]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * QEMU KVM support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5 | * Red Hat, Inc. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * Glauber Costa <[email protected]> | |
10 | * | |
11 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
12 | * See the COPYING file in the top-level directory. | |
13 | * | |
14 | */ | |
15 | ||
16 | #include <sys/types.h> | |
17 | #include <sys/ioctl.h> | |
18 | #include <sys/mman.h> | |
19 | #include <stdarg.h> | |
20 | ||
21 | #include <linux/kvm.h> | |
22 | ||
23 | #include "qemu-common.h" | |
24 | #include "qemu-barrier.h" | |
25 | #include "sysemu.h" | |
26 | #include "hw/hw.h" | |
27 | #include "gdbstub.h" | |
28 | #include "kvm.h" | |
29 | #include "bswap.h" | |
30 | ||
31 | /* This check must be after config-host.h is included */ | |
32 | #ifdef CONFIG_EVENTFD | |
33 | #include <sys/eventfd.h> | |
34 | #endif | |
35 | ||
36 | /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ | |
37 | #define PAGE_SIZE TARGET_PAGE_SIZE | |
38 | ||
39 | //#define DEBUG_KVM | |
40 | ||
41 | #ifdef DEBUG_KVM | |
42 | #define DPRINTF(fmt, ...) \ | |
43 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | |
44 | #else | |
45 | #define DPRINTF(fmt, ...) \ | |
46 | do { } while (0) | |
47 | #endif | |
48 | ||
49 | typedef struct KVMSlot | |
50 | { | |
51 | target_phys_addr_t start_addr; | |
52 | ram_addr_t memory_size; | |
53 | ram_addr_t phys_offset; | |
54 | int slot; | |
55 | int flags; | |
56 | } KVMSlot; | |
57 | ||
58 | typedef struct kvm_dirty_log KVMDirtyLog; | |
59 | ||
60 | struct KVMState | |
61 | { | |
62 | KVMSlot slots[32]; | |
63 | int fd; | |
64 | int vmfd; | |
65 | int coalesced_mmio; | |
66 | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; | |
67 | int broken_set_mem_region; | |
68 | int migration_log; | |
69 | int vcpu_events; | |
70 | int robust_singlestep; | |
71 | int debugregs; | |
72 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
73 | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | |
74 | #endif | |
75 | int irqchip_in_kernel; | |
76 | int pit_in_kernel; | |
77 | int xsave, xcrs; | |
78 | int many_ioeventfds; | |
79 | }; | |
80 | ||
81 | KVMState *kvm_state; | |
82 | ||
83 | static const KVMCapabilityInfo kvm_required_capabilites[] = { | |
84 | KVM_CAP_INFO(USER_MEMORY), | |
85 | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | |
86 | KVM_CAP_LAST_INFO | |
87 | }; | |
88 | ||
89 | static KVMSlot *kvm_alloc_slot(KVMState *s) | |
90 | { | |
91 | int i; | |
92 | ||
93 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
94 | if (s->slots[i].memory_size == 0) { | |
95 | return &s->slots[i]; | |
96 | } | |
97 | } | |
98 | ||
99 | fprintf(stderr, "%s: no free slot available\n", __func__); | |
100 | abort(); | |
101 | } | |
102 | ||
103 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | |
104 | target_phys_addr_t start_addr, | |
105 | target_phys_addr_t end_addr) | |
106 | { | |
107 | int i; | |
108 | ||
109 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
110 | KVMSlot *mem = &s->slots[i]; | |
111 | ||
112 | if (start_addr == mem->start_addr && | |
113 | end_addr == mem->start_addr + mem->memory_size) { | |
114 | return mem; | |
115 | } | |
116 | } | |
117 | ||
118 | return NULL; | |
119 | } | |
120 | ||
121 | /* | |
122 | * Find overlapping slot with lowest start address | |
123 | */ | |
124 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | |
125 | target_phys_addr_t start_addr, | |
126 | target_phys_addr_t end_addr) | |
127 | { | |
128 | KVMSlot *found = NULL; | |
129 | int i; | |
130 | ||
131 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
132 | KVMSlot *mem = &s->slots[i]; | |
133 | ||
134 | if (mem->memory_size == 0 || | |
135 | (found && found->start_addr < mem->start_addr)) { | |
136 | continue; | |
137 | } | |
138 | ||
139 | if (end_addr > mem->start_addr && | |
140 | start_addr < mem->start_addr + mem->memory_size) { | |
141 | found = mem; | |
142 | } | |
143 | } | |
144 | ||
145 | return found; | |
146 | } | |
147 | ||
148 | int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr, | |
149 | target_phys_addr_t *phys_addr) | |
150 | { | |
151 | int i; | |
152 | ||
153 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
154 | KVMSlot *mem = &s->slots[i]; | |
155 | ||
156 | if (ram_addr >= mem->phys_offset && | |
157 | ram_addr < mem->phys_offset + mem->memory_size) { | |
158 | *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset); | |
159 | return 1; | |
160 | } | |
161 | } | |
162 | ||
163 | return 0; | |
164 | } | |
165 | ||
166 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) | |
167 | { | |
168 | struct kvm_userspace_memory_region mem; | |
169 | ||
170 | mem.slot = slot->slot; | |
171 | mem.guest_phys_addr = slot->start_addr; | |
172 | mem.memory_size = slot->memory_size; | |
173 | mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset); | |
174 | mem.flags = slot->flags; | |
175 | if (s->migration_log) { | |
176 | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
177 | } | |
178 | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | |
179 | } | |
180 | ||
181 | static void kvm_reset_vcpu(void *opaque) | |
182 | { | |
183 | CPUState *env = opaque; | |
184 | ||
185 | kvm_arch_reset_vcpu(env); | |
