]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator | |
3 | * | |
4 | * Copyright (c) 2004-2007 Fabrice Bellard | |
5 | * Copyright (c) 2007 Jocelyn Mayer | |
6 | * Copyright (c) 2010 David Gibson, IBM Corporation. | |
7 | * | |
8 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
9 | * of this software and associated documentation files (the "Software"), to deal | |
10 | * in the Software without restriction, including without limitation the rights | |
11 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
12 | * copies of the Software, and to permit persons to whom the Software is | |
13 | * furnished to do so, subject to the following conditions: | |
14 | * | |
15 | * The above copyright notice and this permission notice shall be included in | |
16 | * all copies or substantial portions of the Software. | |
17 | * | |
18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
19 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
20 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
21 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
22 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
23 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
24 | * THE SOFTWARE. | |
25 | * | |
26 | */ | |
27 | #include "sysemu.h" | |
28 | #include "hw.h" | |
29 | #include "elf.h" | |
30 | #include "net/net.h" | |
31 | #include "blockdev.h" | |
32 | #include "cpus.h" | |
33 | #include "kvm.h" | |
34 | #include "kvm_ppc.h" | |
35 | ||
36 | #include "hw/boards.h" | |
37 | #include "hw/ppc.h" | |
38 | #include "hw/loader.h" | |
39 | ||
40 | #include "hw/spapr.h" | |
41 | #include "hw/spapr_vio.h" | |
42 | #include "hw/spapr_pci.h" | |
43 | #include "hw/xics.h" | |
44 | #include "hw/pci/msi.h" | |
45 | ||
46 | #include "kvm.h" | |
47 | #include "kvm_ppc.h" | |
48 | #include "pci/pci.h" | |
49 | ||
50 | #include "exec/address-spaces.h" | |
51 | #include "hw/usb.h" | |
52 | #include "qemu/config-file.h" | |
53 | ||
54 | #include <libfdt.h> | |
55 | ||
56 | /* SLOF memory layout: | |
57 | * | |
58 | * SLOF raw image loaded at 0, copies its romfs right below the flat | |
59 | * device-tree, then position SLOF itself 31M below that | |
60 | * | |
61 | * So we set FW_OVERHEAD to 40MB which should account for all of that | |
62 | * and more | |
63 | * | |
64 | * We load our kernel at 4M, leaving space for SLOF initial image | |
65 | */ | |
66 | #define FDT_MAX_SIZE 0x10000 | |
67 | #define RTAS_MAX_SIZE 0x10000 | |
68 | #define FW_MAX_SIZE 0x400000 | |
69 | #define FW_FILE_NAME "slof.bin" | |
70 | #define FW_OVERHEAD 0x2800000 | |
71 | #define KERNEL_LOAD_ADDR FW_MAX_SIZE | |
72 | ||
73 | #define MIN_RMA_SLOF 128UL | |
74 | ||
75 | #define TIMEBASE_FREQ 512000000ULL | |
76 | ||
77 | #define MAX_CPUS 256 | |
78 | #define XICS_IRQS 1024 | |
79 | ||
80 | #define SPAPR_PCI_BUID 0x800000020000001ULL | |
81 | #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000) | |
82 | #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000 | |
83 | #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000) | |
84 | #define SPAPR_PCI_MSI_WIN_ADDR (0x10000000000ULL + 0x90000000) | |
85 | ||
86 | #define PHANDLE_XICP 0x00001111 | |
87 | ||
88 | #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift)) | |
89 | ||
90 | sPAPREnvironment *spapr; | |
91 | ||
92 | int spapr_allocate_irq(int hint, bool lsi) | |
93 | { | |
94 | int irq; | |
95 | ||
96 | if (hint) { | |
97 | irq = hint; | |
98 | /* FIXME: we should probably check for collisions somehow */ | |
99 | } else { | |
100 | irq = spapr->next_irq++; | |
101 | } | |
102 | ||
103 | /* Configure irq type */ | |
104 | if (!xics_get_qirq(spapr->icp, irq)) { | |
105 | return 0; | |
106 | } | |
107 | ||
108 | xics_set_irq_type(spapr->icp, irq, lsi); | |
109 | ||
110 | return irq; | |
111 | } | |
112 | ||
113 | /* Allocate block of consequtive IRQs, returns a number of the first */ | |
114 | int spapr_allocate_irq_block(int num, bool lsi) | |
115 | { | |
116 | int first = -1; | |
117 | int i; | |
118 | ||
119 | for (i = 0; i < num; ++i) { | |
120 | int irq; | |
121 | ||
122 | irq = spapr_allocate_irq(0, lsi); | |
123 | if (!irq) { | |
124 | return -1; | |
125 | } | |
126 | ||
127 | if (0 == i) { | |
128 | first = irq; | |
129 | } | |
130 | ||
