb]; | |
4212 | ||
4213 | if ((tlbncfg & TLBnCFG_HES) && (env->spr[SPR_BOOKE_MAS0] & MAS0_HES)) { | |
4214 | cpu_abort(env, "we don't support HES yet\n"); | |
4215 | } | |
4216 | ||
4217 | return booke206_get_tlbm(env, tlb, ea, esel); | |
4218 | } | |
4219 | ||
4220 | void helper_booke_setpid(uint32_t pidn, target_ulong pid) | |
4221 | { | |
4222 | env->spr[pidn] = pid; | |
4223 | /* changing PIDs mean we're in a different address space now */ | |
4224 | tlb_flush(env, 1); | |
4225 | } | |
4226 | ||
4227 | void helper_booke206_tlbwe(void) | |
4228 | { | |
4229 | uint32_t tlbncfg, tlbn; | |
4230 | ppcmas_tlb_t *tlb; | |
4231 | ||
4232 | switch (env->spr[SPR_BOOKE_MAS0] & MAS0_WQ_MASK) { | |
4233 | case MAS0_WQ_ALWAYS: | |
4234 | /* good to go, write that entry */ | |
4235 | break; | |
4236 | case MAS0_WQ_COND: | |
4237 | /* XXX check if reserved */ | |
4238 | if (0) { | |
4239 | return; | |
4240 | } | |
4241 | break; | |
4242 | case MAS0_WQ_CLR_RSRV: | |
4243 | /* XXX clear entry */ | |
4244 | return; | |
4245 | default: | |
4246 | /* no idea what to do */ | |
4247 | return; | |
4248 | } | |
4249 | ||
4250 | if (((env->spr[SPR_BOOKE_MAS0] & MAS0_ATSEL) == MAS0_ATSEL_LRAT) && | |
4251 | !msr_gs) { | |
4252 | /* XXX we don't support direct LRAT setting yet */ | |
4253 | fprintf(stderr, "cpu: don't support LRAT setting yet\n"); | |
4254 | return; | |
4255 | } | |
4256 | ||
4257 | tlbn = (env->spr[SPR_BOOKE_MAS0] & MAS0_TLBSEL_MASK) >> MAS0_TLBSEL_SHIFT; | |
4258 | tlbncfg = env->spr[SPR_BOOKE_TLB0CFG + tlbn]; | |
4259 | ||
4260 | tlb = booke206_cur_tlb(env); | |
4261 | ||
4262 | if (msr_gs) { | |
4263 | cpu_abort(env, "missing HV implementation\n"); | |
4264 | } | |
4265 | tlb->mas7_3 = ((uint64_t)env->spr[SPR_BOOKE_MAS7] << 32) | | |
4266 | env->spr[SPR_BOOKE_MAS3]; | |
4267 | tlb->mas1 = env->spr[SPR_BOOKE_MAS1]; | |
4268 | /* XXX needs to change when supporting 64-bit e500 */ | |
4269 | tlb->mas2 = env->spr[SPR_BOOKE_MAS2] & 0xffffffff; | |
4270 | ||
4271 | if (!(tlbncfg & TLBnCFG_IPROT)) { | |
4272 | /* no IPROT supported by TLB */ | |
4273 | tlb->mas1 &= ~MAS1_IPROT; | |
4274 | } | |
4275 | ||
4276 | if (booke206_tlb_to_page_size(env, tlb) == TARGET_PAGE_SIZE) { | |
4277 | tlb_flush_page(env, tlb->mas2 & MAS2_EPN_MASK); | |
4278 | } else { | |
4279 | tlb_flush(env, 1); | |
4280 | } | |
4281 | } | |
4282 | ||
4283 | static inline void booke206_tlb_to_mas(CPUState *env, ppcmas_tlb_t *tlb) | |
4284 | { | |
4285 | int tlbn = booke206_tlbm_to_tlbn(env, tlb); | |
4286 | int way = booke206_tlbm_to_way(env, tlb); | |
4287 | ||
4288 | env->spr[SPR_BOOKE_MAS0] = tlbn << MAS0_TLBSEL_SHIFT; | |
4289 | env->spr[SPR_BOOKE_MAS0] |= way << MAS0_ESEL_SHIFT; | |
4290 | env->spr[SPR_BOOKE_MAS0] |= env->last_way << MAS0_NV_SHIFT; | |
4291 | ||
4292 | env->spr[SPR_BOOKE_MAS1] = tlb->mas1; | |
4293 | env->spr[SPR_BOOKE_MAS2] = tlb->mas2; | |
4294 | env->spr[SPR_BOOKE_MAS3] = tlb->mas7_3; | |
4295 | env->spr[SPR_BOOKE_MAS7] = tlb->mas7_3 >> 32; | |
4296 | } | |
4297 | ||
4298 | void helper_booke206_tlbre(void) | |
4299 | { | |
4300 | ppcmas_tlb_t *tlb = NULL; | |
4301 | ||
4302 | tlb = booke206_cur_tlb(env); | |
4303 | booke206_tlb_to_mas(env, tlb); | |
4304 | } | |
4305 | ||
4306 | void helper_booke206_tlbsx(target_ulong address) | |
4307 | { | |
4308 | ppcmas_tlb_t *tlb = NULL; | |
4309 | int i, j; | |
4310 | target_phys_addr_t raddr; | |
4311 | uint32_t spid, sas; | |