186 | } | |
187 | ||
188 | int kvm_irqchip_in_kernel(void) | |
189 | { | |
190 | return kvm_state->irqchip_in_kernel; | |
191 | } | |
192 | ||
193 | int kvm_pit_in_kernel(void) | |
194 | { | |
195 | return kvm_state->pit_in_kernel; | |
196 | } | |
197 | ||
198 | int kvm_init_vcpu(CPUState *env) | |
199 | { | |
200 | KVMState *s = kvm_state; | |
201 | long mmap_size; | |
202 | int ret; | |
203 | ||
204 | DPRINTF("kvm_init_vcpu\n"); | |
205 | ||
206 | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); | |
207 | if (ret < 0) { | |
208 | DPRINTF("kvm_create_vcpu failed\n"); | |
209 | goto err; | |
210 | } | |
211 | ||
212 | env->kvm_fd = ret; | |
213 | env->kvm_state = s; | |
214 | env->kvm_vcpu_dirty = 1; | |
215 | ||
216 | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | |
217 | if (mmap_size < 0) { | |
218 | ret = mmap_size; | |
219 | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); | |
220 | goto err; | |
221 | } | |
222 | ||
223 | env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | |
224 | env->kvm_fd, 0); | |
225 | if (env->kvm_run == MAP_FAILED) { | |
226 | ret = -errno; | |
227 | DPRINTF("mmap'ing vcpu state failed\n"); | |
228 | goto err; | |
229 | } | |
230 | ||
231 | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { | |
232 | s->coalesced_mmio_ring = | |
233 | (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE; | |
234 | } | |
235 | ||
236 | ret = kvm_arch_init_vcpu(env); | |
237 | if (ret == 0) { | |
238 | qemu_register_reset(kvm_reset_vcpu, env); | |
239 | kvm_arch_reset_vcpu(env); | |
240 | } | |
241 | err: | |
242 | return ret; | |
243 | } | |
244 | ||
245 | /* | |
246 | * dirty pages logging control | |
247 | */ | |
248 | ||
249 | static int kvm_mem_flags(KVMState *s, bool log_dirty) | |
250 | { | |
251 | return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; | |
252 | } | |
253 | ||
254 | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) | |
255 | { | |
256 | KVMState *s = kvm_state; | |
257 | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; | |
258 | int old_flags; | |
259 | ||
260 | old_flags = mem->flags; | |
261 | ||
262 | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty); | |
263 | mem->flags = flags; | |
264 | ||
265 | /* If nothing changed effectively, no need to issue ioctl */ | |
266 | if (s->migration_log) { | |
267 | flags |= KVM_MEM_LOG_DIRTY_PAGES; | |
268 | } | |
269 | ||
270 | if (flags == old_flags) { | |
271 | return 0; | |
272 | } | |
273 | ||
274 | return kvm_set_user_memory_region(s, mem); | |
275 | } | |
276 | ||
277 | static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, | |
278 | ram_addr_t size, bool log_dirty) | |
279 | { | |
280 | KVMState *s = kvm_state; | |
281 | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | |
282 | ||
283 | if (mem == NULL) { | |
284 | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" | |
285 | TARGET_FMT_plx "\n", __func__, phys_addr, | |
286 | (target_phys_addr_t)(phys_addr + size - 1)); | |
287 | return -EINVAL; | |
288 | } | |
289 | return kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
290 | } | |
291 | ||
292 | static int kvm_log_start(CPUPhysMemoryClient *client, | |
293 | target_phys_addr_t phys_addr, ram_addr_t size) | |
294 | { | |
295 | return kvm_dirty_pages_log_change(phys_addr, size, true); | |
296 | } | |
297 | ||
298 | static int kvm_log_stop(CPUPhysMemoryClient *client, | |
299 | target_phys_addr_t phys_addr, ram_addr_t size) | |
300 | { | |
301 | return kvm_dirty_pages_log_change(phys_addr, size, false); | |
302 | } | |
303 | ||
304 | static int kvm_set_migration_log(int enable) | |
305 | { | |
306 | KVMState *s = kvm_state; | |
307 | KVMSlot *mem; | |
308 | int i, err; | |
309 | ||
310 | s->migration_log = enable; | |
311 | ||
312 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
313 | mem = &s->slots[i]; | |
314 | ||
315 | if (!mem->memory_size) { | |
316 | continue; | |
317 | } | |
318 | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { | |
319 | continue; | |
320 | } | |
321 | err = kvm_set_user_memory_region(s, mem); | |
322 | if (err) { | |
323 | return err; | |
324 | } | |
325 | } | |
326 | return 0; | |
327 | } | |
328 | ||
329 | /* get kvm's dirty pages bitmap and update qemu's */ | |
330 | static int kvm_get_dirty_pages_log_range(unsigned long start_addr, | |
331 | unsigned long *bitmap, | |
332 | unsigned long offset, | |
333 | unsigned long mem_size) | |
334 | { | |
335 | unsigned int i, j; | |
336 | unsigned long page_number, addr, addr1, c; | |
337 | ram_addr_t ram_addr; | |
338 | unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / | |
339 | HOST_LONG_BITS; | |
340 | ||
341 | /* | |
342 | * bitmap-traveling is faster than memory-traveling (for addr...) | |
343 | * especially when most of the memory is not dirty. | |
344 | */ | |
345 | for (i = 0; i < len; i++) { | |
346 | if (bitmap[i] != 0) { | |
347 | c = leul_to_cpu(bitmap[i]); | |
348 | do { | |
349 | j = ffsl(c) - 1; | |
350 | c &= ~(1ul << j); | |
351 | page_number = i * HOST_LONG_BITS + j; | |
352 | addr1 = page_number * TARGET_PAGE_SIZE; | |
353 | addr = offset + addr1; | |
354 | ram_addr = cpu_get_physical_page_desc(addr); | |
355 | cpu_physical_memory_set_dirty(ram_addr); | |
356 | } while (c != 0); | |
357 | } | |
358 | } | |
359 | return 0; | |