131 | /* If the above doesn't create a consecutive block then that's | |
132 | * an internal bug */ | |
133 | assert(irq == (first + i)); | |
134 | } | |
135 | ||
136 | return first; | |
137 | } | |
138 | ||
139 | static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr) | |
140 | { | |
141 | int ret = 0, offset; | |
142 | CPUPPCState *env; | |
143 | char cpu_model[32]; | |
144 | int smt = kvmppc_smt_threads(); | |
145 | uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; | |
146 | ||
147 | assert(spapr->cpu_model); | |
148 | ||
149 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
150 | uint32_t associativity[] = {cpu_to_be32(0x5), | |
151 | cpu_to_be32(0x0), | |
152 | cpu_to_be32(0x0), | |
153 | cpu_to_be32(0x0), | |
154 | cpu_to_be32(env->numa_node), | |
155 | cpu_to_be32(env->cpu_index)}; | |
156 | ||
157 | if ((env->cpu_index % smt) != 0) { | |
158 | continue; | |
159 | } | |
160 | ||
161 | snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model, | |
162 | env->cpu_index); | |
163 | ||
164 | offset = fdt_path_offset(fdt, cpu_model); | |
165 | if (offset < 0) { | |
166 | return offset; | |
167 | } | |
168 | ||
169 | if (nb_numa_nodes > 1) { | |
170 | ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, | |
171 | sizeof(associativity)); | |
172 | if (ret < 0) { | |
173 | return ret; | |
174 | } | |
175 | } | |
176 | ||
177 | ret = fdt_setprop(fdt, offset, "ibm,pft-size", | |
178 | pft_size_prop, sizeof(pft_size_prop)); | |
179 | if (ret < 0) { | |
180 | return ret; | |
181 | } | |
182 | } | |
183 | return ret; | |
184 | } | |
185 | ||
186 | ||
187 | static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop, | |
188 | size_t maxsize) | |
189 | { | |
190 | size_t maxcells = maxsize / sizeof(uint32_t); | |
191 | int i, j, count; | |
192 | uint32_t *p = prop; | |
193 | ||
194 | for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { | |
195 | struct ppc_one_seg_page_size *sps = &env->sps.sps[i]; | |
196 | ||
197 | if (!sps->page_shift) { | |
198 | break; | |
199 | } | |
200 | for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) { | |
201 | if (sps->enc[count].page_shift == 0) { | |
202 | break; | |
203 | } | |
204 | } | |
205 | if ((p - prop) >= (maxcells - 3 - count * 2)) { | |
206 | break; | |
207 | } | |
208 | *(p++) = cpu_to_be32(sps->page_shift); | |
209 | *(p++) = cpu_to_be32(sps->slb_enc); | |
210 | *(p++) = cpu_to_be32(count); | |
211 | for (j = 0; j < count; j++) { | |
212 | *(p++) = cpu_to_be32(sps->enc[j].page_shift); | |
213 | *(p++) = cpu_to_be32(sps->enc[j].pte_enc); | |
214 | } | |
215 | } | |
216 | ||
217 | return (p - prop) * sizeof(uint32_t); | |
218 | } | |
219 | ||
220 | #define _FDT(exp) \ | |
221 | do { \ | |
222 | int ret = (exp); \ | |
223 | if (ret < 0) { \ | |
224 | fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \ | |
225 | #exp, fdt_strerror(ret)); \ | |
226 | exit(1); \ | |
227 | } \ | |
228 | } while (0) | |
229 | ||
230 | ||
231 | static void *spapr_create_fdt_skel(const char *cpu_model, | |
232 | hwaddr initrd_base, | |
233 | hwaddr initrd_size, | |
234 | hwaddr kernel_size, | |
235 | const char *boot_device, | |
236 | const char *kernel_cmdline, | |
237 | uint32_t epow_irq) | |
238 | { | |
239 | void *fdt; | |
240 | CPUPPCState *env; | |
241 | uint32_t start_prop = cpu_to_be32(initrd_base); | |
242 | uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size); | |
243 | char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt" | |
244 | "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk"; | |
245 | char qemu_hypertas_prop[] = "hcall-memop1"; | |
246 | uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)}; | |
247 | uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)}; | |
248 | char *modelname; | |
249 | int i, smt = kvmppc_smt_threads(); | |
250 | unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80}; | |
251 | ||
252 | fdt = g_malloc0(FDT_MAX_SIZE); | |
253 | _FDT((fdt_create(fdt, FDT_MAX_SIZE))); | |
254 | ||
255 | if (kernel_size) { | |
256 | _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size))); | |
257 | } | |
258 | if (initrd_size) { | |
259 | _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size))); | |
260 | } | |
261 | _FDT((fdt_finish_reservemap(fdt))); | |
262 | ||
