]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * defines common to all virtual CPUs | |
3 | * | |
4 | * Copyright (c) 2003 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | #ifndef CPU_ALL_H | |
20 | #define CPU_ALL_H | |
21 | ||
22 | #include "qemu-common.h" | |
23 | #include "qemu-tls.h" | |
24 | #include "cpu-common.h" | |
25 | ||
26 | /* some important defines: | |
27 | * | |
28 | * WORDS_ALIGNED : if defined, the host cpu can only make word aligned | |
29 | * memory accesses. | |
30 | * | |
31 | * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and | |
32 | * otherwise little endian. | |
33 | * | |
34 | * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet)) | |
35 | * | |
36 | * TARGET_WORDS_BIGENDIAN : same for target cpu | |
37 | */ | |
38 | ||
39 | #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) | |
40 | #define BSWAP_NEEDED | |
41 | #endif | |
42 | ||
43 | #ifdef BSWAP_NEEDED | |
44 | ||
45 | static inline uint16_t tswap16(uint16_t s) | |
46 | { | |
47 | return bswap16(s); | |
48 | } | |
49 | ||
50 | static inline uint32_t tswap32(uint32_t s) | |
51 | { | |
52 | return bswap32(s); | |
53 | } | |
54 | ||
55 | static inline uint64_t tswap64(uint64_t s) | |
56 | { | |
57 | return bswap64(s); | |
58 | } | |
59 | ||
60 | static inline void tswap16s(uint16_t *s) | |
61 | { | |
62 | *s = bswap16(*s); | |
63 | } | |
64 | ||
65 | static inline void tswap32s(uint32_t *s) | |
66 | { | |
67 | *s = bswap32(*s); | |
68 | } | |
69 | ||
70 | static inline void tswap64s(uint64_t *s) | |
71 | { | |
72 | *s = bswap64(*s); | |
73 | } | |
74 | ||
75 | #else | |
76 | ||
77 | static inline uint16_t tswap16(uint16_t s) | |
78 | { | |
79 | return s; | |
80 | } | |
81 | ||
82 | static inline uint32_t tswap32(uint32_t s) | |
83 | { | |
84 | return s; | |
85 | } | |
86 | ||
87 | static inline uint64_t tswap64(uint64_t s) | |
88 | { | |
89 | return s; | |
90 | } | |
91 | ||
92 | static inline void tswap16s(uint16_t *s) | |
93 | { | |
94 | } | |
95 | ||
96 | static inline void tswap32s(uint32_t *s) | |
97 | { | |
98 | } | |
99 | ||
100 | static inline void tswap64s(uint64_t *s) | |
101 | { | |
102 | } | |
103 | ||
104 | #endif | |
105 | ||
106 | #if TARGET_LONG_SIZE == 4 | |
107 | #define tswapl(s) tswap32(s) | |
108 | #define tswapls(s) tswap32s((uint32_t *)(s)) | |
109 | #define bswaptls(s) bswap32s(s) | |
110 | #else | |
111 | #define tswapl(s) tswap64(s) | |
112 | #define tswapls(s) tswap64s((uint64_t *)(s)) | |
113 | #define bswaptls(s) bswap64s(s) | |
114 | #endif | |
115 | ||
116 | /* CPU memory access without any memory or io remapping */ | |
117 | ||
118 | /* | |
119 | * the generic syntax for the memory accesses is: | |
120 | * | |
121 | * load: ld{type}{sign}{size}{endian}_{access_type}(ptr) | |
122 | * | |
123 | * store: st{type}{size}{endian}_{access_type}(ptr, val) | |
124 | * | |
125 | * type is: | |
126 | * (empty): integer access | |
127 | * f : float access | |
128 | * | |
129 | * sign is: | |
130 | * (empty): for floats or 32 bit size | |
131 | * u : unsigned | |
132 | * s : signed | |
133 | * | |
134 | * size is: | |
135 | * b: 8 bits | |
