]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Virtual page mapping | |
3 | * | |
4 | * Copyright (c) 2003 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | ||
20 | #include "qemu/osdep.h" | |
21 | #include "qemu-common.h" | |
22 | #include "qapi/error.h" | |
23 | ||
24 | #include "qemu/cutils.h" | |
25 | #include "cpu.h" | |
26 | #include "exec/exec-all.h" | |
27 | #include "exec/target_page.h" | |
28 | #include "tcg.h" | |
29 | #include "hw/qdev-core.h" | |
30 | #include "hw/qdev-properties.h" | |
31 | #if !defined(CONFIG_USER_ONLY) | |
32 | #include "hw/boards.h" | |
33 | #include "hw/xen/xen.h" | |
34 | #endif | |
35 | #include "sysemu/kvm.h" | |
36 | #include "sysemu/sysemu.h" | |
37 | #include "sysemu/tcg.h" | |
38 | #include "qemu/timer.h" | |
39 | #include "qemu/config-file.h" | |
40 | #include "qemu/error-report.h" | |
41 | #include "qemu/qemu-print.h" | |
42 | #if defined(CONFIG_USER_ONLY) | |
43 | #include "qemu.h" | |
44 | #else /* !CONFIG_USER_ONLY */ | |
45 | #include "exec/memory.h" | |
46 | #include "exec/ioport.h" | |
47 | #include "sysemu/dma.h" | |
48 | #include "sysemu/hostmem.h" | |
49 | #include "sysemu/hw_accel.h" | |
50 | #include "exec/address-spaces.h" | |
51 | #include "sysemu/xen-mapcache.h" | |
52 | #include "trace-root.h" | |
53 | ||
54 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE | |
55 | #include <linux/falloc.h> | |
56 | #endif | |
57 | ||
58 | #endif | |
59 | #include "qemu/rcu_queue.h" | |
60 | #include "qemu/main-loop.h" | |
61 | #include "translate-all.h" | |
62 | #include "sysemu/replay.h" | |
63 | ||
64 | #include "exec/memory-internal.h" | |
65 | #include "exec/ram_addr.h" | |
66 | #include "exec/log.h" | |
67 | ||
68 | #include "qemu/pmem.h" | |
69 | ||
70 | #include "migration/vmstate.h" | |
71 | ||
72 | #include "qemu/range.h" | |
73 | #ifndef _WIN32 | |
74 | #include "qemu/mmap-alloc.h" | |
75 | #endif | |
76 | ||
77 | #include "monitor/monitor.h" | |
78 | ||
79 | //#define DEBUG_SUBPAGE | |
80 | ||
81 | #if !defined(CONFIG_USER_ONLY) | |
82 | /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes | |
83 | * are protected by the ramlist lock. | |
84 | */ | |
85 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; | |
86 | ||
87 | static MemoryRegion *system_memory; | |
88 | static MemoryRegion *system_io; | |
89 | ||
90 | AddressSpace address_space_io; | |
91 | AddressSpace address_space_memory; | |
92 | ||
93 | static MemoryRegion io_mem_unassigned; | |
94 | #endif | |
95 | ||
96 | CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); | |
97 | ||
98 | /* current CPU in the current thread. It is only valid inside | |
99 | cpu_exec() */ | |
100 | __thread CPUState *current_cpu; | |
101 | /* 0 = Do not count executed instructions. | |
102 | 1 = Precise instruction counting. | |
103 | 2 = Adaptive rate instruction counting. */ | |
104 | int use_icount; | |
105 | ||
106 | uintptr_t qemu_host_page_size; | |
107 | intptr_t qemu_host_page_mask; | |
108 | ||
109 | #if !defined(CONFIG_USER_ONLY) | |
110 | ||
111 | typedef struct PhysPageEntry PhysPageEntry; | |
112 | ||
113 | struct PhysPageEntry { | |
114 | /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ | |
115 | uint32_t skip : 6; | |
116 | /* index into phys_sections (!skip) or phys_map_nodes (skip) */ | |
117 | uint32_t ptr : 26; | |
118 | }; | |
119 | ||
120 | #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) | |
121 | ||
122 | /* Size of the L2 (and L3, etc) page tables. */ | |
123 | #define ADDR_SPACE_BITS 64 | |
124 | ||
125 | #define P_L2_BITS 9 | |
126 | #define P_L2_SIZE (1 << P_L2_BITS) | |
127 | ||
128 | #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) | |
129 | ||
130 | typedef PhysPageEntry Node[P_L2_SIZE]; | |
131 | ||
132 | typedef struct PhysPageMap { | |
133 | struct rcu_head rcu; | |
134 | ||
135 | unsigned sections_nb; | |
136 | unsigned sections_nb_alloc; | |
137 | unsigned nodes_nb; | |
138 | unsigned nodes_nb_alloc; | |
139 | Node *nodes; | |
140 | MemoryRegionSection *sections; | |
141 | } PhysPageMap; | |
142 | ||
143 | struct AddressSpaceDispatch { | |
144 | MemoryRegionSection *mru_section; | |
145 | /* This is a multi-level map on the physical address space. | |
146 | * The bottom level has pointers to MemoryRegionSections. | |
147 | */ | |
148 | PhysPageEntry phys_map; | |
149 | PhysPageMap map; | |
150 | }; | |
151 | ||
152 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) | |
153 | typedef struct subpage_t { | |
154 | MemoryRegion iomem; | |
155 | FlatView *fv; | |
156 | hwaddr base; | |
157 | uint16_t sub_section[]; | |
158 | } subpage_t; | |
159 | ||
160 | #define PHYS_SECTION_UNASSIGNED 0 | |
161 | ||
162 | static void io_mem_init(void); | |
163 | static void memory_map_init(void); | |
164 | static void tcg_log_global_after_sync(MemoryListener *listener); | |
165 | static void tcg_commit(MemoryListener *listener); | |
166 | ||
167 | /** | |
168 | * CPUAddressSpace: all the information a CPU needs about an AddressSpace | |
169 | * @cpu: the CPU whose AddressSpace this is | |
170 | * @as: the AddressSpace itself | |
171 | * @memory_dispatch: its dispatch pointer (cached, RCU protected) | |
172 | * @tcg_as_listener: listener for tracking changes to the AddressSpace | |
173 | */ | |
174 | struct CPUAddressSpace { | |
175 | CPUState *cpu; | |
176 | AddressSpace *as; | |
177 | struct AddressSpaceDispatch *memory_dispatch; | |
178 | MemoryListener tcg_as_listener; | |
179 | }; | |
180 | ||
181 | struct DirtyBitmapSnapshot { | |
182 | ram_addr_t start; | |
183 | ram_addr_t end; | |
184 | unsigned long dirty[]; | |
185 | }; | |
186 | ||
