]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * QEMU System Emulator | |
3 | * | |
4 | * Copyright (c) 2003-2008 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
25 | #include "qemu/osdep.h" | |
26 | #include "qemu-common.h" | |
27 | #include "qemu/config-file.h" | |
28 | #include "migration/vmstate.h" | |
29 | #include "monitor/monitor.h" | |
30 | #include "qapi/error.h" | |
31 | #include "qapi/qapi-commands-misc.h" | |
32 | #include "qapi/qapi-events-run-state.h" | |
33 | #include "qapi/qmp/qerror.h" | |
34 | #include "qemu/error-report.h" | |
35 | #include "qemu/qemu-print.h" | |
36 | #include "sysemu/tcg.h" | |
37 | #include "sysemu/block-backend.h" | |
38 | #include "exec/gdbstub.h" | |
39 | #include "sysemu/dma.h" | |
40 | #include "sysemu/hw_accel.h" | |
41 | #include "sysemu/kvm.h" | |
42 | #include "sysemu/hax.h" | |
43 | #include "sysemu/hvf.h" | |
44 | #include "sysemu/whpx.h" | |
45 | #include "exec/exec-all.h" | |
46 | ||
47 | #include "qemu/thread.h" | |
48 | #include "sysemu/cpus.h" | |
49 | #include "sysemu/qtest.h" | |
50 | #include "qemu/main-loop.h" | |
51 | #include "qemu/option.h" | |
52 | #include "qemu/bitmap.h" | |
53 | #include "qemu/seqlock.h" | |
54 | #include "qemu/guest-random.h" | |
55 | #include "tcg.h" | |
56 | #include "hw/nmi.h" | |
57 | #include "sysemu/replay.h" | |
58 | #include "sysemu/runstate.h" | |
59 | #include "hw/boards.h" | |
60 | #include "hw/hw.h" | |
61 | ||
62 | #ifdef CONFIG_LINUX | |
63 | ||
64 | #include <sys/prctl.h> | |
65 | ||
66 | #ifndef PR_MCE_KILL | |
67 | #define PR_MCE_KILL 33 | |
68 | #endif | |
69 | ||
70 | #ifndef PR_MCE_KILL_SET | |
71 | #define PR_MCE_KILL_SET 1 | |
72 | #endif | |
73 | ||
74 | #ifndef PR_MCE_KILL_EARLY | |
75 | #define PR_MCE_KILL_EARLY 1 | |
76 | #endif | |
77 | ||
78 | #endif /* CONFIG_LINUX */ | |
79 | ||
80 | int64_t max_delay; | |
81 | int64_t max_advance; | |
82 | ||
83 | /* vcpu throttling controls */ | |
84 | static QEMUTimer *throttle_timer; | |
85 | static unsigned int throttle_percentage; | |
86 | ||
87 | #define CPU_THROTTLE_PCT_MIN 1 | |
88 | #define CPU_THROTTLE_PCT_MAX 99 | |
89 | #define CPU_THROTTLE_TIMESLICE_NS 10000000 | |
90 | ||
91 | bool cpu_is_stopped(CPUState *cpu) | |
92 | { | |
93 | return cpu->stopped || !runstate_is_running(); | |
94 | } | |
95 | ||
96 | static bool cpu_thread_is_idle(CPUState *cpu) | |
97 | { | |
98 | if (cpu->stop || cpu->queued_work_first) { | |
99 | return false; | |
100 | } | |
101 | if (cpu_is_stopped(cpu)) { | |
102 | return true; | |
103 | } | |
104 | if (!cpu->halted || cpu_has_work(cpu) || | |
105 | kvm_halt_in_kernel()) { | |
106 | return false; | |
107 | } | |
108 | return true; | |
109 | } | |
110 | ||
111 | static bool all_cpu_threads_idle(void) | |
112 | { | |
113 | CPUState *cpu; | |
114 | ||
115 | CPU_FOREACH(cpu) { | |
116 | if (!cpu_thread_is_idle(cpu)) { | |
117 | return false; | |
118 | } | |
119 | } | |
120 | return true; | |
121 | } | |
122 | ||
123 | /***********************************************************/ | |
124 | /* guest cycle counter */ | |
125 | ||
126 | /* Protected by TimersState seqlock */ | |
127 | ||
128 | static bool icount_sleep = true; | |
129 | /* Arbitrarily pick 1MIPS as the minimum allowable speed. */ | |
130 | #define MAX_ICOUNT_SHIFT 10 | |
131 | ||
132 | typedef struct TimersState { | |
133 | /* Protected by BQL. */ | |
134 | int64_t cpu_ticks_prev; | |
135 | int64_t cpu_ticks_offset; | |
136 | ||
137 | /* Protect fields that can be respectively read outside the | |
138 | * BQL, and written from multiple threads. | |
139 | */ | |
140 | QemuSeqLock vm_clock_seqlock; | |
141 | QemuSpin vm_clock_lock; | |
142 | ||
143 | int16_t cpu_ticks_enabled; | |
144 | ||
145 | /* Conversion factor from emulated instructions to virtual clock ticks. */ | |
146 | int16_t icount_time_shift; | |
147 | ||
148 | /* Compensate for varying guest execution speed. */ | |
149 | int64_t qemu_icount_bias; | |
150 | ||
151 | int64_t vm_clock_warp_start; | |
152 | int64_t cpu_clock_offset; | |
153 | ||
154 | /* Only written by TCG thread */ | |
155 | int64_t qemu_icount; | |
156 | ||
157 | /* for adjusting icount */ | |
158 | QEMUTimer *icount_rt_timer; | |
159 | QEMUTimer *icount_vm_timer; | |
160 | QEMUTimer *icount_warp_timer; | |
161 | } TimersState; | |
162 | ||
163 | static TimersState timers_state; | |
164 | bool mttcg_enabled; | |
165 | ||
166 | /* | |
167 | * We default to false if we know other options have been enabled | |
168 | * which are currently incompatible with MTTCG. Otherwise when each | |
169 | * guest (target) has been updated to support: | |
170 | * - atomic instructions | |
171 | * - memory ordering primitives (barriers) | |
172 | * they can set the appropriate CONFIG flags in ${target}-softmmu.mak | |
173 | * | |
174 | * Once a guest architecture has been converted to the new primitives | |
175 | * there are two remaining limitations to check. | |
176 | * | |
177 | * - The guest can't be oversized (e.g. 64 bit guest on 32 bit host) | |
178 | * - The host must have a stronger memory order than the guest | |
179 | * | |
180 | * It may be possible in future to support strong guests on weak hosts | |
181 | * but that will require tagging all load/stores in a guest with their | |
182 | * implicit memory order requirements which would likely slow things | |
183 | * down a lot. | |
184 | */ | |
185 | ||
186 | static bool check_tcg_memory_orders_compatible(void) | |
187 | { | |
188 | #if defined(TCG_GUEST_DEFAULT_MO) && defined(TCG_TARGET_DEFAULT_MO) | |
189 | return (TCG_GUEST_DEFAULT_MO & ~TCG_TARGET_DEFAULT_MO) == 0; | |
190 | #else | |
191 | return false; | |
192 | #endif | |
193 | } | |
194 | ||
195 | static bool default_mttcg_enabled(void) | |
196 | { | |
197 | if (use_icount || TCG_OVERSIZED_GUEST) { | |
198 | return false; | |
199 | } else { | |
200 | #ifdef TARGET_SUPPORTS_MTTCG | |
201 | return check_tcg_memory_orders_compatible(); | |
202 | #else | |
203 | return false; | |
204 | #endif | |
205 | } | |
206 | } | |
207 | ||
208 | void qemu_tcg_configure(QemuOpts *opts, Error **errp) | |
209 | { | |
210 | const char *t = qemu_opt_get(opts, "thread"); | |
211 | if (t) { | |
212 | if (strcmp(t, "multi") == 0) { | |
213 | if (TCG_OVERSIZED_GUEST) { | |
214 | error_setg(errp, "No MTTCG when guest word size > hosts"); | |
215 | } else if (use_icount) { | |
216 | error_setg(errp, "No MTTCG when icount is enabled"); | |
217 | } else { | |
218 | #ifndef TARGET_SUPPORTS_MTTCG | |
219 | warn_report("Guest not yet converted to MTTCG - " | |
220 | "you may get unexpected results"); | |
221 | #endif | |
222 | if (!check_tcg_memory_orders_compatible()) { | |
223 | warn_report("Guest expects a stronger memory ordering " | |
224 | "than the host provides"); | |
225 | error_printf("This may cause strange/hard to debug errors\n"); | |
226 | } | |
227 | mttcg_enabled = true; | |
228 | } | |
229 | } else if (strcmp(t, "single") == 0) { | |
230 | mttcg_enabled = false; | |
231 | } else { | |
232 | error_setg(errp, "Invalid 'thread' setting %s", t); | |
233 | } | |
234 | } else { | |
235 | mttcg_enabled = default_mttcg_enabled(); | |
236 | } | |
237 | } | |
238 | ||
239 | /* The current number of executed instructions is based on what we | |
240 | * originally budgeted minus the current state of the decrementing | |
241 | * icount counters in extra/u16.low. | |
242 | */ | |
243 | static int64_t cpu_get_icount_executed(CPUState *cpu) | |
244 | { | |
245 | return (cpu->icount_budget - | |
246 | (cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra)); | |
247 | } | |
248 | ||
249 | /* | |
250 | * Update the global shared timer_state.qemu_icount to take into | |
251 | * account executed instructions. This is done by the TCG vCPU | |
252 | * thread so the main-loop can see time has moved forward. | |
253 | */ | |
254 | static void cpu_update_icount_locked(CPUState *cpu) | |
255 | { | |
256 | int64_t executed = cpu_get_icount_executed(cpu); | |
257 | cpu->icount_budget -= executed; | |
258 | ||
259 | atomic_set_i64(&timers_state.qemu_icount, | |
260 | timers_state.qemu_icount + executed); | |
261 | } | |
262 | ||
263 | /* | |
264 | * Update the global shared timer_state.qemu_icount to take into | |
265 | * account executed instructions. This is done by the TCG vCPU | |
266 | * thread so the main-loop can see time has moved forward. | |
267 | */ | |
268 | void cpu_update_icount(CPUState *cpu) | |
269 | { | |
270 | seqlock_write_lock(&timers_state.vm_clock_seqlock, | |
271 | &timers_state.vm_clock_lock); | |
272 | cpu_update_icount_locked(cpu); | |
273 | seqlock_write_unlock(&timers_state.vm_clock_seqlock, | |
274 | &timers_state.vm_clock_lock); | |
275 | } | |
276 | ||
277 | static int64_t cpu_get_icount_raw_locked(void) | |
278 | { | |
279 | CPUState *cpu = current_cpu; | |
280 | ||
281 | if (cpu && cpu->running) { | |
282 | if (!cpu->can_do_io) { | |
283 | error_report("Bad icount read"); | |
284 | exit(1); | |
285 | } | |
286 | /* Take into account what has run */ | |
287 | cpu_update_icount_locked(cpu); | |
288 | } | |
289 | /* The read is protected by the seqlock, but needs atomic64 to avoid UB */ | |
290 | return atomic_read_i64(&timers_state.qemu_icount); | |
291 | } | |
292 | ||
293 | static int64_t cpu_get_icount_locked(void) | |
294 | { | |
295 | int64_t icount = cpu_get_icount_raw_locked(); | |
296 | return atomic_read_i64(&timers_state.qemu_icount_bias) + | |
297 | cpu_icount_to_ns(icount); | |