360 | } | |
361 | ||
362 | #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) | |
363 | ||
364 | /** | |
365 | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | |
366 | * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty(). | |
367 | * This means all bits are set to dirty. | |
368 | * | |
369 | * @start_add: start of logged region. | |
370 | * @end_addr: end of logged region. | |
371 | */ | |
372 | static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, | |
373 | target_phys_addr_t end_addr) | |
374 | { | |
375 | KVMState *s = kvm_state; | |
376 | unsigned long size, allocated_size = 0; | |
377 | KVMDirtyLog d; | |
378 | KVMSlot *mem; | |
379 | int ret = 0; | |
380 | ||
381 | d.dirty_bitmap = NULL; | |
382 | while (start_addr < end_addr) { | |
383 | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | |
384 | if (mem == NULL) { | |
385 | break; | |
386 | } | |
387 | ||
388 | /* XXX bad kernel interface alert | |
389 | * For dirty bitmap, kernel allocates array of size aligned to | |
390 | * bits-per-long. But for case when the kernel is 64bits and | |
391 | * the userspace is 32bits, userspace can't align to the same | |
392 | * bits-per-long, since sizeof(long) is different between kernel | |
393 | * and user space. This way, userspace will provide buffer which | |
394 | * may be 4 bytes less than the kernel will use, resulting in | |
395 | * userspace memory corruption (which is not detectable by valgrind | |
396 | * too, in most cases). | |
397 | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | |
398 | * a hope that sizeof(long) wont become >8 any time soon. | |
399 | */ | |
400 | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | |
401 | /*HOST_LONG_BITS*/ 64) / 8; | |
402 | if (!d.dirty_bitmap) { | |
403 | d.dirty_bitmap = qemu_malloc(size); | |
404 | } else if (size > allocated_size) { | |
405 | d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size); | |
406 | } | |
407 | allocated_size = size; | |
408 | memset(d.dirty_bitmap, 0, allocated_size); | |
409 | ||
410 | d.slot = mem->slot; | |
411 | ||
412 | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { | |
413 | DPRINTF("ioctl failed %d\n", errno); | |
414 | ret = -1; | |
415 | break; | |
416 | } | |
417 | ||
418 | kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap, | |
419 | mem->start_addr, mem->memory_size); | |
420 | start_addr = mem->start_addr + mem->memory_size; | |
421 | } | |
422 | qemu_free(d.dirty_bitmap); | |
423 | ||
424 | return ret; | |
425 | } | |
426 | ||
427 | int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) | |
428 | { | |
429 | int ret = -ENOSYS; | |
430 | KVMState *s = kvm_state; | |
431 | ||
432 | if (s->coalesced_mmio) { | |
433 | struct kvm_coalesced_mmio_zone zone; | |
434 | ||
435 | zone.addr = start; | |
436 | zone.size = size; | |
437 | ||
438 | ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | |
439 | } | |
440 | ||
441 | return ret; | |
442 | } | |
443 | ||
444 | int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) | |
445 | { | |
446 | int ret = -ENOSYS; | |
447 | KVMState *s = kvm_state; | |
448 | ||
449 | if (s->coalesced_mmio) { | |
450 | struct kvm_coalesced_mmio_zone zone; | |
451 | ||
452 | zone.addr = start; | |
453 | zone.size = size; | |
454 | ||
455 | ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | |
456 | } | |
457 | ||
458 | return ret; | |
459 | } | |
460 | ||
461 | int kvm_check_extension(KVMState *s, unsigned int extension) | |
462 | { | |
463 | int ret; | |
464 | ||
465 | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | |
466 | if (ret < 0) { | |
467 | ret = 0; | |
468 | } | |
469 | ||
470 | return ret; | |
471 | } | |
472 | ||
473 | static int kvm_check_many_ioeventfds(void) | |
474 | { | |
475 | /* Userspace can use ioeventfd for io notification. This requires a host | |
476 | * that supports eventfd(2) and an I/O thread; since eventfd does not | |
477 | * support SIGIO it cannot interrupt the vcpu. | |
478 | * | |
479 | * Older kernels have a 6 device limit on the KVM io bus. Find out so we | |
480 | * can avoid creating too many ioeventfds. | |
481 | */ | |
482 | #if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD) | |
483 | int ioeventfds[7]; | |
484 | int i, ret = 0; | |
485 | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | |
486 | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | |
487 | if (ioeventfds[i] < 0) { | |
488 | break; | |
489 | } | |
490 | ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true); | |
491 | if (ret < 0) { | |
492 | close(ioeventfds[i]); | |
493 | break; | |
494 | } | |
495 | } | |
496 | ||
497 | /* Decide whether many devices are supported or not */ | |
498 | ret = i == ARRAY_SIZE(ioeventfds); | |
499 | ||
500 | while (i-- > 0) { | |
501 | kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false); | |
502 | close(ioeventfds[i]); | |
503 | } | |
504 | return ret; | |
505 | #else | |
506 | return 0; | |
507 | #endif | |
508 | } | |
509 | ||
510 | static const KVMCapabilityInfo * | |
511 | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | |
512 | { | |
513 | while (list->name) { | |
514 | if (!kvm_check_extension(s, list->value)) { | |
515 | return list; | |
516 | } | |
517 | list++; | |
518 | } | |
519 | return NULL; | |
520 | } | |
521 | ||