187 | #endif | |
188 | ||
189 | #if !defined(CONFIG_USER_ONLY) | |
190 | ||
191 | static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) | |
192 | { | |
193 | static unsigned alloc_hint = 16; | |
194 | if (map->nodes_nb + nodes > map->nodes_nb_alloc) { | |
195 | map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); | |
196 | map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); | |
197 | alloc_hint = map->nodes_nb_alloc; | |
198 | } | |
199 | } | |
200 | ||
201 | static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) | |
202 | { | |
203 | unsigned i; | |
204 | uint32_t ret; | |
205 | PhysPageEntry e; | |
206 | PhysPageEntry *p; | |
207 | ||
208 | ret = map->nodes_nb++; | |
209 | p = map->nodes[ret]; | |
210 | assert(ret != PHYS_MAP_NODE_NIL); | |
211 | assert(ret != map->nodes_nb_alloc); | |
212 | ||
213 | e.skip = leaf ? 0 : 1; | |
214 | e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; | |
215 | for (i = 0; i < P_L2_SIZE; ++i) { | |
216 | memcpy(&p[i], &e, sizeof(e)); | |
217 | } | |
218 | return ret; | |
219 | } | |
220 | ||
221 | static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, | |
222 | hwaddr *index, uint64_t *nb, uint16_t leaf, | |
223 | int level) | |
224 | { | |
225 | PhysPageEntry *p; | |
226 | hwaddr step = (hwaddr)1 << (level * P_L2_BITS); | |
227 | ||
228 | if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { | |
229 | lp->ptr = phys_map_node_alloc(map, level == 0); | |
230 | } | |
231 | p = map->nodes[lp->ptr]; | |
232 | lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; | |
233 | ||
234 | while (*nb && lp < &p[P_L2_SIZE]) { | |
235 | if ((*index & (step - 1)) == 0 && *nb >= step) { | |
236 | lp->skip = 0; | |
237 | lp->ptr = leaf; | |
238 | *index += step; | |
239 | *nb -= step; | |
240 | } else { | |
241 | phys_page_set_level(map, lp, index, nb, leaf, level - 1); | |
242 | } | |
243 | ++lp; | |
244 | } | |
245 | } | |
246 | ||
247 | static void phys_page_set(AddressSpaceDispatch *d, | |
248 | hwaddr index, uint64_t nb, | |
249 | uint16_t leaf) | |
250 | { | |
251 | /* Wildly overreserve - it doesn't matter much. */ | |
252 | phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); | |
253 | ||
254 | phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); | |
255 | } | |
256 | ||
257 | /* Compact a non leaf page entry. Simply detect that the entry has a single child, | |
258 | * and update our entry so we can skip it and go directly to the destination. | |
259 | */ | |
260 | static void phys_page_compact(PhysPageEntry *lp, Node *nodes) | |
261 | { | |
262 | unsigned valid_ptr = P_L2_SIZE; | |
263 | int valid = 0; | |
264 | PhysPageEntry *p; | |
265 | int i; | |
266 | ||
267 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
268 | return; | |
269 | } | |
270 | ||
271 | p = nodes[lp->ptr]; | |
272 | for (i = 0; i < P_L2_SIZE; i++) { | |
273 | if (p[i].ptr == PHYS_MAP_NODE_NIL) { | |
274 | continue; | |
275 | } | |
276 | ||
277 | valid_ptr = i; | |
278 | valid++; | |
279 | if (p[i].skip) { | |
280 | phys_page_compact(&p[i], nodes); | |
281 | } | |
282 | } | |
283 | ||
284 | /* We can only compress if there's only one child. */ | |
285 | if (valid != 1) { | |
286 | return; | |
287 | } | |
288 | ||
289 | assert(valid_ptr < P_L2_SIZE); | |
290 | ||
291 | /* Don't compress if it won't fit in the # of bits we have. */ | |
292 | if (P_L2_LEVELS >= (1 << 6) && | |
293 | lp->skip + p[valid_ptr].skip >= (1 << 6)) { | |
294 | return; | |
295 | } | |
296 | ||
297 | lp->ptr = p[valid_ptr].ptr; | |
298 | if (!p[valid_ptr].skip) { | |
299 | /* If our only child is a leaf, make this a leaf. */ | |
300 | /* By design, we should have made this node a leaf to begin with so we | |
301 | * should never reach here. | |
302 | * But since it's so simple to handle this, let's do it just in case we | |
303 | * change this rule. | |
304 | */ | |
305 | lp->skip = 0; | |
306 | } else { | |
307 | lp->skip += p[valid_ptr].skip; | |
308 | } | |
309 | } | |
310 | ||
311 | void address_space_dispatch_compact(AddressSpaceDispatch *d) | |
312 | { | |
313 | if (d->phys_map.skip) { | |
314 | phys_page_compact(&d->phys_map, d->map.nodes); | |
315 | } | |
316 | } | |
317 | ||
318 | static inline bool section_covers_addr(const MemoryRegionSection *section, | |
319 | hwaddr addr) | |
320 | { | |
321 | /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means | |
322 | * the section must cover the entire address space. | |
323 | */ | |
324 | return int128_gethi(section->size) || | |
325 | range_covers_byte(section->offset_within_address_space, | |
326 | int128_getlo(section->size), addr); | |
327 | } | |
328 | ||
329 | static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) | |
330 | { | |
331 | PhysPageEntry lp = d->phys_map, *p; | |
332 | Node *nodes = d->map.nodes; | |
333 | MemoryRegionSection *sections = d->map.sections; | |
334 | hwaddr index = addr >> TARGET_PAGE_BITS; | |
335 | int i; | |
336 | ||
337 | for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { | |
338 | if (lp.ptr == PHYS_MAP_NODE_NIL) { | |
339 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
340 | } | |
341 | p = nodes[lp.ptr]; | |
342 | lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; | |
343 | } | |
344 | ||
345 | if (section_covers_addr(§ions[lp.ptr], addr)) { | |
346 | return §ions[lp.ptr]; | |
347 | } else { | |
348 | return §ions[PHYS_SECTION_UNASSIGNED]; | |
349 | } | |
350 | } | |
351 | ||
352 | /* Called from RCU critical section */ | |
353 | static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, | |
354 | hwaddr addr, | |
355 | bool resolve_subpage) | |
356 | { | |