298 | } | |
299 | ||
300 | int64_t cpu_get_icount_raw(void) | |
301 | { | |
302 | int64_t icount; | |
303 | unsigned start; | |
304 | ||
305 | do { | |
306 | start = seqlock_read_begin(&timers_state.vm_clock_seqlock); | |
307 | icount = cpu_get_icount_raw_locked(); | |
308 | } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); | |
309 | ||
310 | return icount; | |
311 | } | |
312 | ||
313 | /* Return the virtual CPU time, based on the instruction counter. */ | |
314 | int64_t cpu_get_icount(void) | |
315 | { | |
316 | int64_t icount; | |
317 | unsigned start; | |
318 | ||
319 | do { | |
320 | start = seqlock_read_begin(&timers_state.vm_clock_seqlock); | |
321 | icount = cpu_get_icount_locked(); | |
322 | } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); | |
323 | ||
324 | return icount; | |
325 | } | |
326 | ||
327 | int64_t cpu_icount_to_ns(int64_t icount) | |
328 | { | |
329 | return icount << atomic_read(&timers_state.icount_time_shift); | |
330 | } | |
331 | ||
332 | static int64_t cpu_get_ticks_locked(void) | |
333 | { | |
334 | int64_t ticks = timers_state.cpu_ticks_offset; | |
335 | if (timers_state.cpu_ticks_enabled) { | |
336 | ticks += cpu_get_host_ticks(); | |
337 | } | |
338 | ||
339 | if (timers_state.cpu_ticks_prev > ticks) { | |
340 | /* Non increasing ticks may happen if the host uses software suspend. */ | |
341 | timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks; | |
342 | ticks = timers_state.cpu_ticks_prev; | |
343 | } | |
344 | ||
345 | timers_state.cpu_ticks_prev = ticks; | |
346 | return ticks; | |
347 | } | |
348 | ||
349 | /* return the time elapsed in VM between vm_start and vm_stop. Unless | |
350 | * icount is active, cpu_get_ticks() uses units of the host CPU cycle | |
351 | * counter. | |
352 | */ | |
353 | int64_t cpu_get_ticks(void) | |
354 | { | |
355 | int64_t ticks; | |
356 | ||
357 | if (use_icount) { | |
358 | return cpu_get_icount(); | |
359 | } | |
360 | ||
361 | qemu_spin_lock(&timers_state.vm_clock_lock); | |
362 | ticks = cpu_get_ticks_locked(); | |
363 | qemu_spin_unlock(&timers_state.vm_clock_lock); | |
364 | return ticks; | |
365 | } | |
366 | ||
367 | static int64_t cpu_get_clock_locked(void) | |
368 | { | |
369 | int64_t time; | |
370 | ||
371 | time = timers_state.cpu_clock_offset; | |
372 | if (timers_state.cpu_ticks_enabled) { | |
373 | time += get_clock(); | |
374 | } | |
375 | ||
376 | return time; | |
377 | } | |
378 | ||
379 | /* Return the monotonic time elapsed in VM, i.e., | |
380 | * the time between vm_start and vm_stop | |
381 | */ | |
382 | int64_t cpu_get_clock(void) | |
383 | { | |
384 | int64_t ti; | |
385 | unsigned start; | |
386 | ||
387 | do { | |
388 | start = seqlock_read_begin(&timers_state.vm_clock_seqlock); | |
389 | ti = cpu_get_clock_locked(); | |
390 | } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); | |
391 | ||
392 | return ti; | |
393 | } | |
394 | ||
395 | /* enable cpu_get_ticks() | |
396 | * Caller must hold BQL which serves as mutex for vm_clock_seqlock. | |
397 | */ | |
398 | void cpu_enable_ticks(void) | |
399 | { | |
400 | seqlock_write_lock(&timers_state.vm_clock_seqlock, | |
401 | &timers_state.vm_clock_lock); | |
402 | if (!timers_state.cpu_ticks_enabled) { | |
403 | timers_state.cpu_ticks_offset -= cpu_get_host_ticks(); | |
404 | timers_state.cpu_clock_offset -= get_clock(); | |
405 | timers_state.cpu_ticks_enabled = 1; | |
406 | } | |
407 | seqlock_write_unlock(&timers_state.vm_clock_seqlock, | |
408 | &timers_state.vm_clock_lock); | |
409 | } | |
410 | ||
411 | /* disable cpu_get_ticks() : the clock is stopped. You must not call | |
412 | * cpu_get_ticks() after that. | |
413 | * Caller must hold BQL which serves as mutex for vm_clock_seqlock. | |
414 | */ | |
415 | void cpu_disable_ticks(void) | |
416 | { | |
417 | seqlock_write_lock(&timers_state.vm_clock_seqlock, | |
418 | &timers_state.vm_clock_lock); | |
419 | if (timers_state.cpu_ticks_enabled) { | |
420 | timers_state.cpu_ticks_offset += cpu_get_host_ticks(); | |
421 | timers_state.cpu_clock_offset = cpu_get_clock_locked(); | |
422 | timers_state.cpu_ticks_enabled = 0; | |
423 | } | |
424 | seqlock_write_unlock(&timers_state.vm_clock_seqlock, | |
425 | &timers_state.vm_clock_lock); | |
426 | } | |
427 | ||
428 | /* Correlation between real and virtual time is always going to be | |
429 | fairly approximate, so ignore small variation. | |
430 | When the guest is idle real and virtual time will be aligned in | |
431 | the IO wait loop. */ | |
432 | #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10) | |
433 | ||
434 | static void icount_adjust(void) | |
435 | { | |
436 | int64_t cur_time; | |
437 | int64_t cur_icount; | |
438 | int64_t delta; | |
439 | ||
440 | /* Protected by TimersState mutex. */ | |
441 | static int64_t last_delta; | |
442 | ||
443 | /* If the VM is not running, then do nothing. */ | |
444 | if (!runstate_is_running()) { | |
445 | return; | |
446 | } | |
447 | ||
448 | seqlock_write_lock(&timers_state.vm_clock_seqlock, | |
449 | &timers_state.vm_clock_lock); | |
450 | cur_time = cpu_get_clock_locked(); | |
451 | cur_icount = cpu_get_icount_locked(); | |
452 | ||
453 | delta = cur_icount - cur_time; | |
454 | /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */ | |
455 | if (delta > 0 | |
456 | && last_delta + ICOUNT_WOBBLE < delta * 2 | |
457 | && timers_state.icount_time_shift > 0) { | |
458 | /* The guest is getting too far ahead. Slow time down. */ | |
459 | atomic_set(&timers_state.icount_time_shift, | |
460 | timers_state.icount_time_shift - 1); | |
461 | } | |
462 | if (delta < 0 | |
463 | && last_delta - ICOUNT_WOBBLE > delta * 2 | |
464 | && timers_state.icount_time_shift < MAX_ICOUNT_SHIFT) { | |
465 | /* The guest is getting too far behind. Speed time up. */ | |
466 | atomic_set(&timers_state.icount_time_shift, | |
467 | timers_state.icount_time_shift + 1); | |
468 | } | |
469 | last_delta = delta; | |
470 | atomic_set_i64(&timers_state.qemu_icount_bias, | |
471 | cur_icount - (timers_state.qemu_icount | |
472 | << timers_state.icount_time_shift)); | |
473 | seqlock_write_unlock(&timers_state.vm_clock_seqlock, | |
474 | &timers_state.vm_clock_lock); | |
475 | } | |
476 | ||
477 | static void icount_adjust_rt(void *opaque) | |
478 | { | |
479 | timer_mod(timers_state.icount_rt_timer, | |
480 | qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000); | |
481 | icount_adjust(); | |
482 | } | |
483 | ||
484 | static void icount_adjust_vm(void *opaque) | |
485 | { | |
486 | timer_mod(timers_state.icount_vm_timer, | |
487 | qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | |
488 | NANOSECONDS_PER_SECOND / 10); | |
489 | icount_adjust(); | |
490 | } | |
491 | ||
492 | static int64_t qemu_icount_round(int64_t count) | |
493 | { | |
494 | int shift = atomic_read(&timers_state.icount_time_shift); | |
495 | return (count + (1 << shift) - 1) >> shift; | |
496 | } | |
497 | ||
498 | static void icount_warp_rt(void) | |
499 | { | |
500 | unsigned seq; | |
501 | int64_t warp_start; | |
502 | ||
503 | /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start | |
504 | * changes from -1 to another value, so the race here is okay. | |
505 | */ | |
506 | do { | |
507 | seq = seqlock_read_begin(&timers_state.vm_clock_seqlock); | |
508 | warp_start = timers_state.vm_clock_warp_start; | |
509 | } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq)); | |
510 | ||
511 | if (warp_start == -1) { | |
512 | return; | |
513 | } | |
514 | ||
515 | seqlock_write_lock(&timers_state.vm_clock_seqlock, | |
516 | &timers_state.vm_clock_lock); | |
517 | if (runstate_is_running()) { | |
518 | int64_t clock = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT, | |
519 | cpu_get_clock_locked()); | |
520 | int64_t warp_delta; | |
521 | ||
522 | warp_delta = clock - timers_state.vm_clock_warp_start; | |
523 | if (use_icount == 2) { | |
524 | /* | |
525 | * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too | |
526 | * far ahead of real time. | |
527 | */ | |
528 | int64_t cur_icount = cpu_get_icount_locked(); | |
529 | int64_t delta = clock - cur_icount; | |
530 | warp_delta = MIN(warp_delta, delta); | |
531 | } | |
532 | atomic_set_i64(&timers_state.qemu_icount_bias, | |
533 | timers_state.qemu_icount_bias + warp_delta); | |
534 | } | |
535 | timers_state.vm_clock_warp_start = -1; | |
536 | seqlock_write_unlock(&timers_state.vm_clock_seqlock, | |
537 | &timers_state.vm_clock_lock); | |
538 | ||
539 | if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) { | |
540 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
541 | } | |
542 | } | |
543 | ||
544 | static void icount_timer_cb(void *opaque) | |
545 | { | |
546 | /* No need for a checkpoint because the timer already synchronizes | |
547 | * with CHECKPOINT_CLOCK_VIRTUAL_RT. | |
548 | */ | |
549 | icount_warp_rt(); | |
550 | } | |
551 | ||
552 | void qtest_clock_warp(int64_t dest) | |
553 | { | |
554 | int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | |
555 | AioContext *aio_context; | |
556 | assert(qtest_enabled()); | |
557 | aio_context = qemu_get_aio_context(); | |
558 | while (clock < dest) { | |
559 | int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
560 | int64_t warp = qemu_soonest_timeout(dest - clock, deadline); | |
561 | ||
562 | seqlock_write_lock(&timers_state.vm_clock_seqlock, | |
563 | &timers_state.vm_clock_lock); | |
564 | atomic_set_i64(&timers_state.qemu_icount_bias, | |