522 | static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size, | |
523 | ram_addr_t phys_offset, bool log_dirty) | |
524 | { | |
525 | KVMState *s = kvm_state; | |
526 | ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; | |
527 | KVMSlot *mem, old; | |
528 | int err; | |
529 | ||
530 | /* kvm works in page size chunks, but the function may be called | |
531 | with sub-page size and unaligned start address. */ | |
532 | size = TARGET_PAGE_ALIGN(size); | |
533 | start_addr = TARGET_PAGE_ALIGN(start_addr); | |
534 | ||
535 | /* KVM does not support read-only slots */ | |
536 | phys_offset &= ~IO_MEM_ROM; | |
537 | ||
538 | while (1) { | |
539 | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | |
540 | if (!mem) { | |
541 | break; | |
542 | } | |
543 | ||
544 | if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr && | |
545 | (start_addr + size <= mem->start_addr + mem->memory_size) && | |
546 | (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) { | |
547 | /* The new slot fits into the existing one and comes with | |
548 | * identical parameters - update flags and done. */ | |
549 | kvm_slot_dirty_pages_log_change(mem, log_dirty); | |
550 | return; | |
551 | } | |
552 | ||
553 | old = *mem; | |
554 | ||
555 | /* unregister the overlapping slot */ | |
556 | mem->memory_size = 0; | |
557 | err = kvm_set_user_memory_region(s, mem); | |
558 | if (err) { | |
559 | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | |
560 | __func__, strerror(-err)); | |
561 | abort(); | |
562 | } | |
563 | ||
564 | /* Workaround for older KVM versions: we can't join slots, even not by | |
565 | * unregistering the previous ones and then registering the larger | |
566 | * slot. We have to maintain the existing fragmentation. Sigh. | |
567 | * | |
568 | * This workaround assumes that the new slot starts at the same | |
569 | * address as the first existing one. If not or if some overlapping | |
570 | * slot comes around later, we will fail (not seen in practice so far) | |
571 | * - and actually require a recent KVM version. */ | |
572 | if (s->broken_set_mem_region && | |
573 | old.start_addr == start_addr && old.memory_size < size && | |
574 | flags < IO_MEM_UNASSIGNED) { | |
575 | mem = kvm_alloc_slot(s); | |
576 | mem->memory_size = old.memory_size; | |
577 | mem->start_addr = old.start_addr; | |
578 | mem->phys_offset = old.phys_offset; | |
579 | mem->flags = kvm_mem_flags(s, log_dirty); | |
580 | ||
581 | err = kvm_set_user_memory_region(s, mem); | |
582 | if (err) { | |
583 | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | |
584 | strerror(-err)); | |
585 | abort(); | |
586 | } | |
587 | ||
588 | start_addr += old.memory_size; | |
589 | phys_offset += old.memory_size; | |
590 | size -= old.memory_size; | |
591 | continue; | |
592 | } | |
593 | ||
594 | /* register prefix slot */ | |
595 | if (old.start_addr < start_addr) { | |
596 | mem = kvm_alloc_slot(s); | |
597 | mem->memory_size = start_addr - old.start_addr; | |
598 | mem->start_addr = old.start_addr; | |
599 | mem->phys_offset = old.phys_offset; | |
600 | mem->flags = kvm_mem_flags(s, log_dirty); | |
601 | ||
602 | err = kvm_set_user_memory_region(s, mem); | |
603 | if (err) { | |
604 | fprintf(stderr, "%s: error registering prefix slot: %s\n", | |
605 | __func__, strerror(-err)); | |
606 | #ifdef TARGET_PPC | |
607 | fprintf(stderr, "%s: This is probably because your kernel's " \ | |
608 | "PAGE_SIZE is too big. Please try to use 4k " \ | |
609 | "PAGE_SIZE!\n", __func__); | |
610 | #endif | |
611 | abort(); | |
612 | } | |
613 | } | |
614 | ||
615 | /* register suffix slot */ | |
616 | if (old.start_addr + old.memory_size > start_addr + size) { | |
617 | ram_addr_t size_delta; | |
618 | ||
619 | mem = kvm_alloc_slot(s); | |
620 | mem->start_addr = start_addr + size; | |
621 | size_delta = mem->start_addr - old.start_addr; | |
622 | mem->memory_size = old.memory_size - size_delta; | |
623 | mem->phys_offset = old.phys_offset + size_delta; | |
624 | mem->flags = kvm_mem_flags(s, log_dirty); | |
625 | ||
626 | err = kvm_set_user_memory_region(s, mem); | |
627 | if (err) { | |
628 | fprintf(stderr, "%s: error registering suffix slot: %s\n", | |
629 | __func__, strerror(-err)); | |
630 | abort(); | |
631 | } | |
632 | } | |
633 | } | |
634 | ||
635 | /* in case the KVM bug workaround already "consumed" the new slot */ | |
636 | if (!size) { | |
637 | return; | |
638 | } | |
639 | /* KVM does not need to know about this memory */ | |
640 | if (flags >= IO_MEM_UNASSIGNED) { | |
641 | return; | |
642 | } | |
643 | mem = kvm_alloc_slot(s); | |
644 | mem->memory_size = size; | |
645 | mem->start_addr = start_addr; | |
646 | mem->phys_offset = phys_offset; | |
647 | mem->flags = kvm_mem_flags(s, log_dirty); | |
648 | ||
649 | err = kvm_set_user_memory_region(s, mem); | |
650 | if (err) { | |
651 | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | |
652 | strerror(-err)); | |
653 | abort(); | |
654 | } | |
655 | } | |
656 | ||
657 | static void kvm_client_set_memory(struct CPUPhysMemoryClient *client, | |
658 | target_phys_addr_t start_addr, | |
659 | ram_addr_t size, ram_addr_t phys_offset, | |
660 | bool log_dirty) | |
661 | { | |
662 | kvm_set_phys_mem(start_addr, size, phys_offset, log_dirty); | |
663 | } | |
664 | ||
