]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Virtual page mapping | |
3 | * | |
4 | * Copyright (c) 2003 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | #include "config.h" | |
20 | #ifndef _WIN32 | |
21 | #include <sys/types.h> | |
22 | #include <sys/mman.h> | |
23 | #endif | |
24 | ||
25 | #include "qemu-common.h" | |
26 | #include "cpu.h" | |
27 | #include "tcg.h" | |
28 | #include "hw/hw.h" | |
29 | #include "hw/qdev.h" | |
30 | #include "qemu/osdep.h" | |
31 | #include "sysemu/kvm.h" | |
32 | #include "sysemu/sysemu.h" | |
33 | #include "hw/xen/xen.h" | |
34 | #include "qemu/timer.h" | |
35 | #include "qemu/config-file.h" | |
36 | #include "qemu/error-report.h" | |
37 | #include "exec/memory.h" | |
38 | #include "sysemu/dma.h" | |
39 | #include "exec/address-spaces.h" | |
40 | #if defined(CONFIG_USER_ONLY) | |
41 | #include <qemu.h> | |
42 | #else /* !CONFIG_USER_ONLY */ | |
43 | #include "sysemu/xen-mapcache.h" | |
44 | #include "trace.h" | |
45 | #endif | |
46 | #include "exec/cpu-all.h" | |
47 | ||
48 | #include "exec/cputlb.h" | |
49 | #include "translate-all.h" | |
50 | ||
51 | #include "exec/memory-internal.h" | |
52 | #include "exec/ram_addr.h" | |
53 | #include "qemu/cache-utils.h" | |
54 | ||
55 | #include "qemu/range.h" | |
56 | ||
57 | //#define DEBUG_SUBPAGE | |
58 | ||
59 | #if !defined(CONFIG_USER_ONLY) | |
60 | static bool in_migration; | |
61 | ||
62 | RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) }; | |
63 | ||
64 | static MemoryRegion *system_memory; | |
65 | static MemoryRegion *system_io; | |
66 | ||
67 | AddressSpace address_space_io; | |
68 | AddressSpace address_space_memory; | |
69 | ||
70 | MemoryRegion io_mem_rom, io_mem_notdirty; | |
71 | static MemoryRegion io_mem_unassigned; | |
72 | ||
73 | #endif | |
74 | ||
75 | struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); | |
76 | /* current CPU in the current thread. It is only valid inside | |
77 | cpu_exec() */ | |
78 | DEFINE_TLS(CPUState *, current_cpu); | |
79 | /* 0 = Do not count executed instructions. | |
80 | 1 = Precise instruction counting. | |
81 | 2 = Adaptive rate instruction counting. */ | |
82 | int use_icount; | |
83 | ||
84 | #if !defined(CONFIG_USER_ONLY) | |
85 | ||
86 | typedef struct PhysPageEntry PhysPageEntry; | |
87 | ||
88 | struct PhysPageEntry { | |
89 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ | |
90 | uint32_t skip : 6; | |
91 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ | |
92 | uint32_t ptr : 26; | |
93 | }; | |
94 | ||
95 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) | |
96 | ||
97 | /* Size of the L2 (and L3, etc) page tables. */ | |
98 | #define ADDR_SPACE_BITS 64 | |
99 | ||
100 | #define P_L2_BITS 9 | |
101 | #define P_L2_SIZE (1 << P_L2_BITS) | |
102 | ||
103 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
104 | ||
105 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
106 | ||
107 | typedef struct PhysPageMap { | |
108 | unsigned sections_nb; | |
109 | unsigned sections_nb_alloc; | |
110 | unsigned nodes_nb; | |
111 | unsigned nodes_nb_alloc; | |
112 | Node *nodes; | |
113 | MemoryRegionSection *sections; | |
114 | } PhysPageMap; | |
115 | ||
116 | struct AddressSpaceDispatch { | |
117 | /* This is a multi-level map on the physical address space. | |
118 | * The bottom level has pointers to MemoryRegionSections. | |
119 | */ | |
120 | PhysPageEntry phys_map; | |
121 | PhysPageMap map; | |
122 | AddressSpace *as; | |
123 | }; | |
124 | ||
125 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) | |
126 | typedef struct subpage_t { | |
127 | MemoryRegion iomem; | |
128 | AddressSpace *as; | |
129 | hwaddr base; | |
130 | uint16_t sub_section[TARGET_PAGE_SIZE]; | |
131 | } subpage_t; | |
132 | ||
133 | #define PHYS_SECTION_UNASSIGNED 0 | |
134 | #define PHYS_SECTION_NOTDIRTY 1 | |
135 | #define PHYS_SECTION_ROM 2 | |
136 | #define PHYS_SECTION_WATCH 3 | |
137 | ||
138 | static void io_mem_init(void); | |
139 | static void memory_map_init(void); | |
140 | static void tcg_commit(MemoryListener *listener); | |
141 | ||
142 | static MemoryRegion io_mem_watch; | |
143 | #endif | |
144 | ||
145 | #if !defined(CONFIG_USER_ONLY) | |
146 | ||
147 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) | |
148 | { | |
149 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { | |
150 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16); | |
151 | map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); | |
152 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
153 | } | |
154 | } | |
155 | ||
156 | static uint32_t phys_map_node_alloc(PhysPageMap *map) | |
157 | { | |
158 | unsigned i; | |
159 | uint32_t ret; | |
160 | ||
161 | ret = map->nodes_nb++; | |
162 | assert(ret != PHYS_MAP_NODE_NIL); | |
163 | assert(ret != map->nodes_nb_alloc); | |
164 | for (i = 0; i < P_L2_SIZE; ++i) { | |
165 | map->nodes[ret][i].skip = 1; | |
166 | map->nodes[ret][i].ptr = PHYS_MAP_NODE_NIL; | |
167 | } | |
168 | return ret; | |
169 | } | |
170 | ||
171 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, | |
172 | hwaddr *index, hwaddr *nb, uint16_t leaf, | |
173 | int level) | |
174 | { | |
175 | PhysPageEntry *p; | |
176 | int i; | |
177 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); | |
178 | ||
179 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { | |
180 | lp->ptr = phys_map_node_alloc(map); | |
181 | p = map->nodes[lp->ptr]; | |
182 | if (level == 0) { | |
183 | for (i = 0; i < P_L2_SIZE; i++) { | |
184 | p[i].skip = 0; | |
185 | p[i].ptr = PHYS_SECTION_UNASSIGNED; | |
186 | } | |
187 | } | |
188 | } else { | |
189 | p = map->nodes[lp->ptr]; | |
190 | } | |
191 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; | |
192 | ||
193 | while (*nb && lp < &p[P_L2_SIZE]) { | |
194 | if ((*index & (step - 1)) == 0 && *nb >= step) { | |
195 | lp->skip = 0; | |
196 | lp->ptr = leaf; | |
197 | *index += step; | |
198 | *nb -= step; | |
199 | } else { | |
200 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); | |
201 | } | |
202 | ++lp; | |
203 | } | |
204 | } | |
205 | ||
206 | static void phys_page_set(AddressSpaceDispatch *d, | |
207 | hwaddr index, hwaddr nb, | |
208 | uint16_t leaf) | |
209 | { | |
210 | /* Wildly overreserve - it doesn't matter much. */ | |
211 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); | |
212 | ||
213 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); | |
214 | } | |
215 | ||
216 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, | |
217 | * and update our entry so we can skip it and go directly to the destination. | |
218 | */ | |
219 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted) | |
220 | { | |
221 | unsigned valid_ptr = P_L2_SIZE; | |
222 | int valid = 0; | |
223 | PhysPageEntry *p; | |
224 | int i; | |
225 | ||
226 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
227 | return; | |
228 | } | |
229 | ||
230 | p = nodes[lp->ptr]; | |
231 | for (i = 0; i < P_L2_SIZE; i++) { | |
232 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
233 | continue; | |
234 | } | |
235 | ||
236 | valid_ptr = i; | |
237 | valid++; | |
238 | if (p[i].skip) { | |
239 | phys_page_compact(&p[i], nodes, compacted); | |
240 | } | |
241 | } | |
242 | ||
243 | /* We can only compress if there's only one child. */ | |
244 | if (valid != 1) { | |
245 | return; | |
246 | } | |
247 | ||
248 | assert(valid_ptr < P_L2_SIZE); | |
249 | ||
250 | /* Don't compress if it won't fit in the # of bits we have. */ | |
251 | if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { | |
252 | return; | |
253 | } | |
254 | ||
255 | lp->ptr = p[valid_ptr].ptr; | |
256 | if (!p[valid_ptr].skip) { | |
257 | /* If our only child is a leaf, make this a leaf. */ | |
258 | /* By design, we should have made this node a leaf to begin with so we | |
259 | * should never reach here. | |
260 | * But since it's so simple to handle this, let's do it just in case we | |
261 | * change this rule. | |
262 | */ | |
263 | lp->skip = 0; | |
264 | } else { | |
265 | lp->skip += p[valid_ptr].skip; | |
266 | } | |
267 | } | |
268 | ||
269 | static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb) | |
270 | { | |
271 | DECLARE_BITMAP(compacted, nodes_nb); | |
272 | ||
273 | if (d->phys_map.skip) { | |
274 | phys_page_compact(&d->phys_map, d->map.nodes, compacted); | |
275 | } | |
276 | } | |
277 | ||
278 | static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr, | |
279 | Node *nodes, MemoryRegionSection *sections) | |
280 | { | |
281 | PhysPageEntry *p; | |
282 | hwaddr index = addr >> TARGET_PAGE_BITS; | |
283 | int i; | |
284 | ||
285 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { | |
286 | if (lp.ptr == PHYS_MAP_NODE_NIL) { | |
287 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
288 | } | |
289 | p = nodes[lp.ptr]; | |
290 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; | |
291 | } | |
292 | ||
293 | if (sections[lp.ptr].size.hi || | |
294 | range_covers_byte(sections[lp.ptr].offset_within_address_space, | |
295 | sections[lp.ptr].size.lo, addr)) { | |
296 | return §ions[lp.ptr]; | |
297 | } else { | |
298 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
299 | } | |
300 | } | |
301 | ||
302 | bool memory_region_is_unassigned(MemoryRegion *mr) | |
303 | { | |
304 | return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device | |
305 | && mr != &io_mem_watch; | |
306 | } | |
307 | ||
308 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, | |
309 | hwaddr addr, | |
310 | bool resolve_subpage) | |
311 | { | |
312 | MemoryRegionSection *section; | |
313 | subpage_t *subpage; | |
314 | ||
315 | section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections); | |
316 | if (resolve_subpage && section->mr->subpage) { | |
317 | subpage = container_of(section->mr, subpage_t, iomem); | |
318 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; | |
319 | } | |
320 | return section; | |
321 | } | |
322 | ||
323 | static MemoryRegionSection * | |
324 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, | |
325 | hwaddr *plen, bool resolve_subpage) | |
326 | { | |
327 | MemoryRegionSection *section; | |
328 | Int128 diff; | |
329 | ||
330 | section = address_space_lookup_region(d, addr, resolve_subpage); | |
331 | /* Compute offset within MemoryRegionSection */ | |
332 | addr -= section->offset_within_address_space; | |
333 | ||
334 | /* Compute offset within MemoryRegion */ | |
335 | *xlat = addr + section->offset_within_region; | |
336 | ||
337 | diff = int128_sub(section->mr->size, int128_make64(addr)); | |
338 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); | |
339 | return section; | |
340 | } | |
341 | ||
342 | static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) | |
343 | { | |
344 | if (memory_region_is_ram(mr)) { | |
345 | return !(is_write && mr->readonly); | |
346 | } | |
347 | if (memory_region_is_romd(mr)) { | |
348 | return !is_write; | |
349 | } | |
350 | ||
351 | return false; | |
352 | } | |
353 | ||
354 | MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, | |
355 | hwaddr *xlat, hwaddr *plen, | |
356 | bool is_write) | |
357 | { | |
358 | IOMMUTLBEntry iotlb; | |
359 | MemoryRegionSection *section; | |