357 | MemoryRegionSection *section = atomic_read(&d->mru_section); | |
358 | subpage_t *subpage; | |
359 | ||
360 | if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || | |
361 | !section_covers_addr(section, addr)) { | |
362 | section = phys_page_find(d, addr); | |
363 | atomic_set(&d->mru_section, section); | |
364 | } | |
365 | if (resolve_subpage && section->mr->subpage) { | |
366 | subpage = container_of(section->mr, subpage_t, iomem); | |
367 | section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; | |
368 | } | |
369 | return section; | |
370 | } | |
371 | ||
372 | /* Called from RCU critical section */ | |
373 | static MemoryRegionSection * | |
374 | address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, | |
375 | hwaddr *plen, bool resolve_subpage) | |
376 | { | |
377 | MemoryRegionSection *section; | |
378 | MemoryRegion *mr; | |
379 | Int128 diff; | |
380 | ||
381 | section = address_space_lookup_region(d, addr, resolve_subpage); | |
382 | /* Compute offset within MemoryRegionSection */ | |
383 | addr -= section->offset_within_address_space; | |
384 | ||
385 | /* Compute offset within MemoryRegion */ | |
386 | *xlat = addr + section->offset_within_region; | |
387 | ||
388 | mr = section->mr; | |
389 | ||
390 | /* MMIO registers can be expected to perform full-width accesses based only | |
391 | * on their address, without considering adjacent registers that could | |
392 | * decode to completely different MemoryRegions. When such registers | |
393 | * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO | |
394 | * regions overlap wildly. For this reason we cannot clamp the accesses | |
395 | * here. | |
396 | * | |
397 | * If the length is small (as is the case for address_space_ldl/stl), | |
398 | * everything works fine. If the incoming length is large, however, | |
399 | * the caller really has to do the clamping through memory_access_size. | |
400 | */ | |
401 | if (memory_region_is_ram(mr)) { | |
402 | diff = int128_sub(section->size, int128_make64(addr)); | |
403 | *plen = int128_get64(int128_min(diff, int128_make64(*plen))); | |
404 | } | |
405 | return section; | |
406 | } | |
407 | ||
408 | /** | |
409 | * address_space_translate_iommu - translate an address through an IOMMU | |
410 | * memory region and then through the target address space. | |
411 | * | |
412 | * @iommu_mr: the IOMMU memory region that we start the translation from | |
413 | * @addr: the address to be translated through the MMU | |
414 | * @xlat: the translated address offset within the destination memory region. | |
415 | * It cannot be %NULL. | |
416 | * @plen_out: valid read/write length of the translated address. It | |
417 | * cannot be %NULL. | |
418 | * @page_mask_out: page mask for the translated address. This | |
419 | * should only be meaningful for IOMMU translated | |
420 | * addresses, since there may be huge pages that this bit | |
421 | * would tell. It can be %NULL if we don't care about it. | |
422 | * @is_write: whether the translation operation is for write | |
423 | * @is_mmio: whether this can be MMIO, set true if it can | |
424 | * @target_as: the address space targeted by the IOMMU | |
425 | * @attrs: transaction attributes | |
426 | * | |
427 | * This function is called from RCU critical section. It is the common | |
428 | * part of flatview_do_translate and address_space_translate_cached. | |
429 | */ | |
430 | static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, | |
431 | hwaddr *xlat, | |
432 | hwaddr *plen_out, | |
433 | hwaddr *page_mask_out, | |
434 | bool is_write, | |
435 | bool is_mmio, | |
436 | AddressSpace **target_as, | |
437 | MemTxAttrs attrs) | |
438 | { | |
439 | MemoryRegionSection *section; | |
440 | hwaddr page_mask = (hwaddr)-1; | |
441 | ||
442 | do { | |
443 | hwaddr addr = *xlat; | |
444 | IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); | |
445 | int iommu_idx = 0; | |
446 | IOMMUTLBEntry iotlb; | |
447 | ||
448 | if (imrc->attrs_to_index) { | |
449 | iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); | |
450 | } | |
451 | ||
452 | iotlb = imrc->translate(iommu_mr, addr, is_write ? | |
453 | IOMMU_WO : IOMMU_RO, iommu_idx); | |
454 | ||
455 | if (!(iotlb.perm & (1 << is_write))) { | |
456 | goto unassigned; | |
457 | } | |
458 | ||
459 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | |
460 | | (addr & iotlb.addr_mask)); | |
461 | page_mask &= iotlb.addr_mask; | |
462 | *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); | |
463 | *target_as = iotlb.target_as; | |
464 | ||
465 | section = address_space_translate_internal( | |
466 | address_space_to_dispatch(iotlb.target_as), addr, xlat, | |
467 | plen_out, is_mmio); | |
468 | ||
469 | iommu_mr = memory_region_get_iommu(section->mr); | |
470 | } while (unlikely(iommu_mr)); | |
471 | ||
472 | if (page_mask_out) { | |
473 | *page_mask_out = page_mask; | |
474 | } | |
475 | return *section; | |
476 | ||
477 | unassigned: | |
478 | return (MemoryRegionSection) { .mr = &io_mem_unassigned }; | |
479 | } | |
480 | ||
481 | /** | |
482 | * flatview_do_translate - translate an address in FlatView | |
483 | * | |
484 | * @fv: the flat view that we want to translate on | |
485 | * @addr: the address to be translated in above address space | |
486 | * @xlat: the translated address offset within memory region. It | |
487 | * cannot be @NULL. | |
488 | * @plen_out: valid read/write length of the translated address. It | |
489 | * can be @NULL when we don't care about it. | |
490 | * @page_mask_out: page mask for the translated address. This | |
491 | * should only be meaningful for IOMMU translated | |
