]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * NUMA parameter parsing routines | |
3 | * | |
4 | * Copyright (c) 2014 Fujitsu Ltd. | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
25 | #include "qemu/osdep.h" | |
26 | #include "sysemu/numa.h" | |
27 | #include "exec/cpu-common.h" | |
28 | #include "exec/ramlist.h" | |
29 | #include "qemu/bitmap.h" | |
30 | #include "qom/cpu.h" | |
31 | #include "qemu/error-report.h" | |
32 | #include "include/exec/cpu-common.h" /* for RAM_ADDR_FMT */ | |
33 | #include "qapi-visit.h" | |
34 | #include "qapi/opts-visitor.h" | |
35 | #include "hw/boards.h" | |
36 | #include "sysemu/hostmem.h" | |
37 | #include "qmp-commands.h" | |
38 | #include "hw/mem/pc-dimm.h" | |
39 | #include "qemu/option.h" | |
40 | #include "qemu/config-file.h" | |
41 | ||
42 | QemuOptsList qemu_numa_opts = { | |
43 | .name = "numa", | |
44 | .implied_opt_name = "type", | |
45 | .head = QTAILQ_HEAD_INITIALIZER(qemu_numa_opts.head), | |
46 | .desc = { { 0 } } /* validated with OptsVisitor */ | |
47 | }; | |
48 | ||
49 | static int have_memdevs = -1; | |
50 | static int max_numa_nodeid; /* Highest specified NUMA node ID, plus one. | |
51 | * For all nodes, nodeid < max_numa_nodeid | |
52 | */ | |
53 | int nb_numa_nodes; | |
54 | NodeInfo numa_info[MAX_NODES]; | |
55 | ||
56 | void numa_set_mem_node_id(ram_addr_t addr, uint64_t size, uint32_t node) | |
57 | { | |
58 | struct numa_addr_range *range; | |
59 | ||
60 | /* | |
61 | * Memory-less nodes can come here with 0 size in which case, | |
62 | * there is nothing to do. | |
63 | */ | |
64 | if (!size) { | |
65 | return; | |
66 | } | |
67 | ||
68 | range = g_malloc0(sizeof(*range)); | |
69 | range->mem_start = addr; | |
70 | range->mem_end = addr + size - 1; | |
71 | QLIST_INSERT_HEAD(&numa_info[node].addr, range, entry); | |
72 | } | |
73 | ||
74 | void numa_unset_mem_node_id(ram_addr_t addr, uint64_t size, uint32_t node) | |
75 | { | |
76 | struct numa_addr_range *range, *next; | |
77 | ||
78 | QLIST_FOREACH_SAFE(range, &numa_info[node].addr, entry, next) { | |
79 | if (addr == range->mem_start && (addr + size - 1) == range->mem_end) { | |
80 | QLIST_REMOVE(range, entry); | |
81 | g_free(range); | |
82 | return; | |
83 | } | |
84 | } | |
85 | } | |
86 | ||
87 | static void numa_set_mem_ranges(void) | |
88 | { | |
89 | int i; | |
90 | ram_addr_t mem_start = 0; | |
91 | ||
92 | /* | |
93 | * Deduce start address of each node and use it to store | |
94 | * the address range info in numa_info address range list | |
95 | */ | |
96 | for (i = 0; i < nb_numa_nodes; i++) { | |
97 | numa_set_mem_node_id(mem_start, numa_info[i].node_mem, i); | |
98 | mem_start += numa_info[i].node_mem; | |
99 | } | |
100 | } | |
101 | ||
102 | /* | |
103 | * Check if @addr falls under NUMA @node. | |
104 | */ | |
105 | static bool numa_addr_belongs_to_node(ram_addr_t addr, uint32_t node) | |
106 | { | |
107 | struct numa_addr_range *range; | |
108 | ||
109 | QLIST_FOREACH(range, &numa_info[node].addr, entry) { | |
110 | if (addr >= range->mem_start && addr <= range->mem_end) { | |