4312 | ||
4313 | spid = (env->spr[SPR_BOOKE_MAS6] & MAS6_SPID_MASK) >> MAS6_SPID_SHIFT; | |
4314 | sas = env->spr[SPR_BOOKE_MAS6] & MAS6_SAS; | |
4315 | ||
4316 | for (i = 0; i < BOOKE206_MAX_TLBN; i++) { | |
4317 | int ways = booke206_tlb_ways(env, i); | |
4318 | ||
4319 | for (j = 0; j < ways; j++) { | |
4320 | tlb = booke206_get_tlbm(env, i, address, j); | |
4321 | ||
4322 | if (ppcmas_tlb_check(env, tlb, &raddr, address, spid)) { | |
4323 | continue; | |
4324 | } | |
4325 | ||
4326 | if (sas != ((tlb->mas1 & MAS1_TS) >> MAS1_TS_SHIFT)) { | |
4327 | continue; | |
4328 | } | |
4329 | ||
4330 | booke206_tlb_to_mas(env, tlb); | |
4331 | return; | |
4332 | } | |
4333 | } | |
4334 | ||
4335 | /* no entry found, fill with defaults */ | |
4336 | env->spr[SPR_BOOKE_MAS0] = env->spr[SPR_BOOKE_MAS4] & MAS4_TLBSELD_MASK; | |
4337 | env->spr[SPR_BOOKE_MAS1] = env->spr[SPR_BOOKE_MAS4] & MAS4_TSIZED_MASK; | |
4338 | env->spr[SPR_BOOKE_MAS2] = env->spr[SPR_BOOKE_MAS4] & MAS4_WIMGED_MASK; | |
4339 | env->spr[SPR_BOOKE_MAS3] = 0; | |
4340 | env->spr[SPR_BOOKE_MAS7] = 0; | |
4341 | ||
4342 | if (env->spr[SPR_BOOKE_MAS6] & MAS6_SAS) { | |
4343 | env->spr[SPR_BOOKE_MAS1] |= MAS1_TS; | |
4344 | } | |
4345 | ||
4346 | env->spr[SPR_BOOKE_MAS1] |= (env->spr[SPR_BOOKE_MAS6] >> 16) | |
4347 | << MAS1_TID_SHIFT; | |
4348 | ||
4349 | /* next victim logic */ | |
4350 | env->spr[SPR_BOOKE_MAS0] |= env->last_way << MAS0_ESEL_SHIFT; | |
4351 | env->last_way++; | |
4352 | env->last_way &= booke206_tlb_ways(env, 0) - 1; | |
4353 | env->spr[SPR_BOOKE_MAS0] |= env->last_way << MAS0_NV_SHIFT; | |
4354 | } | |
4355 | ||
4356 | static inline void booke206_invalidate_ea_tlb(CPUState *env, int tlbn, | |
4357 | uint32_t ea) | |
4358 | { | |
4359 | int i; | |
4360 | int ways = booke206_tlb_ways(env, tlbn); | |
4361 | target_ulong mask; | |
4362 | ||
4363 | for (i = 0; i < ways; i++) { | |
4364 | ppcmas_tlb_t *tlb = booke206_get_tlbm(env, tlbn, ea, i); | |
4365 | mask = ~(booke206_tlb_to_page_size(env, tlb) - 1); | |
4366 | if (((tlb->mas2 & MAS2_EPN_MASK) == (ea & mask)) && | |
4367 | !(tlb->mas1 & MAS1_IPROT)) { | |
4368 | tlb->mas1 &= ~MAS1_VALID; | |
4369 | } | |
4370 | } | |
4371 | } | |
4372 | ||
4373 | void helper_booke206_tlbivax(target_ulong address) | |
4374 | { | |
4375 | if (address & 0x4) { | |
4376 | /* flush all entries */ | |
4377 | if (address & 0x8) { | |
4378 | /* flush all of TLB1 */ | |
4379 | booke206_flush_tlb(env, BOOKE206_FLUSH_TLB1, 1); | |
4380 | } else { | |
4381 | /* flush all of TLB0 */ | |
4382 | booke206_flush_tlb(env, BOOKE206_FLUSH_TLB0, 0); | |
4383 | } | |
4384 | return; | |
4385 | } | |
4386 | ||
4387 | if (address & 0x8) { | |
4388 | /* flush TLB1 entries */ | |
4389 | booke206_invalidate_ea_tlb(env, 1, address); | |
4390 | tlb_flush(env, 1); | |
4391 | } else { | |
4392 | /* flush TLB0 entries */ | |
4393 | booke206_invalidate_ea_tlb(env, 0, address); | |
4394 | tlb_flush_page(env, address & MAS2_EPN_MASK); | |
4395 | } | |
4396 | } | |
4397 | ||
4398 | void helper_booke206_tlbflush(uint32_t type) | |
4399 | { | |
4400 | int flags = 0; | |
4401 | ||
4402 | if (type & 2) { | |
4403 | flags |= BOOKE206_FLUSH_TLB1; | |
4404 | } | |
4405 | ||
4406 | if (type & 4) { | |
4407 | flags |= BOOKE206_FLUSH_TLB0; | |
4408 | } | |
4409 | ||
4410 | booke206_flush_tlb(env, flags, 1); | |
4411 | } | |
4412 | ||
4413 | #endif /* !CONFIG_USER_ONLY */ |