136 | * w: 16 bits | |
137 | * l: 32 bits | |
138 | * q: 64 bits | |
139 | * | |
140 | * endian is: | |
141 | * (empty): target cpu endianness or 8 bit access | |
142 | * r : reversed target cpu endianness (not implemented yet) | |
143 | * be : big endian (not implemented yet) | |
144 | * le : little endian (not implemented yet) | |
145 | * | |
146 | * access_type is: | |
147 | * raw : host memory access | |
148 | * user : user mode access using soft MMU | |
149 | * kernel : kernel mode access using soft MMU | |
150 | */ | |
151 | ||
152 | /* target-endianness CPU memory access functions */ | |
153 | #if defined(TARGET_WORDS_BIGENDIAN) | |
154 | #define lduw_p(p) lduw_be_p(p) | |
155 | #define ldsw_p(p) ldsw_be_p(p) | |
156 | #define ldl_p(p) ldl_be_p(p) | |
157 | #define ldq_p(p) ldq_be_p(p) | |
158 | #define ldfl_p(p) ldfl_be_p(p) | |
159 | #define ldfq_p(p) ldfq_be_p(p) | |
160 | #define stw_p(p, v) stw_be_p(p, v) | |
161 | #define stl_p(p, v) stl_be_p(p, v) | |
162 | #define stq_p(p, v) stq_be_p(p, v) | |
163 | #define stfl_p(p, v) stfl_be_p(p, v) | |
164 | #define stfq_p(p, v) stfq_be_p(p, v) | |
165 | #else | |
166 | #define lduw_p(p) lduw_le_p(p) | |
167 | #define ldsw_p(p) ldsw_le_p(p) | |
168 | #define ldl_p(p) ldl_le_p(p) | |
169 | #define ldq_p(p) ldq_le_p(p) | |
170 | #define ldfl_p(p) ldfl_le_p(p) | |
171 | #define ldfq_p(p) ldfq_le_p(p) | |
172 | #define stw_p(p, v) stw_le_p(p, v) | |
173 | #define stl_p(p, v) stl_le_p(p, v) | |
174 | #define stq_p(p, v) stq_le_p(p, v) | |
175 | #define stfl_p(p, v) stfl_le_p(p, v) | |
176 | #define stfq_p(p, v) stfq_le_p(p, v) | |
177 | #endif | |
178 | ||
179 | /* MMU memory access macros */ | |
180 | ||
181 | #if defined(CONFIG_USER_ONLY) | |
182 | #include <assert.h> | |
183 | #include "qemu-types.h" | |
184 | ||
185 | /* On some host systems the guest address space is reserved on the host. | |
186 | * This allows the guest address space to be offset to a convenient location. | |
187 | */ | |
188 | #if defined(CONFIG_USE_GUEST_BASE) | |
189 | extern unsigned long guest_base; | |
190 | extern int have_guest_base; | |
191 | extern unsigned long reserved_va; | |
192 | #define GUEST_BASE guest_base | |
193 | #define RESERVED_VA reserved_va | |
194 | #else | |
195 | #define GUEST_BASE 0ul | |
196 | #define RESERVED_VA 0ul | |
197 | #endif | |
198 | ||
199 | /* All direct uses of g2h and h2g need to go away for usermode softmmu. */ | |
200 | #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE)) | |
201 | ||
202 | #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS | |
203 | #define h2g_valid(x) 1 | |
204 | #else | |
205 | #define h2g_valid(x) ({ \ | |
206 | unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \ | |
207 | __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \ | |
208 | }) | |
209 | #endif | |
210 | ||
211 | #define h2g(x) ({ \ | |
212 | unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \ | |
213 | /* Check if given address fits target address space */ \ | |
214 | assert(h2g_valid(x)); \ | |
215 | (abi_ulong)__ret; \ | |
216 | }) | |
217 | ||
218 | #define saddr(x) g2h(x) | |