360 | MemoryRegion *mr; | |
361 | hwaddr len = *plen; | |
362 | ||
363 | for (;;) { | |
364 | section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true); | |
365 | mr = section->mr; | |
366 | ||
367 | if (!mr->iommu_ops) { | |
368 | break; | |
369 | } | |
370 | ||
371 | iotlb = mr->iommu_ops->translate(mr, addr); | |
372 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | |
373 | | (addr & iotlb.addr_mask)); | |
374 | len = MIN(len, (addr | iotlb.addr_mask) - addr + 1); | |
375 | if (!(iotlb.perm & (1 << is_write))) { | |
376 | mr = &io_mem_unassigned; | |
377 | break; | |
378 | } | |
379 | ||
380 | as = iotlb.target_as; | |
381 | } | |
382 | ||
383 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { | |
384 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; | |
385 | len = MIN(page, len); | |
386 | } | |
387 | ||
388 | *plen = len; | |
389 | *xlat = addr; | |
390 | return mr; | |
391 | } | |
392 | ||
393 | MemoryRegionSection * | |
394 | address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat, | |
395 | hwaddr *plen) | |
396 | { | |
397 | MemoryRegionSection *section; | |
398 | section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false); | |
399 | ||
400 | assert(!section->mr->iommu_ops); | |
401 | return section; | |
402 | } | |
403 | #endif | |
404 | ||
405 | void cpu_exec_init_all(void) | |
406 | { | |
407 | #if !defined(CONFIG_USER_ONLY) | |
408 | qemu_mutex_init(&ram_list.mutex); | |
409 | memory_map_init(); | |
410 | io_mem_init(); | |
411 | #endif | |
412 | } | |
413 | ||
414 | #if !defined(CONFIG_USER_ONLY) | |
415 | ||
416 | static int cpu_common_post_load(void *opaque, int version_id) | |
417 | { | |
418 | CPUState *cpu = opaque; | |
419 | ||
420 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the | |
421 | version_id is increased. */ | |
422 | cpu->interrupt_request &= ~0x01; | |
423 | tlb_flush(cpu, 1); | |
424 | ||
425 | return 0; | |
426 | } | |
427 | ||
428 | const VMStateDescription vmstate_cpu_common = { | |
429 | .name = "cpu_common", | |
430 | .version_id = 1, | |
431 | .minimum_version_id = 1, | |
432 | .post_load = cpu_common_post_load, | |
433 | .fields = (VMStateField[]) { | |
434 | VMSTATE_UINT32(halted, CPUState), | |
435 | VMSTATE_UINT32(interrupt_request, CPUState), | |
436 | VMSTATE_END_OF_LIST() | |
437 | } | |
438 | }; | |
439 | ||
440 | #endif | |
441 | ||
442 | CPUState *qemu_get_cpu(int index) | |
443 | { | |
444 | CPUState *cpu; | |
445 | ||
446 | CPU_FOREACH(cpu) { | |
447 | if (cpu->cpu_index == index) { | |
448 | return cpu; | |
449 | } | |
450 | } | |
451 | ||
452 | return NULL; | |
453 | } | |
454 | ||
455 | #if !defined(CONFIG_USER_ONLY) | |
456 | void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as) | |
457 | { | |
458 | /* We only support one address space per cpu at the moment. */ | |
459 | assert(cpu->as == as); | |
460 | ||
461 | if (cpu->tcg_as_listener) { | |
462 | memory_listener_unregister(cpu->tcg_as_listener); | |
463 | } else { | |
464 | cpu->tcg_as_listener = g_new0(MemoryListener, 1); | |
465 | } | |
466 | cpu->tcg_as_listener->commit = tcg_commit; | |
467 | memory_listener_register(cpu->tcg_as_listener, as); | |
468 | } | |
469 | #endif | |
470 | ||
471 | void cpu_exec_init(CPUArchState *env) | |
472 | { | |
473 | CPUState *cpu = ENV_GET_CPU(env); | |
474 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
475 | CPUState *some_cpu; | |
476 | int cpu_index; | |
477 | ||
478 | #if defined(CONFIG_USER_ONLY) | |
479 | cpu_list_lock(); | |
480 | #endif | |
481 | cpu_index = 0; | |
482 | CPU_FOREACH(some_cpu) { | |
483 | cpu_index++; | |
484 | } | |
485 | cpu->cpu_index = cpu_index; | |
486 | cpu->numa_node = 0; | |
487 | QTAILQ_INIT(&cpu->breakpoints); | |
488 | QTAILQ_INIT(&cpu->watchpoints); | |
489 | #ifndef CONFIG_USER_ONLY | |
490 | cpu->as = &address_space_memory; | |
491 | cpu->thread_id = qemu_get_thread_id(); | |
492 | #endif | |
493 | QTAILQ_INSERT_TAIL(&cpus, cpu, node); | |
494 | #if defined(CONFIG_USER_ONLY) | |
495 | cpu_list_unlock(); | |
496 | #endif | |
497 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
498 | vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu); | |
499 | } | |
500 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) | |
501 | register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION, | |
502 | cpu_save, cpu_load, env); | |
503 | assert(cc->vmsd == NULL); | |
504 | assert(qdev_get_vmsd(DEVICE(cpu)) == NULL); | |
505 | #endif | |
506 | if (cc->vmsd != NULL) { | |
507 | vmstate_register(NULL, cpu_index, cc->vmsd, cpu); | |
508 | } | |
509 | } | |
510 | ||
511 | #if defined(TARGET_HAS_ICE) | |
512 | #if defined(CONFIG_USER_ONLY) | |
513 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) | |
514 | { | |
515 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
516 | } | |
517 | #else | |
518 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) | |
519 | { | |
520 | hwaddr phys = cpu_get_phys_page_debug(cpu, pc); | |
521 | if (phys != -1) { | |
522 | tb_invalidate_phys_addr(cpu->as, | |
523 | phys | (pc & ~TARGET_PAGE_MASK)); | |
524 | } | |
525 | } | |
526 | #endif | |
527 | #endif /* TARGET_HAS_ICE */ | |
528 | ||
529 | #if defined(CONFIG_USER_ONLY) | |
530 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) | |
531 | ||
532 | { | |
533 | } | |
534 | ||
535 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, | |
536 | int flags, CPUWatchpoint **watchpoint) | |
537 | { | |
538 | return -ENOSYS; | |
539 | } | |
540 | #else | |
541 | /* Add a watchpoint. */ | |
542 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, | |
543 | int flags, CPUWatchpoint **watchpoint) | |
544 | { | |
545 | vaddr len_mask = ~(len - 1); | |
546 | CPUWatchpoint *wp; | |
547 | ||
548 | /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */ | |
549 | if ((len & (len - 1)) || (addr & ~len_mask) || | |
550 | len == 0 || len > TARGET_PAGE_SIZE) { | |
551 | error_report("tried to set invalid watchpoint at %" | |
552 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
553 | return -EINVAL; | |
554 | } | |
555 | wp = g_malloc(sizeof(*wp)); | |
556 | ||
557 | wp->vaddr = addr; | |
558 | wp->len_mask = len_mask; | |
559 | wp->flags = flags; | |
560 | ||
561 | /* keep all GDB-injected watchpoints in front */ | |
562 | if (flags & BP_GDB) { | |
563 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
564 | } else { | |
565 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
566 | } | |
567 | ||
568 | tlb_flush_page(cpu, addr); | |
569 | ||
570 | if (watchpoint) | |
571 | *watchpoint = wp; | |
572 | return 0; | |
573 | } | |
574 | ||
575 | /* Remove a specific watchpoint. */ | |
576 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, | |
577 | int flags) | |
578 | { | |
579 | vaddr len_mask = ~(len - 1); | |
580 | CPUWatchpoint *wp; | |
581 | ||
582 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
583 | if (addr == wp->vaddr && len_mask == wp->len_mask | |
584 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { | |
585 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
586 | return 0; | |
587 | } | |
588 | } | |
589 | return -ENOENT; | |
590 | } | |
591 | ||
592 | /* Remove a specific watchpoint by reference. */ | |
593 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
594 | { | |
595 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); | |
596 | ||
597 | tlb_flush_page(cpu, watchpoint->vaddr); | |
598 | ||
599 | g_free(watchpoint); | |
600 | } | |
601 | ||
602 | /* Remove all matching watchpoints. */ | |
603 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) | |
604 | { | |
605 | CPUWatchpoint *wp, *next; | |
606 | ||
607 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { | |
608 | if (wp->flags & mask) { | |
609 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
610 | } | |
611 | } | |
612 | } | |
613 | #endif | |
614 | ||
615 | /* Add a breakpoint. */ | |
616 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, | |
617 | CPUBreakpoint **breakpoint) | |
618 | { | |
619 | #if defined(TARGET_HAS_ICE) | |
620 | CPUBreakpoint *bp; | |
621 | ||
622 | bp = g_malloc(sizeof(*bp)); | |
623 | ||
624 | bp->pc = pc; | |
625 | bp->flags = flags; | |
626 | ||
627 | /* keep all GDB-injected breakpoints in front */ | |
628 | if (flags & BP_GDB) { | |
629 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); | |
630 | } else { | |
631 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); | |
632 | } | |
633 | ||
634 | breakpoint_invalidate(cpu, pc); | |
635 | ||
636 | if (breakpoint) { | |
637 | *breakpoint = bp; | |
638 | } | |
639 | return 0; | |
640 | #else | |
641 | return -ENOSYS; | |
642 | #endif | |
643 | } | |
644 | ||
645 | /* Remove a specific breakpoint. */ | |
646 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) | |
647 | { | |
648 | #if defined(TARGET_HAS_ICE) | |
649 | CPUBreakpoint *bp; | |
650 | ||
651 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { | |
652 | if (bp->pc == pc && bp->flags == flags) { | |
653 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
654 | return 0; | |
655 | } | |
656 | } | |
657 | return -ENOENT; | |
658 | #else | |
659 | return -ENOSYS; | |
660 | #endif | |
661 | } | |
662 | ||
663 | /* Remove a specific breakpoint by reference. */ | |
664 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) | |
665 | { | |
666 | #if defined(TARGET_HAS_ICE) | |
667 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); | |
668 | ||
669 | breakpoint_invalidate(cpu, breakpoint->pc); | |
670 | ||
671 | g_free(breakpoint); | |
672 | #endif | |
673 | } | |
674 | ||
675 | /* Remove all matching breakpoints. */ | |
676 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) | |
677 | { | |
678 | #if defined(TARGET_HAS_ICE) | |
679 | CPUBreakpoint *bp, *next; | |
680 | ||
681 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { | |
682 | if (bp->flags & mask) { | |
683 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
684 | } | |
685 | } | |
686 | #endif | |
687 | } | |
688 | ||
689 | /* enable or disable single step mode. EXCP_DEBUG is returned by the | |
690 | CPU loop after each instruction */ | |
691 | void cpu_single_step(CPUState *cpu, int enabled) | |
692 | { | |
693 | #if defined(TARGET_HAS_ICE) | |
694 | if (cpu->singlestep_enabled != enabled) { | |
695 | cpu->singlestep_enabled = enabled; | |
696 | if (kvm_enabled()) { | |
697 | kvm_update_guest_debug(cpu, 0); | |
698 | } else { | |
699 | /* must flush all the translated code to avoid inconsistencies */ | |
700 | /* XXX: only flush what is necessary */ | |
701 | CPUArchState *env = cpu->env_ptr; | |
702 | tb_flush(env); | |
703 | } | |
704 | } | |
705 | #endif | |
706 | } | |
707 | ||
708 | void cpu_abort(CPUState *cpu, const char *fmt, ...) | |
709 | { | |
710 | va_list ap; | |
711 | va_list ap2; | |
712 | ||
713 | va_start(ap, fmt); | |
714 | va_copy(ap2, ap); | |
715 | fprintf(stderr, "qemu: fatal: "); | |
716 | vfprintf(stderr, fmt, ap); | |
717 | fprintf(stderr, "\n"); | |
718 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); | |
719 | if (qemu_log_enabled()) { | |
720 | qemu_log("qemu: fatal: "); | |
721 | qemu_log_vprintf(fmt, ap2); | |
722 | qemu_log("\n"); | |
723 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); | |