263 | /* Root node */ | |
264 | _FDT((fdt_begin_node(fdt, ""))); | |
265 | _FDT((fdt_property_string(fdt, "device_type", "chrp"))); | |
266 | _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)"))); | |
267 | ||
268 | _FDT((fdt_property_cell(fdt, "#address-cells", 0x2))); | |
269 | _FDT((fdt_property_cell(fdt, "#size-cells", 0x2))); | |
270 | ||
271 | /* /chosen */ | |
272 | _FDT((fdt_begin_node(fdt, "chosen"))); | |
273 | ||
274 | /* Set Form1_affinity */ | |
275 | _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5)))); | |
276 | ||
277 | _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline))); | |
278 | _FDT((fdt_property(fdt, "linux,initrd-start", | |
279 | &start_prop, sizeof(start_prop)))); | |
280 | _FDT((fdt_property(fdt, "linux,initrd-end", | |
281 | &end_prop, sizeof(end_prop)))); | |
282 | if (kernel_size) { | |
283 | uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), | |
284 | cpu_to_be64(kernel_size) }; | |
285 | ||
286 | _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop)))); | |
287 | } | |
288 | _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device))); | |
289 | _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width))); | |
290 | _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height))); | |
291 | _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth))); | |
292 | ||
293 | _FDT((fdt_end_node(fdt))); | |
294 | ||
295 | /* cpus */ | |
296 | _FDT((fdt_begin_node(fdt, "cpus"))); | |
297 | ||
298 | _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); | |
299 | _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); | |
300 | ||
301 | modelname = g_strdup(cpu_model); | |
302 | ||
303 | for (i = 0; i < strlen(modelname); i++) { | |
304 | modelname[i] = toupper(modelname[i]); | |
305 | } | |
306 | ||
307 | /* This is needed during FDT finalization */ | |
308 | spapr->cpu_model = g_strdup(modelname); | |
309 | ||
310 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
311 | int index = env->cpu_index; | |
312 | uint32_t servers_prop[smp_threads]; | |
313 | uint32_t gservers_prop[smp_threads * 2]; | |
314 | char *nodename; | |
315 | uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), | |
316 | 0xffffffff, 0xffffffff}; | |
317 | uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ; | |
318 | uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; | |
319 | uint32_t page_sizes_prop[64]; | |
320 | size_t page_sizes_prop_size; | |
321 | ||
322 | if ((index % smt) != 0) { | |
323 | continue; | |
324 | } | |
325 | ||
326 | if (asprintf(&nodename, "%s@%x", modelname, index) < 0) { | |
327 | fprintf(stderr, "Allocation failure\n"); | |
328 | exit(1); | |
329 | } | |
330 | ||
331 | _FDT((fdt_begin_node(fdt, nodename))); | |
332 | ||
333 | free(nodename); | |
334 | ||
335 | _FDT((fdt_property_cell(fdt, "reg", index))); | |
336 | _FDT((fdt_property_string(fdt, "device_type", "cpu"))); | |
337 | ||
338 | _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR]))); | |
339 | _FDT((fdt_property_cell(fdt, "dcache-block-size", | |
340 | env->dcache_line_size))); | |
341 | _FDT((fdt_property_cell(fdt, "icache-block-size", | |
342 | env->icache_line_size))); | |
343 | _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq))); | |
344 | _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq))); | |
345 | _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr))); | |
346 | _FDT((fdt_property_string(fdt, "status", "okay"))); | |
347 | _FDT((fdt_property(fdt, "64-bit", NULL, 0))); | |
348 | ||
349 | /* Build interrupt servers and gservers properties */ | |
350 | for (i = 0; i < smp_threads; i++) { | |
351 | servers_prop[i] = cpu_to_be32(index + i); | |
352 | /* Hack, direct the group queues back to cpu 0 */ | |
353 | gservers_prop[i*2] = cpu_to_be32(index + i); | |
354 | gservers_prop[i*2 + 1] = 0; | |
355 | } | |
356 | _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s", | |
357 | servers_prop, sizeof(servers_prop)))); | |
358 | _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s", | |
359 | gservers_prop, sizeof(gservers_prop)))); | |
360 | ||
361 | if (env->mmu_model & POWERPC_MMU_1TSEG) { | |
362 | _FDT((fdt_property(fdt, "ibm,processor-segment-sizes", | |
363 | segs, sizeof(segs)))); | |
364 | } | |
365 | ||