219 | #define laddr(x) g2h(x) | |
220 | ||
221 | #else /* !CONFIG_USER_ONLY */ | |
222 | /* NOTE: we use double casts if pointers and target_ulong have | |
223 | different sizes */ | |
224 | #define saddr(x) (uint8_t *)(long)(x) | |
225 | #define laddr(x) (uint8_t *)(long)(x) | |
226 | #endif | |
227 | ||
228 | #define ldub_raw(p) ldub_p(laddr((p))) | |
229 | #define ldsb_raw(p) ldsb_p(laddr((p))) | |
230 | #define lduw_raw(p) lduw_p(laddr((p))) | |
231 | #define ldsw_raw(p) ldsw_p(laddr((p))) | |
232 | #define ldl_raw(p) ldl_p(laddr((p))) | |
233 | #define ldq_raw(p) ldq_p(laddr((p))) | |
234 | #define ldfl_raw(p) ldfl_p(laddr((p))) | |
235 | #define ldfq_raw(p) ldfq_p(laddr((p))) | |
236 | #define stb_raw(p, v) stb_p(saddr((p)), v) | |
237 | #define stw_raw(p, v) stw_p(saddr((p)), v) | |
238 | #define stl_raw(p, v) stl_p(saddr((p)), v) | |
239 | #define stq_raw(p, v) stq_p(saddr((p)), v) | |
240 | #define stfl_raw(p, v) stfl_p(saddr((p)), v) | |
241 | #define stfq_raw(p, v) stfq_p(saddr((p)), v) | |
242 | ||
243 | ||
244 | #if defined(CONFIG_USER_ONLY) | |
245 | ||
246 | /* if user mode, no other memory access functions */ | |
247 | #define ldub(p) ldub_raw(p) | |
248 | #define ldsb(p) ldsb_raw(p) | |
249 | #define lduw(p) lduw_raw(p) | |
250 | #define ldsw(p) ldsw_raw(p) | |
251 | #define ldl(p) ldl_raw(p) | |
252 | #define ldq(p) ldq_raw(p) | |
253 | #define ldfl(p) ldfl_raw(p) | |
254 | #define ldfq(p) ldfq_raw(p) | |
255 | #define stb(p, v) stb_raw(p, v) | |
256 | #define stw(p, v) stw_raw(p, v) | |
257 | #define stl(p, v) stl_raw(p, v) | |
258 | #define stq(p, v) stq_raw(p, v) | |
259 | #define stfl(p, v) stfl_raw(p, v) | |
260 | #define stfq(p, v) stfq_raw(p, v) | |
261 | ||
262 | #define ldub_code(p) ldub_raw(p) | |
263 | #define ldsb_code(p) ldsb_raw(p) | |
264 | #define lduw_code(p) lduw_raw(p) | |
265 | #define ldsw_code(p) ldsw_raw(p) | |
266 | #define ldl_code(p) ldl_raw(p) | |
267 | #define ldq_code(p) ldq_raw(p) | |
268 | ||
269 | #define ldub_kernel(p) ldub_raw(p) | |
270 | #define ldsb_kernel(p) ldsb_raw(p) | |
271 | #define lduw_kernel(p) lduw_raw(p) | |
272 | #define ldsw_kernel(p) ldsw_raw(p) | |
273 | #define ldl_kernel(p) ldl_raw(p) | |
274 | #define ldq_kernel(p) ldq_raw(p) | |
275 | #define ldfl_kernel(p) ldfl_raw(p) | |
276 | #define ldfq_kernel(p) ldfq_raw(p) | |
277 | #define stb_kernel(p, v) stb_raw(p, v) | |
278 | #define stw_kernel(p, v) stw_raw(p, v) | |
279 | #define stl_kernel(p, v) stl_raw(p, v) | |
280 | #define stq_kernel(p, v) stq_raw(p, v) | |
281 | #define stfl_kernel(p, v) stfl_raw(p, v) | |
282 | #define stfq_kernel(p, vt) stfq_raw(p, v) | |
283 | ||
284 | #endif /* defined(CONFIG_USER_ONLY) */ | |
285 | ||
286 | /* page related stuff */ | |
287 | ||
288 | #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) | |
289 | #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1) | |
290 | #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK) | |
291 | ||
292 | /* ??? These should be the larger of unsigned long and target_ulong. */ | |
293 | extern unsigned long qemu_real_host_page_size; | |