565 | timers_state.qemu_icount_bias + warp); | |
566 | seqlock_write_unlock(&timers_state.vm_clock_seqlock, | |
567 | &timers_state.vm_clock_lock); | |
568 | ||
569 | qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL); | |
570 | timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]); | |
571 | clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | |
572 | } | |
573 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
574 | } | |
575 | ||
576 | void qemu_start_warp_timer(void) | |
577 | { | |
578 | int64_t clock; | |
579 | int64_t deadline; | |
580 | ||
581 | if (!use_icount) { | |
582 | return; | |
583 | } | |
584 | ||
585 | /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers | |
586 | * do not fire, so computing the deadline does not make sense. | |
587 | */ | |
588 | if (!runstate_is_running()) { | |
589 | return; | |
590 | } | |
591 | ||
592 | if (replay_mode != REPLAY_MODE_PLAY) { | |
593 | if (!all_cpu_threads_idle()) { | |
594 | return; | |
595 | } | |
596 | ||
597 | if (qtest_enabled()) { | |
598 | /* When testing, qtest commands advance icount. */ | |
599 | return; | |
600 | } | |
601 | ||
602 | replay_checkpoint(CHECKPOINT_CLOCK_WARP_START); | |
603 | } else { | |
604 | /* warp clock deterministically in record/replay mode */ | |
605 | if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) { | |
606 | /* vCPU is sleeping and warp can't be started. | |
607 | It is probably a race condition: notification sent | |
608 | to vCPU was processed in advance and vCPU went to sleep. | |
609 | Therefore we have to wake it up for doing someting. */ | |
610 | if (replay_has_checkpoint()) { | |
611 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
612 | } | |
613 | return; | |
614 | } | |
615 | } | |
616 | ||
617 | /* We want to use the earliest deadline from ALL vm_clocks */ | |
618 | clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); | |
619 | deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
620 | if (deadline < 0) { | |
621 | static bool notified; | |
622 | if (!icount_sleep && !notified) { | |
623 | warn_report("icount sleep disabled and no active timers"); | |
624 | notified = true; | |
625 | } | |
626 | return; | |
627 | } | |
628 | ||
629 | if (deadline > 0) { | |
630 | /* | |
631 | * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to | |
632 | * sleep. Otherwise, the CPU might be waiting for a future timer | |
633 | * interrupt to wake it up, but the interrupt never comes because | |
634 | * the vCPU isn't running any insns and thus doesn't advance the | |
635 | * QEMU_CLOCK_VIRTUAL. | |
636 | */ | |
637 | if (!icount_sleep) { | |
638 | /* | |
639 | * We never let VCPUs sleep in no sleep icount mode. | |
640 | * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance | |
641 | * to the next QEMU_CLOCK_VIRTUAL event and notify it. | |
642 | * It is useful when we want a deterministic execution time, | |
643 | * isolated from host latencies. | |
644 | */ | |
645 | seqlock_write_lock(&timers_state.vm_clock_seqlock, | |
646 | &timers_state.vm_clock_lock); | |
647 | atomic_set_i64(&timers_state.qemu_icount_bias, | |
648 | timers_state.qemu_icount_bias + deadline); | |
649 | seqlock_write_unlock(&timers_state.vm_clock_seqlock, | |
650 | &timers_state.vm_clock_lock); | |
651 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
652 | } else { | |
653 | /* | |
654 | * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some | |
655 | * "real" time, (related to the time left until the next event) has | |
656 | * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this. | |
657 | * This avoids that the warps are visible externally; for example, | |
658 | * you will not be sending network packets continuously instead of | |
659 | * every 100ms. | |
660 | */ | |
661 | seqlock_write_lock(&timers_state.vm_clock_seqlock, | |
662 | &timers_state.vm_clock_lock); | |
663 | if (timers_state.vm_clock_warp_start == -1 | |
664 | || timers_state.vm_clock_warp_start > clock) { | |
665 | timers_state.vm_clock_warp_start = clock; | |
666 | } | |
667 | seqlock_write_unlock(&timers_state.vm_clock_seqlock, | |
668 | &timers_state.vm_clock_lock); | |
669 | timer_mod_anticipate(timers_state.icount_warp_timer, | |
670 | clock + deadline); | |
671 | } | |
672 | } else if (deadline == 0) { | |
673 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
674 | } | |
675 | } | |
676 | ||
677 | static void qemu_account_warp_timer(void) | |
678 | { | |
679 | if (!use_icount || !icount_sleep) { | |
680 | return; | |
681 | } | |
682 | ||
683 | /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers | |
684 | * do not fire, so computing the deadline does not make sense. | |
685 | */ | |
686 | if (!runstate_is_running()) { | |
687 | return; | |
688 | } | |
689 | ||
690 | /* warp clock deterministically in record/replay mode */ | |
691 | if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) { | |
692 | return; | |
693 | } | |
694 | ||
695 | timer_del(timers_state.icount_warp_timer); | |
696 | icount_warp_rt(); | |
697 | } | |
698 | ||
699 | static bool icount_state_needed(void *opaque) | |
700 | { | |
701 | return use_icount; | |
702 | } | |
703 | ||
704 | static bool warp_timer_state_needed(void *opaque) | |
705 | { | |
706 | TimersState *s = opaque; | |
707 | return s->icount_warp_timer != NULL; | |
708 | } | |
709 | ||
710 | static bool adjust_timers_state_needed(void *opaque) | |
711 | { | |
712 | TimersState *s = opaque; | |
713 | return s->icount_rt_timer != NULL; | |
714 | } | |
715 | ||
716 | /* | |
717 | * Subsection for warp timer migration is optional, because may not be created | |
718 | */ | |
719 | static const VMStateDescription icount_vmstate_warp_timer = { | |
720 | .name = "timer/icount/warp_timer", | |
721 | .version_id = 1, | |
722 | .minimum_version_id = 1, | |
723 | .needed = warp_timer_state_needed, | |
724 | .fields = (VMStateField[]) { | |
725 | VMSTATE_INT64(vm_clock_warp_start, TimersState), | |
726 | VMSTATE_TIMER_PTR(icount_warp_timer, TimersState), | |
727 | VMSTATE_END_OF_LIST() | |
728 | } | |
729 | }; | |
730 | ||
731 | static const VMStateDescription icount_vmstate_adjust_timers = { | |
732 | .name = "timer/icount/timers", | |
733 | .version_id = 1, | |
734 | .minimum_version_id = 1, | |
735 | .needed = adjust_timers_state_needed, | |
736 | .fields = (VMStateField[]) { | |
737 | VMSTATE_TIMER_PTR(icount_rt_timer, TimersState), | |
738 | VMSTATE_TIMER_PTR(icount_vm_timer, TimersState), | |
739 | VMSTATE_END_OF_LIST() | |
740 | } | |
741 | }; | |
742 | ||
743 | /* | |
744 | * This is a subsection for icount migration. | |
745 | */ | |
746 | static const VMStateDescription icount_vmstate_timers = { | |
747 | .name = "timer/icount", | |
748 | .version_id = 1, | |
749 | .minimum_version_id = 1, | |
750 | .needed = icount_state_needed, | |
751 | .fields = (VMStateField[]) { | |
752 | VMSTATE_INT64(qemu_icount_bias, TimersState), | |
753 | VMSTATE_INT64(qemu_icount, TimersState), | |
754 | VMSTATE_END_OF_LIST() | |
755 | }, | |
756 | .subsections = (const VMStateDescription*[]) { | |
757 | &icount_vmstate_warp_timer, | |
758 | &icount_vmstate_adjust_timers, | |
759 | NULL | |
760 | } | |
761 | }; | |
762 | ||
763 | static const VMStateDescription vmstate_timers = { | |
764 | .name = "timer", | |
765 | .version_id = 2, | |
766 | .minimum_version_id = 1, | |
767 | .fields = (VMStateField[]) { | |
768 | VMSTATE_INT64(cpu_ticks_offset, TimersState), | |
769 | VMSTATE_UNUSED(8), | |
770 | VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2), | |
771 | VMSTATE_END_OF_LIST() | |
772 | }, | |
773 | .subsections = (const VMStateDescription*[]) { | |
774 | &icount_vmstate_timers, | |
775 | NULL | |
776 | } | |
777 | }; | |
778 | ||
779 | static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque) | |
780 | { | |
781 | double pct; | |
782 | double throttle_ratio; | |
783 | long sleeptime_ns; | |
784 | ||
785 | if (!cpu_throttle_get_percentage()) { | |
786 | return; | |
787 | } | |
788 | ||
789 | pct = (double)cpu_throttle_get_percentage()/100; | |
790 | throttle_ratio = pct / (1 - pct); | |
791 | sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS); | |
792 | ||
793 | qemu_mutex_unlock_iothread(); | |
794 | g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */ | |
795 | qemu_mutex_lock_iothread(); | |
796 | atomic_set(&cpu->throttle_thread_scheduled, 0); | |
797 | } | |
798 | ||
799 | static void cpu_throttle_timer_tick(void *opaque) | |
800 | { | |
801 | CPUState *cpu; | |
802 | double pct; | |
803 | ||
804 | /* Stop the timer if needed */ | |
805 | if (!cpu_throttle_get_percentage()) { | |
806 | return; | |
807 | } | |
808 | CPU_FOREACH(cpu) { | |
809 | if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) { | |
810 | async_run_on_cpu(cpu, cpu_throttle_thread, | |
811 | RUN_ON_CPU_NULL); | |
812 | } | |
813 | } | |
814 | ||
815 | pct = (double)cpu_throttle_get_percentage()/100; | |
816 | timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) + | |
817 | CPU_THROTTLE_TIMESLICE_NS / (1-pct)); | |
818 | } | |
819 | ||
820 | void cpu_throttle_set(int new_throttle_pct) | |
821 | { | |
822 | /* Ensure throttle percentage is within valid range */ | |
823 | new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX); | |
824 | new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN); | |
825 | ||
826 | atomic_set(&throttle_percentage, new_throttle_pct); | |
827 | ||