492 | * addresses, since there may be huge pages that this bit | |
493 | * would tell. It can be @NULL if we don't care about it. | |
494 | * @is_write: whether the translation operation is for write | |
495 | * @is_mmio: whether this can be MMIO, set true if it can | |
496 | * @target_as: the address space targeted by the IOMMU | |
497 | * @attrs: memory transaction attributes | |
498 | * | |
499 | * This function is called from RCU critical section | |
500 | */ | |
501 | static MemoryRegionSection flatview_do_translate(FlatView *fv, | |
502 | hwaddr addr, | |
503 | hwaddr *xlat, | |
504 | hwaddr *plen_out, | |
505 | hwaddr *page_mask_out, | |
506 | bool is_write, | |
507 | bool is_mmio, | |
508 | AddressSpace **target_as, | |
509 | MemTxAttrs attrs) | |
510 | { | |
511 | MemoryRegionSection *section; | |
512 | IOMMUMemoryRegion *iommu_mr; | |
513 | hwaddr plen = (hwaddr)(-1); | |
514 | ||
515 | if (!plen_out) { | |
516 | plen_out = &plen; | |
517 | } | |
518 | ||
519 | section = address_space_translate_internal( | |
520 | flatview_to_dispatch(fv), addr, xlat, | |
521 | plen_out, is_mmio); | |
522 | ||
523 | iommu_mr = memory_region_get_iommu(section->mr); | |
524 | if (unlikely(iommu_mr)) { | |
525 | return address_space_translate_iommu(iommu_mr, xlat, | |
526 | plen_out, page_mask_out, | |
527 | is_write, is_mmio, | |
528 | target_as, attrs); | |
529 | } | |
530 | if (page_mask_out) { | |
531 | /* Not behind an IOMMU, use default page size. */ | |
532 | *page_mask_out = ~TARGET_PAGE_MASK; | |
533 | } | |
534 | ||
535 | return *section; | |
536 | } | |
537 | ||
538 | /* Called from RCU critical section */ | |
539 | IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, | |
540 | bool is_write, MemTxAttrs attrs) | |
541 | { | |
542 | MemoryRegionSection section; | |
543 | hwaddr xlat, page_mask; | |
544 | ||
545 | /* | |
546 | * This can never be MMIO, and we don't really care about plen, | |
547 | * but page mask. | |
548 | */ | |
549 | section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, | |
550 | NULL, &page_mask, is_write, false, &as, | |
551 | attrs); | |
552 | ||
553 | /* Illegal translation */ | |
554 | if (section.mr == &io_mem_unassigned) { | |
555 | goto iotlb_fail; | |
556 | } | |
557 | ||
558 | /* Convert memory region offset into address space offset */ | |
559 | xlat += section.offset_within_address_space - | |
560 | section.offset_within_region; | |
561 | ||
562 | return (IOMMUTLBEntry) { | |
563 | .target_as = as, | |
564 | .iova = addr & ~page_mask, | |
565 | .translated_addr = xlat & ~page_mask, | |
566 | .addr_mask = page_mask, | |
567 | /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ | |
568 | .perm = IOMMU_RW, | |
569 | }; | |
570 | ||
571 | iotlb_fail: | |
572 | return (IOMMUTLBEntry) {0}; | |
573 | } | |
574 | ||
575 | /* Called from RCU critical section */ | |
576 | MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, | |
577 | hwaddr *plen, bool is_write, | |
578 | MemTxAttrs attrs) | |
579 | { | |
580 | MemoryRegion *mr; | |
581 | MemoryRegionSection section; | |
582 | AddressSpace *as = NULL; | |
583 | ||
584 | /* This can be MMIO, so setup MMIO bit. */ | |
585 | section = flatview_do_translate(fv, addr, xlat, plen, NULL, | |
586 | is_write, true, &as, attrs); | |
587 | mr = section.mr; | |
588 | ||
589 | if (xen_enabled() && memory_access_is_direct(mr, is_write)) { | |
590 | hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; | |
591 | *plen = MIN(page, *plen); | |
592 | } | |
593 | ||
594 | return mr; | |
595 | } | |
596 | ||
597 | typedef struct TCGIOMMUNotifier { | |
598 | IOMMUNotifier n; | |
599 | MemoryRegion *mr; | |
600 | CPUState *cpu; | |
601 | int iommu_idx; | |
602 | bool active; | |
603 | } TCGIOMMUNotifier; | |
604 | ||
605 | static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) | |
606 | { | |
607 | TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); | |
608 | ||
609 | if (!notifier->active) { | |
610 | return; | |
611 | } | |
612 | tlb_flush(notifier->cpu); | |
613 | notifier->active = false; | |
614 | /* We leave the notifier struct on the list to avoid reallocating it later. | |
615 | * Generally the number of IOMMUs a CPU deals with will be small. | |
616 | * In any case we can't unregister the iommu notifier from a notify | |
617 | * callback. | |
618 | */ | |
619 | } | |
620 | ||
621 | static void tcg_register_iommu_notifier(CPUState *cpu, | |
622 | IOMMUMemoryRegion *iommu_mr, | |
623 | int iommu_idx) | |
624 | { | |
625 | /* Make sure this CPU has an IOMMU notifier registered for this | |
626 | * IOMMU/IOMMU index combination, so that we can flush its TLB | |
627 | * when the IOMMU tells us the mappings we've cached have changed. | |
628 | */ | |
629 | MemoryRegion *mr = MEMORY_REGION(iommu_mr); | |
630 | TCGIOMMUNotifier *notifier; | |
631 | Error *err = NULL; | |
632 | int i, ret; | |
633 | ||
634 | for (i = 0; i < cpu->iommu_notifiers->len; i++) { | |
635 | notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); | |
636 | if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { | |
637 | break; | |
638 | } | |
639 | } | |
640 | if (i == cpu->iommu_notifiers->len) { | |
641 | /* Not found, add a new entry at the end of the array */ | |
642 | cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); | |
643 | notifier = g_new0(TCGIOMMUNotifier, 1); | |
644 | g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; | |
645 | ||
646 | notifier->mr = mr; | |
647 | notifier->iommu_idx = iommu_idx; | |
648 | notifier->cpu = cpu; | |
649 | /* Rather than trying to register interest in the specific part | |