294 | extern unsigned long qemu_host_page_size; | |
295 | extern unsigned long qemu_host_page_mask; | |
296 | ||
297 | #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask) | |
298 | ||
299 | /* same as PROT_xxx */ | |
300 | #define PAGE_READ 0x0001 | |
301 | #define PAGE_WRITE 0x0002 | |
302 | #define PAGE_EXEC 0x0004 | |
303 | #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC) | |
304 | #define PAGE_VALID 0x0008 | |
305 | /* original state of the write flag (used when tracking self-modifying | |
306 | code */ | |
307 | #define PAGE_WRITE_ORG 0x0010 | |
308 | #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) | |
309 | /* FIXME: Code that sets/uses this is broken and needs to go away. */ | |
310 | #define PAGE_RESERVED 0x0020 | |
311 | #endif | |
312 | ||
313 | #if defined(CONFIG_USER_ONLY) | |
314 | void page_dump(FILE *f); | |
315 | ||
316 | typedef int (*walk_memory_regions_fn)(void *, abi_ulong, | |
317 | abi_ulong, unsigned long); | |
318 | int walk_memory_regions(void *, walk_memory_regions_fn); | |
319 | ||
320 | int page_get_flags(target_ulong address); | |
321 | void page_set_flags(target_ulong start, target_ulong end, int flags); | |
322 | int page_check_range(target_ulong start, target_ulong len, int flags); | |
323 | #endif | |
324 | ||
325 | CPUState *cpu_copy(CPUState *env); | |
326 | CPUState *qemu_get_cpu(int cpu); | |
327 | ||
328 | #define CPU_DUMP_CODE 0x00010000 | |
329 | ||
330 | void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf, | |
331 | int flags); | |
332 | void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf, | |
333 | int flags); | |
334 | ||
335 | void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...) | |
336 | GCC_FMT_ATTR(2, 3); | |
337 | extern CPUState *first_cpu; | |
338 | DECLARE_TLS(CPUState *,cpu_single_env); | |
339 | #define cpu_single_env tls_var(cpu_single_env) | |
340 | ||
341 | /* Flags for use in ENV->INTERRUPT_PENDING. | |
342 | ||
343 | The numbers assigned here are non-sequential in order to preserve | |
344 | binary compatibility with the vmstate dump. Bit 0 (0x0001) was | |
345 | previously used for CPU_INTERRUPT_EXIT, and is cleared when loading | |
346 | the vmstate dump. */ | |
347 | ||
348 | /* External hardware interrupt pending. This is typically used for | |
349 | interrupts from devices. */ | |
350 | #define CPU_INTERRUPT_HARD 0x0002 | |
351 | ||
352 | /* Exit the current TB. This is typically used when some system-level device | |
353 | makes some change to the memory mapping. E.g. the a20 line change. */ | |
354 | #define CPU_INTERRUPT_EXITTB 0x0004 | |
355 | ||
356 | /* Halt the CPU. */ | |
357 | #define CPU_INTERRUPT_HALT 0x0020 | |
358 | ||
359 | /* Debug event pending. */ | |
360 | #define CPU_INTERRUPT_DEBUG 0x0080 | |
361 | ||
362 | /* Several target-specific external hardware interrupts. Each target/cpu.h | |
363 | should define proper names based on these defines. */ | |
364 | #define CPU_INTERRUPT_TGT_EXT_0 0x0008 | |
365 | #define CPU_INTERRUPT_TGT_EXT_1 0x0010 | |
366 | #define CPU_INTERRUPT_TGT_EXT_2 0x0040 | |
367 | #define CPU_INTERRUPT_TGT_EXT_3 0x0200 | |