724 | qemu_log_flush(); | |
725 | qemu_log_close(); | |
726 | } | |
727 | va_end(ap2); | |
728 | va_end(ap); | |
729 | #if defined(CONFIG_USER_ONLY) | |
730 | { | |
731 | struct sigaction act; | |
732 | sigfillset(&act.sa_mask); | |
733 | act.sa_handler = SIG_DFL; | |
734 | sigaction(SIGABRT, &act, NULL); | |
735 | } | |
736 | #endif | |
737 | abort(); | |
738 | } | |
739 | ||
740 | #if !defined(CONFIG_USER_ONLY) | |
741 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) | |
742 | { | |
743 | RAMBlock *block; | |
744 | ||
745 | /* The list is protected by the iothread lock here. */ | |
746 | block = ram_list.mru_block; | |
747 | if (block && addr - block->offset < block->length) { | |
748 | goto found; | |
749 | } | |
750 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
751 | if (addr - block->offset < block->length) { | |
752 | goto found; | |
753 | } | |
754 | } | |
755 | ||
756 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
757 | abort(); | |
758 | ||
759 | found: | |
760 | ram_list.mru_block = block; | |
761 | return block; | |
762 | } | |
763 | ||
764 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) | |
765 | { | |
766 | ram_addr_t start1; | |
767 | RAMBlock *block; | |
768 | ram_addr_t end; | |
769 | ||
770 | end = TARGET_PAGE_ALIGN(start + length); | |
771 | start &= TARGET_PAGE_MASK; | |
772 | ||
773 | block = qemu_get_ram_block(start); | |
774 | assert(block == qemu_get_ram_block(end - 1)); | |
775 | start1 = (uintptr_t)block->host + (start - block->offset); | |
776 | cpu_tlb_reset_dirty_all(start1, length); | |
777 | } | |
778 | ||
779 | /* Note: start and end must be within the same ram block. */ | |
780 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length, | |
781 | unsigned client) | |
782 | { | |
783 | if (length == 0) | |
784 | return; | |
785 | cpu_physical_memory_clear_dirty_range(start, length, client); | |
786 | ||
787 | if (tcg_enabled()) { | |
788 | tlb_reset_dirty_range_all(start, length); | |
789 | } | |
790 | } | |
791 | ||
792 | static void cpu_physical_memory_set_dirty_tracking(bool enable) | |
793 | { | |
794 | in_migration = enable; | |
795 | } | |
796 | ||
797 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, | |
798 | MemoryRegionSection *section, | |
799 | target_ulong vaddr, | |
800 | hwaddr paddr, hwaddr xlat, | |
801 | int prot, | |
802 | target_ulong *address) | |
803 | { | |
804 | hwaddr iotlb; | |
805 | CPUWatchpoint *wp; | |
806 | ||
807 | if (memory_region_is_ram(section->mr)) { | |
808 | /* Normal RAM. */ | |
809 | iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
810 | + xlat; | |
811 | if (!section->readonly) { | |
812 | iotlb |= PHYS_SECTION_NOTDIRTY; | |
813 | } else { | |
814 | iotlb |= PHYS_SECTION_ROM; | |
815 | } | |
816 | } else { | |
817 | iotlb = section - section->address_space->dispatch->map.sections; | |
818 | iotlb += xlat; | |
819 | } | |
820 | ||
821 | /* Make accesses to pages with watchpoints go via the | |
822 | watchpoint trap routines. */ | |
823 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
824 | if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) { | |
825 | /* Avoid trapping reads of pages with a write breakpoint. */ | |
826 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
827 | iotlb = PHYS_SECTION_WATCH + paddr; | |
828 | *address |= TLB_MMIO; | |
829 | break; | |
830 | } | |
831 | } | |
832 | } | |
833 | ||
834 | return iotlb; | |
835 | } | |
836 | #endif /* defined(CONFIG_USER_ONLY) */ | |
837 | ||
838 | #if !defined(CONFIG_USER_ONLY) | |
839 | ||
840 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
841 | uint16_t section); | |
842 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base); | |
843 | ||
844 | static void *(*phys_mem_alloc)(size_t size) = qemu_anon_ram_alloc; | |
845 | ||
846 | /* | |
847 | * Set a custom physical guest memory alloator. | |
848 | * Accelerators with unusual needs may need this. Hopefully, we can | |
849 | * get rid of it eventually. | |
850 | */ | |
851 | void phys_mem_set_alloc(void *(*alloc)(size_t)) | |
852 | { | |
853 | phys_mem_alloc = alloc; | |
854 | } | |
855 | ||
856 | static uint16_t phys_section_add(PhysPageMap *map, | |
857 | MemoryRegionSection *section) | |
858 | { | |
859 | /* The physical section number is ORed with a page-aligned | |
860 | * pointer to produce the iotlb entries. Thus it should | |
861 | * never overflow into the page-aligned value. | |
862 | */ | |
863 | assert(map->sections_nb < TARGET_PAGE_SIZE); | |
864 | ||
865 | if (map->sections_nb == map->sections_nb_alloc) { | |
866 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
867 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
868 | map->sections_nb_alloc); | |
869 | } | |
870 | map->sections[map->sections_nb] = *section; | |
871 | memory_region_ref(section->mr); | |
872 | return map->sections_nb++; | |
873 | } | |
874 | ||
875 | static void phys_section_destroy(MemoryRegion *mr) | |
876 | { | |
877 | memory_region_unref(mr); | |
878 | ||
879 | if (mr->subpage) { | |
880 | subpage_t *subpage = container_of(mr, subpage_t, iomem); | |
881 | memory_region_destroy(&subpage->iomem); | |
882 | g_free(subpage); | |
883 | } | |
884 | } | |
885 | ||
886 | static void phys_sections_free(PhysPageMap *map) | |
887 | { | |
888 | while (map->sections_nb > 0) { | |
889 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
890 | phys_section_destroy(section->mr); | |
891 | } | |
892 | g_free(map->sections); | |
893 | g_free(map->nodes); | |
894 | } | |
895 | ||
896 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) | |
897 | { | |
898 | subpage_t *subpage; | |
899 | hwaddr base = section->offset_within_address_space | |
900 | & TARGET_PAGE_MASK; | |
901 | MemoryRegionSection *existing = phys_page_find(d->phys_map, base, | |
902 | d->map.nodes, d->map.sections); | |
903 | MemoryRegionSection subsection = { | |
904 | .offset_within_address_space = base, | |
905 | .size = int128_make64(TARGET_PAGE_SIZE), | |
906 | }; | |
907 | hwaddr start, end; | |
908 | ||
909 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); | |
910 | ||
911 | if (!(existing->mr->subpage)) { | |
912 | subpage = subpage_init(d->as, base); | |
913 | subsection.address_space = d->as; | |
914 | subsection.mr = &subpage->iomem; | |
915 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, | |
916 | phys_section_add(&d->map, &subsection)); | |
917 | } else { | |
918 | subpage = container_of(existing->mr, subpage_t, iomem); | |
919 | } | |
920 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
921 | end = start + int128_get64(section->size) - 1; | |
922 | subpage_register(subpage, start, end, | |
923 | phys_section_add(&d->map, section)); | |
924 | } | |
925 | ||
926 | ||
927 | static void register_multipage(AddressSpaceDispatch *d, | |
928 | MemoryRegionSection *section) | |
929 | { | |
930 | hwaddr start_addr = section->offset_within_address_space; | |
931 | uint16_t section_index = phys_section_add(&d->map, section); | |
932 | uint64_t num_pages = int128_get64(int128_rshift(section->size, | |
933 | TARGET_PAGE_BITS)); | |
934 | ||
935 | assert(num_pages); | |
936 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
937 | } | |
938 | ||
939 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) | |
940 | { | |
941 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
942 | AddressSpaceDispatch *d = as->next_dispatch; | |
943 | MemoryRegionSection now = *section, remain = *section; | |
944 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); | |
945 | ||
946 | if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { | |
947 | uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
948 | - now.offset_within_address_space; | |
949 | ||
950 | now.size = int128_min(int128_make64(left), now.size); | |
951 | register_subpage(d, &now); | |
952 | } else { | |
953 | now.size = int128_zero(); | |
954 | } | |
955 | while (int128_ne(remain.size, now.size)) { | |
956 | remain.size = int128_sub(remain.size, now.size); | |
957 | remain.offset_within_address_space += int128_get64(now.size); | |
958 | remain.offset_within_region += int128_get64(now.size); | |
959 | now = remain; | |
960 | if (int128_lt(remain.size, page_size)) { | |
961 | register_subpage(d, &now); | |
962 | } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { | |
963 | now.size = page_size; | |
964 | register_subpage(d, &now); | |
965 | } else { | |
966 | now.size = int128_and(now.size, int128_neg(page_size)); | |
967 | register_multipage(d, &now); | |
968 | } | |
969 | } | |
970 | } | |
971 | ||
972 | void qemu_flush_coalesced_mmio_buffer(void) | |
973 | { | |
974 | if (kvm_enabled()) | |
975 | kvm_flush_coalesced_mmio_buffer(); | |
976 | } | |
977 | ||
978 | void qemu_mutex_lock_ramlist(void) | |
979 | { | |
980 | qemu_mutex_lock(&ram_list.mutex); | |
981 | } | |
982 | ||
983 | void qemu_mutex_unlock_ramlist(void) | |
984 | { | |
985 | qemu_mutex_unlock(&ram_list.mutex); | |
986 | } | |
987 | ||
988 | #ifdef __linux__ | |
989 | ||
990 | #include <sys/vfs.h> | |
991 | ||
992 | #define HUGETLBFS_MAGIC 0x958458f6 | |
993 | ||
994 | static long gethugepagesize(const char *path) | |
995 | { | |
996 | struct statfs fs; | |
997 | int ret; | |
998 | ||
999 | do { | |
1000 | ret = statfs(path, &fs); | |
1001 | } while (ret != 0 && errno == EINTR); | |
1002 | ||
1003 | if (ret != 0) { | |
1004 | perror(path); | |
1005 | return 0; | |
1006 | } | |
1007 | ||
1008 | if (fs.f_type != HUGETLBFS_MAGIC) | |
1009 | fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path); | |
1010 | ||
1011 | return fs.f_bsize; | |
1012 | } | |
1013 | ||
1014 | static sigjmp_buf sigjump; | |
1015 | ||
1016 | static void sigbus_handler(int signal) | |
1017 | { | |
1018 | siglongjmp(sigjump, 1); | |
1019 | } | |
1020 | ||
1021 | static void *file_ram_alloc(RAMBlock *block, | |
1022 | ram_addr_t memory, | |
1023 | const char *path) | |
1024 | { | |
1025 | char *filename; | |
1026 | char *sanitized_name; | |
1027 | char *c; | |
1028 | void *area; | |
1029 | int fd; | |
1030 | unsigned long hpagesize; | |
1031 | ||
1032 | hpagesize = gethugepagesize(path); | |
1033 | if (!hpagesize) { | |
1034 | goto error; | |
1035 | } | |
1036 | ||
1037 | if (memory < hpagesize) { | |
1038 | return NULL; | |
1039 | } | |
1040 | ||
1041 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
1042 | fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n"); | |
1043 | goto error; | |
1044 | } | |
1045 | ||
1046 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1047 | sanitized_name = g_strdup(block->mr->name); | |
1048 | for (c = sanitized_name; *c != '\0'; c++) { | |
1049 | if (*c == '/') | |
1050 | *c = '_'; | |
1051 | } | |
1052 | ||
1053 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, | |
1054 | sanitized_name); | |
1055 | g_free(sanitized_name); | |
1056 | ||
1057 | fd = mkstemp(filename); | |
1058 | if (fd < 0) { | |
1059 | perror("unable to create backing store for hugepages"); | |
1060 | g_free(filename); | |
1061 | goto error; | |
1062 | } | |
1063 | unlink(filename); | |
1064 | g_free(filename); | |
1065 | ||
1066 | memory = (memory+hpagesize-1) & ~(hpagesize-1); | |
1067 | ||
1068 | /* | |
1069 | * ftruncate is not supported by hugetlbfs in older | |