366 | /* Advertise VMX/VSX (vector extensions) if available | |
367 | * 0 / no property == no vector extensions | |
368 | * 1 == VMX / Altivec available | |
369 | * 2 == VSX available */ | |
370 | if (env->insns_flags & PPC_ALTIVEC) { | |
371 | uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; | |
372 | ||
373 | _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx))); | |
374 | } | |
375 | ||
376 | /* Advertise DFP (Decimal Floating Point) if available | |
377 | * 0 / no property == no DFP | |
378 | * 1 == DFP available */ | |
379 | if (env->insns_flags2 & PPC2_DFP) { | |
380 | _FDT((fdt_property_cell(fdt, "ibm,dfp", 1))); | |
381 | } | |
382 | ||
383 | page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop, | |
384 | sizeof(page_sizes_prop)); | |
385 | if (page_sizes_prop_size) { | |
386 | _FDT((fdt_property(fdt, "ibm,segment-page-sizes", | |
387 | page_sizes_prop, page_sizes_prop_size))); | |
388 | } | |
389 | ||
390 | _FDT((fdt_end_node(fdt))); | |
391 | } | |
392 | ||
393 | g_free(modelname); | |
394 | ||
395 | _FDT((fdt_end_node(fdt))); | |
396 | ||
397 | /* RTAS */ | |
398 | _FDT((fdt_begin_node(fdt, "rtas"))); | |
399 | ||
400 | _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop, | |
401 | sizeof(hypertas_prop)))); | |
402 | _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop, | |
403 | sizeof(qemu_hypertas_prop)))); | |
404 | ||
405 | _FDT((fdt_property(fdt, "ibm,associativity-reference-points", | |
406 | refpoints, sizeof(refpoints)))); | |
407 | ||
408 | _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX))); | |
409 | ||
410 | _FDT((fdt_end_node(fdt))); | |
411 | ||
412 | /* interrupt controller */ | |
413 | _FDT((fdt_begin_node(fdt, "interrupt-controller"))); | |
414 | ||
415 | _FDT((fdt_property_string(fdt, "device_type", | |
416 | "PowerPC-External-Interrupt-Presentation"))); | |
417 | _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp"))); | |
418 | _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); | |
419 | _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges", | |
420 | interrupt_server_ranges_prop, | |
421 | sizeof(interrupt_server_ranges_prop)))); | |
422 | _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2))); | |
423 | _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP))); | |
424 | _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP))); | |
425 | ||
426 | _FDT((fdt_end_node(fdt))); | |
427 | ||
428 | /* vdevice */ | |
429 | _FDT((fdt_begin_node(fdt, "vdevice"))); | |
430 | ||
431 | _FDT((fdt_property_string(fdt, "device_type", "vdevice"))); | |
432 | _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice"))); | |
433 | _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); | |
434 | _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); | |
435 | _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2))); | |
436 | _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); | |
437 | ||
438 | _FDT((fdt_end_node(fdt))); | |
439 | ||
440 | /* event-sources */ | |
441 | spapr_events_fdt_skel(fdt, epow_irq); | |
442 | ||
443 | _FDT((fdt_end_node(fdt))); /* close root node */ | |
444 | _FDT((fdt_finish(fdt))); | |
445 | ||
446 | return fdt; | |
447 | } | |
448 | ||
449 | static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt) | |
450 | { | |
451 | uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0), | |
452 | cpu_to_be32(0x0), cpu_to_be32(0x0), | |
453 | cpu_to_be32(0x0)}; | |
454 | char mem_name[32]; | |
455 | hwaddr node0_size, mem_start; | |
456 | uint64_t mem_reg_property[2]; | |
457 | int i, off; | |
458 | ||
459 | /* memory node(s) */ | |
460 | node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size; | |
461 | if (spapr->rma_size > node0_size) { | |
462 | spapr->rma_size = node0_size; | |
463 | } | |
464 | ||
465 | /* RMA */ | |
466 | mem_reg_property[0] = 0; | |
467 | mem_reg_property[1] = cpu_to_be64(spapr->rma_size); | |
468 | off = fdt_add_subnode(fdt, 0, "memory@0"); | |
469 | _FDT(off); | |
470 | _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | |
471 | _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | |
472 | sizeof(mem_reg_property)))); | |
473 | _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, | |
474 | sizeof(associativity)))); | |
475 | ||