368 | #define CPU_INTERRUPT_TGT_EXT_4 0x1000 | |
369 | ||
370 | /* Several target-specific internal interrupts. These differ from the | |
371 | preceding target-specific interrupts in that they are intended to | |
372 | originate from within the cpu itself, typically in response to some | |
373 | instruction being executed. These, therefore, are not masked while | |
374 | single-stepping within the debugger. */ | |
375 | #define CPU_INTERRUPT_TGT_INT_0 0x0100 | |
376 | #define CPU_INTERRUPT_TGT_INT_1 0x0400 | |
377 | #define CPU_INTERRUPT_TGT_INT_2 0x0800 | |
378 | ||
379 | /* First unused bit: 0x2000. */ | |
380 | ||
381 | /* The set of all bits that should be masked when single-stepping. */ | |
382 | #define CPU_INTERRUPT_SSTEP_MASK \ | |
383 | (CPU_INTERRUPT_HARD \ | |
384 | | CPU_INTERRUPT_TGT_EXT_0 \ | |
385 | | CPU_INTERRUPT_TGT_EXT_1 \ | |
386 | | CPU_INTERRUPT_TGT_EXT_2 \ | |
387 | | CPU_INTERRUPT_TGT_EXT_3 \ | |
388 | | CPU_INTERRUPT_TGT_EXT_4) | |
389 | ||
390 | #ifndef CONFIG_USER_ONLY | |
391 | typedef void (*CPUInterruptHandler)(CPUState *, int); | |
392 | ||
393 | extern CPUInterruptHandler cpu_interrupt_handler; | |
394 | ||
395 | static inline void cpu_interrupt(CPUState *s, int mask) | |
396 | { | |
397 | cpu_interrupt_handler(s, mask); | |
398 | } | |
399 | #else /* USER_ONLY */ | |
400 | void cpu_interrupt(CPUState *env, int mask); | |
401 | #endif /* USER_ONLY */ | |
402 | ||
403 | void cpu_reset_interrupt(CPUState *env, int mask); | |
404 | ||
405 | void cpu_exit(CPUState *s); | |
406 | ||
407 | bool qemu_cpu_has_work(CPUState *env); | |
408 | ||
409 | /* Breakpoint/watchpoint flags */ | |
410 | #define BP_MEM_READ 0x01 | |
411 | #define BP_MEM_WRITE 0x02 | |
412 | #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) | |
413 | #define BP_STOP_BEFORE_ACCESS 0x04 | |
414 | #define BP_WATCHPOINT_HIT 0x08 | |
415 | #define BP_GDB 0x10 | |
416 | #define BP_CPU 0x20 | |
417 | ||
418 | int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags, | |
419 | CPUBreakpoint **breakpoint); | |
420 | int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags); | |
421 | void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint); | |
422 | void cpu_breakpoint_remove_all(CPUState *env, int mask); | |
423 | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, | |
424 | int flags, CPUWatchpoint **watchpoint); | |
425 | int cpu_watchpoint_remove(CPUState *env, target_ulong addr, | |
426 | target_ulong len, int flags); | |
427 | void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint); | |
428 | void cpu_watchpoint_remove_all(CPUState *env, int mask); | |
429 | ||
430 | #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ | |
431 | #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ | |
432 | #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ | |
433 | ||
434 | void cpu_single_step(CPUState *env, int enabled); | |
435 | void cpu_reset(CPUState *s); | |
436 | int cpu_is_stopped(CPUState *env); | |
437 | void run_on_cpu(CPUState *env, void (*func)(void *data), void *data); | |
438 | ||
439 | #define CPU_LOG_TB_OUT_ASM (1 << 0) | |
440 | #define CPU_LOG_TB_IN_ASM (1 << 1) | |