1070 | * hosts, so don't bother bailing out on errors. | |
1071 | * If anything goes wrong with it under other filesystems, | |
1072 | * mmap will fail. | |
1073 | */ | |
1074 | if (ftruncate(fd, memory)) | |
1075 | perror("ftruncate"); | |
1076 | ||
1077 | area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); | |
1078 | if (area == MAP_FAILED) { | |
1079 | perror("file_ram_alloc: can't mmap RAM pages"); | |
1080 | close(fd); | |
1081 | goto error; | |
1082 | } | |
1083 | ||
1084 | if (mem_prealloc) { | |
1085 | int ret, i; | |
1086 | struct sigaction act, oldact; | |
1087 | sigset_t set, oldset; | |
1088 | ||
1089 | memset(&act, 0, sizeof(act)); | |
1090 | act.sa_handler = &sigbus_handler; | |
1091 | act.sa_flags = 0; | |
1092 | ||
1093 | ret = sigaction(SIGBUS, &act, &oldact); | |
1094 | if (ret) { | |
1095 | perror("file_ram_alloc: failed to install signal handler"); | |
1096 | exit(1); | |
1097 | } | |
1098 | ||
1099 | /* unblock SIGBUS */ | |
1100 | sigemptyset(&set); | |
1101 | sigaddset(&set, SIGBUS); | |
1102 | pthread_sigmask(SIG_UNBLOCK, &set, &oldset); | |
1103 | ||
1104 | if (sigsetjmp(sigjump, 1)) { | |
1105 | fprintf(stderr, "file_ram_alloc: failed to preallocate pages\n"); | |
1106 | exit(1); | |
1107 | } | |
1108 | ||
1109 | /* MAP_POPULATE silently ignores failures */ | |
1110 | for (i = 0; i < (memory/hpagesize); i++) { | |
1111 | memset(area + (hpagesize*i), 0, 1); | |
1112 | } | |
1113 | ||
1114 | ret = sigaction(SIGBUS, &oldact, NULL); | |
1115 | if (ret) { | |
1116 | perror("file_ram_alloc: failed to reinstall signal handler"); | |
1117 | exit(1); | |
1118 | } | |
1119 | ||
1120 | pthread_sigmask(SIG_SETMASK, &oldset, NULL); | |
1121 | } | |
1122 | ||
1123 | block->fd = fd; | |
1124 | return area; | |
1125 | ||
1126 | error: | |
1127 | if (mem_prealloc) { | |
1128 | exit(1); | |
1129 | } | |
1130 | return NULL; | |
1131 | } | |
1132 | #else | |
1133 | static void *file_ram_alloc(RAMBlock *block, | |
1134 | ram_addr_t memory, | |
1135 | const char *path) | |
1136 | { | |
1137 | fprintf(stderr, "-mem-path not supported on this host\n"); | |
1138 | exit(1); | |
1139 | } | |
1140 | #endif | |
1141 | ||
1142 | static ram_addr_t find_ram_offset(ram_addr_t size) | |
1143 | { | |
1144 | RAMBlock *block, *next_block; | |
1145 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; | |
1146 | ||
1147 | assert(size != 0); /* it would hand out same offset multiple times */ | |
1148 | ||
1149 | if (QTAILQ_EMPTY(&ram_list.blocks)) | |
1150 | return 0; | |
1151 | ||
1152 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1153 | ram_addr_t end, next = RAM_ADDR_MAX; | |
1154 | ||
1155 | end = block->offset + block->length; | |
1156 | ||
1157 | QTAILQ_FOREACH(next_block, &ram_list.blocks, next) { | |
1158 | if (next_block->offset >= end) { | |
1159 | next = MIN(next, next_block->offset); | |
1160 | } | |
1161 | } | |
1162 | if (next - end >= size && next - end < mingap) { | |
1163 | offset = end; | |
1164 | mingap = next - end; | |
1165 | } | |
1166 | } | |
1167 | ||
1168 | if (offset == RAM_ADDR_MAX) { | |
1169 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1170 | (uint64_t)size); | |
1171 | abort(); | |
1172 | } | |
1173 | ||
1174 | return offset; | |
1175 | } | |
1176 | ||
1177 | ram_addr_t last_ram_offset(void) | |
1178 | { | |
1179 | RAMBlock *block; | |
1180 | ram_addr_t last = 0; | |
1181 | ||
1182 | QTAILQ_FOREACH(block, &ram_list.blocks, next) | |
1183 | last = MAX(last, block->offset + block->length); | |
1184 | ||
1185 | return last; | |
1186 | } | |
1187 | ||
1188 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) | |
1189 | { | |
1190 | int ret; | |
1191 | ||
1192 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
1193 | if (!qemu_opt_get_bool(qemu_get_machine_opts(), | |
1194 | "dump-guest-core", true)) { | |
1195 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); | |
1196 | if (ret) { | |
1197 | perror("qemu_madvise"); | |
1198 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1199 | "but dump_guest_core=off specified\n"); | |
1200 | } | |
1201 | } | |
1202 | } | |
1203 | ||
1204 | void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev) | |
1205 | { | |
1206 | RAMBlock *new_block, *block; | |
1207 | ||
1208 | new_block = NULL; | |
1209 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1210 | if (block->offset == addr) { | |
1211 | new_block = block; | |
1212 | break; | |
1213 | } | |
1214 | } | |
1215 | assert(new_block); | |
1216 | assert(!new_block->idstr[0]); | |
1217 | ||
1218 | if (dev) { | |
1219 | char *id = qdev_get_dev_path(dev); | |
1220 | if (id) { | |
1221 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
1222 | g_free(id); | |
1223 | } | |
1224 | } | |
1225 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
1226 | ||
1227 | /* This assumes the iothread lock is taken here too. */ | |
1228 | qemu_mutex_lock_ramlist(); | |
1229 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1230 | if (block != new_block && !strcmp(block->idstr, new_block->idstr)) { | |
1231 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", | |
1232 | new_block->idstr); | |
1233 | abort(); | |
1234 | } | |
1235 | } | |
1236 | qemu_mutex_unlock_ramlist(); | |
1237 | } | |
1238 | ||
1239 | static int memory_try_enable_merging(void *addr, size_t len) | |
1240 | { | |
1241 | if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) { | |
1242 | /* disabled by the user */ | |
1243 | return 0; | |
1244 | } | |
1245 | ||
1246 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
1247 | } | |
1248 | ||
1249 | ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, | |
1250 | MemoryRegion *mr) | |
1251 | { | |
1252 | RAMBlock *block, *new_block; | |
1253 | ram_addr_t old_ram_size, new_ram_size; | |
1254 | ||
1255 | old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
1256 | ||
1257 | size = TARGET_PAGE_ALIGN(size); | |
1258 | new_block = g_malloc0(sizeof(*new_block)); | |
1259 | new_block->fd = -1; | |
1260 | ||
1261 | /* This assumes the iothread lock is taken here too. */ | |
1262 | qemu_mutex_lock_ramlist(); | |
1263 | new_block->mr = mr; | |
1264 | new_block->offset = find_ram_offset(size); | |
1265 | if (host) { | |
1266 | new_block->host = host; | |
1267 | new_block->flags |= RAM_PREALLOC_MASK; | |
1268 | } else if (xen_enabled()) { | |
1269 | if (mem_path) { | |
1270 | fprintf(stderr, "-mem-path not supported with Xen\n"); | |
1271 | exit(1); | |
1272 | } | |
1273 | xen_ram_alloc(new_block->offset, size, mr); | |
1274 | } else { | |
1275 | if (mem_path) { | |
1276 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
1277 | /* | |
1278 | * file_ram_alloc() needs to allocate just like | |
1279 | * phys_mem_alloc, but we haven't bothered to provide | |
1280 | * a hook there. | |
1281 | */ | |
1282 | fprintf(stderr, | |
1283 | "-mem-path not supported with this accelerator\n"); | |
1284 | exit(1); | |
1285 | } | |
1286 | new_block->host = file_ram_alloc(new_block, size, mem_path); | |
1287 | } | |
1288 | if (!new_block->host) { | |
1289 | new_block->host = phys_mem_alloc(size); | |
1290 | if (!new_block->host) { | |
1291 | fprintf(stderr, "Cannot set up guest memory '%s': %s\n", | |
1292 | new_block->mr->name, strerror(errno)); | |
1293 | exit(1); | |
1294 | } | |
1295 | memory_try_enable_merging(new_block->host, size); | |
1296 | } | |
1297 | } | |
1298 | new_block->length = size; | |
1299 | ||
1300 | /* Keep the list sorted from biggest to smallest block. */ | |
1301 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1302 | if (block->length < new_block->length) { | |
1303 | break; | |
1304 | } | |
1305 | } | |
1306 | if (block) { | |
1307 | QTAILQ_INSERT_BEFORE(block, new_block, next); | |
1308 | } else { | |
1309 | QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next); | |
1310 | } | |
1311 | ram_list.mru_block = NULL; | |
1312 | ||
1313 | ram_list.version++; | |
1314 | qemu_mutex_unlock_ramlist(); | |
1315 | ||
1316 | new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; | |
1317 | ||
1318 | if (new_ram_size > old_ram_size) { | |
1319 | int i; | |
1320 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
1321 | ram_list.dirty_memory[i] = | |
1322 | bitmap_zero_extend(ram_list.dirty_memory[i], | |
1323 | old_ram_size, new_ram_size); | |
1324 | } | |
1325 | } | |
1326 | cpu_physical_memory_set_dirty_range(new_block->offset, size); | |
1327 | ||
1328 | qemu_ram_setup_dump(new_block->host, size); | |
1329 | qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE); | |
1330 | qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK); | |
1331 | ||
1332 | if (kvm_enabled()) | |
1333 | kvm_setup_guest_memory(new_block->host, size); | |
1334 | ||
1335 | return new_block->offset; | |
1336 | } | |
1337 | ||
1338 | ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr) | |
1339 | { | |
1340 | return qemu_ram_alloc_from_ptr(size, NULL, mr); | |
1341 | } | |
1342 | ||
1343 | void qemu_ram_free_from_ptr(ram_addr_t addr) | |
1344 | { | |
1345 | RAMBlock *block; | |
1346 | ||
1347 | /* This assumes the iothread lock is taken here too. */ | |
1348 | qemu_mutex_lock_ramlist(); | |
1349 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1350 | if (addr == block->offset) { | |
1351 | QTAILQ_REMOVE(&ram_list.blocks, block, next); | |
1352 | ram_list.mru_block = NULL; | |
1353 | ram_list.version++; | |
1354 | g_free(block); | |
1355 | break; | |
1356 | } | |
1357 | } | |
1358 | qemu_mutex_unlock_ramlist(); | |
1359 | } | |
1360 | ||
1361 | void qemu_ram_free(ram_addr_t addr) | |
1362 | { | |
1363 | RAMBlock *block; | |
1364 | ||
1365 | /* This assumes the iothread lock is taken here too. */ | |
1366 | qemu_mutex_lock_ramlist(); | |
1367 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1368 | if (addr == block->offset) { | |
1369 | QTAILQ_REMOVE(&ram_list.blocks, block, next); | |
1370 | ram_list.mru_block = NULL; | |
1371 | ram_list.version++; | |
1372 | if (block->flags & RAM_PREALLOC_MASK) { | |
1373 | ; | |
1374 | } else if (xen_enabled()) { | |
1375 | xen_invalidate_map_cache_entry(block->host); | |
1376 | #ifndef _WIN32 | |
1377 | } else if (block->fd >= 0) { | |
1378 | munmap(block->host, block->length); | |
1379 | close(block->fd); | |
1380 | #endif | |
1381 | } else { | |
1382 | qemu_anon_ram_free(block->host, block->length); | |
1383 | } | |
1384 | g_free(block); | |
1385 | break; | |
1386 | } | |
1387 | } | |
1388 | qemu_mutex_unlock_ramlist(); | |
1389 | ||
1390 | } | |
1391 | ||
1392 | #ifndef _WIN32 | |
1393 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
1394 | { | |
1395 | RAMBlock *block; | |
1396 | ram_addr_t offset; | |
1397 | int flags; | |
1398 | void *area, *vaddr; | |
1399 | ||
1400 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1401 | offset = addr - block->offset; | |
1402 | if (offset < block->length) { | |
1403 | vaddr = block->host + offset; | |
1404 | if (block->flags & RAM_PREALLOC_MASK) { | |
1405 | ; | |
1406 | } else if (xen_enabled()) { | |
1407 | abort(); | |
1408 | } else { | |
1409 | flags = MAP_FIXED; | |
1410 | munmap(vaddr, length); | |
1411 | if (block->fd >= 0) { | |
1412 | #ifdef MAP_POPULATE | |
1413 | flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED : | |
1414 | MAP_PRIVATE; | |
1415 | #else | |
1416 | flags |= MAP_PRIVATE; | |
1417 | #endif | |
1418 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1419 | flags, block->fd, offset); | |
1420 | } else { | |
1421 | /* | |
1422 | * Remap needs to match alloc. Accelerators that | |
1423 | * set phys_mem_alloc never remap. If they did, | |
1424 | * we'd need a remap hook here. | |
1425 | */ | |
1426 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
1427 | ||
1428 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; | |
1429 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
1430 | flags, -1, 0); | |
1431 | } | |
1432 | if (area != vaddr) { | |
1433 | fprintf(stderr, "Could not remap addr: " | |
1434 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
1435 | length, addr); | |
1436 | exit(1); | |
1437 | } | |
1438 | memory_try_enable_merging(vaddr, length); | |
1439 | qemu_ram_setup_dump(vaddr, length); | |
1440 | } | |
1441 | return; | |
1442 | } | |
1443 | } | |
1444 | } | |
1445 | #endif /* !_WIN32 */ | |
1446 | ||
1447 | /* Return a host pointer to ram allocated with qemu_ram_alloc. | |
1448 | With the exception of the softmmu code in this file, this should | |
1449 | only be used for local memory (e.g. video ram) that the device owns, | |
1450 | and knows it isn't going to access beyond the end of the block. | |
1451 | ||
1452 | It should not be used for general purpose DMA. | |
1453 | Use cpu_physical_memory_map/cpu_physical_memory_rw instead. | |
1454 | */ | |
1455 | void *qemu_get_ram_ptr(ram_addr_t addr) | |
1456 | { | |
1457 | RAMBlock *block = qemu_get_ram_block(addr); | |
1458 | ||
1459 | if (xen_enabled()) { | |
1460 | /* We need to check if the requested address is in the RAM | |
1461 | * because we don't want to map the entire memory in QEMU. | |
1462 | * In that case just map until the end of the page. | |
1463 | */ | |
1464 | if (block->offset == 0) { | |
1465 | return xen_map_cache(addr, 0, 0); | |
1466 | } else if (block->host == NULL) { | |
1467 | block->host = | |
1468 | xen_map_cache(block->offset, block->length, 1); | |
1469 | } | |
1470 | } | |
1471 | return block->host + (addr - block->offset); | |
1472 | } | |
1473 | ||
1474 | /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr | |
1475 | * but takes a size argument */ | |
1476 | static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size) | |
1477 | { | |
1478 | if (*size == 0) { | |
1479 | return NULL; | |
1480 | } | |
1481 | if (xen_enabled()) { | |
1482 | return xen_map_cache(addr, *size, 1); | |
1483 | } else { | |
1484 | RAMBlock *block; | |
1485 | ||
1486 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1487 | if (addr - block->offset < block->length) { | |
1488 | if (addr - block->offset + *size > block->length) | |
1489 | *size = block->length - addr + block->offset; | |
1490 | return block->host + (addr - block->offset); | |
1491 | } | |
1492 | } | |
1493 | ||
1494 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
1495 | abort(); | |
1496 | } | |
1497 | } | |
1498 | ||
1499 | /* Some of the softmmu routines need to translate from a host pointer | |
1500 | (typically a TLB entry) back to a ram offset. */ | |
1501 | MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr) | |
1502 | { | |
1503 | RAMBlock *block; | |
1504 | uint8_t *host = ptr; | |
1505 | ||
1506 | if (xen_enabled()) { | |
1507 | *ram_addr = xen_ram_addr_from_mapcache(ptr); | |
1508 | return qemu_get_ram_block(*ram_addr)->mr; | |
1509 | } | |
1510 | ||
1511 | block = ram_list.mru_block; | |
1512 | if (block && block->host && host - block->host < block->length) { | |
1513 | goto found; | |
1514 | } | |
1515 | ||
1516 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
1517 | /* This case append when the block is not mapped. */ | |
1518 | if (block->host == NULL) { | |
1519 | continue; | |
1520 | } | |
1521 | if (host - block->host < block->length) { | |
1522 | goto found; | |
1523 | } | |
1524 | } | |
1525 | ||
1526 | return NULL; | |
1527 | ||
1528 | found: | |
1529 | *ram_addr = block->offset + (host - block->host); | |
1530 | return block->mr; | |
1531 | } | |
1532 | ||
1533 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, | |
1534 | uint64_t val, unsigned size) | |
1535 | { | |
1536 | if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { | |
1537 | tb_invalidate_phys_page_fast(ram_addr, size); | |
1538 | } | |
1539 | switch (size) { | |
1540 | case 1: | |
1541 | stb_p(qemu_get_ram_ptr(ram_addr), val); | |
1542 | break; | |
1543 | case 2: | |
1544 | stw_p(qemu_get_ram_ptr(ram_addr), val); | |
1545 | break; | |
1546 | case 4: | |
1547 | stl_p(qemu_get_ram_ptr(ram_addr), val); | |
1548 | break; | |
1549 | default: | |
1550 | abort(); | |
1551 | } | |
1552 | cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_MIGRATION); | |
1553 | cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_VGA); | |
1554 | /* we remove the notdirty callback only if the code has been | |
1555 | flushed */ | |
1556 | if (!cpu_physical_memory_is_clean(ram_addr)) { | |
1557 | CPUArchState *env = current_cpu->env_ptr; | |
1558 | tlb_set_dirty(env, current_cpu->mem_io_vaddr); | |
1559 | } | |
1560 | } | |
1561 | ||
1562 | static bool notdirty_mem_accepts(void *opaque, hwaddr addr, | |
1563 | unsigned size, bool is_write) | |
1564 | { | |
1565 | return is_write; | |
1566 | } | |
1567 | ||
1568 | static const MemoryRegionOps notdirty_mem_ops = { | |
1569 | .write = notdirty_mem_write, | |
1570 | .valid.accepts = notdirty_mem_accepts, | |
1571 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1572 | }; | |
1573 | ||
1574 | /* Generate a debug exception if a watchpoint has been hit. */ | |
1575 | static void check_watchpoint(int offset, int len_mask, int flags) | |
1576 | { | |
1577 | CPUState *cpu = current_cpu; | |
1578 | CPUArchState *env = cpu->env_ptr; | |
1579 | target_ulong pc, cs_base; | |
1580 | target_ulong vaddr; | |
1581 | CPUWatchpoint *wp; | |
1582 | int cpu_flags; | |
1583 | ||
1584 | if (cpu->watchpoint_hit) { | |
1585 | /* We re-entered the check after replacing the TB. Now raise | |
1586 | * the debug interrupt so that is will trigger after the | |
1587 | * current instruction. */ | |
1588 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); | |
1589 | return; | |
1590 | } | |
1591 | vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; | |
1592 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
1593 | if ((vaddr == (wp->vaddr & len_mask) || | |
1594 | (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) { | |
1595 | wp->flags |= BP_WATCHPOINT_HIT; | |
1596 | if (!cpu->watchpoint_hit) { | |
1597 | cpu->watchpoint_hit = wp; | |
1598 | tb_check_watchpoint(cpu); | |
1599 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | |
1600 | cpu->exception_index = EXCP_DEBUG; | |
1601 | cpu_loop_exit(cpu); | |
1602 | } else { | |
1603 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
1604 | tb_gen_code(cpu, pc, cs_base, cpu_flags, 1); | |
1605 | cpu_resume_from_signal(cpu, NULL); | |
1606 | } | |
1607 | } | |
1608 | } else { | |
1609 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
1610 | } | |
1611 | } | |
1612 | } | |
1613 | ||
1614 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, | |
1615 | so these check for a hit then pass through to the normal out-of-line | |
1616 | phys routines. */ | |
1617 | static uint64_t watch_mem_read(void *opaque, hwaddr addr, | |
1618 | unsigned size) | |
1619 | { | |
1620 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ); | |
1621 | switch (size) { | |
1622 | case 1: return ldub_phys(&address_space_memory, addr); | |
1623 | case 2: return lduw_phys(&address_space_memory, addr); | |
1624 | case 4: return ldl_phys(&address_space_memory, addr); | |
1625 | default: abort(); | |
1626 | } | |
1627 | } | |
1628 | ||
1629 | static void watch_mem_write(void *opaque, hwaddr addr, | |
1630 | uint64_t val, unsigned size) | |
1631 | { | |
1632 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE); | |
1633 | switch (size) { | |
1634 | case 1: | |
1635 | stb_phys(&address_space_memory, addr, val); | |
1636 | break; | |
1637 | case 2: | |
1638 | stw_phys(&address_space_memory, addr, val); | |
1639 | break; | |
1640 | case 4: | |
1641 | stl_phys(&address_space_memory, addr, val); | |
1642 | break; | |
1643 | default: abort(); | |
1644 | } | |
1645 | } | |
1646 | ||
1647 | static const MemoryRegionOps watch_mem_ops = { | |
1648 | .read = watch_mem_read, | |
1649 | .write = watch_mem_write, | |
1650 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1651 | }; | |
1652 | ||
1653 | static uint64_t subpage_read(void *opaque, hwaddr addr, | |
1654 | unsigned len) | |
1655 | { | |
1656 | subpage_t *subpage = opaque; | |
1657 | uint8_t buf[4]; | |
1658 | ||
1659 | #if defined(DEBUG_SUBPAGE) | |
1660 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, | |
1661 | subpage, len, addr); | |
1662 | #endif | |
1663 | address_space_read(subpage->as, addr + subpage->base, buf, len); | |
1664 | switch (len) { | |
1665 | case 1: | |
1666 | return ldub_p(buf); | |
1667 | case 2: | |
1668 | return lduw_p(buf); | |
1669 | case 4: | |
1670 | return ldl_p(buf); | |
1671 | default: | |
1672 | abort(); | |
1673 | } | |
1674 | } | |
1675 | ||
1676 | static void subpage_write(void *opaque, hwaddr addr, | |
1677 | uint64_t value, unsigned len) | |
1678 | { | |
1679 | subpage_t *subpage = opaque; | |
1680 | uint8_t buf[4]; | |
1681 | ||
1682 | #if defined(DEBUG_SUBPAGE) | |
1683 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx | |
1684 | " value %"PRIx64"\n", | |
1685 | __func__, subpage, len, addr, value); | |
1686 | #endif | |
1687 | switch (len) { | |
1688 | case 1: | |
1689 | stb_p(buf, value); | |
1690 | break; | |
1691 | case 2: | |
1692 | stw_p(buf, value); | |
1693 | break; | |
1694 | case 4: | |
1695 | stl_p(buf, value); | |
1696 | break; | |
1697 | default: | |
1698 | abort(); | |
1699 | } | |
1700 | address_space_write(subpage->as, addr + subpage->base, buf, len); | |
1701 | } | |
1702 | ||
1703 | static bool subpage_accepts(void *opaque, hwaddr addr, | |
1704 | unsigned len, bool is_write) | |
1705 | { | |
1706 | subpage_t *subpage = opaque; | |
1707 | #if defined(DEBUG_SUBPAGE) | |
1708 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", | |
1709 | __func__, subpage, is_write ? 'w' : 'r', len, addr); | |
1710 | #endif | |
1711 | ||
1712 | return address_space_access_valid(subpage->as, addr + subpage->base, | |
1713 | len, is_write); | |
1714 | } | |
1715 | ||
1716 | static const MemoryRegionOps subpage_ops = { | |
1717 | .read = subpage_read, | |
1718 | .write = subpage_write, | |
1719 | .valid.accepts = subpage_accepts, | |
1720 | .endianness = DEVICE_NATIVE_ENDIAN, | |
1721 | }; | |
1722 | ||
1723 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
1724 | uint16_t section) | |
1725 | { | |
1726 | int idx, eidx; | |
1727 | ||
1728 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
1729 | return -1; | |
1730 | idx = SUBPAGE_IDX(start); | |
1731 | eidx = SUBPAGE_IDX(end); | |
1732 | #if defined(DEBUG_SUBPAGE) | |
1733 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", | |
1734 | __func__, mmio, start, end, idx, eidx, section); | |