828 | timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) + | |
829 | CPU_THROTTLE_TIMESLICE_NS); | |
830 | } | |
831 | ||
832 | void cpu_throttle_stop(void) | |
833 | { | |
834 | atomic_set(&throttle_percentage, 0); | |
835 | } | |
836 | ||
837 | bool cpu_throttle_active(void) | |
838 | { | |
839 | return (cpu_throttle_get_percentage() != 0); | |
840 | } | |
841 | ||
842 | int cpu_throttle_get_percentage(void) | |
843 | { | |
844 | return atomic_read(&throttle_percentage); | |
845 | } | |
846 | ||
847 | void cpu_ticks_init(void) | |
848 | { | |
849 | seqlock_init(&timers_state.vm_clock_seqlock); | |
850 | qemu_spin_init(&timers_state.vm_clock_lock); | |
851 | vmstate_register(NULL, 0, &vmstate_timers, &timers_state); | |
852 | throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT, | |
853 | cpu_throttle_timer_tick, NULL); | |
854 | } | |
855 | ||
856 | void configure_icount(QemuOpts *opts, Error **errp) | |
857 | { | |
858 | const char *option; | |
859 | char *rem_str = NULL; | |
860 | ||
861 | option = qemu_opt_get(opts, "shift"); | |
862 | if (!option) { | |
863 | if (qemu_opt_get(opts, "align") != NULL) { | |
864 | error_setg(errp, "Please specify shift option when using align"); | |
865 | } | |
866 | return; | |
867 | } | |
868 | ||
869 | icount_sleep = qemu_opt_get_bool(opts, "sleep", true); | |
870 | if (icount_sleep) { | |
871 | timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT, | |
872 | icount_timer_cb, NULL); | |
873 | } | |
874 | ||
875 | icount_align_option = qemu_opt_get_bool(opts, "align", false); | |
876 | ||
877 | if (icount_align_option && !icount_sleep) { | |
878 | error_setg(errp, "align=on and sleep=off are incompatible"); | |
879 | } | |
880 | if (strcmp(option, "auto") != 0) { | |
881 | errno = 0; | |
882 | timers_state.icount_time_shift = strtol(option, &rem_str, 0); | |
883 | if (errno != 0 || *rem_str != '\0' || !strlen(option)) { | |
884 | error_setg(errp, "icount: Invalid shift value"); | |
885 | } | |
886 | use_icount = 1; | |
887 | return; | |
888 | } else if (icount_align_option) { | |
889 | error_setg(errp, "shift=auto and align=on are incompatible"); | |
890 | } else if (!icount_sleep) { | |
891 | error_setg(errp, "shift=auto and sleep=off are incompatible"); | |
892 | } | |
893 | ||
894 | use_icount = 2; | |
895 | ||
896 | /* 125MIPS seems a reasonable initial guess at the guest speed. | |
897 | It will be corrected fairly quickly anyway. */ | |
898 | timers_state.icount_time_shift = 3; | |
899 | ||
900 | /* Have both realtime and virtual time triggers for speed adjustment. | |
901 | The realtime trigger catches emulated time passing too slowly, | |
902 | the virtual time trigger catches emulated time passing too fast. | |
903 | Realtime triggers occur even when idle, so use them less frequently | |
904 | than VM triggers. */ | |
905 | timers_state.vm_clock_warp_start = -1; | |
906 | timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT, | |
907 | icount_adjust_rt, NULL); | |
908 | timer_mod(timers_state.icount_rt_timer, | |
909 | qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000); | |
910 | timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, | |
911 | icount_adjust_vm, NULL); | |
912 | timer_mod(timers_state.icount_vm_timer, | |
913 | qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | |
914 | NANOSECONDS_PER_SECOND / 10); | |
915 | } | |
916 | ||
917 | /***********************************************************/ | |
918 | /* TCG vCPU kick timer | |
919 | * | |
920 | * The kick timer is responsible for moving single threaded vCPU | |
921 | * emulation on to the next vCPU. If more than one vCPU is running a | |
922 | * timer event with force a cpu->exit so the next vCPU can get | |
923 | * scheduled. | |
924 | * | |
925 | * The timer is removed if all vCPUs are idle and restarted again once | |
926 | * idleness is complete. | |
927 | */ | |
928 | ||
929 | static QEMUTimer *tcg_kick_vcpu_timer; | |
930 | static CPUState *tcg_current_rr_cpu; | |
931 | ||
932 | #define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10) | |
933 | ||
934 | static inline int64_t qemu_tcg_next_kick(void) | |
935 | { | |
936 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD; | |
937 | } | |
938 | ||
939 | /* Kick the currently round-robin scheduled vCPU */ | |
940 | static void qemu_cpu_kick_rr_cpu(void) | |
941 | { | |
942 | CPUState *cpu; | |
943 | do { | |
944 | cpu = atomic_mb_read(&tcg_current_rr_cpu); | |
945 | if (cpu) { | |
946 | cpu_exit(cpu); | |
947 | } | |
948 | } while (cpu != atomic_mb_read(&tcg_current_rr_cpu)); | |
949 | } | |
950 | ||
951 | static void do_nothing(CPUState *cpu, run_on_cpu_data unused) | |
952 | { | |
953 | } | |
954 | ||
955 | void qemu_timer_notify_cb(void *opaque, QEMUClockType type) | |
956 | { | |
957 | if (!use_icount || type != QEMU_CLOCK_VIRTUAL) { | |
958 | qemu_notify_event(); | |
959 | return; | |
960 | } | |
961 | ||
962 | if (qemu_in_vcpu_thread()) { | |
963 | /* A CPU is currently running; kick it back out to the | |
964 | * tcg_cpu_exec() loop so it will recalculate its | |
965 | * icount deadline immediately. | |
966 | */ | |
967 | qemu_cpu_kick(current_cpu); | |
968 | } else if (first_cpu) { | |
969 | /* qemu_cpu_kick is not enough to kick a halted CPU out of | |
970 | * qemu_tcg_wait_io_event. async_run_on_cpu, instead, | |
971 | * causes cpu_thread_is_idle to return false. This way, | |
972 | * handle_icount_deadline can run. | |
973 | * If we have no CPUs at all for some reason, we don't | |
974 | * need to do anything. | |
975 | */ | |
976 | async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL); | |
977 | } | |
978 | } | |
979 | ||
980 | static void kick_tcg_thread(void *opaque) | |
981 | { | |
982 | timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick()); | |
983 | qemu_cpu_kick_rr_cpu(); | |
984 | } | |
985 | ||
986 | static void start_tcg_kick_timer(void) | |
987 | { | |
988 | assert(!mttcg_enabled); | |
989 | if (!tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) { | |
990 | tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, | |
991 | kick_tcg_thread, NULL); | |
992 | } | |
993 | if (tcg_kick_vcpu_timer && !timer_pending(tcg_kick_vcpu_timer)) { | |
994 | timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick()); | |
995 | } | |
996 | } | |
997 | ||
998 | static void stop_tcg_kick_timer(void) | |
999 | { | |
1000 | assert(!mttcg_enabled); | |
1001 | if (tcg_kick_vcpu_timer && timer_pending(tcg_kick_vcpu_timer)) { | |
1002 | timer_del(tcg_kick_vcpu_timer); | |
1003 | } | |
1004 | } | |
1005 | ||
1006 | /***********************************************************/ | |
1007 | void hw_error(const char *fmt, ...) | |
1008 | { | |
1009 | va_list ap; | |
1010 | CPUState *cpu; | |
1011 | ||
1012 | va_start(ap, fmt); | |
1013 | fprintf(stderr, "qemu: hardware error: "); | |
1014 | vfprintf(stderr, fmt, ap); | |
1015 | fprintf(stderr, "\n"); | |
1016 | CPU_FOREACH(cpu) { | |
1017 | fprintf(stderr, "CPU #%d:\n", cpu->cpu_index); | |
1018 | cpu_dump_state(cpu, stderr, CPU_DUMP_FPU); | |
1019 | } | |
1020 | va_end(ap); | |
1021 | abort(); | |
1022 | } | |
1023 | ||
1024 | void cpu_synchronize_all_states(void) | |
1025 | { | |
1026 | CPUState *cpu; | |
1027 | ||
1028 | CPU_FOREACH(cpu) { | |
1029 | cpu_synchronize_state(cpu); | |
1030 | /* TODO: move to cpu_synchronize_state() */ | |
1031 | if (hvf_enabled()) { | |
1032 | hvf_cpu_synchronize_state(cpu); | |
1033 | } | |
1034 | } | |
1035 | } | |
1036 | ||
1037 | void cpu_synchronize_all_post_reset(void) | |
1038 | { | |
1039 | CPUState *cpu; | |
1040 | ||
1041 | CPU_FOREACH(cpu) { | |
1042 | cpu_synchronize_post_reset(cpu); | |
1043 | /* TODO: move to cpu_synchronize_post_reset() */ | |
1044 | if (hvf_enabled()) { | |
1045 | hvf_cpu_synchronize_post_reset(cpu); | |
1046 | } | |
1047 | } | |
1048 | } | |
1049 | ||
1050 | void cpu_synchronize_all_post_init(void) | |
1051 | { | |
1052 | CPUState *cpu; | |
1053 | ||
1054 | CPU_FOREACH(cpu) { | |
1055 | cpu_synchronize_post_init(cpu); | |
1056 | /* TODO: move to cpu_synchronize_post_init() */ | |
1057 | if (hvf_enabled()) { | |
1058 | hvf_cpu_synchronize_post_init(cpu); | |
1059 | } | |
1060 | } | |
1061 | } | |
1062 | ||
1063 | void cpu_synchronize_all_pre_loadvm(void) | |
1064 | { | |
1065 | CPUState *cpu; | |
1066 | ||
1067 | CPU_FOREACH(cpu) { | |
1068 | cpu_synchronize_pre_loadvm(cpu); | |
1069 | } | |
1070 | } | |
1071 | ||
1072 | static int do_vm_stop(RunState state, bool send_stop) | |
1073 | { | |
1074 | int ret = 0; | |
1075 | ||
1076 | if (runstate_is_running()) { | |
1077 | cpu_disable_ticks(); | |
1078 | pause_all_vcpus(); | |
1079 | runstate_set(state); | |
1080 | vm_state_notify(0, state); | |
1081 | if (send_stop) { | |
1082 | qapi_event_send_stop(); | |
1083 | } | |
1084 | } | |
1085 | ||
1086 | bdrv_drain_all(); | |
1087 | replay_disable_events(); | |
1088 | ret = bdrv_flush_all(); | |
1089 | ||
1090 | return ret; | |
1091 | } | |
1092 | ||
1093 | /* Special vm_stop() variant for terminating the process. Historically clients | |
1094 | * did not expect a QMP STOP event and so we need to retain compatibility. | |
1095 | */ | |
1096 | int vm_shutdown(void) | |
1097 | { | |
1098 | return do_vm_stop(RUN_STATE_SHUTDOWN, false); | |
1099 | } | |
1100 | ||
1101 | static bool cpu_can_run(CPUState *cpu) | |
1102 | { | |
1103 | if (cpu->stop) { | |
1104 | return false; | |
1105 | } | |
1106 | if (cpu_is_stopped(cpu)) { | |
1107 | return false; | |