476 | /* RAM: Node 0 */ | |
477 | if (node0_size > spapr->rma_size) { | |
478 | mem_reg_property[0] = cpu_to_be64(spapr->rma_size); | |
479 | mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size); | |
480 | ||
481 | sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size); | |
482 | off = fdt_add_subnode(fdt, 0, mem_name); | |
483 | _FDT(off); | |
484 | _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | |
485 | _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | |
486 | sizeof(mem_reg_property)))); | |
487 | _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, | |
488 | sizeof(associativity)))); | |
489 | } | |
490 | ||
491 | /* RAM: Node 1 and beyond */ | |
492 | mem_start = node0_size; | |
493 | for (i = 1; i < nb_numa_nodes; i++) { | |
494 | mem_reg_property[0] = cpu_to_be64(mem_start); | |
495 | mem_reg_property[1] = cpu_to_be64(node_mem[i]); | |
496 | associativity[3] = associativity[4] = cpu_to_be32(i); | |
497 | sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start); | |
498 | off = fdt_add_subnode(fdt, 0, mem_name); | |
499 | _FDT(off); | |
500 | _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | |
501 | _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | |
502 | sizeof(mem_reg_property)))); | |
503 | _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, | |
504 | sizeof(associativity)))); | |
505 | mem_start += node_mem[i]; | |
506 | } | |
507 | ||
508 | return 0; | |
509 | } | |
510 | ||
511 | static void spapr_finalize_fdt(sPAPREnvironment *spapr, | |
512 | hwaddr fdt_addr, | |
513 | hwaddr rtas_addr, | |
514 | hwaddr rtas_size) | |
515 | { | |
516 | int ret; | |
517 | void *fdt; | |
518 | sPAPRPHBState *phb; | |
519 | ||
520 | fdt = g_malloc(FDT_MAX_SIZE); | |
521 | ||
522 | /* open out the base tree into a temp buffer for the final tweaks */ | |
523 | _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE))); | |
524 | ||
525 | ret = spapr_populate_memory(spapr, fdt); | |
526 | if (ret < 0) { | |
527 | fprintf(stderr, "couldn't setup memory nodes in fdt\n"); | |
528 | exit(1); | |
529 | } | |
530 | ||
531 | ret = spapr_populate_vdevice(spapr->vio_bus, fdt); | |
532 | if (ret < 0) { | |
533 | fprintf(stderr, "couldn't setup vio devices in fdt\n"); | |
534 | exit(1); | |
535 | } | |
536 | ||
537 | QLIST_FOREACH(phb, &spapr->phbs, list) { | |
538 | ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); | |
539 | } | |
540 | ||
541 | if (ret < 0) { | |
542 | fprintf(stderr, "couldn't setup PCI devices in fdt\n"); | |
543 | exit(1); | |
544 | } | |
545 | ||
546 | /* RTAS */ | |
547 | ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size); | |
548 | if (ret < 0) { | |
549 | fprintf(stderr, "Couldn't set up RTAS device tree properties\n"); | |
550 | } | |
551 | ||
552 | /* Advertise NUMA via ibm,associativity */ | |
553 | ret = spapr_fixup_cpu_dt(fdt, spapr); | |
554 | if (ret < 0) { | |
555 | fprintf(stderr, "Couldn't finalize CPU device tree properties\n"); | |
556 | } | |
557 | ||
558 | if (!spapr->has_graphics) { | |
559 | spapr_populate_chosen_stdout(fdt, spapr->vio_bus); | |
560 | } | |
561 | ||
562 | _FDT((fdt_pack(fdt))); | |
563 | ||
564 | if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { | |
565 | hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n", | |
566 | fdt_totalsize(fdt), FDT_MAX_SIZE); | |
567 | exit(1); | |
568 | } | |
569 | ||
570 | cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); | |
571 | ||
572 | g_free(fdt); | |
573 | } | |
574 | ||
575 | static uint64_t translate_kernel_address(void *opaque, uint64_t addr) | |
576 | { | |
577 | return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; | |
578 | } | |
579 | ||
580 | static void emulate_spapr_hypercall(PowerPCCPU *cpu) | |
581 | { | |
582 | CPUPPCState *env = &cpu->env; | |
583 | ||
584 | if (msr_pr) { | |
585 | hcall_dprintf("Hypercall made with MSR[PR]=1\n"); | |
586 | env->gpr[3] = H_PRIVILEGE; | |
587 | } else { | |
588 | env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); | |
589 | } | |
590 | } | |
591 | ||
592 | static void spapr_reset_htab(sPAPREnvironment *spapr) | |
593 | { | |
594 | long shift; | |
595 | ||
596 | /* allocate hash page table. For now we always make this 16mb, | |
597 | * later we should probably make it scale to the size of guest | |