111 | return true; | |
112 | } | |
113 | } | |
114 | return false; | |
115 | } | |
116 | ||
117 | /* | |
118 | * Given an address, return the index of the NUMA node to which the | |
119 | * address belongs to. | |
120 | */ | |
121 | uint32_t numa_get_node(ram_addr_t addr, Error **errp) | |
122 | { | |
123 | uint32_t i; | |
124 | ||
125 | /* For non NUMA configurations, check if the addr falls under node 0 */ | |
126 | if (!nb_numa_nodes) { | |
127 | if (numa_addr_belongs_to_node(addr, 0)) { | |
128 | return 0; | |
129 | } | |
130 | } | |
131 | ||
132 | for (i = 0; i < nb_numa_nodes; i++) { | |
133 | if (numa_addr_belongs_to_node(addr, i)) { | |
134 | return i; | |
135 | } | |
136 | } | |
137 | ||
138 | error_setg(errp, "Address 0x" RAM_ADDR_FMT " doesn't belong to any " | |
139 | "NUMA node", addr); | |
140 | return -1; | |
141 | } | |
142 | ||
143 | static void numa_node_parse(NumaNodeOptions *node, QemuOpts *opts, Error **errp) | |
144 | { | |
145 | uint16_t nodenr; | |
146 | uint16List *cpus = NULL; | |
147 | ||
148 | if (node->has_nodeid) { | |
149 | nodenr = node->nodeid; | |
150 | } else { | |
151 | nodenr = nb_numa_nodes; | |
152 | } | |
153 | ||
154 | if (nodenr >= MAX_NODES) { | |
155 | error_setg(errp, "Max number of NUMA nodes reached: %" | |
156 | PRIu16 "", nodenr); | |
157 | return; | |
158 | } | |
159 | ||
160 | if (numa_info[nodenr].present) { | |
161 | error_setg(errp, "Duplicate NUMA nodeid: %" PRIu16, nodenr); | |
162 | return; | |
163 | } | |
164 | ||
165 | for (cpus = node->cpus; cpus; cpus = cpus->next) { | |
166 | if (cpus->value >= max_cpus) { | |
167 | error_setg(errp, | |
168 | "CPU index (%" PRIu16 ")" | |
169 | " should be smaller than maxcpus (%d)", | |
170 | cpus->value, max_cpus); | |
171 | return; | |
172 | } | |
173 | bitmap_set(numa_info[nodenr].node_cpu, cpus->value, 1); | |
174 | } | |
175 | ||
176 | if (node->has_mem && node->has_memdev) { | |
177 | error_setg(errp, "qemu: cannot specify both mem= and memdev="); | |
178 | return; | |
179 | } | |
180 | ||
181 | if (have_memdevs == -1) { | |
182 | have_memdevs = node->has_memdev; | |
183 | } | |
184 | if (node->has_memdev != have_memdevs) { | |
185 | error_setg(errp, "qemu: memdev option must be specified for either " | |
186 | "all or no nodes"); | |
187 | return; | |
188 | } | |
189 | ||
190 | if (node->has_mem) { | |
191 | uint64_t mem_size = node->mem; | |
192 | const char *mem_str = qemu_opt_get(opts, "mem"); | |
193 | /* Fix up legacy suffix-less format */ | |
194 | if (g_ascii_isdigit(mem_str[strlen(mem_str) - 1])) { | |
195 | mem_size <<= 20; | |
196 | } | |
197 | numa_info[nodenr].node_mem = mem_size; | |
198 | } | |
199 | if (node->has_memdev) { | |
200 | Object *o; | |
201 | o = object_resolve_path_type(node->memdev, TYPE_MEMORY_BACKEND, NULL); | |
202 | if (!o) { | |
203 | error_setg(errp, "memdev=%s is ambiguous", node->memdev); | |
204 | return; | |
205 | } | |
206 | ||
207 | object_ref(o); | |
208 | numa_info[nodenr].node_mem = object_property_get_int(o, "size", NULL); | |
209 | numa_info[nodenr].node_memdev = MEMORY_BACKEND(o); | |