1108 | } | |
1109 | return true; | |
1110 | } | |
1111 | ||
1112 | static void cpu_handle_guest_debug(CPUState *cpu) | |
1113 | { | |
1114 | gdb_set_stop_cpu(cpu); | |
1115 | qemu_system_debug_request(); | |
1116 | cpu->stopped = true; | |
1117 | } | |
1118 | ||
1119 | #ifdef CONFIG_LINUX | |
1120 | static void sigbus_reraise(void) | |
1121 | { | |
1122 | sigset_t set; | |
1123 | struct sigaction action; | |
1124 | ||
1125 | memset(&action, 0, sizeof(action)); | |
1126 | action.sa_handler = SIG_DFL; | |
1127 | if (!sigaction(SIGBUS, &action, NULL)) { | |
1128 | raise(SIGBUS); | |
1129 | sigemptyset(&set); | |
1130 | sigaddset(&set, SIGBUS); | |
1131 | pthread_sigmask(SIG_UNBLOCK, &set, NULL); | |
1132 | } | |
1133 | perror("Failed to re-raise SIGBUS!\n"); | |
1134 | abort(); | |
1135 | } | |
1136 | ||
1137 | static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx) | |
1138 | { | |
1139 | if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) { | |
1140 | sigbus_reraise(); | |
1141 | } | |
1142 | ||
1143 | if (current_cpu) { | |
1144 | /* Called asynchronously in VCPU thread. */ | |
1145 | if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) { | |
1146 | sigbus_reraise(); | |
1147 | } | |
1148 | } else { | |
1149 | /* Called synchronously (via signalfd) in main thread. */ | |
1150 | if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) { | |
1151 | sigbus_reraise(); | |
1152 | } | |
1153 | } | |
1154 | } | |
1155 | ||
1156 | static void qemu_init_sigbus(void) | |
1157 | { | |
1158 | struct sigaction action; | |
1159 | ||
1160 | memset(&action, 0, sizeof(action)); | |
1161 | action.sa_flags = SA_SIGINFO; | |
1162 | action.sa_sigaction = sigbus_handler; | |
1163 | sigaction(SIGBUS, &action, NULL); | |
1164 | ||
1165 | prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0); | |
1166 | } | |
1167 | #else /* !CONFIG_LINUX */ | |
1168 | static void qemu_init_sigbus(void) | |
1169 | { | |
1170 | } | |
1171 | #endif /* !CONFIG_LINUX */ | |
1172 | ||
1173 | static QemuMutex qemu_global_mutex; | |
1174 | ||
1175 | static QemuThread io_thread; | |
1176 | ||
1177 | /* cpu creation */ | |
1178 | static QemuCond qemu_cpu_cond; | |
1179 | /* system init */ | |
1180 | static QemuCond qemu_pause_cond; | |
1181 | ||
1182 | void qemu_init_cpu_loop(void) | |
1183 | { | |
1184 | qemu_init_sigbus(); | |
1185 | qemu_cond_init(&qemu_cpu_cond); | |
1186 | qemu_cond_init(&qemu_pause_cond); | |
1187 | qemu_mutex_init(&qemu_global_mutex); | |
1188 | ||
1189 | qemu_thread_get_self(&io_thread); | |
1190 | } | |
1191 | ||
1192 | void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data) | |
1193 | { | |
1194 | do_run_on_cpu(cpu, func, data, &qemu_global_mutex); | |
1195 | } | |
1196 | ||
1197 | static void qemu_kvm_destroy_vcpu(CPUState *cpu) | |
1198 | { | |
1199 | if (kvm_destroy_vcpu(cpu) < 0) { | |
1200 | error_report("kvm_destroy_vcpu failed"); | |
1201 | exit(EXIT_FAILURE); | |
1202 | } | |
1203 | } | |
1204 | ||
1205 | static void qemu_tcg_destroy_vcpu(CPUState *cpu) | |
1206 | { | |
1207 | } | |
1208 | ||
1209 | static void qemu_cpu_stop(CPUState *cpu, bool exit) | |
1210 | { | |
1211 | g_assert(qemu_cpu_is_self(cpu)); | |
1212 | cpu->stop = false; | |
1213 | cpu->stopped = true; | |
1214 | if (exit) { | |
1215 | cpu_exit(cpu); | |
1216 | } | |
1217 | qemu_cond_broadcast(&qemu_pause_cond); | |
1218 | } | |
1219 | ||
1220 | static void qemu_wait_io_event_common(CPUState *cpu) | |
1221 | { | |
1222 | atomic_mb_set(&cpu->thread_kicked, false); | |
1223 | if (cpu->stop) { | |
1224 | qemu_cpu_stop(cpu, false); | |
1225 | } | |
1226 | process_queued_cpu_work(cpu); | |
1227 | } | |
1228 | ||
1229 | static void qemu_tcg_rr_wait_io_event(void) | |
1230 | { | |
1231 | CPUState *cpu; | |
1232 | ||
1233 | while (all_cpu_threads_idle()) { | |
1234 | stop_tcg_kick_timer(); | |
1235 | qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex); | |
1236 | } | |
1237 | ||
1238 | start_tcg_kick_timer(); | |
1239 | ||
1240 | CPU_FOREACH(cpu) { | |
1241 | qemu_wait_io_event_common(cpu); | |
1242 | } | |
1243 | } | |
1244 | ||
1245 | static void qemu_wait_io_event(CPUState *cpu) | |
1246 | { | |
1247 | while (cpu_thread_is_idle(cpu)) { | |
1248 | qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); | |
1249 | } | |
1250 | ||
1251 | #ifdef _WIN32 | |
1252 | /* Eat dummy APC queued by qemu_cpu_kick_thread. */ | |
1253 | if (!tcg_enabled()) { | |
1254 | SleepEx(0, TRUE); | |
1255 | } | |
1256 | #endif | |
1257 | qemu_wait_io_event_common(cpu); | |
1258 | } | |
1259 | ||
1260 | static void *qemu_kvm_cpu_thread_fn(void *arg) | |
1261 | { | |
1262 | CPUState *cpu = arg; | |
1263 | int r; | |
1264 | ||
1265 | rcu_register_thread(); | |
1266 | ||
1267 | qemu_mutex_lock_iothread(); | |
1268 | qemu_thread_get_self(cpu->thread); | |
1269 | cpu->thread_id = qemu_get_thread_id(); | |
1270 | cpu->can_do_io = 1; | |
1271 | current_cpu = cpu; | |
1272 | ||
1273 | r = kvm_init_vcpu(cpu); | |
1274 | if (r < 0) { | |
1275 | error_report("kvm_init_vcpu failed: %s", strerror(-r)); | |
1276 | exit(1); | |
1277 | } | |
1278 | ||
1279 | kvm_init_cpu_signals(cpu); | |
1280 | ||
1281 | /* signal CPU creation */ | |
1282 | cpu->created = true; | |
1283 | qemu_cond_signal(&qemu_cpu_cond); | |
1284 | qemu_guest_random_seed_thread_part2(cpu->random_seed); | |
1285 | ||
1286 | do { | |
1287 | if (cpu_can_run(cpu)) { | |
1288 | r = kvm_cpu_exec(cpu); | |
1289 | if (r == EXCP_DEBUG) { | |
1290 | cpu_handle_guest_debug(cpu); | |
1291 | } | |
1292 | } | |
1293 | qemu_wait_io_event(cpu); | |
1294 | } while (!cpu->unplug || cpu_can_run(cpu)); | |
1295 | ||
1296 | qemu_kvm_destroy_vcpu(cpu); | |
1297 | cpu->created = false; | |
1298 | qemu_cond_signal(&qemu_cpu_cond); | |
1299 | qemu_mutex_unlock_iothread(); | |
1300 | rcu_unregister_thread(); | |
1301 | return NULL; | |
1302 | } | |
1303 | ||
1304 | static void *qemu_dummy_cpu_thread_fn(void *arg) | |
1305 | { | |
1306 | #ifdef _WIN32 | |
1307 | error_report("qtest is not supported under Windows"); | |
1308 | exit(1); | |
1309 | #else | |
1310 | CPUState *cpu = arg; | |
1311 | sigset_t waitset; | |
1312 | int r; | |
1313 | ||
1314 | rcu_register_thread(); | |
1315 | ||
1316 | qemu_mutex_lock_iothread(); | |
1317 | qemu_thread_get_self(cpu->thread); | |
1318 | cpu->thread_id = qemu_get_thread_id(); | |
1319 | cpu->can_do_io = 1; | |
1320 | current_cpu = cpu; | |
1321 | ||
1322 | sigemptyset(&waitset); | |
1323 | sigaddset(&waitset, SIG_IPI); | |
1324 | ||
1325 | /* signal CPU creation */ | |
1326 | cpu->created = true; | |
1327 | qemu_cond_signal(&qemu_cpu_cond); | |
1328 | qemu_guest_random_seed_thread_part2(cpu->random_seed); | |
1329 | ||
1330 | do { | |
1331 | qemu_mutex_unlock_iothread(); | |
1332 | do { | |
1333 | int sig; | |
1334 | r = sigwait(&waitset, &sig); | |
1335 | } while (r == -1 && (errno == EAGAIN || errno == EINTR)); | |
1336 | if (r == -1) { | |
1337 | perror("sigwait"); | |
1338 | exit(1); | |
1339 | } | |
1340 | qemu_mutex_lock_iothread(); | |
1341 | qemu_wait_io_event(cpu); | |
1342 | } while (!cpu->unplug); | |
1343 | ||
1344 | qemu_mutex_unlock_iothread(); | |
1345 | rcu_unregister_thread(); | |
1346 | return NULL; | |
1347 | #endif | |
1348 | } | |
1349 | ||
1350 | static int64_t tcg_get_icount_limit(void) | |
1351 | { | |
1352 | int64_t deadline; | |
1353 | ||
1354 | if (replay_mode != REPLAY_MODE_PLAY) { | |
1355 | deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
1356 | ||
1357 | /* Maintain prior (possibly buggy) behaviour where if no deadline | |
1358 | * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than | |
1359 | * INT32_MAX nanoseconds ahead, we still use INT32_MAX | |
1360 | * nanoseconds. | |
1361 | */ | |
1362 | if ((deadline < 0) || (deadline > INT32_MAX)) { | |
1363 | deadline = INT32_MAX; | |
1364 | } | |
1365 | ||
1366 | return qemu_icount_round(deadline); | |
1367 | } else { | |
1368 | return replay_get_instructions(); | |
1369 | } | |
1370 | } | |
1371 | ||
1372 | static void handle_icount_deadline(void) | |
1373 | { | |
1374 | assert(qemu_in_vcpu_thread()); | |
1375 | if (use_icount) { | |
1376 | int64_t deadline = | |
1377 | qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
1378 | ||
1379 | if (deadline == 0) { | |
1380 | /* Wake up other AioContexts. */ | |
1381 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
1382 | qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL); | |
1383 | } | |
1384 | } | |
1385 | } | |
1386 | ||
1387 | static void prepare_icount_for_run(CPUState *cpu) | |
1388 | { | |
1389 | if (use_icount) { | |
1390 | int insns_left; | |
1391 | ||
1392 | /* These should always be cleared by process_icount_data after | |
1393 | * each vCPU execution. However u16.high can be raised | |
1394 | * asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt | |
1395 | */ | |
1396 | g_assert(cpu_neg(cpu)->icount_decr.u16.low == 0); | |
1397 | g_assert(cpu->icount_extra == 0); | |
1398 | ||
1399 | cpu->icount_budget = tcg_get_icount_limit(); | |
1400 | insns_left = MIN(0xffff, cpu->icount_budget); | |
1401 | cpu_neg(cpu)->icount_decr.u16.low = insns_left; | |
1402 | cpu->icount_extra = cpu->icount_budget - insns_left; | |
1403 | ||
1404 | replay_mutex_lock(); | |
1405 | } | |
1406 | } | |
1407 | ||
1408 | static void process_icount_data(CPUState *cpu) | |
1409 | { | |
1410 | if (use_icount) { | |
1411 | /* Account for executed instructions */ | |
1412 | cpu_update_icount(cpu); | |