665 | static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client, | |
666 | target_phys_addr_t start_addr, | |
667 | target_phys_addr_t end_addr) | |
668 | { | |
669 | return kvm_physical_sync_dirty_bitmap(start_addr, end_addr); | |
670 | } | |
671 | ||
672 | static int kvm_client_migration_log(struct CPUPhysMemoryClient *client, | |
673 | int enable) | |
674 | { | |
675 | return kvm_set_migration_log(enable); | |
676 | } | |
677 | ||
678 | static CPUPhysMemoryClient kvm_cpu_phys_memory_client = { | |
679 | .set_memory = kvm_client_set_memory, | |
680 | .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap, | |
681 | .migration_log = kvm_client_migration_log, | |
682 | .log_start = kvm_log_start, | |
683 | .log_stop = kvm_log_stop, | |
684 | }; | |
685 | ||
686 | static void kvm_handle_interrupt(CPUState *env, int mask) | |
687 | { | |
688 | env->interrupt_request |= mask; | |
689 | ||
690 | if (!qemu_cpu_is_self(env)) { | |
691 | qemu_cpu_kick(env); | |
692 | } | |
693 | } | |
694 | ||
695 | int kvm_init(void) | |
696 | { | |
697 | static const char upgrade_note[] = | |
698 | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | |
699 | "(see http://sourceforge.net/projects/kvm).\n"; | |
700 | KVMState *s; | |
701 | const KVMCapabilityInfo *missing_cap; | |
702 | int ret; | |
703 | int i; | |
704 | ||
705 | s = qemu_mallocz(sizeof(KVMState)); | |
706 | ||
707 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
708 | QTAILQ_INIT(&s->kvm_sw_breakpoints); | |
709 | #endif | |
710 | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | |
711 | s->slots[i].slot = i; | |
712 | } | |
713 | s->vmfd = -1; | |
714 | s->fd = qemu_open("/dev/kvm", O_RDWR); | |
715 | if (s->fd == -1) { | |
716 | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | |
717 | ret = -errno; | |
718 | goto err; | |
719 | } | |
720 | ||
721 | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | |
722 | if (ret < KVM_API_VERSION) { | |
723 | if (ret > 0) { | |
724 | ret = -EINVAL; | |
725 | } | |
726 | fprintf(stderr, "kvm version too old\n"); | |
727 | goto err; | |
728 | } | |
729 | ||
730 | if (ret > KVM_API_VERSION) { | |
731 | ret = -EINVAL; | |
732 | fprintf(stderr, "kvm version not supported\n"); | |
733 | goto err; | |
734 | } | |
735 | ||
736 | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); | |
737 | if (s->vmfd < 0) { | |
738 | #ifdef TARGET_S390X | |
739 | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | |
740 | "your host kernel command line\n"); | |
741 | #endif | |
742 | goto err; | |
743 | } | |
744 | ||
745 | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); | |
746 | if (!missing_cap) { | |
747 | missing_cap = | |
748 | kvm_check_extension_list(s, kvm_arch_required_capabilities); | |
749 | } | |
750 | if (missing_cap) { | |
751 | ret = -EINVAL; | |
752 | fprintf(stderr, "kvm does not support %s\n%s", | |
753 | missing_cap->name, upgrade_note); | |
754 | goto err; | |
755 | } | |
756 | ||
757 | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); | |
758 | ||
759 | s->broken_set_mem_region = 1; | |
760 | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); | |
761 | if (ret > 0) { | |
762 | s->broken_set_mem_region = 0; | |
763 | } | |
764 | ||
765 | #ifdef KVM_CAP_VCPU_EVENTS | |
766 | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | |
767 | #endif | |
768 | ||
769 | s->robust_singlestep = | |
770 | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | |
771 | ||
772 | #ifdef KVM_CAP_DEBUGREGS | |
773 | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | |
774 | #endif | |
775 | ||
776 | #ifdef KVM_CAP_XSAVE | |
777 | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | |
778 | #endif | |
779 | ||
780 | #ifdef KVM_CAP_XCRS | |
781 | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | |
782 | #endif | |
783 | ||
784 | ret = kvm_arch_init(s); | |
785 | if (ret < 0) { | |
786 | goto err; | |
787 | } | |
788 | ||
789 | kvm_state = s; | |
790 | cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client); | |
791 | ||
792 | s->many_ioeventfds = kvm_check_many_ioeventfds(); | |
793 | ||
794 | cpu_interrupt_handler = kvm_handle_interrupt; | |
795 | ||
796 | return 0; | |
797 | ||
798 | err: | |
799 | if (s) { | |
800 | if (s->vmfd != -1) { | |
801 | close(s->vmfd); | |
802 | } | |
803 | if (s->fd != -1) { | |
804 | close(s->fd); | |
805 | } | |
806 | } | |
807 | qemu_free(s); | |
808 | ||
809 | return ret; | |
810 | } | |
811 | ||
812 | static void kvm_handle_io(uint16_t port, void *data, int direction, int size, | |
813 | uint32_t count) | |
814 | { | |
815 | int i; | |
816 | uint8_t *ptr = data; | |
817 | ||
818 | for (i = 0; i < count; i++) { | |
819 | if (direction == KVM_EXIT_IO_IN) { | |
820 | switch (size) { | |
821 | case 1: | |
822 | stb_p(ptr, cpu_inb(port)); | |
823 | break; | |
824 | case 2: | |
825 | stw_p(ptr, cpu_inw(port)); | |
826 | break; | |
827 | case 4: | |
828 | stl_p(ptr, cpu_inl(port)); | |
829 | break; | |
830 | } | |
831 | } else { | |
832 | switch (size) { | |
833 | case 1: | |
834 | cpu_outb(port, ldub_p(ptr)); | |
835 | break; | |
836 | case 2: | |
837 | cpu_outw(port, lduw_p(ptr)); | |
838 | break; | |
839 | case 4: | |
840 | cpu_outl(port, ldl_p(ptr)); | |
841 | break; | |
842 | } | |
843 | } | |
844 | ||
845 | ptr += size; | |
846 | } | |