210 | } | |
211 | numa_info[nodenr].present = true; | |
212 | max_numa_nodeid = MAX(max_numa_nodeid, nodenr + 1); | |
213 | } | |
214 | ||
215 | static int parse_numa(void *opaque, QemuOpts *opts, Error **errp) | |
216 | { | |
217 | NumaOptions *object = NULL; | |
218 | Error *err = NULL; | |
219 | ||
220 | { | |
221 | Visitor *v = opts_visitor_new(opts); | |
222 | visit_type_NumaOptions(v, NULL, &object, &err); | |
223 | visit_free(v); | |
224 | } | |
225 | ||
226 | if (err) { | |
227 | goto end; | |
228 | } | |
229 | ||
230 | switch (object->type) { | |
231 | case NUMA_OPTIONS_KIND_NODE: | |
232 | numa_node_parse(object->u.node.data, opts, &err); | |
233 | if (err) { | |
234 | goto end; | |
235 | } | |
236 | nb_numa_nodes++; | |
237 | break; | |
238 | default: | |
239 | abort(); | |
240 | } | |
241 | ||
242 | end: | |
243 | qapi_free_NumaOptions(object); | |
244 | if (err) { | |
245 | error_report_err(err); | |
246 | return -1; | |
247 | } | |
248 | ||
249 | return 0; | |
250 | } | |
251 | ||
252 | static char *enumerate_cpus(unsigned long *cpus, int max_cpus) | |
253 | { | |
254 | int cpu; | |
255 | bool first = true; | |
256 | GString *s = g_string_new(NULL); | |
257 | ||
258 | for (cpu = find_first_bit(cpus, max_cpus); | |
259 | cpu < max_cpus; | |
260 | cpu = find_next_bit(cpus, max_cpus, cpu + 1)) { | |
261 | g_string_append_printf(s, "%s%d", first ? "" : " ", cpu); | |
262 | first = false; | |
263 | } | |
264 | return g_string_free(s, FALSE); | |
265 | } | |
266 | ||
267 | static void validate_numa_cpus(void) | |
268 | { | |
269 | int i; | |
270 | unsigned long *seen_cpus = bitmap_new(max_cpus); | |
271 | ||
272 | for (i = 0; i < nb_numa_nodes; i++) { | |
273 | if (bitmap_intersects(seen_cpus, numa_info[i].node_cpu, max_cpus)) { | |
274 | bitmap_and(seen_cpus, seen_cpus, | |
275 | numa_info[i].node_cpu, max_cpus); | |
276 | error_report("CPU(s) present in multiple NUMA nodes: %s", | |
277 | enumerate_cpus(seen_cpus, max_cpus)); | |
278 | g_free(seen_cpus); | |
279 | exit(EXIT_FAILURE); | |
280 | } | |
281 | bitmap_or(seen_cpus, seen_cpus, | |
282 | numa_info[i].node_cpu, max_cpus); | |
283 | } | |
284 | ||
285 | if (!bitmap_full(seen_cpus, max_cpus)) { | |
286 | char *msg; | |
287 | bitmap_complement(seen_cpus, seen_cpus, max_cpus); | |
288 | msg = enumerate_cpus(seen_cpus, max_cpus); | |
289 | error_report("warning: CPU(s) not present in any NUMA nodes: %s", msg); | |
290 | error_report("warning: All CPU(s) up to maxcpus should be described " | |
291 | "in NUMA config"); | |
292 | g_free(msg); | |
293 | } | |
294 | g_free(seen_cpus); | |
295 | } | |
296 | ||
297 | void parse_numa_opts(MachineClass *mc) | |
298 | { | |
299 | int i; | |
300 | ||
301 | for (i = 0; i < MAX_NODES; i++) { | |
302 | numa_info[i].node_cpu = bitmap_new(max_cpus); | |
303 | } | |
304 | ||
305 | if (qemu_opts_foreach(qemu_find_opts("numa"), parse_numa, NULL, NULL)) { | |
306 | exit(1); | |
307 | } | |
308 | ||
309 | assert(max_numa_nodeid <= MAX_NODES); | |
310 | ||
311 | /* No support for sparse NUMA node IDs yet: */ | |