1413 | ||
1414 | /* Reset the counters */ | |
1415 | cpu_neg(cpu)->icount_decr.u16.low = 0; | |
1416 | cpu->icount_extra = 0; | |
1417 | cpu->icount_budget = 0; | |
1418 | ||
1419 | replay_account_executed_instructions(); | |
1420 | ||
1421 | replay_mutex_unlock(); | |
1422 | } | |
1423 | } | |
1424 | ||
1425 | ||
1426 | static int tcg_cpu_exec(CPUState *cpu) | |
1427 | { | |
1428 | int ret; | |
1429 | #ifdef CONFIG_PROFILER | |
1430 | int64_t ti; | |
1431 | #endif | |
1432 | ||
1433 | assert(tcg_enabled()); | |
1434 | #ifdef CONFIG_PROFILER | |
1435 | ti = profile_getclock(); | |
1436 | #endif | |
1437 | cpu_exec_start(cpu); | |
1438 | ret = cpu_exec(cpu); | |
1439 | cpu_exec_end(cpu); | |
1440 | #ifdef CONFIG_PROFILER | |
1441 | atomic_set(&tcg_ctx->prof.cpu_exec_time, | |
1442 | tcg_ctx->prof.cpu_exec_time + profile_getclock() - ti); | |
1443 | #endif | |
1444 | return ret; | |
1445 | } | |
1446 | ||
1447 | /* Destroy any remaining vCPUs which have been unplugged and have | |
1448 | * finished running | |
1449 | */ | |
1450 | static void deal_with_unplugged_cpus(void) | |
1451 | { | |
1452 | CPUState *cpu; | |
1453 | ||
1454 | CPU_FOREACH(cpu) { | |
1455 | if (cpu->unplug && !cpu_can_run(cpu)) { | |
1456 | qemu_tcg_destroy_vcpu(cpu); | |
1457 | cpu->created = false; | |
1458 | qemu_cond_signal(&qemu_cpu_cond); | |
1459 | break; | |
1460 | } | |
1461 | } | |
1462 | } | |
1463 | ||
1464 | /* Single-threaded TCG | |
1465 | * | |
1466 | * In the single-threaded case each vCPU is simulated in turn. If | |
1467 | * there is more than a single vCPU we create a simple timer to kick | |
1468 | * the vCPU and ensure we don't get stuck in a tight loop in one vCPU. | |
1469 | * This is done explicitly rather than relying on side-effects | |
1470 | * elsewhere. | |
1471 | */ | |
1472 | ||
1473 | static void *qemu_tcg_rr_cpu_thread_fn(void *arg) | |
1474 | { | |
1475 | CPUState *cpu = arg; | |
1476 | ||
1477 | assert(tcg_enabled()); | |
1478 | rcu_register_thread(); | |
1479 | tcg_register_thread(); | |
1480 | ||
1481 | qemu_mutex_lock_iothread(); | |
1482 | qemu_thread_get_self(cpu->thread); | |
1483 | ||
1484 | cpu->thread_id = qemu_get_thread_id(); | |
1485 | cpu->created = true; | |
1486 | cpu->can_do_io = 1; | |
1487 | qemu_cond_signal(&qemu_cpu_cond); | |
1488 | qemu_guest_random_seed_thread_part2(cpu->random_seed); | |
1489 | ||
1490 | /* wait for initial kick-off after machine start */ | |
1491 | while (first_cpu->stopped) { | |
1492 | qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex); | |
1493 | ||
1494 | /* process any pending work */ | |
1495 | CPU_FOREACH(cpu) { | |
1496 | current_cpu = cpu; | |
1497 | qemu_wait_io_event_common(cpu); | |
1498 | } | |
1499 | } | |
1500 | ||
1501 | start_tcg_kick_timer(); | |
1502 | ||
1503 | cpu = first_cpu; | |
1504 | ||
1505 | /* process any pending work */ | |
1506 | cpu->exit_request = 1; | |
1507 | ||
1508 | while (1) { | |
1509 | qemu_mutex_unlock_iothread(); | |
1510 | replay_mutex_lock(); | |
1511 | qemu_mutex_lock_iothread(); | |
1512 | /* Account partial waits to QEMU_CLOCK_VIRTUAL. */ | |
1513 | qemu_account_warp_timer(); | |
1514 | ||
1515 | /* Run the timers here. This is much more efficient than | |
1516 | * waking up the I/O thread and waiting for completion. | |
1517 | */ | |
1518 | handle_icount_deadline(); | |
1519 | ||
1520 | replay_mutex_unlock(); | |
1521 | ||
1522 | if (!cpu) { | |
1523 | cpu = first_cpu; | |
1524 | } | |
1525 | ||
1526 | while (cpu && !cpu->queued_work_first && !cpu->exit_request) { | |
1527 | ||
1528 | atomic_mb_set(&tcg_current_rr_cpu, cpu); | |
1529 | current_cpu = cpu; | |
1530 | ||
1531 | qemu_clock_enable(QEMU_CLOCK_VIRTUAL, | |
1532 | (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0); | |
1533 | ||
1534 | if (cpu_can_run(cpu)) { | |
1535 | int r; | |
1536 | ||
1537 | qemu_mutex_unlock_iothread(); | |
1538 | prepare_icount_for_run(cpu); | |
1539 | ||
1540 | r = tcg_cpu_exec(cpu); | |
1541 | ||
1542 | process_icount_data(cpu); | |
1543 | qemu_mutex_lock_iothread(); | |
1544 | ||
1545 | if (r == EXCP_DEBUG) { | |
1546 | cpu_handle_guest_debug(cpu); | |
1547 | break; | |
1548 | } else if (r == EXCP_ATOMIC) { | |
1549 | qemu_mutex_unlock_iothread(); | |
1550 | cpu_exec_step_atomic(cpu); | |
1551 | qemu_mutex_lock_iothread(); | |
1552 | break; | |
1553 | } | |
1554 | } else if (cpu->stop) { | |
1555 | if (cpu->unplug) { | |
1556 | cpu = CPU_NEXT(cpu); | |
1557 | } | |
1558 | break; | |
1559 | } | |
1560 | ||
1561 | cpu = CPU_NEXT(cpu); | |
1562 | } /* while (cpu && !cpu->exit_request).. */ | |
1563 | ||
1564 | /* Does not need atomic_mb_set because a spurious wakeup is okay. */ | |
1565 | atomic_set(&tcg_current_rr_cpu, NULL); | |
1566 | ||
1567 | if (cpu && cpu->exit_request) { | |
1568 | atomic_mb_set(&cpu->exit_request, 0); | |
1569 | } | |
1570 | ||
1571 | if (use_icount && all_cpu_threads_idle()) { | |
1572 | /* | |
1573 | * When all cpus are sleeping (e.g in WFI), to avoid a deadlock | |
1574 | * in the main_loop, wake it up in order to start the warp timer. | |
1575 | */ | |
1576 | qemu_notify_event(); | |
1577 | } | |
1578 | ||
1579 | qemu_tcg_rr_wait_io_event(); | |
1580 | deal_with_unplugged_cpus(); | |
1581 | } | |
1582 | ||
1583 | rcu_unregister_thread(); | |
1584 | return NULL; | |
1585 | } | |
1586 | ||
1587 | static void *qemu_hax_cpu_thread_fn(void *arg) | |
1588 | { | |
1589 | CPUState *cpu = arg; | |
1590 | int r; | |
1591 | ||
1592 | rcu_register_thread(); | |
1593 | qemu_mutex_lock_iothread(); | |
1594 | qemu_thread_get_self(cpu->thread); | |
1595 | ||
1596 | cpu->thread_id = qemu_get_thread_id(); | |
1597 | cpu->created = true; | |
1598 | current_cpu = cpu; | |
1599 | ||
1600 | hax_init_vcpu(cpu); | |
1601 | qemu_cond_signal(&qemu_cpu_cond); | |
1602 | qemu_guest_random_seed_thread_part2(cpu->random_seed); | |
1603 | ||
1604 | do { | |
1605 | if (cpu_can_run(cpu)) { | |
1606 | r = hax_smp_cpu_exec(cpu); | |
1607 | if (r == EXCP_DEBUG) { | |
1608 | cpu_handle_guest_debug(cpu); | |
1609 | } | |
1610 | } | |
1611 | ||
1612 | qemu_wait_io_event(cpu); | |
1613 | } while (!cpu->unplug || cpu_can_run(cpu)); | |
1614 | rcu_unregister_thread(); | |
1615 | return NULL; | |
1616 | } | |
1617 | ||
1618 | /* The HVF-specific vCPU thread function. This one should only run when the host | |
1619 | * CPU supports the VMX "unrestricted guest" feature. */ | |
1620 | static void *qemu_hvf_cpu_thread_fn(void *arg) | |
1621 | { | |
1622 | CPUState *cpu = arg; | |
1623 | ||
1624 | int r; | |
1625 | ||
1626 | assert(hvf_enabled()); | |
1627 | ||
1628 | rcu_register_thread(); | |
1629 | ||
1630 | qemu_mutex_lock_iothread(); | |
1631 | qemu_thread_get_self(cpu->thread); | |
1632 | ||
1633 | cpu->thread_id = qemu_get_thread_id(); | |
1634 | cpu->can_do_io = 1; | |
1635 | current_cpu = cpu; | |
1636 | ||
1637 | hvf_init_vcpu(cpu); | |
1638 | ||
1639 | /* signal CPU creation */ | |
1640 | cpu->created = true; | |
1641 | qemu_cond_signal(&qemu_cpu_cond); | |
1642 | qemu_guest_random_seed_thread_part2(cpu->random_seed); | |
1643 | ||
1644 | do { | |
1645 | if (cpu_can_run(cpu)) { | |
1646 | r = hvf_vcpu_exec(cpu); | |
1647 | if (r == EXCP_DEBUG) { | |
1648 | cpu_handle_guest_debug(cpu); | |
1649 | } | |
1650 | } | |
1651 | qemu_wait_io_event(cpu); | |
1652 | } while (!cpu->unplug || cpu_can_run(cpu)); | |
1653 | ||
1654 | hvf_vcpu_destroy(cpu); | |
1655 | cpu->created = false; | |
1656 | qemu_cond_signal(&qemu_cpu_cond); | |
1657 | qemu_mutex_unlock_iothread(); | |
1658 | rcu_unregister_thread(); | |
1659 | return NULL; | |
1660 | } | |
1661 | ||
1662 | static void *qemu_whpx_cpu_thread_fn(void *arg) | |
1663 | { | |
1664 | CPUState *cpu = arg; | |
1665 | int r; | |
1666 | ||
1667 | rcu_register_thread(); | |
1668 | ||
1669 | qemu_mutex_lock_iothread(); | |
1670 | qemu_thread_get_self(cpu->thread); | |
1671 | cpu->thread_id = qemu_get_thread_id(); | |
1672 | current_cpu = cpu; | |
1673 | ||
1674 | r = whpx_init_vcpu(cpu); | |
1675 | if (r < 0) { | |
1676 | fprintf(stderr, "whpx_init_vcpu failed: %s\n", strerror(-r)); | |
1677 | exit(1); | |
1678 | } | |
1679 | ||
1680 | /* signal CPU creation */ | |
1681 | cpu->created = true; | |
1682 | qemu_cond_signal(&qemu_cpu_cond); | |
1683 | qemu_guest_random_seed_thread_part2(cpu->random_seed); | |
1684 | ||
1685 | do { | |
1686 | if (cpu_can_run(cpu)) { | |
1687 | r = whpx_vcpu_exec(cpu); | |
1688 | if (r == EXCP_DEBUG) { | |
1689 | cpu_handle_guest_debug(cpu); | |
1690 | } | |
1691 | } | |
1692 | while (cpu_thread_is_idle(cpu)) { | |
1693 | qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); | |
1694 | } | |
1695 | qemu_wait_io_event_common(cpu); | |
1696 | } while (!cpu->unplug || cpu_can_run(cpu)); | |
1697 | ||
1698 | whpx_destroy_vcpu(cpu); | |
1699 | cpu->created = false; | |
1700 | qemu_cond_signal(&qemu_cpu_cond); | |
1701 | qemu_mutex_unlock_iothread(); | |
1702 | rcu_unregister_thread(); | |
1703 | return NULL; | |
1704 | } | |
1705 | ||
1706 | #ifdef _WIN32 | |
1707 | static void CALLBACK dummy_apc_func(ULONG_PTR unused) | |
1708 | { | |
1709 | } | |
1710 | #endif | |
1711 | ||
1712 | /* Multi-threaded TCG | |
1713 | * | |
1714 | * In the multi-threaded case each vCPU has its own thread. The TLS | |
1715 | * variable current_cpu can be used deep in the code to find the | |
1716 | * current CPUState for a given thread. | |
1717 | */ | |
1718 | ||
1719 | static void *qemu_tcg_cpu_thread_fn(void *arg) | |