1735 | #endif | |
1736 | for (; idx <= eidx; idx++) { | |
1737 | mmio->sub_section[idx] = section; | |
1738 | } | |
1739 | ||
1740 | return 0; | |
1741 | } | |
1742 | ||
1743 | static subpage_t *subpage_init(AddressSpace *as, hwaddr base) | |
1744 | { | |
1745 | subpage_t *mmio; | |
1746 | ||
1747 | mmio = g_malloc0(sizeof(subpage_t)); | |
1748 | ||
1749 | mmio->as = as; | |
1750 | mmio->base = base; | |
1751 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, | |
1752 | "subpage", TARGET_PAGE_SIZE); | |
1753 | mmio->iomem.subpage = true; | |
1754 | #if defined(DEBUG_SUBPAGE) | |
1755 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, | |
1756 | mmio, base, TARGET_PAGE_SIZE); | |
1757 | #endif | |
1758 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); | |
1759 | ||
1760 | return mmio; | |
1761 | } | |
1762 | ||
1763 | static uint16_t dummy_section(PhysPageMap *map, MemoryRegion *mr) | |
1764 | { | |
1765 | MemoryRegionSection section = { | |
1766 | .address_space = &address_space_memory, | |
1767 | .mr = mr, | |
1768 | .offset_within_address_space = 0, | |
1769 | .offset_within_region = 0, | |
1770 | .size = int128_2_64(), | |
1771 | }; | |
1772 | ||
1773 | return phys_section_add(map, §ion); | |
1774 | } | |
1775 | ||
1776 | MemoryRegion *iotlb_to_region(AddressSpace *as, hwaddr index) | |
1777 | { | |
1778 | return as->dispatch->map.sections[index & ~TARGET_PAGE_MASK].mr; | |
1779 | } | |
1780 | ||
1781 | static void io_mem_init(void) | |
1782 | { | |
1783 | memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX); | |
1784 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, | |
1785 | "unassigned", UINT64_MAX); | |
1786 | memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, | |
1787 | "notdirty", UINT64_MAX); | |
1788 | memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, | |
1789 | "watch", UINT64_MAX); | |
1790 | } | |
1791 | ||
1792 | static void mem_begin(MemoryListener *listener) | |
1793 | { | |
1794 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
1795 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); | |
1796 | uint16_t n; | |
1797 | ||
1798 | n = dummy_section(&d->map, &io_mem_unassigned); | |
1799 | assert(n == PHYS_SECTION_UNASSIGNED); | |
1800 | n = dummy_section(&d->map, &io_mem_notdirty); | |
1801 | assert(n == PHYS_SECTION_NOTDIRTY); | |
1802 | n = dummy_section(&d->map, &io_mem_rom); | |
1803 | assert(n == PHYS_SECTION_ROM); | |
1804 | n = dummy_section(&d->map, &io_mem_watch); | |
1805 | assert(n == PHYS_SECTION_WATCH); | |
1806 | ||
1807 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; | |
1808 | d->as = as; | |
1809 | as->next_dispatch = d; | |
1810 | } | |
1811 | ||
1812 | static void mem_commit(MemoryListener *listener) | |
1813 | { | |
1814 | AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener); | |
1815 | AddressSpaceDispatch *cur = as->dispatch; | |
1816 | AddressSpaceDispatch *next = as->next_dispatch; | |
1817 | ||
1818 | phys_page_compact_all(next, next->map.nodes_nb); | |
1819 | ||
1820 | as->dispatch = next; | |
1821 | ||
1822 | if (cur) { | |
1823 | phys_sections_free(&cur->map); | |
1824 | g_free(cur); | |
1825 | } | |
1826 | } | |
1827 | ||
1828 | static void tcg_commit(MemoryListener *listener) | |
1829 | { | |
1830 | CPUState *cpu; | |
1831 | ||
1832 | /* since each CPU stores ram addresses in its TLB cache, we must | |
1833 | reset the modified entries */ | |
1834 | /* XXX: slow ! */ | |
1835 | CPU_FOREACH(cpu) { | |
1836 | /* FIXME: Disentangle the cpu.h circular files deps so we can | |
1837 | directly get the right CPU from listener. */ | |
1838 | if (cpu->tcg_as_listener != listener) { | |
1839 | continue; | |
1840 | } | |
1841 | tlb_flush(cpu, 1); | |
1842 | } | |
1843 | } | |
1844 | ||
1845 | static void core_log_global_start(MemoryListener *listener) | |
1846 | { | |
1847 | cpu_physical_memory_set_dirty_tracking(true); | |
1848 | } | |
1849 | ||
1850 | static void core_log_global_stop(MemoryListener *listener) | |
1851 | { | |
1852 | cpu_physical_memory_set_dirty_tracking(false); | |
1853 | } | |
1854 | ||
1855 | static MemoryListener core_memory_listener = { | |
1856 | .log_global_start = core_log_global_start, | |
1857 | .log_global_stop = core_log_global_stop, | |
1858 | .priority = 1, | |
1859 | }; | |
1860 | ||
1861 | void address_space_init_dispatch(AddressSpace *as) | |
1862 | { | |
1863 | as->dispatch = NULL; | |
1864 | as->dispatch_listener = (MemoryListener) { | |
1865 | .begin = mem_begin, | |
1866 | .commit = mem_commit, | |
1867 | .region_add = mem_add, | |
1868 | .region_nop = mem_add, | |
1869 | .priority = 0, | |
1870 | }; | |
1871 | memory_listener_register(&as->dispatch_listener, as); | |
1872 | } | |
1873 | ||
1874 | void address_space_destroy_dispatch(AddressSpace *as) | |
1875 | { | |
1876 | AddressSpaceDispatch *d = as->dispatch; | |
1877 | ||
1878 | memory_listener_unregister(&as->dispatch_listener); | |
1879 | g_free(d); | |
1880 | as->dispatch = NULL; | |
1881 | } | |
1882 | ||
1883 | static void memory_map_init(void) | |
1884 | { | |
1885 | system_memory = g_malloc(sizeof(*system_memory)); | |
1886 | ||
1887 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); | |
1888 | address_space_init(&address_space_memory, system_memory, "memory"); | |
1889 | ||
1890 | system_io = g_malloc(sizeof(*system_io)); | |
1891 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", | |
1892 | 65536); | |
1893 | address_space_init(&address_space_io, system_io, "I/O"); | |
1894 | ||
1895 | memory_listener_register(&core_memory_listener, &address_space_memory); | |
1896 | } | |
1897 | ||
1898 | MemoryRegion *get_system_memory(void) | |
1899 | { | |
1900 | return system_memory; | |
1901 | } | |
1902 | ||
1903 | MemoryRegion *get_system_io(void) | |
1904 | { | |
1905 | return system_io; | |
1906 | } | |
1907 | ||
1908 | #endif /* !defined(CONFIG_USER_ONLY) */ | |
1909 | ||
1910 | /* physical memory access (slow version, mainly for debug) */ | |
1911 | #if defined(CONFIG_USER_ONLY) | |
1912 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, | |
1913 | uint8_t *buf, int len, int is_write) | |
1914 | { | |
1915 | int l, flags; | |
1916 | target_ulong page; | |
1917 | void * p; | |
1918 | ||
1919 | while (len > 0) { | |
1920 | page = addr & TARGET_PAGE_MASK; | |
1921 | l = (page + TARGET_PAGE_SIZE) - addr; | |
1922 | if (l > len) | |
1923 | l = len; | |
1924 | flags = page_get_flags(page); | |
1925 | if (!(flags & PAGE_VALID)) | |
1926 | return -1; | |
1927 | if (is_write) { | |
1928 | if (!(flags & PAGE_WRITE)) | |
1929 | return -1; | |
1930 | /* XXX: this code should not depend on lock_user */ | |
1931 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) | |
1932 | return -1; | |
1933 | memcpy(p, buf, l); | |
1934 | unlock_user(p, addr, l); | |
1935 | } else { | |
1936 | if (!(flags & PAGE_READ)) | |
1937 | return -1; | |
1938 | /* XXX: this code should not depend on lock_user */ | |
1939 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) | |
1940 | return -1; | |
1941 | memcpy(buf, p, l); | |
1942 | unlock_user(p, addr, 0); | |
1943 | } | |
1944 | len -= l; | |
1945 | buf += l; | |
1946 | addr += l; | |
1947 | } | |
1948 | return 0; | |
1949 | } | |
1950 | ||
1951 | #else | |
1952 | ||
1953 | static void invalidate_and_set_dirty(hwaddr addr, | |
1954 | hwaddr length) | |
1955 | { | |
1956 | if (cpu_physical_memory_is_clean(addr)) { | |
1957 | /* invalidate code */ | |
1958 | tb_invalidate_phys_page_range(addr, addr + length, 0); | |
1959 | /* set dirty bit */ | |
1960 | cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_VGA); | |
1961 | cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_MIGRATION); | |
1962 | } | |
1963 | xen_modified_memory(addr, length); | |
1964 | } | |
1965 | ||
1966 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) | |
1967 | { | |
1968 | unsigned access_size_max = mr->ops->valid.max_access_size; | |
1969 | ||
1970 | /* Regions are assumed to support 1-4 byte accesses unless | |
1971 | otherwise specified. */ | |
1972 | if (access_size_max == 0) { | |
1973 | access_size_max = 4; | |
1974 | } | |
1975 | ||
1976 | /* Bound the maximum access by the alignment of the address. */ | |
1977 | if (!mr->ops->impl.unaligned) { | |
1978 | unsigned align_size_max = addr & -addr; | |
1979 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
1980 | access_size_max = align_size_max; | |
1981 | } | |
1982 | } | |
1983 | ||
1984 | /* Don't attempt accesses larger than the maximum. */ | |
1985 | if (l > access_size_max) { | |
1986 | l = access_size_max; | |
1987 | } | |
1988 | if (l & (l - 1)) { | |
1989 | l = 1 << (qemu_fls(l) - 1); | |
1990 | } | |
1991 | ||
1992 | return l; | |
1993 | } | |
1994 | ||
1995 | bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf, | |
1996 | int len, bool is_write) | |
1997 | { | |
1998 | hwaddr l; | |
1999 | uint8_t *ptr; | |
2000 | uint64_t val; | |
2001 | hwaddr addr1; | |
2002 | MemoryRegion *mr; | |
2003 | bool error = false; | |
2004 | ||
2005 | while (len > 0) { | |
2006 | l = len; | |
2007 | mr = address_space_translate(as, addr, &addr1, &l, is_write); | |
2008 | ||
2009 | if (is_write) { | |
2010 | if (!memory_access_is_direct(mr, is_write)) { | |
2011 | l = memory_access_size(mr, l, addr1); | |
2012 | /* XXX: could force current_cpu to NULL to avoid | |
2013 | potential bugs */ | |
2014 | switch (l) { | |
2015 | case 8: | |
2016 | /* 64 bit write access */ | |
2017 | val = ldq_p(buf); | |
2018 | error |= io_mem_write(mr, addr1, val, 8); | |
2019 | break; | |
2020 | case 4: | |
2021 | /* 32 bit write access */ | |
2022 | val = ldl_p(buf); | |
2023 | error |= io_mem_write(mr, addr1, val, 4); | |
2024 | break; | |
2025 | case 2: | |
2026 | /* 16 bit write access */ | |
2027 | val = lduw_p(buf); | |
2028 | error |= io_mem_write(mr, addr1, val, 2); | |
2029 | break; | |
2030 | case 1: | |
2031 | /* 8 bit write access */ | |
2032 | val = ldub_p(buf); | |
2033 | error |= io_mem_write(mr, addr1, val, 1); | |
2034 | break; | |
2035 | default: | |
2036 | abort(); | |
2037 | } | |
2038 | } else { | |
2039 | addr1 += memory_region_get_ram_addr(mr); | |
2040 | /* RAM case */ | |
2041 | ptr = qemu_get_ram_ptr(addr1); | |
2042 | memcpy(ptr, buf, l); | |
2043 | invalidate_and_set_dirty(addr1, l); | |
2044 | } | |
2045 | } else { | |
2046 | if (!memory_access_is_direct(mr, is_write)) { | |
2047 | /* I/O case */ | |
2048 | l = memory_access_size(mr, l, addr1); | |
2049 | switch (l) { | |
2050 | case 8: | |
2051 | /* 64 bit read access */ | |
2052 | error |= io_mem_read(mr, addr1, &val, 8); | |
2053 | stq_p(buf, val); | |
2054 | break; | |
2055 | case 4: | |
2056 | /* 32 bit read access */ | |
2057 | error |= io_mem_read(mr, addr1, &val, 4); | |
2058 | stl_p(buf, val); | |
2059 | break; | |
2060 | case 2: | |
2061 | /* 16 bit read access */ | |
2062 | error |= io_mem_read(mr, addr1, &val, 2); | |
2063 | stw_p(buf, val); | |
2064 | break; | |
2065 | case 1: | |
2066 | /* 8 bit read access */ | |
2067 | error |= io_mem_read(mr, addr1, &val, 1); | |
2068 | stb_p(buf, val); | |
2069 | break; | |
2070 | default: | |
2071 | abort(); | |
2072 | } | |
2073 | } else { | |
2074 | /* RAM case */ | |