598 | * RAM */ | |
599 | ||
600 | shift = kvmppc_reset_htab(spapr->htab_shift); | |
601 | ||
602 | if (shift > 0) { | |
603 | /* Kernel handles htab, we don't need to allocate one */ | |
604 | spapr->htab_shift = shift; | |
605 | } else { | |
606 | if (!spapr->htab) { | |
607 | /* Allocate an htab if we don't yet have one */ | |
608 | spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr)); | |
609 | } | |
610 | ||
611 | /* And clear it */ | |
612 | memset(spapr->htab, 0, HTAB_SIZE(spapr)); | |
613 | } | |
614 | ||
615 | /* Update the RMA size if necessary */ | |
616 | if (spapr->vrma_adjust) { | |
617 | spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift); | |
618 | } | |
619 | } | |
620 | ||
621 | static void ppc_spapr_reset(void) | |
622 | { | |
623 | /* Reset the hash table & recalc the RMA */ | |
624 | spapr_reset_htab(spapr); | |
625 | ||
626 | qemu_devices_reset(); | |
627 | ||
628 | /* Load the fdt */ | |
629 | spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr, | |
630 | spapr->rtas_size); | |
631 | ||
632 | /* Set up the entry state */ | |
633 | first_cpu->gpr[3] = spapr->fdt_addr; | |
634 | first_cpu->gpr[5] = 0; | |
635 | first_cpu->halted = 0; | |
636 | first_cpu->nip = spapr->entry_point; | |
637 | ||
638 | } | |
639 | ||
640 | static void spapr_cpu_reset(void *opaque) | |
641 | { | |
642 | PowerPCCPU *cpu = opaque; | |
643 | CPUPPCState *env = &cpu->env; | |
644 | ||
645 | cpu_reset(CPU(cpu)); | |
646 | ||
647 | /* All CPUs start halted. CPU0 is unhalted from the machine level | |
648 | * reset code and the rest are explicitly started up by the guest | |
649 | * using an RTAS call */ | |
650 | env->halted = 1; | |
651 | ||
652 | env->spr[SPR_HIOR] = 0; | |
653 | ||
654 | env->external_htab = spapr->htab; | |
655 | env->htab_base = -1; | |
656 | env->htab_mask = HTAB_SIZE(spapr) - 1; | |
657 | env->spr[SPR_SDR1] = (unsigned long)spapr->htab | | |
658 | (spapr->htab_shift - 18); | |
659 | } | |
660 | ||
661 | static void spapr_create_nvram(sPAPREnvironment *spapr) | |
662 | { | |
663 | QemuOpts *machine_opts; | |
664 | DeviceState *dev; | |
665 | ||
666 | dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); | |
667 | ||
668 | machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0); | |
669 | if (machine_opts) { | |
670 | const char *drivename; | |
671 | ||
672 | drivename = qemu_opt_get(machine_opts, "nvram"); | |
673 | if (drivename) { | |
674 | BlockDriverState *bs; | |
675 | ||
676 | bs = bdrv_find(drivename); | |
677 | if (!bs) { | |
678 | fprintf(stderr, "No such block device \"%s\" for nvram\n", | |
679 | drivename); | |
680 | exit(1); | |
681 | } | |
682 | qdev_prop_set_drive_nofail(dev, "drive", bs); | |
683 | } | |
684 | } | |
685 | ||
686 | qdev_init_nofail(dev); | |
687 | ||
688 | spapr->nvram = (struct sPAPRNVRAM *)dev; | |
689 | } | |
690 | ||
691 | /* Returns whether we want to use VGA or not */ | |
692 | static int spapr_vga_init(PCIBus *pci_bus) | |
693 | { | |
694 | switch (vga_interface_type) { | |
695 | case VGA_NONE: | |
696 | case VGA_STD: | |
697 | return pci_vga_init(pci_bus) != NULL; | |
698 | default: | |
699 | fprintf(stderr, "This vga model is not supported," | |
700 | "currently it only supports -vga std\n"); | |
701 | exit(0); | |
702 | break; | |
703 | } | |
704 | } | |
705 | ||
706 | /* pSeries LPAR / sPAPR hardware init */ | |
707 | static void ppc_spapr_init(QEMUMachineInitArgs *args) | |
708 | { | |
709 | ram_addr_t ram_size = args->ram_size; | |
710 | const char *cpu_model = args->cpu_model; | |
711 | const char *kernel_filename = args->kernel_filename; | |
712 | const char *kernel_cmdline = args->kernel_cmdline; | |
713 | const char *initrd_filename = args->initrd_filename; | |
714 | const char *boot_device = args->boot_device; | |
715 | PowerPCCPU *cpu; | |
716 | CPUPPCState *env; | |
717 | PCIHostState *phb; | |
718 | int i; | |
719 | MemoryRegion *sysmem = get_system_memory(); | |
720 | MemoryRegion *ram = g_new(MemoryRegion, 1); | |
721 | hwaddr rma_alloc_size; | |
722 | uint32_t initrd_base = 0; | |
723 | long kernel_size = 0, initrd_size = 0; | |
724 | long load_limit, rtas_limit, fw_size; | |
725 | char *filename; | |
726 | ||
727 | msi_supported = true; | |
728 | ||