1720 | { | |
1721 | CPUState *cpu = arg; | |
1722 | ||
1723 | assert(tcg_enabled()); | |
1724 | g_assert(!use_icount); | |
1725 | ||
1726 | rcu_register_thread(); | |
1727 | tcg_register_thread(); | |
1728 | ||
1729 | qemu_mutex_lock_iothread(); | |
1730 | qemu_thread_get_self(cpu->thread); | |
1731 | ||
1732 | cpu->thread_id = qemu_get_thread_id(); | |
1733 | cpu->created = true; | |
1734 | cpu->can_do_io = 1; | |
1735 | current_cpu = cpu; | |
1736 | qemu_cond_signal(&qemu_cpu_cond); | |
1737 | qemu_guest_random_seed_thread_part2(cpu->random_seed); | |
1738 | ||
1739 | /* process any pending work */ | |
1740 | cpu->exit_request = 1; | |
1741 | ||
1742 | do { | |
1743 | if (cpu_can_run(cpu)) { | |
1744 | int r; | |
1745 | qemu_mutex_unlock_iothread(); | |
1746 | r = tcg_cpu_exec(cpu); | |
1747 | qemu_mutex_lock_iothread(); | |
1748 | switch (r) { | |
1749 | case EXCP_DEBUG: | |
1750 | cpu_handle_guest_debug(cpu); | |
1751 | break; | |
1752 | case EXCP_HALTED: | |
1753 | /* during start-up the vCPU is reset and the thread is | |
1754 | * kicked several times. If we don't ensure we go back | |
1755 | * to sleep in the halted state we won't cleanly | |
1756 | * start-up when the vCPU is enabled. | |
1757 | * | |
1758 | * cpu->halted should ensure we sleep in wait_io_event | |
1759 | */ | |
1760 | g_assert(cpu->halted); | |
1761 | break; | |
1762 | case EXCP_ATOMIC: | |
1763 | qemu_mutex_unlock_iothread(); | |
1764 | cpu_exec_step_atomic(cpu); | |
1765 | qemu_mutex_lock_iothread(); | |
1766 | default: | |
1767 | /* Ignore everything else? */ | |
1768 | break; | |
1769 | } | |
1770 | } | |
1771 | ||
1772 | atomic_mb_set(&cpu->exit_request, 0); | |
1773 | qemu_wait_io_event(cpu); | |
1774 | } while (!cpu->unplug || cpu_can_run(cpu)); | |
1775 | ||
1776 | qemu_tcg_destroy_vcpu(cpu); | |
1777 | cpu->created = false; | |
1778 | qemu_cond_signal(&qemu_cpu_cond); | |
1779 | qemu_mutex_unlock_iothread(); | |
1780 | rcu_unregister_thread(); | |
1781 | return NULL; | |
1782 | } | |
1783 | ||
1784 | static void qemu_cpu_kick_thread(CPUState *cpu) | |
1785 | { | |
1786 | #ifndef _WIN32 | |
1787 | int err; | |
1788 | ||
1789 | if (cpu->thread_kicked) { | |
1790 | return; | |
1791 | } | |
1792 | cpu->thread_kicked = true; | |
1793 | err = pthread_kill(cpu->thread->thread, SIG_IPI); | |
1794 | if (err && err != ESRCH) { | |
1795 | fprintf(stderr, "qemu:%s: %s", __func__, strerror(err)); | |
1796 | exit(1); | |
1797 | } | |
1798 | #else /* _WIN32 */ | |
1799 | if (!qemu_cpu_is_self(cpu)) { | |
1800 | if (whpx_enabled()) { | |
1801 | whpx_vcpu_kick(cpu); | |
1802 | } else if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) { | |
1803 | fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n", | |
1804 | __func__, GetLastError()); | |
1805 | exit(1); | |
1806 | } | |
1807 | } | |
1808 | #endif | |
1809 | } | |
1810 | ||
1811 | void qemu_cpu_kick(CPUState *cpu) | |
1812 | { | |
1813 | qemu_cond_broadcast(cpu->halt_cond); | |
1814 | if (tcg_enabled()) { | |
1815 | cpu_exit(cpu); | |
1816 | /* NOP unless doing single-thread RR */ | |
1817 | qemu_cpu_kick_rr_cpu(); | |
1818 | } else { | |
1819 | if (hax_enabled()) { | |
1820 | /* | |
1821 | * FIXME: race condition with the exit_request check in | |
1822 | * hax_vcpu_hax_exec | |
1823 | */ | |
1824 | cpu->exit_request = 1; | |
1825 | } | |
1826 | qemu_cpu_kick_thread(cpu); | |
1827 | } | |
1828 | } | |
1829 | ||
1830 | void qemu_cpu_kick_self(void) | |
1831 | { | |
1832 | assert(current_cpu); | |
1833 | qemu_cpu_kick_thread(current_cpu); | |
1834 | } | |
1835 | ||
1836 | bool qemu_cpu_is_self(CPUState *cpu) | |
1837 | { | |
1838 | return qemu_thread_is_self(cpu->thread); | |
1839 | } | |
1840 | ||
1841 | bool qemu_in_vcpu_thread(void) | |
1842 | { | |
1843 | return current_cpu && qemu_cpu_is_self(current_cpu); | |
1844 | } | |
1845 | ||
1846 | static __thread bool iothread_locked = false; | |
1847 | ||
1848 | bool qemu_mutex_iothread_locked(void) | |
1849 | { | |
1850 | return iothread_locked; | |
1851 | } | |
1852 | ||
1853 | /* | |
1854 | * The BQL is taken from so many places that it is worth profiling the | |
1855 | * callers directly, instead of funneling them all through a single function. | |
1856 | */ | |
1857 | void qemu_mutex_lock_iothread_impl(const char *file, int line) | |
1858 | { | |
1859 | QemuMutexLockFunc bql_lock = atomic_read(&qemu_bql_mutex_lock_func); | |
1860 | ||
1861 | g_assert(!qemu_mutex_iothread_locked()); | |
1862 | bql_lock(&qemu_global_mutex, file, line); | |
1863 | iothread_locked = true; | |
1864 | } | |
1865 | ||
1866 | void qemu_mutex_unlock_iothread(void) | |
1867 | { | |
1868 | g_assert(qemu_mutex_iothread_locked()); | |
1869 | iothread_locked = false; | |
1870 | qemu_mutex_unlock(&qemu_global_mutex); | |
1871 | } | |
1872 | ||
1873 | static bool all_vcpus_paused(void) | |
1874 | { | |
1875 | CPUState *cpu; | |
1876 | ||
1877 | CPU_FOREACH(cpu) { | |
1878 | if (!cpu->stopped) { | |
1879 | return false; | |
1880 | } | |
1881 | } | |
1882 | ||
1883 | return true; | |
1884 | } | |
1885 | ||
1886 | void pause_all_vcpus(void) | |
1887 | { | |
1888 | CPUState *cpu; | |
1889 | ||
1890 | qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false); | |
1891 | CPU_FOREACH(cpu) { | |
1892 | if (qemu_cpu_is_self(cpu)) { | |
1893 | qemu_cpu_stop(cpu, true); | |
1894 | } else { | |
1895 | cpu->stop = true; | |
1896 | qemu_cpu_kick(cpu); | |
1897 | } | |
1898 | } | |
1899 | ||
1900 | /* We need to drop the replay_lock so any vCPU threads woken up | |
1901 | * can finish their replay tasks | |
1902 | */ | |
1903 | replay_mutex_unlock(); | |
1904 | ||
1905 | while (!all_vcpus_paused()) { | |
1906 | qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex); | |
1907 | CPU_FOREACH(cpu) { | |
1908 | qemu_cpu_kick(cpu); | |
1909 | } | |
1910 | } | |
1911 | ||
1912 | qemu_mutex_unlock_iothread(); | |
1913 | replay_mutex_lock(); | |
1914 | qemu_mutex_lock_iothread(); | |
1915 | } | |
1916 | ||
1917 | void cpu_resume(CPUState *cpu) | |
1918 | { | |
1919 | cpu->stop = false; | |
1920 | cpu->stopped = false; | |
1921 | qemu_cpu_kick(cpu); | |
1922 | } | |
1923 | ||
1924 | void resume_all_vcpus(void) | |
1925 | { | |
1926 | CPUState *cpu; | |
1927 | ||
1928 | qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true); | |
1929 | CPU_FOREACH(cpu) { | |
1930 | cpu_resume(cpu); | |
1931 | } | |
1932 | } | |
1933 | ||
1934 | void cpu_remove_sync(CPUState *cpu) | |
1935 | { | |
1936 | cpu->stop = true; | |
1937 | cpu->unplug = true; | |
1938 | qemu_cpu_kick(cpu); | |
1939 | qemu_mutex_unlock_iothread(); | |
1940 | qemu_thread_join(cpu->thread); | |
1941 | qemu_mutex_lock_iothread(); | |
1942 | } | |
1943 | ||
1944 | /* For temporary buffers for forming a name */ | |
1945 | #define VCPU_THREAD_NAME_SIZE 16 | |
1946 | ||
1947 | static void qemu_tcg_init_vcpu(CPUState *cpu) | |
1948 | { | |
1949 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
1950 | static QemuCond *single_tcg_halt_cond; | |
1951 | static QemuThread *single_tcg_cpu_thread; | |
1952 | static int tcg_region_inited; | |
1953 | ||
1954 | assert(tcg_enabled()); | |
1955 | /* | |
1956 | * Initialize TCG regions--once. Now is a good time, because: | |
1957 | * (1) TCG's init context, prologue and target globals have been set up. | |
1958 | * (2) qemu_tcg_mttcg_enabled() works now (TCG init code runs before the | |
1959 | * -accel flag is processed, so the check doesn't work then). | |
1960 | */ | |
1961 | if (!tcg_region_inited) { | |
1962 | tcg_region_inited = 1; | |
1963 | tcg_region_init(); | |
1964 | } | |
1965 | ||
1966 | if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) { | |
1967 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1968 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1969 | qemu_cond_init(cpu->halt_cond); | |
1970 | ||
1971 | if (qemu_tcg_mttcg_enabled()) { | |
1972 | /* create a thread per vCPU with TCG (MTTCG) */ | |
1973 | parallel_cpus = true; | |
1974 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG", | |
1975 | cpu->cpu_index); | |
1976 | ||
1977 | qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn, | |
1978 | cpu, QEMU_THREAD_JOINABLE); | |
1979 | ||
1980 | } else { | |
1981 | /* share a single thread for all cpus with TCG */ | |
1982 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG"); | |
1983 | qemu_thread_create(cpu->thread, thread_name, | |
1984 | qemu_tcg_rr_cpu_thread_fn, | |
1985 | cpu, QEMU_THREAD_JOINABLE); | |
1986 | ||
1987 | single_tcg_halt_cond = cpu->halt_cond; | |
1988 | single_tcg_cpu_thread = cpu->thread; | |
1989 | } | |
1990 | #ifdef _WIN32 | |
1991 | cpu->hThread = qemu_thread_get_handle(cpu->thread); | |
1992 | #endif | |
1993 | } else { | |
1994 | /* For non-MTTCG cases we share the thread */ | |
1995 | cpu->thread = single_tcg_cpu_thread; | |
1996 | cpu->halt_cond = single_tcg_halt_cond; | |
1997 | cpu->thread_id = first_cpu->thread_id; | |
1998 | cpu->can_do_io = 1; | |
1999 | cpu->created = true; | |
2000 | } | |
2001 | } | |
2002 | ||
2003 | static void qemu_hax_start_vcpu(CPUState *cpu) | |
2004 | { | |
2005 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
2006 | ||
2007 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
2008 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
2009 | qemu_cond_init(cpu->halt_cond); | |
2010 | ||
2011 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX", | |
2012 | cpu->cpu_index); | |
2013 | qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn, | |