312 | for (i = max_numa_nodeid - 1; i >= 0; i--) { | |
313 | /* Report large node IDs first, to make mistakes easier to spot */ | |
314 | if (!numa_info[i].present) { | |
315 | error_report("numa: Node ID missing: %d", i); | |
316 | exit(1); | |
317 | } | |
318 | } | |
319 | ||
320 | /* This must be always true if all nodes are present: */ | |
321 | assert(nb_numa_nodes == max_numa_nodeid); | |
322 | ||
323 | if (nb_numa_nodes > 0) { | |
324 | uint64_t numa_total; | |
325 | ||
326 | if (nb_numa_nodes > MAX_NODES) { | |
327 | nb_numa_nodes = MAX_NODES; | |
328 | } | |
329 | ||
330 | /* If no memory size is given for any node, assume the default case | |
331 | * and distribute the available memory equally across all nodes | |
332 | */ | |
333 | for (i = 0; i < nb_numa_nodes; i++) { | |
334 | if (numa_info[i].node_mem != 0) { | |
335 | break; | |
336 | } | |
337 | } | |
338 | if (i == nb_numa_nodes) { | |
339 | uint64_t usedmem = 0; | |
340 | ||
341 | /* On Linux, each node's border has to be 8MB aligned, | |
342 | * the final node gets the rest. | |
343 | */ | |
344 | for (i = 0; i < nb_numa_nodes - 1; i++) { | |
345 | numa_info[i].node_mem = (ram_size / nb_numa_nodes) & | |
346 | ~((1 << 23UL) - 1); | |
347 | usedmem += numa_info[i].node_mem; | |
348 | } | |
349 | numa_info[i].node_mem = ram_size - usedmem; | |
350 | } | |
351 | ||
352 | numa_total = 0; | |
353 | for (i = 0; i < nb_numa_nodes; i++) { | |
354 | numa_total += numa_info[i].node_mem; | |
355 | } | |
356 | if (numa_total != ram_size) { | |
357 | error_report("total memory for NUMA nodes (0x%" PRIx64 ")" | |
358 | " should equal RAM size (0x" RAM_ADDR_FMT ")", | |
359 | numa_total, ram_size); | |
360 | exit(1); | |
361 | } | |
362 | ||
363 | for (i = 0; i < nb_numa_nodes; i++) { | |
364 | QLIST_INIT(&numa_info[i].addr); | |
365 | } | |
366 | ||
367 | numa_set_mem_ranges(); | |
368 | ||
369 | for (i = 0; i < nb_numa_nodes; i++) { | |
370 | if (!bitmap_empty(numa_info[i].node_cpu, max_cpus)) { | |
371 | break; | |
372 | } | |
373 | } | |
374 | /* Historically VCPUs were assigned in round-robin order to NUMA | |
375 | * nodes. However it causes issues with guest not handling it nice | |
376 | * in case where cores/threads from a multicore CPU appear on | |
377 | * different nodes. So allow boards to override default distribution | |
378 | * rule grouping VCPUs by socket so that VCPUs from the same socket | |
379 | * would be on the same node. | |
380 | */ | |
381 | if (i == nb_numa_nodes) { | |
382 | for (i = 0; i < max_cpus; i++) { | |
383 | unsigned node_id = i % nb_numa_nodes; | |
384 | if (mc->cpu_index_to_socket_id) { | |
385 | node_id = mc->cpu_index_to_socket_id(i) % nb_numa_nodes; | |
386 | } | |
387 | ||
388 | set_bit(i, numa_info[node_id].node_cpu); | |
389 | } | |
390 | } | |
391 | ||
392 | validate_numa_cpus(); | |
393 | } else { | |
394 | numa_set_mem_node_id(0, ram_size, 0); | |
395 | } | |
396 | } | |
397 | ||
398 | void numa_post_machine_init(void) | |
399 | { | |
400 | CPUState *cpu; | |
401 | int i; | |
402 | ||
403 | CPU_FOREACH(cpu) { | |