650 | * of the iommu's address space that we've accessed and then | |
651 | * expand it later as subsequent accesses touch more of it, we | |
652 | * just register interest in the whole thing, on the assumption | |
653 | * that iommu reconfiguration will be rare. | |
654 | */ | |
655 | iommu_notifier_init(¬ifier->n, | |
656 | tcg_iommu_unmap_notify, | |
657 | IOMMU_NOTIFIER_UNMAP, | |
658 | 0, | |
659 | HWADDR_MAX, | |
660 | iommu_idx); | |
661 | ret = memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, | |
662 | &err); | |
663 | if (ret) { | |
664 | error_report_err(err); | |
665 | exit(1); | |
666 | } | |
667 | } | |
668 | ||
669 | if (!notifier->active) { | |
670 | notifier->active = true; | |
671 | } | |
672 | } | |
673 | ||
674 | static void tcg_iommu_free_notifier_list(CPUState *cpu) | |
675 | { | |
676 | /* Destroy the CPU's notifier list */ | |
677 | int i; | |
678 | TCGIOMMUNotifier *notifier; | |
679 | ||
680 | for (i = 0; i < cpu->iommu_notifiers->len; i++) { | |
681 | notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); | |
682 | memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); | |
683 | g_free(notifier); | |
684 | } | |
685 | g_array_free(cpu->iommu_notifiers, true); | |
686 | } | |
687 | ||
688 | /* Called from RCU critical section */ | |
689 | MemoryRegionSection * | |
690 | address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, | |
691 | hwaddr *xlat, hwaddr *plen, | |
692 | MemTxAttrs attrs, int *prot) | |
693 | { | |
694 | MemoryRegionSection *section; | |
695 | IOMMUMemoryRegion *iommu_mr; | |
696 | IOMMUMemoryRegionClass *imrc; | |
697 | IOMMUTLBEntry iotlb; | |
698 | int iommu_idx; | |
699 | AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); | |
700 | ||
701 | for (;;) { | |
702 | section = address_space_translate_internal(d, addr, &addr, plen, false); | |
703 | ||
704 | iommu_mr = memory_region_get_iommu(section->mr); | |
705 | if (!iommu_mr) { | |
706 | break; | |
707 | } | |
708 | ||
709 | imrc = memory_region_get_iommu_class_nocheck(iommu_mr); | |
710 | ||
711 | iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); | |
712 | tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); | |
713 | /* We need all the permissions, so pass IOMMU_NONE so the IOMMU | |
714 | * doesn't short-cut its translation table walk. | |
715 | */ | |
716 | iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); | |
717 | addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | |
718 | | (addr & iotlb.addr_mask)); | |
719 | /* Update the caller's prot bits to remove permissions the IOMMU | |
720 | * is giving us a failure response for. If we get down to no | |
721 | * permissions left at all we can give up now. | |
722 | */ | |
723 | if (!(iotlb.perm & IOMMU_RO)) { | |
724 | *prot &= ~(PAGE_READ | PAGE_EXEC); | |
725 | } | |
726 | if (!(iotlb.perm & IOMMU_WO)) { | |
727 | *prot &= ~PAGE_WRITE; | |
728 | } | |
729 | ||
730 | if (!*prot) { | |
731 | goto translate_fail; | |
732 | } | |
733 | ||
734 | d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); | |
735 | } | |
736 | ||
737 | assert(!memory_region_is_iommu(section->mr)); | |
738 | *xlat = addr; | |
739 | return section; | |
740 | ||
741 | translate_fail: | |
742 | return &d->map.sections[PHYS_SECTION_UNASSIGNED]; | |
743 | } | |
744 | #endif | |
745 | ||
746 | #if !defined(CONFIG_USER_ONLY) | |
747 | ||
748 | static int cpu_common_post_load(void *opaque, int version_id) | |
749 | { | |
750 | CPUState *cpu = opaque; | |
751 | ||
752 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the | |
753 | version_id is increased. */ | |
754 | cpu->interrupt_request &= ~0x01; | |
755 | tlb_flush(cpu); | |
756 | ||
757 | /* loadvm has just updated the content of RAM, bypassing the | |
758 | * usual mechanisms that ensure we flush TBs for writes to | |
759 | * memory we've translated code from. So we must flush all TBs, | |
760 | * which will now be stale. | |
761 | */ | |
762 | tb_flush(cpu); | |
763 | ||
764 | return 0; | |
765 | } | |
766 | ||
767 | static int cpu_common_pre_load(void *opaque) | |
768 | { | |
769 | CPUState *cpu = opaque; | |
770 | ||
771 | cpu->exception_index = -1; | |
772 | ||
773 | return 0; | |
774 | } | |
775 | ||
776 | static bool cpu_common_exception_index_needed(void *opaque) | |
777 | { | |
778 | CPUState *cpu = opaque; | |
779 | ||
780 | return tcg_enabled() && cpu->exception_index != -1; | |
781 | } | |
782 | ||
783 | static const VMStateDescription vmstate_cpu_common_exception_index = { | |
784 | .name = "cpu_common/exception_index", | |
785 | .version_id = 1, | |
786 | .minimum_version_id = 1, | |
787 | .needed = cpu_common_exception_index_needed, | |
788 | .fields = (VMStateField[]) { | |
789 | VMSTATE_INT32(exception_index, CPUState), | |
790 | VMSTATE_END_OF_LIST() | |
791 | } | |
792 | }; | |
793 | ||
794 | static bool cpu_common_crash_occurred_needed(void *opaque) | |
795 | { | |
796 | CPUState *cpu = opaque; | |
797 | ||
798 | return cpu->crash_occurred; | |
799 | } | |
800 | ||
801 | static const VMStateDescription vmstate_cpu_common_crash_occurred = { | |
802 | .name = "cpu_common/crash_occurred", | |
803 | .version_id = 1, | |
804 | .minimum_version_id = 1, | |
805 | .needed = cpu_common_crash_occurred_needed, | |
806 | .fields = (VMStateField[]) { | |
807 | VMSTATE_BOOL(crash_occurred, CPUState), | |
808 | VMSTATE_END_OF_LIST() | |
809 | } | |
810 | }; | |
811 | ||
812 | const VMStateDescription vmstate_cpu_common = { | |
813 | .name = "cpu_common", | |
814 | .version_id = 1, | |
815 | .minimum_version_id = 1, | |
816 | .pre_load = cpu_common_pre_load, | |