847 | } | |
848 | ||
849 | static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run) | |
850 | { | |
851 | fprintf(stderr, "KVM internal error."); | |
852 | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { | |
853 | int i; | |
854 | ||
855 | fprintf(stderr, " Suberror: %d\n", run->internal.suberror); | |
856 | for (i = 0; i < run->internal.ndata; ++i) { | |
857 | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | |
858 | i, (uint64_t)run->internal.data[i]); | |
859 | } | |
860 | } else { | |
861 | fprintf(stderr, "\n"); | |
862 | } | |
863 | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { | |
864 | fprintf(stderr, "emulation failure\n"); | |
865 | if (!kvm_arch_stop_on_emulation_error(env)) { | |
866 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); | |
867 | return EXCP_INTERRUPT; | |
868 | } | |
869 | } | |
870 | /* FIXME: Should trigger a qmp message to let management know | |
871 | * something went wrong. | |
872 | */ | |
873 | return -1; | |
874 | } | |
875 | ||
876 | void kvm_flush_coalesced_mmio_buffer(void) | |
877 | { | |
878 | KVMState *s = kvm_state; | |
879 | if (s->coalesced_mmio_ring) { | |
880 | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | |
881 | while (ring->first != ring->last) { | |
882 | struct kvm_coalesced_mmio *ent; | |
883 | ||
884 | ent = &ring->coalesced_mmio[ring->first]; | |
885 | ||
886 | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | |
887 | smp_wmb(); | |
888 | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; | |
889 | } | |
890 | } | |
891 | } | |
892 | ||
893 | static void do_kvm_cpu_synchronize_state(void *_env) | |
894 | { | |
895 | CPUState *env = _env; | |
896 | ||
897 | if (!env->kvm_vcpu_dirty) { | |
898 | kvm_arch_get_registers(env); | |
899 | env->kvm_vcpu_dirty = 1; | |
900 | } | |
901 | } | |
902 | ||
903 | void kvm_cpu_synchronize_state(CPUState *env) | |
904 | { | |
905 | if (!env->kvm_vcpu_dirty) { | |
906 | run_on_cpu(env, do_kvm_cpu_synchronize_state, env); | |
907 | } | |
908 | } | |
909 | ||
910 | void kvm_cpu_synchronize_post_reset(CPUState *env) | |
911 | { | |
912 | kvm_arch_put_registers(env, KVM_PUT_RESET_STATE); | |
913 | env->kvm_vcpu_dirty = 0; | |
914 | } | |
915 | ||
916 | void kvm_cpu_synchronize_post_init(CPUState *env) | |
917 | { | |
918 | kvm_arch_put_registers(env, KVM_PUT_FULL_STATE); | |
919 | env->kvm_vcpu_dirty = 0; | |
920 | } | |
921 | ||
922 | int kvm_cpu_exec(CPUState *env) | |
923 | { | |
924 | struct kvm_run *run = env->kvm_run; | |
925 | int ret, run_ret; | |
926 | ||
927 | DPRINTF("kvm_cpu_exec()\n"); | |
928 | ||
929 | if (kvm_arch_process_async_events(env)) { | |
930 | env->exit_request = 0; | |
931 | return EXCP_HLT; | |
932 | } | |
933 | ||
934 | cpu_single_env = env; | |
935 | ||
936 | do { | |
937 | if (env->kvm_vcpu_dirty) { | |
938 | kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE); | |
939 | env->kvm_vcpu_dirty = 0; | |
940 | } | |
941 | ||
942 | kvm_arch_pre_run(env, run); | |
943 | if (env->exit_request) { | |
944 | DPRINTF("interrupt exit requested\n"); | |
945 | /* | |
946 | * KVM requires us to reenter the kernel after IO exits to complete | |
947 | * instruction emulation. This self-signal will ensure that we | |
948 | * leave ASAP again. | |
949 | */ | |
950 | qemu_cpu_kick_self(); | |
951 | } | |
952 | cpu_single_env = NULL; | |
953 | qemu_mutex_unlock_iothread(); | |
954 | ||
955 | run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); | |
956 | ||
957 | qemu_mutex_lock_iothread(); | |
958 | cpu_single_env = env; | |
959 | kvm_arch_post_run(env, run); | |
960 | ||
961 | kvm_flush_coalesced_mmio_buffer(); | |
962 | ||
963 | if (run_ret < 0) { | |
964 | if (run_ret == -EINTR || run_ret == -EAGAIN) { | |
965 | DPRINTF("io window exit\n"); | |
966 | ret = EXCP_INTERRUPT; | |
967 | break; | |
968 | } | |
969 | DPRINTF("kvm run failed %s\n", strerror(-run_ret)); | |
970 | abort(); | |
971 | } | |
972 | ||
973 | switch (run->exit_reason) { | |
974 | case KVM_EXIT_IO: | |
975 | DPRINTF("handle_io\n"); | |
976 | kvm_handle_io(run->io.port, | |
977 | (uint8_t *)run + run->io.data_offset, | |
978 | run->io.direction, | |
979 | run->io.size, | |
980 | run->io.count); | |
981 | ret = 0; | |
982 | break; | |
983 | case KVM_EXIT_MMIO: | |
984 | DPRINTF("handle_mmio\n"); | |
985 | cpu_physical_memory_rw(run->mmio.phys_addr, | |
986 | run->mmio.data, | |
987 | run->mmio.len, | |
988 | run->mmio.is_write); | |
989 | ret = 0; | |
990 | break; | |
991 | case KVM_EXIT_IRQ_WINDOW_OPEN: | |
992 | DPRINTF("irq_window_open\n"); | |
993 | ret = EXCP_INTERRUPT; | |
994 | break; | |
995 | case KVM_EXIT_SHUTDOWN: | |
996 | DPRINTF("shutdown\n"); | |
997 | qemu_system_reset_request(); | |
998 | ret = EXCP_INTERRUPT; | |
999 | break; | |
1000 | case KVM_EXIT_UNKNOWN: | |
1001 | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", | |
1002 | (uint64_t)run->hw.hardware_exit_reason); | |
1003 | ret = -1; | |
1004 | break; | |
1005 | case KVM_EXIT_INTERNAL_ERROR: | |
1006 | ret = kvm_handle_internal_error(env, run); | |
1007 | break; | |
1008 | default: | |
1009 | DPRINTF("kvm_arch_handle_exit\n"); | |
1010 | ret = kvm_arch_handle_exit(env, run); | |
1011 | break; | |
1012 | } | |
1013 | } while (ret == 0); | |
1014 | ||
1015 | if (ret < 0) { | |