2075 | ptr = qemu_get_ram_ptr(mr->ram_addr + addr1); | |
2076 | memcpy(buf, ptr, l); | |
2077 | } | |
2078 | } | |
2079 | len -= l; | |
2080 | buf += l; | |
2081 | addr += l; | |
2082 | } | |
2083 | ||
2084 | return error; | |
2085 | } | |
2086 | ||
2087 | bool address_space_write(AddressSpace *as, hwaddr addr, | |
2088 | const uint8_t *buf, int len) | |
2089 | { | |
2090 | return address_space_rw(as, addr, (uint8_t *)buf, len, true); | |
2091 | } | |
2092 | ||
2093 | bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len) | |
2094 | { | |
2095 | return address_space_rw(as, addr, buf, len, false); | |
2096 | } | |
2097 | ||
2098 | ||
2099 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, | |
2100 | int len, int is_write) | |
2101 | { | |
2102 | address_space_rw(&address_space_memory, addr, buf, len, is_write); | |
2103 | } | |
2104 | ||
2105 | enum write_rom_type { | |
2106 | WRITE_DATA, | |
2107 | FLUSH_CACHE, | |
2108 | }; | |
2109 | ||
2110 | static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, | |
2111 | hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) | |
2112 | { | |
2113 | hwaddr l; | |
2114 | uint8_t *ptr; | |
2115 | hwaddr addr1; | |
2116 | MemoryRegion *mr; | |
2117 | ||
2118 | while (len > 0) { | |
2119 | l = len; | |
2120 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
2121 | ||
2122 | if (!(memory_region_is_ram(mr) || | |
2123 | memory_region_is_romd(mr))) { | |
2124 | /* do nothing */ | |
2125 | } else { | |
2126 | addr1 += memory_region_get_ram_addr(mr); | |
2127 | /* ROM/RAM case */ | |
2128 | ptr = qemu_get_ram_ptr(addr1); | |
2129 | switch (type) { | |
2130 | case WRITE_DATA: | |
2131 | memcpy(ptr, buf, l); | |
2132 | invalidate_and_set_dirty(addr1, l); | |
2133 | break; | |
2134 | case FLUSH_CACHE: | |
2135 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
2136 | break; | |
2137 | } | |
2138 | } | |
2139 | len -= l; | |
2140 | buf += l; | |
2141 | addr += l; | |
2142 | } | |
2143 | } | |
2144 | ||
2145 | /* used for ROM loading : can write in RAM and ROM */ | |
2146 | void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, | |
2147 | const uint8_t *buf, int len) | |
2148 | { | |
2149 | cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); | |
2150 | } | |
2151 | ||
2152 | void cpu_flush_icache_range(hwaddr start, int len) | |
2153 | { | |
2154 | /* | |
2155 | * This function should do the same thing as an icache flush that was | |
2156 | * triggered from within the guest. For TCG we are always cache coherent, | |
2157 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
2158 | * the host's instruction cache at least. | |
2159 | */ | |
2160 | if (tcg_enabled()) { | |
2161 | return; | |
2162 | } | |
2163 | ||
2164 | cpu_physical_memory_write_rom_internal(&address_space_memory, | |
2165 | start, NULL, len, FLUSH_CACHE); | |
2166 | } | |
2167 | ||
2168 | typedef struct { | |
2169 | MemoryRegion *mr; | |
2170 | void *buffer; | |
2171 | hwaddr addr; | |
2172 | hwaddr len; | |
2173 | } BounceBuffer; | |
2174 | ||
2175 | static BounceBuffer bounce; | |
2176 | ||
2177 | typedef struct MapClient { | |
2178 | void *opaque; | |
2179 | void (*callback)(void *opaque); | |
2180 | QLIST_ENTRY(MapClient) link; | |
2181 | } MapClient; | |
2182 | ||
2183 | static QLIST_HEAD(map_client_list, MapClient) map_client_list | |
2184 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
2185 | ||
2186 | void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)) | |
2187 | { | |
2188 | MapClient *client = g_malloc(sizeof(*client)); | |
2189 | ||
2190 | client->opaque = opaque; | |
2191 | client->callback = callback; | |
2192 | QLIST_INSERT_HEAD(&map_client_list, client, link); | |
2193 | return client; | |
2194 | } | |
2195 | ||
2196 | static void cpu_unregister_map_client(void *_client) | |
2197 | { | |
2198 | MapClient *client = (MapClient *)_client; | |
2199 | ||
2200 | QLIST_REMOVE(client, link); | |
2201 | g_free(client); | |
2202 | } | |
2203 | ||
2204 | static void cpu_notify_map_clients(void) | |
2205 | { | |
2206 | MapClient *client; | |
2207 | ||
2208 | while (!QLIST_EMPTY(&map_client_list)) { | |
2209 | client = QLIST_FIRST(&map_client_list); | |
2210 | client->callback(client->opaque); | |
2211 | cpu_unregister_map_client(client); | |
2212 | } | |
2213 | } | |
2214 | ||
2215 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write) | |
2216 | { | |
2217 | MemoryRegion *mr; | |
2218 | hwaddr l, xlat; | |
2219 | ||
2220 | while (len > 0) { | |
2221 | l = len; | |
2222 | mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2223 | if (!memory_access_is_direct(mr, is_write)) { | |
2224 | l = memory_access_size(mr, l, addr); | |
2225 | if (!memory_region_access_valid(mr, xlat, l, is_write)) { | |
2226 | return false; | |
2227 | } | |
2228 | } | |
2229 | ||
2230 | len -= l; | |
2231 | addr += l; | |
2232 | } | |
2233 | return true; | |
2234 | } | |
2235 | ||
2236 | /* Map a physical memory region into a host virtual address. | |
2237 | * May map a subset of the requested range, given by and returned in *plen. | |
2238 | * May return NULL if resources needed to perform the mapping are exhausted. | |
2239 | * Use only for reads OR writes - not for read-modify-write operations. | |
2240 | * Use cpu_register_map_client() to know when retrying the map operation is | |
2241 | * likely to succeed. | |
2242 | */ | |
2243 | void *address_space_map(AddressSpace *as, | |
2244 | hwaddr addr, | |
2245 | hwaddr *plen, | |
2246 | bool is_write) | |
2247 | { | |
2248 | hwaddr len = *plen; | |
2249 | hwaddr done = 0; | |
2250 | hwaddr l, xlat, base; | |
2251 | MemoryRegion *mr, *this_mr; | |
2252 | ram_addr_t raddr; | |
2253 | ||
2254 | if (len == 0) { | |
2255 | return NULL; | |
2256 | } | |
2257 | ||
2258 | l = len; | |
2259 | mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2260 | if (!memory_access_is_direct(mr, is_write)) { | |
2261 | if (bounce.buffer) { | |
2262 | return NULL; | |
2263 | } | |
2264 | /* Avoid unbounded allocations */ | |
2265 | l = MIN(l, TARGET_PAGE_SIZE); | |
2266 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
2267 | bounce.addr = addr; | |
2268 | bounce.len = l; | |
2269 | ||
2270 | memory_region_ref(mr); | |
2271 | bounce.mr = mr; | |
2272 | if (!is_write) { | |
2273 | address_space_read(as, addr, bounce.buffer, l); | |
2274 | } | |
2275 | ||
2276 | *plen = l; | |
2277 | return bounce.buffer; | |
2278 | } | |
2279 | ||
2280 | base = xlat; | |
2281 | raddr = memory_region_get_ram_addr(mr); | |
2282 | ||
2283 | for (;;) { | |
2284 | len -= l; | |
2285 | addr += l; | |
2286 | done += l; | |
2287 | if (len == 0) { | |
2288 | break; | |
2289 | } | |
2290 | ||
2291 | l = len; | |
2292 | this_mr = address_space_translate(as, addr, &xlat, &l, is_write); | |
2293 | if (this_mr != mr || xlat != base + done) { | |
2294 | break; | |
2295 | } | |
2296 | } | |
2297 | ||
2298 | memory_region_ref(mr); | |
2299 | *plen = done; | |
2300 | return qemu_ram_ptr_length(raddr + base, plen); | |
2301 | } | |
2302 | ||
2303 | /* Unmaps a memory region previously mapped by address_space_map(). | |
2304 | * Will also mark the memory as dirty if is_write == 1. access_len gives | |
2305 | * the amount of memory that was actually read or written by the caller. | |
2306 | */ | |
2307 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, | |
2308 | int is_write, hwaddr access_len) | |
2309 | { | |
2310 | if (buffer != bounce.buffer) { | |
2311 | MemoryRegion *mr; | |
2312 | ram_addr_t addr1; | |
2313 | ||
2314 | mr = qemu_ram_addr_from_host(buffer, &addr1); | |
2315 | assert(mr != NULL); | |
2316 | if (is_write) { | |
2317 | while (access_len) { | |
2318 | unsigned l; | |
2319 | l = TARGET_PAGE_SIZE; | |
2320 | if (l > access_len) | |
2321 | l = access_len; | |
2322 | invalidate_and_set_dirty(addr1, l); | |
2323 | addr1 += l; | |
2324 | access_len -= l; | |
2325 | } | |
2326 | } | |
2327 | if (xen_enabled()) { | |
2328 | xen_invalidate_map_cache_entry(buffer); | |
2329 | } | |
2330 | memory_region_unref(mr); | |
2331 | return; | |
2332 | } | |
2333 | if (is_write) { | |
2334 | address_space_write(as, bounce.addr, bounce.buffer, access_len); | |
2335 | } | |
2336 | qemu_vfree(bounce.buffer); | |
2337 | bounce.buffer = NULL; | |
2338 | memory_region_unref(bounce.mr); | |
2339 | cpu_notify_map_clients(); | |
2340 | } | |
2341 | ||
2342 | void *cpu_physical_memory_map(hwaddr addr, | |
2343 | hwaddr *plen, | |
2344 | int is_write) | |
2345 | { | |
2346 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
2347 | } | |
2348 | ||
2349 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, | |
2350 | int is_write, hwaddr access_len) | |
2351 | { | |
2352 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
2353 | } | |
2354 | ||
2355 | /* warning: addr must be aligned */ | |
2356 | static inline uint32_t ldl_phys_internal(AddressSpace *as, hwaddr addr, | |
2357 | enum device_endian endian) | |
2358 | { | |
2359 | uint8_t *ptr; | |
2360 | uint64_t val; | |
2361 | MemoryRegion *mr; | |
2362 | hwaddr l = 4; | |
2363 | hwaddr addr1; | |
2364 | ||
2365 | mr = address_space_translate(as, addr, &addr1, &l, false); | |
2366 | if (l < 4 || !memory_access_is_direct(mr, false)) { | |
2367 | /* I/O case */ | |
2368 | io_mem_read(mr, addr1, &val, 4); | |
2369 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2370 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2371 | val = bswap32(val); | |
2372 | } | |
2373 | #else | |
2374 | if (endian == DEVICE_BIG_ENDIAN) { | |
2375 | val = bswap32(val); | |
2376 | } | |
2377 | #endif | |
2378 | } else { | |
2379 | /* RAM case */ | |
2380 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) | |
2381 | & TARGET_PAGE_MASK) | |
2382 | + addr1); | |
2383 | switch (endian) { | |
2384 | case DEVICE_LITTLE_ENDIAN: | |
2385 | val = ldl_le_p(ptr); | |
2386 | break; | |
2387 | case DEVICE_BIG_ENDIAN: | |
2388 | val = ldl_be_p(ptr); | |
2389 | break; | |
2390 | default: | |
2391 | val = ldl_p(ptr); | |
2392 | break; | |
2393 | } | |
2394 | } | |
2395 | return val; | |
2396 | } | |
2397 | ||
2398 | uint32_t ldl_phys(AddressSpace *as, hwaddr addr) | |
2399 | { | |
2400 | return ldl_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN); | |
2401 | } | |
2402 | ||
2403 | uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr) | |
2404 | { | |
2405 | return ldl_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN); | |
2406 | } | |
2407 | ||
2408 | uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr) | |
2409 | { | |
2410 | return ldl_phys_internal(as, addr, DEVICE_BIG_ENDIAN); | |
2411 | } | |
2412 | ||
2413 | /* warning: addr must be aligned */ | |
2414 | static inline uint64_t ldq_phys_internal(AddressSpace *as, hwaddr addr, | |
2415 | enum device_endian endian) | |
2416 | { | |
2417 | uint8_t *ptr; | |
2418 | uint64_t val; | |
2419 | MemoryRegion *mr; | |
2420 | hwaddr l = 8; | |
2421 | hwaddr addr1; | |
2422 | ||
2423 | mr = address_space_translate(as, addr, &addr1, &l, | |
2424 | false); | |
2425 | if (l < 8 || !memory_access_is_direct(mr, false)) { | |
2426 | /* I/O case */ | |
2427 | io_mem_read(mr, addr1, &val, 8); | |
2428 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2429 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2430 | val = bswap64(val); | |