729 | spapr = g_malloc0(sizeof(*spapr)); | |
730 | QLIST_INIT(&spapr->phbs); | |
731 | ||
732 | cpu_ppc_hypercall = emulate_spapr_hypercall; | |
733 | ||
734 | /* Allocate RMA if necessary */ | |
735 | rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem); | |
736 | ||
737 | if (rma_alloc_size == -1) { | |
738 | hw_error("qemu: Unable to create RMA\n"); | |
739 | exit(1); | |
740 | } | |
741 | ||
742 | if (rma_alloc_size && (rma_alloc_size < ram_size)) { | |
743 | spapr->rma_size = rma_alloc_size; | |
744 | } else { | |
745 | spapr->rma_size = ram_size; | |
746 | ||
747 | /* With KVM, we don't actually know whether KVM supports an | |
748 | * unbounded RMA (PR KVM) or is limited by the hash table size | |
749 | * (HV KVM using VRMA), so we always assume the latter | |
750 | * | |
751 | * In that case, we also limit the initial allocations for RTAS | |
752 | * etc... to 256M since we have no way to know what the VRMA size | |
753 | * is going to be as it depends on the size of the hash table | |
754 | * isn't determined yet. | |
755 | */ | |
756 | if (kvm_enabled()) { | |
757 | spapr->vrma_adjust = 1; | |
758 | spapr->rma_size = MIN(spapr->rma_size, 0x10000000); | |
759 | } | |
760 | } | |
761 | ||
762 | /* We place the device tree and RTAS just below either the top of the RMA, | |
763 | * or just below 2GB, whichever is lowere, so that it can be | |
764 | * processed with 32-bit real mode code if necessary */ | |
765 | rtas_limit = MIN(spapr->rma_size, 0x80000000); | |
766 | spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE; | |
767 | spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE; | |
768 | load_limit = spapr->fdt_addr - FW_OVERHEAD; | |
769 | ||
770 | /* We aim for a hash table of size 1/128 the size of RAM. The | |
771 | * normal rule of thumb is 1/64 the size of RAM, but that's much | |
772 | * more than needed for the Linux guests we support. */ | |
773 | spapr->htab_shift = 18; /* Minimum architected size */ | |
774 | while (spapr->htab_shift <= 46) { | |
775 | if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) { | |
776 | break; | |
777 | } | |
778 | spapr->htab_shift++; | |
779 | } | |
780 | ||
781 | /* init CPUs */ | |
782 | if (cpu_model == NULL) { | |
783 | cpu_model = kvm_enabled() ? "host" : "POWER7"; | |
784 | } | |
785 | for (i = 0; i < smp_cpus; i++) { | |
786 | cpu = cpu_ppc_init(cpu_model); | |
787 | if (cpu == NULL) { | |
788 | fprintf(stderr, "Unable to find PowerPC CPU definition\n"); | |
789 | exit(1); | |
790 | } | |
791 | env = &cpu->env; | |
792 | ||
793 | /* Set time-base frequency to 512 MHz */ | |
794 | cpu_ppc_tb_init(env, TIMEBASE_FREQ); | |
795 | ||
796 | /* PAPR always has exception vectors in RAM not ROM */ | |
797 | env->hreset_excp_prefix = 0; | |
798 | ||
799 | /* Tell KVM that we're in PAPR mode */ | |
800 | if (kvm_enabled()) { | |
801 | kvmppc_set_papr(env); | |
802 | } | |
803 | ||
804 | qemu_register_reset(spapr_cpu_reset, cpu); | |
805 | } | |
806 | ||
807 | /* allocate RAM */ | |
808 | spapr->ram_limit = ram_size; | |
809 | if (spapr->ram_limit > rma_alloc_size) { | |
810 | ram_addr_t nonrma_base = rma_alloc_size; | |
811 | ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size; | |
812 | ||
813 | memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size); | |
814 | vmstate_register_ram_global(ram); | |
815 | memory_region_add_subregion(sysmem, nonrma_base, ram); | |
816 | } | |
817 | ||
818 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); | |
819 | spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr, | |
820 | rtas_limit - spapr->rtas_addr); | |
821 | if (spapr->rtas_size < 0) { | |
822 | hw_error("qemu: could not load LPAR rtas '%s'\n", filename); | |
823 | exit(1); | |
824 | } | |
825 | if (spapr->rtas_size > RTAS_MAX_SIZE) { | |
826 | hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n", | |
827 | spapr->rtas_size, RTAS_MAX_SIZE); | |
828 | exit(1); | |
829 | } | |
830 | g_free(filename); | |
831 | ||
832 | ||
833 | /* Set up Interrupt Controller */ | |
834 | spapr->icp = xics_system_init(XICS_IRQS); | |
835 | spapr->next_irq = XICS_IRQ_BASE; | |
836 | ||
837 | /* Set up EPOW events infrastructure */ | |
838 | spapr_events_init(spapr); | |
839 | ||
840 | /* Set up IOMMU */ | |