1016 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); | |
1017 | vm_stop(VMSTOP_PANIC); | |
1018 | } | |
1019 | ||
1020 | env->exit_request = 0; | |
1021 | cpu_single_env = NULL; | |
1022 | return ret; | |
1023 | } | |
1024 | ||
1025 | int kvm_ioctl(KVMState *s, int type, ...) | |
1026 | { | |
1027 | int ret; | |
1028 | void *arg; | |
1029 | va_list ap; | |
1030 | ||
1031 | va_start(ap, type); | |
1032 | arg = va_arg(ap, void *); | |
1033 | va_end(ap); | |
1034 | ||
1035 | ret = ioctl(s->fd, type, arg); | |
1036 | if (ret == -1) { | |
1037 | ret = -errno; | |
1038 | } | |
1039 | return ret; | |
1040 | } | |
1041 | ||
1042 | int kvm_vm_ioctl(KVMState *s, int type, ...) | |
1043 | { | |
1044 | int ret; | |
1045 | void *arg; | |
1046 | va_list ap; | |
1047 | ||
1048 | va_start(ap, type); | |
1049 | arg = va_arg(ap, void *); | |
1050 | va_end(ap); | |
1051 | ||
1052 | ret = ioctl(s->vmfd, type, arg); | |
1053 | if (ret == -1) { | |
1054 | ret = -errno; | |
1055 | } | |
1056 | return ret; | |
1057 | } | |
1058 | ||
1059 | int kvm_vcpu_ioctl(CPUState *env, int type, ...) | |
1060 | { | |
1061 | int ret; | |
1062 | void *arg; | |
1063 | va_list ap; | |
1064 | ||
1065 | va_start(ap, type); | |
1066 | arg = va_arg(ap, void *); | |
1067 | va_end(ap); | |
1068 | ||
1069 | ret = ioctl(env->kvm_fd, type, arg); | |
1070 | if (ret == -1) { | |
1071 | ret = -errno; | |
1072 | } | |
1073 | return ret; | |
1074 | } | |
1075 | ||
1076 | int kvm_has_sync_mmu(void) | |
1077 | { | |
1078 | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); | |
1079 | } | |
1080 | ||
1081 | int kvm_has_vcpu_events(void) | |
1082 | { | |
1083 | return kvm_state->vcpu_events; | |
1084 | } | |
1085 | ||
1086 | int kvm_has_robust_singlestep(void) | |
1087 | { | |
1088 | return kvm_state->robust_singlestep; | |
1089 | } | |
1090 | ||
1091 | int kvm_has_debugregs(void) | |
1092 | { | |
1093 | return kvm_state->debugregs; | |
1094 | } | |
1095 | ||
1096 | int kvm_has_xsave(void) | |
1097 | { | |
1098 | return kvm_state->xsave; | |
1099 | } | |
1100 | ||
1101 | int kvm_has_xcrs(void) | |
1102 | { | |
1103 | return kvm_state->xcrs; | |
1104 | } | |
1105 | ||
1106 | int kvm_has_many_ioeventfds(void) | |
1107 | { | |
1108 | if (!kvm_enabled()) { | |
1109 | return 0; | |
1110 | } | |
1111 | return kvm_state->many_ioeventfds; | |
1112 | } | |
1113 | ||
1114 | void kvm_setup_guest_memory(void *start, size_t size) | |
1115 | { | |
1116 | if (!kvm_has_sync_mmu()) { | |
1117 | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); | |
1118 | ||
1119 | if (ret) { | |
1120 | perror("qemu_madvise"); | |
1121 | fprintf(stderr, | |
1122 | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | |
1123 | exit(1); | |
1124 | } | |
1125 | } | |
1126 | } | |
1127 | ||
1128 | #ifdef KVM_CAP_SET_GUEST_DEBUG | |
1129 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env, | |
1130 | target_ulong pc) | |
1131 | { | |
1132 | struct kvm_sw_breakpoint *bp; | |
1133 | ||
1134 | QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { | |
1135 | if (bp->pc == pc) { | |
1136 | return bp; | |
1137 | } | |
1138 | } | |
1139 | return NULL; | |
1140 | } | |
1141 | ||
1142 | int kvm_sw_breakpoints_active(CPUState *env) | |
1143 | { | |
1144 | return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); | |
1145 | } | |
1146 | ||
1147 | struct kvm_set_guest_debug_data { | |
1148 | struct kvm_guest_debug dbg; | |
1149 | CPUState *env; | |
1150 | int err; | |
1151 | }; | |
1152 | ||
1153 | static void kvm_invoke_set_guest_debug(void *data) | |
1154 | { | |
1155 | struct kvm_set_guest_debug_data *dbg_data = data; | |
1156 | CPUState *env = dbg_data->env; | |
1157 | ||
1158 | dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); | |
1159 | } | |
1160 | ||
1161 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) | |
1162 | { | |
1163 | struct kvm_set_guest_debug_data data; | |
1164 | ||
1165 | data.dbg.control = reinject_trap; | |
1166 | ||
1167 | if (env->singlestep_enabled) { | |
1168 | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | |
1169 | } | |
1170 | kvm_arch_update_guest_debug(env, &data.dbg); | |
1171 | data.env = env; | |
1172 | ||
1173 | run_on_cpu(env, kvm_invoke_set_guest_debug, &data); | |
1174 | return data.err; | |
1175 | } | |
1176 | ||
1177 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
1178 | target_ulong len, int type) | |
1179 | { | |
1180 | struct kvm_sw_breakpoint *bp; | |
1181 | CPUState *env; | |
1182 | int err; | |
1183 | ||
1184 | if (type == GDB_BREAKPOINT_SW) { | |
1185 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1186 | if (bp) { | |
1187 | bp->use_count++; | |
1188 | return 0; | |
1189 | } | |
1190 | ||
1191 | bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint)); | |
1192 | if (!bp) { | |
1193 | return -ENOMEM; | |
1194 | } | |
1195 | ||
1196 | bp->pc = addr; | |
1197 | bp->use_count = 1; | |
1198 | err = kvm_arch_insert_sw_breakpoint(current_env, bp); | |
1199 | if (err) { | |
1200 | qemu_free(bp); | |
1201 | return err; | |
1202 | } | |
1203 | ||
1204 | QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, | |
1205 | bp, entry); | |
1206 | } else { | |
1207 | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | |
1208 | if (err) { | |
1209 | return err; | |
1210 | } | |
1211 | } | |
1212 | ||