441 | #define CPU_LOG_TB_OP (1 << 2) | |
442 | #define CPU_LOG_TB_OP_OPT (1 << 3) | |
443 | #define CPU_LOG_INT (1 << 4) | |
444 | #define CPU_LOG_EXEC (1 << 5) | |
445 | #define CPU_LOG_PCALL (1 << 6) | |
446 | #define CPU_LOG_IOPORT (1 << 7) | |
447 | #define CPU_LOG_TB_CPU (1 << 8) | |
448 | #define CPU_LOG_RESET (1 << 9) | |
449 | ||
450 | /* define log items */ | |
451 | typedef struct CPULogItem { | |
452 | int mask; | |
453 | const char *name; | |
454 | const char *help; | |
455 | } CPULogItem; | |
456 | ||
457 | extern const CPULogItem cpu_log_items[]; | |
458 | ||
459 | void cpu_set_log(int log_flags); | |
460 | void cpu_set_log_filename(const char *filename); | |
461 | int cpu_str_to_log_mask(const char *str); | |
462 | ||
463 | #if !defined(CONFIG_USER_ONLY) | |
464 | ||
465 | /* Return the physical page corresponding to a virtual one. Use it | |
466 | only for debugging because no protection checks are done. Return -1 | |
467 | if no page found. */ | |
468 | target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr); | |
469 | ||
470 | /* memory API */ | |
471 | ||
472 | extern int phys_ram_fd; | |
473 | extern ram_addr_t ram_size; | |
474 | ||
475 | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ | |
476 | #define RAM_PREALLOC_MASK (1 << 0) | |
477 | ||
478 | typedef struct RAMBlock { | |
479 | struct MemoryRegion *mr; | |
480 | uint8_t *host; | |
481 | ram_addr_t offset; | |
482 | ram_addr_t length; | |
483 | uint32_t flags; | |
484 | char idstr[256]; | |
485 | QLIST_ENTRY(RAMBlock) next; | |
486 | #if defined(__linux__) && !defined(TARGET_S390X) | |
487 | int fd; | |
488 | #endif | |
489 | } RAMBlock; | |
490 | ||
491 | typedef struct RAMList { | |
492 | uint8_t *phys_dirty; | |
493 | QLIST_HEAD(, RAMBlock) blocks; | |
494 | } RAMList; | |
495 | extern RAMList ram_list; | |
496 | ||
497 | extern const char *mem_path; | |
498 | extern int mem_prealloc; | |
499 | ||
500 | /* physical memory access */ | |
501 | ||
502 | /* MMIO pages are identified by a combination of an IO device index and | |
503 | 3 flags. The ROMD code stores the page ram offset in iotlb entry, | |
504 | so only a limited number of ids are avaiable. */ | |
505 | ||
506 | #define IO_MEM_NB_ENTRIES (1 << TARGET_PAGE_BITS) | |
507 | ||
508 | /* Flags stored in the low bits of the TLB virtual address. These are | |
509 | defined so that fast path ram access is all zeros. */ | |
510 | /* Zero if TLB entry is valid. */ | |
511 | #define TLB_INVALID_MASK (1 << 3) | |
512 | /* Set if TLB entry references a clean RAM page. The iotlb entry will | |
513 | contain the page physical address. */ | |
514 | #define TLB_NOTDIRTY (1 << 4) | |
515 | /* Set if TLB entry is an IO callback. */ | |
516 | #define TLB_MMIO (1 << 5) | |
517 | ||
518 | void cpu_tlb_update_dirty(CPUState *env); | |
519 | ||
520 | void dump_exec_info(FILE *f, fprintf_function cpu_fprintf); | |
521 | #endif /* !CONFIG_USER_ONLY */ | |
522 | ||
523 | int cpu_memory_rw_debug(CPUState *env, target_ulong addr, | |
524 | uint8_t *buf, int len, int is_write); | |
525 | ||
526 | #endif /* CPU_ALL_H */ |