841 | spapr_iommu_init(); | |
842 | ||
843 | /* Set up VIO bus */ | |
844 | spapr->vio_bus = spapr_vio_bus_init(); | |
845 | ||
846 | for (i = 0; i < MAX_SERIAL_PORTS; i++) { | |
847 | if (serial_hds[i]) { | |
848 | spapr_vty_create(spapr->vio_bus, serial_hds[i]); | |
849 | } | |
850 | } | |
851 | ||
852 | /* We always have at least the nvram device on VIO */ | |
853 | spapr_create_nvram(spapr); | |
854 | ||
855 | /* Set up PCI */ | |
856 | spapr_pci_rtas_init(); | |
857 | ||
858 | spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID, | |
859 | SPAPR_PCI_MEM_WIN_ADDR, | |
860 | SPAPR_PCI_MEM_WIN_SIZE, | |
861 | SPAPR_PCI_IO_WIN_ADDR, | |
862 | SPAPR_PCI_MSI_WIN_ADDR); | |
863 | phb = PCI_HOST_BRIDGE(QLIST_FIRST(&spapr->phbs)); | |
864 | ||
865 | for (i = 0; i < nb_nics; i++) { | |
866 | NICInfo *nd = &nd_table[i]; | |
867 | ||
868 | if (!nd->model) { | |
869 | nd->model = g_strdup("ibmveth"); | |
870 | } | |
871 | ||
872 | if (strcmp(nd->model, "ibmveth") == 0) { | |
873 | spapr_vlan_create(spapr->vio_bus, nd); | |
874 | } else { | |
875 | pci_nic_init_nofail(&nd_table[i], nd->model, NULL); | |
876 | } | |
877 | } | |
878 | ||
879 | for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { | |
880 | spapr_vscsi_create(spapr->vio_bus); | |
881 | } | |
882 | ||
883 | /* Graphics */ | |
884 | if (spapr_vga_init(phb->bus)) { | |
885 | spapr->has_graphics = true; | |
886 | } | |
887 | ||
888 | if (usb_enabled(spapr->has_graphics)) { | |
889 | pci_create_simple(phb->bus, -1, "pci-ohci"); | |
890 | if (spapr->has_graphics) { | |
891 | usbdevice_create("keyboard"); | |
892 | usbdevice_create("mouse"); | |
893 | } | |
894 | } | |
895 | ||
896 | if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { | |
897 | fprintf(stderr, "qemu: pSeries SLOF firmware requires >= " | |
898 | "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF); | |
899 | exit(1); | |
900 | } | |
901 | ||
902 | if (kernel_filename) { | |
903 | uint64_t lowaddr = 0; | |
904 | ||
905 | kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, | |
906 | NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0); | |
907 | if (kernel_size < 0) { | |
908 | kernel_size = load_image_targphys(kernel_filename, | |
909 | KERNEL_LOAD_ADDR, | |
910 | load_limit - KERNEL_LOAD_ADDR); | |
911 | } | |
912 | if (kernel_size < 0) { | |
913 | fprintf(stderr, "qemu: could not load kernel '%s'\n", | |
914 | kernel_filename); | |
915 | exit(1); | |
916 | } | |
917 | ||
918 | /* load initrd */ | |
919 | if (initrd_filename) { | |
920 | /* Try to locate the initrd in the gap between the kernel | |
921 | * and the firmware. Add a bit of space just in case | |
922 | */ | |
923 | initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff; | |
924 | initrd_size = load_image_targphys(initrd_filename, initrd_base, | |
925 | load_limit - initrd_base); | |
926 | if (initrd_size < 0) { | |
927 | fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", | |
928 | initrd_filename); | |
929 | exit(1); | |
930 | } | |
931 | } else { | |
932 | initrd_base = 0; | |
933 | initrd_size = 0; | |
934 | } | |
935 | } | |
936 | ||
937 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME); | |
938 | fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); | |
939 | if (fw_size < 0) { | |
940 | hw_error("qemu: could not load LPAR rtas '%s'\n", filename); | |
941 | exit(1); | |
942 | } | |
943 | g_free(filename); | |
944 | ||
945 | spapr->entry_point = 0x100; | |
946 | ||
947 | /* Prepare the device tree */ | |
948 | spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, | |
949 | initrd_base, initrd_size, | |
950 | kernel_size, | |
951 | boot_device, kernel_cmdline, | |
952 | spapr->epow_irq); | |
953 | assert(spapr->fdt_skel != NULL); | |
954 | } | |
955 | ||
956 | static QEMUMachine spapr_machine = { | |
957 | .name = "pseries", | |
958 | .desc = "pSeries Logical Partition (PAPR compliant)", | |
959 | .init = ppc_spapr_init, | |
960 | .reset = ppc_spapr_reset, | |
961 | .block_default_type = IF_SCSI, | |
962 | .max_cpus = MAX_CPUS, | |
963 | .no_parallel = 1, | |
964 | }; | |
965 | ||
966 | static void spapr_machine_init(void) | |
967 | { | |
968 | qemu_register_machine(&spapr_machine); | |
969 | } | |
970 | ||
971 | machine_init(spapr_machine_init); |