817 | .post_load = cpu_common_post_load, | |
818 | .fields = (VMStateField[]) { | |
819 | VMSTATE_UINT32(halted, CPUState), | |
820 | VMSTATE_UINT32(interrupt_request, CPUState), | |
821 | VMSTATE_END_OF_LIST() | |
822 | }, | |
823 | .subsections = (const VMStateDescription*[]) { | |
824 | &vmstate_cpu_common_exception_index, | |
825 | &vmstate_cpu_common_crash_occurred, | |
826 | NULL | |
827 | } | |
828 | }; | |
829 | ||
830 | #endif | |
831 | ||
832 | CPUState *qemu_get_cpu(int index) | |
833 | { | |
834 | CPUState *cpu; | |
835 | ||
836 | CPU_FOREACH(cpu) { | |
837 | if (cpu->cpu_index == index) { | |
838 | return cpu; | |
839 | } | |
840 | } | |
841 | ||
842 | return NULL; | |
843 | } | |
844 | ||
845 | #if !defined(CONFIG_USER_ONLY) | |
846 | void cpu_address_space_init(CPUState *cpu, int asidx, | |
847 | const char *prefix, MemoryRegion *mr) | |
848 | { | |
849 | CPUAddressSpace *newas; | |
850 | AddressSpace *as = g_new0(AddressSpace, 1); | |
851 | char *as_name; | |
852 | ||
853 | assert(mr); | |
854 | as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); | |
855 | address_space_init(as, mr, as_name); | |
856 | g_free(as_name); | |
857 | ||
858 | /* Target code should have set num_ases before calling us */ | |
859 | assert(asidx < cpu->num_ases); | |
860 | ||
861 | if (asidx == 0) { | |
862 | /* address space 0 gets the convenience alias */ | |
863 | cpu->as = as; | |
864 | } | |
865 | ||
866 | /* KVM cannot currently support multiple address spaces. */ | |
867 | assert(asidx == 0 || !kvm_enabled()); | |
868 | ||
869 | if (!cpu->cpu_ases) { | |
870 | cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); | |
871 | } | |
872 | ||
873 | newas = &cpu->cpu_ases[asidx]; | |
874 | newas->cpu = cpu; | |
875 | newas->as = as; | |
876 | if (tcg_enabled()) { | |
877 | newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; | |
878 | newas->tcg_as_listener.commit = tcg_commit; | |
879 | memory_listener_register(&newas->tcg_as_listener, as); | |
880 | } | |
881 | } | |
882 | ||
883 | AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) | |
884 | { | |
885 | /* Return the AddressSpace corresponding to the specified index */ | |
886 | return cpu->cpu_ases[asidx].as; | |
887 | } | |
888 | #endif | |
889 | ||
890 | void cpu_exec_unrealizefn(CPUState *cpu) | |
891 | { | |
892 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
893 | ||
894 | cpu_list_remove(cpu); | |
895 | ||
896 | if (cc->vmsd != NULL) { | |
897 | vmstate_unregister(NULL, cc->vmsd, cpu); | |
898 | } | |
899 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
900 | vmstate_unregister(NULL, &vmstate_cpu_common, cpu); | |
901 | } | |
902 | #ifndef CONFIG_USER_ONLY | |
903 | tcg_iommu_free_notifier_list(cpu); | |
904 | #endif | |
905 | } | |
906 | ||
907 | Property cpu_common_props[] = { | |
908 | #ifndef CONFIG_USER_ONLY | |
909 | /* Create a memory property for softmmu CPU object, | |
910 | * so users can wire up its memory. (This can't go in hw/core/cpu.c | |
911 | * because that file is compiled only once for both user-mode | |
912 | * and system builds.) The default if no link is set up is to use | |
913 | * the system address space. | |
914 | */ | |
915 | DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION, | |
916 | MemoryRegion *), | |
917 | #endif | |
918 | DEFINE_PROP_END_OF_LIST(), | |
919 | }; | |
920 | ||
921 | void cpu_exec_initfn(CPUState *cpu) | |
922 | { | |
923 | cpu->as = NULL; | |
924 | cpu->num_ases = 0; | |
925 | ||
926 | #ifndef CONFIG_USER_ONLY | |
927 | cpu->thread_id = qemu_get_thread_id(); | |
928 | cpu->memory = system_memory; | |
929 | object_ref(OBJECT(cpu->memory)); | |
930 | #endif | |
931 | } | |
932 | ||
933 | void cpu_exec_realizefn(CPUState *cpu, Error **errp) | |
934 | { | |
935 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
936 | static bool tcg_target_initialized; | |
937 | ||
938 | cpu_list_add(cpu); | |
939 | ||
940 | if (tcg_enabled() && !tcg_target_initialized) { | |
941 | tcg_target_initialized = true; | |
942 | cc->tcg_initialize(); | |
943 | } | |
944 | tlb_init(cpu); | |
945 | ||
946 | qemu_plugin_vcpu_init_hook(cpu); | |
947 | ||
948 | #ifndef CONFIG_USER_ONLY | |
949 | if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { | |
950 | vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); | |
951 | } | |
952 | if (cc->vmsd != NULL) { | |
953 | vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); | |
954 | } | |
955 | ||
956 | cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); | |
957 | #endif | |
958 | } | |
959 | ||
960 | const char *parse_cpu_option(const char *cpu_option) | |
961 | { | |
962 | ObjectClass *oc; | |
963 | CPUClass *cc; | |
964 | gchar **model_pieces; | |
965 | const char *cpu_type; | |
966 | ||
967 | model_pieces = g_strsplit(cpu_option, ",", 2); | |
968 | if (!model_pieces[0]) { | |
969 | error_report("-cpu option cannot be empty"); | |
970 | exit(1); | |
971 | } | |
972 | ||
973 | oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]); | |
974 | if (oc == NULL) { | |
975 | error_report("unable to find CPU model '%s'", model_pieces[0]); | |
976 | g_strfreev(model_pieces); | |
977 | exit(EXIT_FAILURE); | |
978 | } | |
979 | ||
980 | cpu_type = object_class_get_name(oc); | |
981 | cc = CPU_CLASS(oc); | |
982 | cc->parse_features(cpu_type, model_pieces[1], &error_fatal); | |
983 | g_strfreev(model_pieces); | |
984 | return cpu_type; | |
985 | } | |
986 | ||
987 | #if defined(CONFIG_USER_ONLY) | |
988 | void tb_invalidate_phys_addr(target_ulong addr) | |
989 | { | |
990 | mmap_lock(); | |
991 | tb_invalidate_phys_page_range(addr, addr + 1); | |