404 | for (i = 0; i < nb_numa_nodes; i++) { | |
405 | assert(cpu->cpu_index < max_cpus); | |
406 | if (test_bit(cpu->cpu_index, numa_info[i].node_cpu)) { | |
407 | cpu->numa_node = i; | |
408 | } | |
409 | } | |
410 | } | |
411 | } | |
412 | ||
413 | static void allocate_system_memory_nonnuma(MemoryRegion *mr, Object *owner, | |
414 | const char *name, | |
415 | uint64_t ram_size) | |
416 | { | |
417 | if (mem_path) { | |
418 | #ifdef __linux__ | |
419 | Error *err = NULL; | |
420 | memory_region_init_ram_from_file(mr, owner, name, ram_size, false, | |
421 | mem_path, &err); | |
422 | if (err) { | |
423 | error_report_err(err); | |
424 | if (mem_prealloc) { | |
425 | exit(1); | |
426 | } | |
427 | ||
428 | /* Legacy behavior: if allocation failed, fall back to | |
429 | * regular RAM allocation. | |
430 | */ | |
431 | memory_region_init_ram(mr, owner, name, ram_size, &error_fatal); | |
432 | } | |
433 | #else | |
434 | fprintf(stderr, "-mem-path not supported on this host\n"); | |
435 | exit(1); | |
436 | #endif | |
437 | } else { | |
438 | memory_region_init_ram(mr, owner, name, ram_size, &error_fatal); | |
439 | } | |
440 | vmstate_register_ram_global(mr); | |
441 | } | |
442 | ||
443 | void memory_region_allocate_system_memory(MemoryRegion *mr, Object *owner, | |
444 | const char *name, | |
445 | uint64_t ram_size) | |
446 | { | |
447 | uint64_t addr = 0; | |
448 | int i; | |
449 | ||
450 | if (nb_numa_nodes == 0 || !have_memdevs) { | |
451 | allocate_system_memory_nonnuma(mr, owner, name, ram_size); | |
452 | return; | |
453 | } | |
454 | ||
455 | memory_region_init(mr, owner, name, ram_size); | |
456 | for (i = 0; i < MAX_NODES; i++) { | |
457 | uint64_t size = numa_info[i].node_mem; | |
458 | HostMemoryBackend *backend = numa_info[i].node_memdev; | |
459 | if (!backend) { | |
460 | continue; | |
461 | } | |
462 | MemoryRegion *seg = host_memory_backend_get_memory(backend, | |
463 | &error_fatal); | |
464 | ||
465 | if (memory_region_is_mapped(seg)) { | |
466 | char *path = object_get_canonical_path_component(OBJECT(backend)); | |
467 | error_report("memory backend %s is used multiple times. Each " | |
468 | "-numa option must use a different memdev value.", | |
469 | path); | |
470 | exit(1); | |
471 | } | |
472 | ||
473 | host_memory_backend_set_mapped(backend, true); | |
474 | memory_region_add_subregion(mr, addr, seg); | |
475 | vmstate_register_ram_global(seg); | |
476 | addr += size; | |
477 | } | |
478 | } | |
479 | ||
480 | static void numa_stat_memory_devices(uint64_t node_mem[]) | |
481 | { | |
482 | MemoryDeviceInfoList *info_list = NULL; | |
483 | MemoryDeviceInfoList **prev = &info_list; | |
484 | MemoryDeviceInfoList *info; | |
485 | ||
486 | qmp_pc_dimm_device_list(qdev_get_machine(), &prev); | |
487 | for (info = info_list; info; info = info->next) { | |
488 | MemoryDeviceInfo *value = info->value; | |
489 | ||
490 | if (value) { | |
491 | switch (value->type) { | |
492 | case MEMORY_DEVICE_INFO_KIND_DIMM: | |
493 | node_mem[value->u.dimm.data->node] += value->u.dimm.data->size; | |
494 | break; | |
495 | default: | |