2014 | cpu, QEMU_THREAD_JOINABLE); | |
2015 | #ifdef _WIN32 | |
2016 | cpu->hThread = qemu_thread_get_handle(cpu->thread); | |
2017 | #endif | |
2018 | } | |
2019 | ||
2020 | static void qemu_kvm_start_vcpu(CPUState *cpu) | |
2021 | { | |
2022 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
2023 | ||
2024 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
2025 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
2026 | qemu_cond_init(cpu->halt_cond); | |
2027 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM", | |
2028 | cpu->cpu_index); | |
2029 | qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn, | |
2030 | cpu, QEMU_THREAD_JOINABLE); | |
2031 | } | |
2032 | ||
2033 | static void qemu_hvf_start_vcpu(CPUState *cpu) | |
2034 | { | |
2035 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
2036 | ||
2037 | /* HVF currently does not support TCG, and only runs in | |
2038 | * unrestricted-guest mode. */ | |
2039 | assert(hvf_enabled()); | |
2040 | ||
2041 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
2042 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
2043 | qemu_cond_init(cpu->halt_cond); | |
2044 | ||
2045 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF", | |
2046 | cpu->cpu_index); | |
2047 | qemu_thread_create(cpu->thread, thread_name, qemu_hvf_cpu_thread_fn, | |
2048 | cpu, QEMU_THREAD_JOINABLE); | |
2049 | } | |
2050 | ||
2051 | static void qemu_whpx_start_vcpu(CPUState *cpu) | |
2052 | { | |
2053 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
2054 | ||
2055 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
2056 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
2057 | qemu_cond_init(cpu->halt_cond); | |
2058 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/WHPX", | |
2059 | cpu->cpu_index); | |
2060 | qemu_thread_create(cpu->thread, thread_name, qemu_whpx_cpu_thread_fn, | |
2061 | cpu, QEMU_THREAD_JOINABLE); | |
2062 | #ifdef _WIN32 | |
2063 | cpu->hThread = qemu_thread_get_handle(cpu->thread); | |
2064 | #endif | |
2065 | } | |
2066 | ||
2067 | static void qemu_dummy_start_vcpu(CPUState *cpu) | |
2068 | { | |
2069 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
2070 | ||
2071 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
2072 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
2073 | qemu_cond_init(cpu->halt_cond); | |
2074 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY", | |
2075 | cpu->cpu_index); | |
2076 | qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu, | |
2077 | QEMU_THREAD_JOINABLE); | |
2078 | } | |
2079 | ||
2080 | void qemu_init_vcpu(CPUState *cpu) | |
2081 | { | |
2082 | MachineState *ms = MACHINE(qdev_get_machine()); | |
2083 | ||
2084 | cpu->nr_cores = ms->smp.cores; | |
2085 | cpu->nr_threads = ms->smp.threads; | |
2086 | cpu->stopped = true; | |
2087 | cpu->random_seed = qemu_guest_random_seed_thread_part1(); | |
2088 | ||
2089 | if (!cpu->as) { | |
2090 | /* If the target cpu hasn't set up any address spaces itself, | |
2091 | * give it the default one. | |
2092 | */ | |
2093 | cpu->num_ases = 1; | |
2094 | cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory); | |
2095 | } | |
2096 | ||
2097 | if (kvm_enabled()) { | |
2098 | qemu_kvm_start_vcpu(cpu); | |
2099 | } else if (hax_enabled()) { | |
2100 | qemu_hax_start_vcpu(cpu); | |
2101 | } else if (hvf_enabled()) { | |
2102 | qemu_hvf_start_vcpu(cpu); | |
2103 | } else if (tcg_enabled()) { | |
2104 | qemu_tcg_init_vcpu(cpu); | |
2105 | } else if (whpx_enabled()) { | |
2106 | qemu_whpx_start_vcpu(cpu); | |
2107 | } else { | |
2108 | qemu_dummy_start_vcpu(cpu); | |
2109 | } | |
2110 | ||
2111 | while (!cpu->created) { | |
2112 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | |
2113 | } | |
2114 | } | |
2115 | ||
2116 | void cpu_stop_current(void) | |
2117 | { | |
2118 | if (current_cpu) { | |
2119 | current_cpu->stop = true; | |
2120 | cpu_exit(current_cpu); | |
2121 | } | |
2122 | } | |
2123 | ||
2124 | int vm_stop(RunState state) | |
2125 | { | |
2126 | if (qemu_in_vcpu_thread()) { | |
2127 | qemu_system_vmstop_request_prepare(); | |
2128 | qemu_system_vmstop_request(state); | |
2129 | /* | |
2130 | * FIXME: should not return to device code in case | |
2131 | * vm_stop() has been requested. | |
2132 | */ | |
2133 | cpu_stop_current(); | |
2134 | return 0; | |
2135 | } | |
2136 | ||
2137 | return do_vm_stop(state, true); | |
2138 | } | |
2139 | ||
2140 | /** | |
2141 | * Prepare for (re)starting the VM. | |
2142 | * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already | |
2143 | * running or in case of an error condition), 0 otherwise. | |
2144 | */ | |
2145 | int vm_prepare_start(void) | |
2146 | { | |
2147 | RunState requested; | |
2148 | ||
2149 | qemu_vmstop_requested(&requested); | |
2150 | if (runstate_is_running() && requested == RUN_STATE__MAX) { | |
2151 | return -1; | |
2152 | } | |
2153 | ||
2154 | /* Ensure that a STOP/RESUME pair of events is emitted if a | |
2155 | * vmstop request was pending. The BLOCK_IO_ERROR event, for | |
2156 | * example, according to documentation is always followed by | |
2157 | * the STOP event. | |
2158 | */ | |
2159 | if (runstate_is_running()) { | |
2160 | qapi_event_send_stop(); | |
2161 | qapi_event_send_resume(); | |
2162 | return -1; | |
2163 | } | |
2164 | ||
2165 | /* We are sending this now, but the CPUs will be resumed shortly later */ | |
2166 | qapi_event_send_resume(); | |
2167 | ||
2168 | replay_enable_events(); | |
2169 | cpu_enable_ticks(); | |
2170 | runstate_set(RUN_STATE_RUNNING); | |
2171 | vm_state_notify(1, RUN_STATE_RUNNING); | |
2172 | return 0; | |
2173 | } | |
2174 | ||
2175 | void vm_start(void) | |
2176 | { | |
2177 | if (!vm_prepare_start()) { | |
2178 | resume_all_vcpus(); | |
2179 | } | |
2180 | } | |
2181 | ||
2182 | /* does a state transition even if the VM is already stopped, | |
2183 | current state is forgotten forever */ | |
2184 | int vm_stop_force_state(RunState state) | |
2185 | { | |
2186 | if (runstate_is_running()) { | |
2187 | return vm_stop(state); | |
2188 | } else { | |
2189 | runstate_set(state); | |
2190 | ||
2191 | bdrv_drain_all(); | |
2192 | /* Make sure to return an error if the flush in a previous vm_stop() | |
2193 | * failed. */ | |
2194 | return bdrv_flush_all(); | |
2195 | } | |
2196 | } | |
2197 | ||
2198 | void list_cpus(const char *optarg) | |
2199 | { | |
2200 | /* XXX: implement xxx_cpu_list for targets that still miss it */ | |
2201 | #if defined(cpu_list) | |
2202 | cpu_list(); | |
2203 | #endif | |
2204 | } | |
2205 | ||
2206 | void qmp_memsave(int64_t addr, int64_t size, const char *filename, | |
2207 | bool has_cpu, int64_t cpu_index, Error **errp) | |
2208 | { | |
2209 | FILE *f; | |
2210 | uint32_t l; | |
2211 | CPUState *cpu; | |
2212 | uint8_t buf[1024]; | |
2213 | int64_t orig_addr = addr, orig_size = size; | |
2214 | ||
2215 | if (!has_cpu) { | |
2216 | cpu_index = 0; | |
2217 | } | |
2218 | ||
2219 | cpu = qemu_get_cpu(cpu_index); | |
2220 | if (cpu == NULL) { | |
2221 | error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index", | |
2222 | "a CPU number"); | |
2223 | return; | |
2224 | } | |
2225 | ||
2226 | f = fopen(filename, "wb"); | |
2227 | if (!f) { | |
2228 | error_setg_file_open(errp, errno, filename); | |
2229 | return; | |
2230 | } | |
2231 | ||
2232 | while (size != 0) { | |
2233 | l = sizeof(buf); | |
2234 | if (l > size) | |
2235 | l = size; | |
2236 | if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) { | |
2237 | error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64 | |
2238 | " specified", orig_addr, orig_size); | |
2239 | goto exit; | |
2240 | } | |
2241 | if (fwrite(buf, 1, l, f) != l) { | |
2242 | error_setg(errp, QERR_IO_ERROR); | |
2243 | goto exit; | |
2244 | } | |
2245 | addr += l; | |
2246 | size -= l; | |
2247 | } | |
2248 | ||
2249 | exit: | |
2250 | fclose(f); | |
2251 | } | |
2252 | ||
2253 | void qmp_pmemsave(int64_t addr, int64_t size, const char *filename, | |
2254 | Error **errp) | |
2255 | { | |
2256 | FILE *f; | |
2257 | uint32_t l; | |
2258 | uint8_t buf[1024]; | |
2259 | ||
2260 | f = fopen(filename, "wb"); | |
2261 | if (!f) { | |
2262 | error_setg_file_open(errp, errno, filename); | |
2263 | return; | |
2264 | } | |
2265 | ||
2266 | while (size != 0) { | |
2267 | l = sizeof(buf); | |
2268 | if (l > size) | |
2269 | l = size; | |
2270 | cpu_physical_memory_read(addr, buf, l); | |
2271 | if (fwrite(buf, 1, l, f) != l) { | |
2272 | error_setg(errp, QERR_IO_ERROR); | |
2273 | goto exit; | |
2274 | } | |
2275 | addr += l; | |
2276 | size -= l; | |
2277 | } | |
2278 | ||
2279 | exit: | |
2280 | fclose(f); | |
2281 | } | |
2282 | ||
2283 | void qmp_inject_nmi(Error **errp) | |
2284 | { | |
2285 | nmi_monitor_handle(monitor_get_cpu_index(), errp); | |
2286 | } | |
2287 | ||
2288 | void dump_drift_info(void) | |
2289 | { | |
2290 | if (!use_icount) { | |
2291 | return; | |
2292 | } | |
2293 | ||
2294 | qemu_printf("Host - Guest clock %"PRIi64" ms\n", | |
2295 | (cpu_get_clock() - cpu_get_icount())/SCALE_MS); | |
2296 | if (icount_align_option) { | |
2297 | qemu_printf("Max guest delay %"PRIi64" ms\n", | |
2298 | -max_delay / SCALE_MS); | |
2299 | qemu_printf("Max guest advance %"PRIi64" ms\n", | |
2300 | max_advance / SCALE_MS); | |
2301 | } else { | |
2302 | qemu_printf("Max guest delay NA\n"); | |
2303 | qemu_printf("Max guest advance NA\n"); | |
2304 | } | |
2305 | } |