992 | mmap_unlock(); | |
993 | } | |
994 | ||
995 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) | |
996 | { | |
997 | tb_invalidate_phys_addr(pc); | |
998 | } | |
999 | #else | |
1000 | void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs) | |
1001 | { | |
1002 | ram_addr_t ram_addr; | |
1003 | MemoryRegion *mr; | |
1004 | hwaddr l = 1; | |
1005 | ||
1006 | if (!tcg_enabled()) { | |
1007 | return; | |
1008 | } | |
1009 | ||
1010 | RCU_READ_LOCK_GUARD(); | |
1011 | mr = address_space_translate(as, addr, &addr, &l, false, attrs); | |
1012 | if (!(memory_region_is_ram(mr) | |
1013 | || memory_region_is_romd(mr))) { | |
1014 | return; | |
1015 | } | |
1016 | ram_addr = memory_region_get_ram_addr(mr) + addr; | |
1017 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1); | |
1018 | } | |
1019 | ||
1020 | static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) | |
1021 | { | |
1022 | MemTxAttrs attrs; | |
1023 | hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs); | |
1024 | int asidx = cpu_asidx_from_attrs(cpu, attrs); | |
1025 | if (phys != -1) { | |
1026 | /* Locks grabbed by tb_invalidate_phys_addr */ | |
1027 | tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as, | |
1028 | phys | (pc & ~TARGET_PAGE_MASK), attrs); | |
1029 | } | |
1030 | } | |
1031 | #endif | |
1032 | ||
1033 | #ifndef CONFIG_USER_ONLY | |
1034 | /* Add a watchpoint. */ | |
1035 | int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, | |
1036 | int flags, CPUWatchpoint **watchpoint) | |
1037 | { | |
1038 | CPUWatchpoint *wp; | |
1039 | ||
1040 | /* forbid ranges which are empty or run off the end of the address space */ | |
1041 | if (len == 0 || (addr + len - 1) < addr) { | |
1042 | error_report("tried to set invalid watchpoint at %" | |
1043 | VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); | |
1044 | return -EINVAL; | |
1045 | } | |
1046 | wp = g_malloc(sizeof(*wp)); | |
1047 | ||
1048 | wp->vaddr = addr; | |
1049 | wp->len = len; | |
1050 | wp->flags = flags; | |
1051 | ||
1052 | /* keep all GDB-injected watchpoints in front */ | |
1053 | if (flags & BP_GDB) { | |
1054 | QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); | |
1055 | } else { | |
1056 | QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); | |
1057 | } | |
1058 | ||
1059 | tlb_flush_page(cpu, addr); | |
1060 | ||
1061 | if (watchpoint) | |
1062 | *watchpoint = wp; | |
1063 | return 0; | |
1064 | } | |
1065 | ||
1066 | /* Remove a specific watchpoint. */ | |
1067 | int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, | |
1068 | int flags) | |
1069 | { | |
1070 | CPUWatchpoint *wp; | |
1071 | ||
1072 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
1073 | if (addr == wp->vaddr && len == wp->len | |
1074 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { | |
1075 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
1076 | return 0; | |
1077 | } | |
1078 | } | |
1079 | return -ENOENT; | |
1080 | } | |
1081 | ||
1082 | /* Remove a specific watchpoint by reference. */ | |
1083 | void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) | |
1084 | { | |
1085 | QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); | |
1086 | ||
1087 | tlb_flush_page(cpu, watchpoint->vaddr); | |
1088 | ||
1089 | g_free(watchpoint); | |
1090 | } | |
1091 | ||
1092 | /* Remove all matching watchpoints. */ | |
1093 | void cpu_watchpoint_remove_all(CPUState *cpu, int mask) | |
1094 | { | |
1095 | CPUWatchpoint *wp, *next; | |
1096 | ||
1097 | QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { | |
1098 | if (wp->flags & mask) { | |
1099 | cpu_watchpoint_remove_by_ref(cpu, wp); | |
1100 | } | |
1101 | } | |
1102 | } | |
1103 | ||
1104 | /* Return true if this watchpoint address matches the specified | |
1105 | * access (ie the address range covered by the watchpoint overlaps | |
1106 | * partially or completely with the address range covered by the | |
1107 | * access). | |
1108 | */ | |
1109 | static inline bool watchpoint_address_matches(CPUWatchpoint *wp, | |
1110 | vaddr addr, vaddr len) | |
1111 | { | |
1112 | /* We know the lengths are non-zero, but a little caution is | |
1113 | * required to avoid errors in the case where the range ends | |
1114 | * exactly at the top of the address space and so addr + len | |
1115 | * wraps round to zero. | |
1116 | */ | |
1117 | vaddr wpend = wp->vaddr + wp->len - 1; | |
1118 | vaddr addrend = addr + len - 1; | |
1119 | ||
1120 | return !(addr > wpend || wp->vaddr > addrend); | |
1121 | } | |
1122 | ||
1123 | /* Return flags for watchpoints that match addr + prot. */ | |
1124 | int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len) | |
1125 | { | |
1126 | CPUWatchpoint *wp; | |
1127 | int ret = 0; | |
1128 | ||
1129 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
1130 | if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) { | |
1131 | ret |= wp->flags; | |
1132 | } | |
1133 | } | |
1134 | return ret; | |
1135 | } | |
1136 | #endif /* !CONFIG_USER_ONLY */ | |
1137 | ||
1138 | /* Add a breakpoint. */ | |
1139 | int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, | |
1140 | CPUBreakpoint **breakpoint) | |
1141 | { | |
1142 | CPUBreakpoint *bp; | |
1143 | ||
1144 | bp = g_malloc(sizeof(*bp)); | |
1145 | ||
1146 | bp->pc = pc; | |
1147 | bp->flags = flags; | |
1148 | ||
1149 | /* keep all GDB-injected breakpoints in front */ | |
1150 | if (flags & BP_GDB) { | |
1151 | QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); | |
1152 | } else { | |
1153 | QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); | |
1154 | } | |
1155 | ||