1213 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1214 | err = kvm_update_guest_debug(env, 0); | |
1215 | if (err) { | |
1216 | return err; | |
1217 | } | |
1218 | } | |
1219 | return 0; | |
1220 | } | |
1221 | ||
1222 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1223 | target_ulong len, int type) | |
1224 | { | |
1225 | struct kvm_sw_breakpoint *bp; | |
1226 | CPUState *env; | |
1227 | int err; | |
1228 | ||
1229 | if (type == GDB_BREAKPOINT_SW) { | |
1230 | bp = kvm_find_sw_breakpoint(current_env, addr); | |
1231 | if (!bp) { | |
1232 | return -ENOENT; | |
1233 | } | |
1234 | ||
1235 | if (bp->use_count > 1) { | |
1236 | bp->use_count--; | |
1237 | return 0; | |
1238 | } | |
1239 | ||
1240 | err = kvm_arch_remove_sw_breakpoint(current_env, bp); | |
1241 | if (err) { | |
1242 | return err; | |
1243 | } | |
1244 | ||
1245 | QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); | |
1246 | qemu_free(bp); | |
1247 | } else { | |
1248 | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | |
1249 | if (err) { | |
1250 | return err; | |
1251 | } | |
1252 | } | |
1253 | ||
1254 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1255 | err = kvm_update_guest_debug(env, 0); | |
1256 | if (err) { | |
1257 | return err; | |
1258 | } | |
1259 | } | |
1260 | return 0; | |
1261 | } | |
1262 | ||
1263 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1264 | { | |
1265 | struct kvm_sw_breakpoint *bp, *next; | |
1266 | KVMState *s = current_env->kvm_state; | |
1267 | CPUState *env; | |
1268 | ||
1269 | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { | |
1270 | if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { | |
1271 | /* Try harder to find a CPU that currently sees the breakpoint. */ | |
1272 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1273 | if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) { | |
1274 | break; | |
1275 | } | |
1276 | } | |
1277 | } | |
1278 | } | |
1279 | kvm_arch_remove_all_hw_breakpoints(); | |
1280 | ||
1281 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
1282 | kvm_update_guest_debug(env, 0); | |
1283 | } | |
1284 | } | |
1285 | ||
1286 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | |
1287 | ||
1288 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) | |
1289 | { | |
1290 | return -EINVAL; | |
1291 | } | |
1292 | ||
1293 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | |
1294 | target_ulong len, int type) | |
1295 | { | |
1296 | return -EINVAL; | |
1297 | } | |
1298 | ||
1299 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | |
1300 | target_ulong len, int type) | |
1301 | { | |
1302 | return -EINVAL; | |
1303 | } | |
1304 | ||
1305 | void kvm_remove_all_breakpoints(CPUState *current_env) | |
1306 | { | |
1307 | } | |
1308 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | |
1309 | ||
1310 | int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset) | |
1311 | { | |
1312 | struct kvm_signal_mask *sigmask; | |
1313 | int r; | |
1314 | ||
1315 | if (!sigset) { | |
1316 | return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL); | |
1317 | } | |
1318 | ||
1319 | sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset)); | |
1320 | ||
1321 | sigmask->len = 8; | |
1322 | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | |
1323 | r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask); | |
1324 | qemu_free(sigmask); | |
1325 | ||
1326 | return r; | |
1327 | } | |
1328 | ||
1329 | int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign) | |
1330 | { | |
1331 | #ifdef KVM_IOEVENTFD | |
1332 | int ret; | |
1333 | struct kvm_ioeventfd iofd; | |
1334 | ||
1335 | iofd.datamatch = val; | |
1336 | iofd.addr = addr; | |
1337 | iofd.len = 4; | |
1338 | iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH; | |
1339 | iofd.fd = fd; | |
1340 | ||
1341 | if (!kvm_enabled()) { | |
1342 | return -ENOSYS; | |
1343 | } | |
1344 | ||
1345 | if (!assign) { | |
1346 | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
1347 | } | |
1348 | ||
1349 | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | |
1350 | ||
1351 | if (ret < 0) { | |
1352 | return -errno; | |
1353 | } | |
1354 | ||
1355 | return 0; | |
1356 | #else | |
1357 | return -ENOSYS; | |
1358 | #endif | |
1359 | } | |
1360 | ||
1361 | int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign) | |
1362 | { | |
1363 | #ifdef KVM_IOEVENTFD | |
1364 | struct kvm_ioeventfd kick = { | |
1365 | .datamatch = val, | |
1366 | .addr = addr, | |
1367 | .len = 2, | |
1368 | .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO, | |
1369 | .fd = fd, | |
1370 | }; | |
1371 | int r; | |
1372 | if (!kvm_enabled()) { | |
1373 | return -ENOSYS; | |
1374 | } | |
1375 | if (!assign) { | |
1376 | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | |
1377 | } | |
1378 | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | |
1379 | if (r < 0) { | |
1380 | return r; | |
1381 | } | |
1382 | return 0; | |
1383 | #else | |
1384 | return -ENOSYS; | |
1385 | #endif | |
1386 | } | |
1387 | ||
1388 | int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr) | |
1389 | { | |
1390 | return kvm_arch_on_sigbus_vcpu(env, code, addr); | |
1391 | } | |
1392 | ||
1393 | int kvm_on_sigbus(int code, void *addr) | |
1394 | { | |
1395 | return kvm_arch_on_sigbus(code, addr); | |
1396 | } |