2431 | } | |
2432 | #else | |
2433 | if (endian == DEVICE_BIG_ENDIAN) { | |
2434 | val = bswap64(val); | |
2435 | } | |
2436 | #endif | |
2437 | } else { | |
2438 | /* RAM case */ | |
2439 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) | |
2440 | & TARGET_PAGE_MASK) | |
2441 | + addr1); | |
2442 | switch (endian) { | |
2443 | case DEVICE_LITTLE_ENDIAN: | |
2444 | val = ldq_le_p(ptr); | |
2445 | break; | |
2446 | case DEVICE_BIG_ENDIAN: | |
2447 | val = ldq_be_p(ptr); | |
2448 | break; | |
2449 | default: | |
2450 | val = ldq_p(ptr); | |
2451 | break; | |
2452 | } | |
2453 | } | |
2454 | return val; | |
2455 | } | |
2456 | ||
2457 | uint64_t ldq_phys(AddressSpace *as, hwaddr addr) | |
2458 | { | |
2459 | return ldq_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN); | |
2460 | } | |
2461 | ||
2462 | uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr) | |
2463 | { | |
2464 | return ldq_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN); | |
2465 | } | |
2466 | ||
2467 | uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr) | |
2468 | { | |
2469 | return ldq_phys_internal(as, addr, DEVICE_BIG_ENDIAN); | |
2470 | } | |
2471 | ||
2472 | /* XXX: optimize */ | |
2473 | uint32_t ldub_phys(AddressSpace *as, hwaddr addr) | |
2474 | { | |
2475 | uint8_t val; | |
2476 | address_space_rw(as, addr, &val, 1, 0); | |
2477 | return val; | |
2478 | } | |
2479 | ||
2480 | /* warning: addr must be aligned */ | |
2481 | static inline uint32_t lduw_phys_internal(AddressSpace *as, hwaddr addr, | |
2482 | enum device_endian endian) | |
2483 | { | |
2484 | uint8_t *ptr; | |
2485 | uint64_t val; | |
2486 | MemoryRegion *mr; | |
2487 | hwaddr l = 2; | |
2488 | hwaddr addr1; | |
2489 | ||
2490 | mr = address_space_translate(as, addr, &addr1, &l, | |
2491 | false); | |
2492 | if (l < 2 || !memory_access_is_direct(mr, false)) { | |
2493 | /* I/O case */ | |
2494 | io_mem_read(mr, addr1, &val, 2); | |
2495 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2496 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2497 | val = bswap16(val); | |
2498 | } | |
2499 | #else | |
2500 | if (endian == DEVICE_BIG_ENDIAN) { | |
2501 | val = bswap16(val); | |
2502 | } | |
2503 | #endif | |
2504 | } else { | |
2505 | /* RAM case */ | |
2506 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr) | |
2507 | & TARGET_PAGE_MASK) | |
2508 | + addr1); | |
2509 | switch (endian) { | |
2510 | case DEVICE_LITTLE_ENDIAN: | |
2511 | val = lduw_le_p(ptr); | |
2512 | break; | |
2513 | case DEVICE_BIG_ENDIAN: | |
2514 | val = lduw_be_p(ptr); | |
2515 | break; | |
2516 | default: | |
2517 | val = lduw_p(ptr); | |
2518 | break; | |
2519 | } | |
2520 | } | |
2521 | return val; | |
2522 | } | |
2523 | ||
2524 | uint32_t lduw_phys(AddressSpace *as, hwaddr addr) | |
2525 | { | |
2526 | return lduw_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN); | |
2527 | } | |
2528 | ||
2529 | uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr) | |
2530 | { | |
2531 | return lduw_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN); | |
2532 | } | |
2533 | ||
2534 | uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr) | |
2535 | { | |
2536 | return lduw_phys_internal(as, addr, DEVICE_BIG_ENDIAN); | |
2537 | } | |
2538 | ||
2539 | /* warning: addr must be aligned. The ram page is not masked as dirty | |
2540 | and the code inside is not invalidated. It is useful if the dirty | |
2541 | bits are used to track modified PTEs */ | |
2542 | void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) | |
2543 | { | |
2544 | uint8_t *ptr; | |
2545 | MemoryRegion *mr; | |
2546 | hwaddr l = 4; | |
2547 | hwaddr addr1; | |
2548 | ||
2549 | mr = address_space_translate(as, addr, &addr1, &l, | |
2550 | true); | |
2551 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
2552 | io_mem_write(mr, addr1, val, 4); | |
2553 | } else { | |
2554 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; | |
2555 | ptr = qemu_get_ram_ptr(addr1); | |
2556 | stl_p(ptr, val); | |
2557 | ||
2558 | if (unlikely(in_migration)) { | |
2559 | if (cpu_physical_memory_is_clean(addr1)) { | |
2560 | /* invalidate code */ | |
2561 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
2562 | /* set dirty bit */ | |
2563 | cpu_physical_memory_set_dirty_flag(addr1, | |
2564 | DIRTY_MEMORY_MIGRATION); | |
2565 | cpu_physical_memory_set_dirty_flag(addr1, DIRTY_MEMORY_VGA); | |
2566 | } | |
2567 | } | |
2568 | } | |
2569 | } | |
2570 | ||
2571 | /* warning: addr must be aligned */ | |
2572 | static inline void stl_phys_internal(AddressSpace *as, | |
2573 | hwaddr addr, uint32_t val, | |
2574 | enum device_endian endian) | |
2575 | { | |
2576 | uint8_t *ptr; | |
2577 | MemoryRegion *mr; | |
2578 | hwaddr l = 4; | |
2579 | hwaddr addr1; | |
2580 | ||
2581 | mr = address_space_translate(as, addr, &addr1, &l, | |
2582 | true); | |
2583 | if (l < 4 || !memory_access_is_direct(mr, true)) { | |
2584 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2585 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2586 | val = bswap32(val); | |
2587 | } | |
2588 | #else | |
2589 | if (endian == DEVICE_BIG_ENDIAN) { | |
2590 | val = bswap32(val); | |
2591 | } | |
2592 | #endif | |
2593 | io_mem_write(mr, addr1, val, 4); | |
2594 | } else { | |
2595 | /* RAM case */ | |
2596 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; | |
2597 | ptr = qemu_get_ram_ptr(addr1); | |
2598 | switch (endian) { | |
2599 | case DEVICE_LITTLE_ENDIAN: | |
2600 | stl_le_p(ptr, val); | |
2601 | break; | |
2602 | case DEVICE_BIG_ENDIAN: | |
2603 | stl_be_p(ptr, val); | |
2604 | break; | |
2605 | default: | |
2606 | stl_p(ptr, val); | |
2607 | break; | |
2608 | } | |
2609 | invalidate_and_set_dirty(addr1, 4); | |
2610 | } | |
2611 | } | |
2612 | ||
2613 | void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
2614 | { | |
2615 | stl_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN); | |
2616 | } | |
2617 | ||
2618 | void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
2619 | { | |
2620 | stl_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN); | |
2621 | } | |
2622 | ||
2623 | void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
2624 | { | |
2625 | stl_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN); | |
2626 | } | |
2627 | ||
2628 | /* XXX: optimize */ | |
2629 | void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
2630 | { | |
2631 | uint8_t v = val; | |
2632 | address_space_rw(as, addr, &v, 1, 1); | |
2633 | } | |
2634 | ||
2635 | /* warning: addr must be aligned */ | |
2636 | static inline void stw_phys_internal(AddressSpace *as, | |
2637 | hwaddr addr, uint32_t val, | |
2638 | enum device_endian endian) | |
2639 | { | |
2640 | uint8_t *ptr; | |
2641 | MemoryRegion *mr; | |
2642 | hwaddr l = 2; | |
2643 | hwaddr addr1; | |
2644 | ||
2645 | mr = address_space_translate(as, addr, &addr1, &l, true); | |
2646 | if (l < 2 || !memory_access_is_direct(mr, true)) { | |
2647 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2648 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
2649 | val = bswap16(val); | |
2650 | } | |
2651 | #else | |
2652 | if (endian == DEVICE_BIG_ENDIAN) { | |
2653 | val = bswap16(val); | |
2654 | } | |
2655 | #endif | |
2656 | io_mem_write(mr, addr1, val, 2); | |
2657 | } else { | |
2658 | /* RAM case */ | |
2659 | addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK; | |
2660 | ptr = qemu_get_ram_ptr(addr1); | |
2661 | switch (endian) { | |
2662 | case DEVICE_LITTLE_ENDIAN: | |
2663 | stw_le_p(ptr, val); | |
2664 | break; | |
2665 | case DEVICE_BIG_ENDIAN: | |
2666 | stw_be_p(ptr, val); | |
2667 | break; | |
2668 | default: | |
2669 | stw_p(ptr, val); | |
2670 | break; | |
2671 | } | |
2672 | invalidate_and_set_dirty(addr1, 2); | |
2673 | } | |
2674 | } | |
2675 | ||
2676 | void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
2677 | { | |
2678 | stw_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN); | |
2679 | } | |
2680 | ||
2681 | void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
2682 | { | |
2683 | stw_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN); | |
2684 | } | |
2685 | ||
2686 | void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val) | |
2687 | { | |
2688 | stw_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN); | |
2689 | } | |
2690 | ||
2691 | /* XXX: optimize */ | |
2692 | void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
2693 | { | |
2694 | val = tswap64(val); | |
2695 | address_space_rw(as, addr, (void *) &val, 8, 1); | |
2696 | } | |
2697 | ||
2698 | void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
2699 | { | |
2700 | val = cpu_to_le64(val); | |
2701 | address_space_rw(as, addr, (void *) &val, 8, 1); | |
2702 | } | |
2703 | ||
2704 | void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val) | |
2705 | { | |
2706 | val = cpu_to_be64(val); | |
2707 | address_space_rw(as, addr, (void *) &val, 8, 1); | |
2708 | } | |
2709 | ||
2710 | /* virtual memory access for debug (includes writing to ROM) */ | |
2711 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, | |
2712 | uint8_t *buf, int len, int is_write) | |
2713 | { | |
2714 | int l; | |
2715 | hwaddr phys_addr; | |
2716 | target_ulong page; | |
2717 | ||
2718 | while (len > 0) { | |
2719 | page = addr & TARGET_PAGE_MASK; | |
2720 | phys_addr = cpu_get_phys_page_debug(cpu, page); | |
2721 | /* if no physical page mapped, return an error */ | |
2722 | if (phys_addr == -1) | |
2723 | return -1; | |
2724 | l = (page + TARGET_PAGE_SIZE) - addr; | |
2725 | if (l > len) | |
2726 | l = len; | |
2727 | phys_addr += (addr & ~TARGET_PAGE_MASK); | |
2728 | if (is_write) { | |
2729 | cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l); | |
2730 | } else { | |
2731 | address_space_rw(cpu->as, phys_addr, buf, l, 0); | |
2732 | } | |
2733 | len -= l; | |
2734 | buf += l; | |
2735 | addr += l; | |
2736 | } | |
2737 | return 0; | |
2738 | } | |
2739 | #endif | |
2740 | ||
2741 | #if !defined(CONFIG_USER_ONLY) | |
2742 | ||
2743 | /* | |
2744 | * A helper function for the _utterly broken_ virtio device model to find out if | |
2745 | * it's running on a big endian machine. Don't do this at home kids! | |
2746 | */ | |
2747 | bool virtio_is_big_endian(void); | |
2748 | bool virtio_is_big_endian(void) | |
2749 | { | |
2750 | #if defined(TARGET_WORDS_BIGENDIAN) | |
2751 | return true; | |
2752 | #else | |
2753 | return false; | |
2754 | #endif | |
2755 | } | |
2756 | ||
2757 | #endif | |
2758 | ||
2759 | #ifndef CONFIG_USER_ONLY | |
2760 | bool cpu_physical_memory_is_io(hwaddr phys_addr) | |
2761 | { | |
2762 | MemoryRegion*mr; | |
2763 | hwaddr l = 1; | |
2764 | ||
2765 | mr = address_space_translate(&address_space_memory, | |
2766 | phys_addr, &phys_addr, &l, false); | |
2767 | ||
2768 | return !(memory_region_is_ram(mr) || | |
2769 | memory_region_is_romd(mr)); | |
2770 | } | |
2771 | ||
2772 | void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) | |
2773 | { | |
2774 | RAMBlock *block; | |
2775 | ||
2776 | QTAILQ_FOREACH(block, &ram_list.blocks, next) { | |
2777 | func(block->host, block->offset, block->length, opaque); | |
2778 | } | |
2779 | } | |
2780 | #endif |