496 | break; | |
497 | } | |
498 | } | |
499 | } | |
500 | qapi_free_MemoryDeviceInfoList(info_list); | |
501 | } | |
502 | ||
503 | void query_numa_node_mem(uint64_t node_mem[]) | |
504 | { | |
505 | int i; | |
506 | ||
507 | if (nb_numa_nodes <= 0) { | |
508 | return; | |
509 | } | |
510 | ||
511 | numa_stat_memory_devices(node_mem); | |
512 | for (i = 0; i < nb_numa_nodes; i++) { | |
513 | node_mem[i] += numa_info[i].node_mem; | |
514 | } | |
515 | } | |
516 | ||
517 | static int query_memdev(Object *obj, void *opaque) | |
518 | { | |
519 | MemdevList **list = opaque; | |
520 | MemdevList *m = NULL; | |
521 | ||
522 | if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { | |
523 | m = g_malloc0(sizeof(*m)); | |
524 | ||
525 | m->value = g_malloc0(sizeof(*m->value)); | |
526 | ||
527 | m->value->id = object_property_get_str(obj, "id", NULL); | |
528 | m->value->has_id = !!m->value->id; | |
529 | ||
530 | m->value->size = object_property_get_int(obj, "size", | |
531 | &error_abort); | |
532 | m->value->merge = object_property_get_bool(obj, "merge", | |
533 | &error_abort); | |
534 | m->value->dump = object_property_get_bool(obj, "dump", | |
535 | &error_abort); | |
536 | m->value->prealloc = object_property_get_bool(obj, | |
537 | "prealloc", | |
538 | &error_abort); | |
539 | m->value->policy = object_property_get_enum(obj, | |
540 | "policy", | |
541 | "HostMemPolicy", | |
542 | &error_abort); | |
543 | object_property_get_uint16List(obj, "host-nodes", | |
544 | &m->value->host_nodes, | |
545 | &error_abort); | |
546 | ||
547 | m->next = *list; | |
548 | *list = m; | |
549 | } | |
550 | ||
551 | return 0; | |
552 | } | |
553 | ||
554 | MemdevList *qmp_query_memdev(Error **errp) | |
555 | { | |
556 | Object *obj = object_get_objects_root(); | |
557 | MemdevList *list = NULL; | |
558 | ||
559 | object_child_foreach(obj, query_memdev, &list); | |
560 | return list; | |
561 | } | |
562 | ||
563 | int numa_get_node_for_cpu(int idx) | |
564 | { | |
565 | int i; | |
566 | ||
567 | assert(idx < max_cpus); | |
568 | ||
569 | for (i = 0; i < nb_numa_nodes; i++) { | |
570 | if (test_bit(idx, numa_info[i].node_cpu)) { | |
571 | break; | |
572 | } | |
573 | } | |
574 | return i; | |
575 | } | |
576 | ||
577 | void ram_block_notifier_add(RAMBlockNotifier *n) | |
578 | { | |
579 | QLIST_INSERT_HEAD(&ram_list.ramblock_notifiers, n, next); | |
580 | } | |
581 | ||
582 | void ram_block_notifier_remove(RAMBlockNotifier *n) | |
583 | { | |
584 | QLIST_REMOVE(n, next); | |
585 | } | |
586 | ||
587 | void ram_block_notify_add(void *host, size_t size) | |
588 | { | |
589 | RAMBlockNotifier *notifier; | |
590 | ||
591 | QLIST_FOREACH(notifier, &ram_list.ramblock_notifiers, next) { | |
592 | notifier->ram_block_added(notifier, host, size); | |
593 | } | |
594 | } | |
595 | ||
596 | void ram_block_notify_remove(void *host, size_t size) | |
597 | { | |
598 | RAMBlockNotifier *notifier; | |
599 | ||
600 | QLIST_FOREACH(notifier, &ram_list.ramblock_notifiers, next) { | |
601 | notifier->ram_block_removed(notifier, host, size); | |
602 | } | |
603 | } |