1156 | breakpoint_invalidate(cpu, pc); | |
1157 | ||
1158 | if (breakpoint) { | |
1159 | *breakpoint = bp; | |
1160 | } | |
1161 | return 0; | |
1162 | } | |
1163 | ||
1164 | /* Remove a specific breakpoint. */ | |
1165 | int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) | |
1166 | { | |
1167 | CPUBreakpoint *bp; | |
1168 | ||
1169 | QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { | |
1170 | if (bp->pc == pc && bp->flags == flags) { | |
1171 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
1172 | return 0; | |
1173 | } | |
1174 | } | |
1175 | return -ENOENT; | |
1176 | } | |
1177 | ||
1178 | /* Remove a specific breakpoint by reference. */ | |
1179 | void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) | |
1180 | { | |
1181 | QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); | |
1182 | ||
1183 | breakpoint_invalidate(cpu, breakpoint->pc); | |
1184 | ||
1185 | g_free(breakpoint); | |
1186 | } | |
1187 | ||
1188 | /* Remove all matching breakpoints. */ | |
1189 | void cpu_breakpoint_remove_all(CPUState *cpu, int mask) | |
1190 | { | |
1191 | CPUBreakpoint *bp, *next; | |
1192 | ||
1193 | QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { | |
1194 | if (bp->flags & mask) { | |
1195 | cpu_breakpoint_remove_by_ref(cpu, bp); | |
1196 | } | |
1197 | } | |
1198 | } | |
1199 | ||
1200 | /* enable or disable single step mode. EXCP_DEBUG is returned by the | |
1201 | CPU loop after each instruction */ | |
1202 | void cpu_single_step(CPUState *cpu, int enabled) | |
1203 | { | |
1204 | if (cpu->singlestep_enabled != enabled) { | |
1205 | cpu->singlestep_enabled = enabled; | |
1206 | if (kvm_enabled()) { | |
1207 | kvm_update_guest_debug(cpu, 0); | |
1208 | } else { | |
1209 | /* must flush all the translated code to avoid inconsistencies */ | |
1210 | /* XXX: only flush what is necessary */ | |
1211 | tb_flush(cpu); | |
1212 | } | |
1213 | } | |
1214 | } | |
1215 | ||
1216 | void cpu_abort(CPUState *cpu, const char *fmt, ...) | |
1217 | { | |
1218 | va_list ap; | |
1219 | va_list ap2; | |
1220 | ||
1221 | va_start(ap, fmt); | |
1222 | va_copy(ap2, ap); | |
1223 | fprintf(stderr, "qemu: fatal: "); | |
1224 | vfprintf(stderr, fmt, ap); | |
1225 | fprintf(stderr, "\n"); | |
1226 | cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP); | |
1227 | if (qemu_log_separate()) { | |
1228 | qemu_log_lock(); | |
1229 | qemu_log("qemu: fatal: "); | |
1230 | qemu_log_vprintf(fmt, ap2); | |
1231 | qemu_log("\n"); | |
1232 | log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); | |
1233 | qemu_log_flush(); | |
1234 | qemu_log_unlock(); | |
1235 | qemu_log_close(); | |
1236 | } | |
1237 | va_end(ap2); | |
1238 | va_end(ap); | |
1239 | replay_finish(); | |
1240 | #if defined(CONFIG_USER_ONLY) | |
1241 | { | |
1242 | struct sigaction act; | |
1243 | sigfillset(&act.sa_mask); | |
1244 | act.sa_handler = SIG_DFL; | |
1245 | act.sa_flags = 0; | |
1246 | sigaction(SIGABRT, &act, NULL); | |
1247 | } | |
1248 | #endif | |
1249 | abort(); | |
1250 | } | |
1251 | ||
1252 | #if !defined(CONFIG_USER_ONLY) | |
1253 | /* Called from RCU critical section */ | |
1254 | static RAMBlock *qemu_get_ram_block(ram_addr_t addr) | |
1255 | { | |
1256 | RAMBlock *block; | |
1257 | ||
1258 | block = atomic_rcu_read(&ram_list.mru_block); | |
1259 | if (block && addr - block->offset < block->max_length) { | |
1260 | return block; | |
1261 | } | |
1262 | RAMBLOCK_FOREACH(block) { | |
1263 | if (addr - block->offset < block->max_length) { | |
1264 | goto found; | |
1265 | } | |
1266 | } | |
1267 | ||
1268 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
1269 | abort(); | |
1270 | ||
1271 | found: | |
1272 | /* It is safe to write mru_block outside the iothread lock. This | |
1273 | * is what happens: | |
1274 | * | |
1275 | * mru_block = xxx | |
1276 | * rcu_read_unlock() | |
1277 | * xxx removed from list | |
1278 | * rcu_read_lock() | |
1279 | * read mru_block | |
1280 | * mru_block = NULL; | |
1281 | * call_rcu(reclaim_ramblock, xxx); | |
1282 | * rcu_read_unlock() | |
1283 | * | |
1284 | * atomic_rcu_set is not needed here. The block was already published | |
1285 | * when it was placed into the list. Here we're just making an extra | |
1286 | * copy of the pointer. | |
1287 | */ | |
1288 | ram_list.mru_block = block; | |
1289 | return block; | |
1290 | } | |
1291 | ||
1292 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) | |
1293 | { | |
1294 | CPUState *cpu; | |
1295 | ram_addr_t start1; | |
1296 | RAMBlock *block; | |
1297 | ram_addr_t end; | |
1298 | ||
1299 | assert(tcg_enabled()); | |
1300 | end = TARGET_PAGE_ALIGN(start + length); | |
1301 | start &= TARGET_PAGE_MASK; | |
1302 | ||
1303 | RCU_READ_LOCK_GUARD(); | |
1304 | block = qemu_get_ram_block(start); | |
1305 | assert(block == qemu_get_ram_block(end - 1)); | |
1306 | start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); | |
1307 | CPU_FOREACH(cpu) { | |
1308 | tlb_reset_dirty(cpu, start1, length); | |
1309 | } | |
1310 | } | |
1311 | ||
1312 | /* Note: start and end must be within the same ram block. */ | |
1313 | bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, | |
1314 | ram_addr_t length, | |
1315 | unsigned client) | |
1316 | { | |
1317 | DirtyMemoryBlocks *blocks; | |
1318 | unsigned long end, page; | |
1319 | bool dirty = false; | |
1320 | RAMBlock *ramblock; | |
1321 | uint64_t mr_offset, mr_size; | |
1322 | ||
1323 | if (length == 0) { | |
1324 | return false; | |
1325 | } | |
1326 | ||
1327 | end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; | |
1328 | page = start >> TARGET_PAGE_BITS; | |
1329 | ||
1330 | WITH_RCU_READ_LOCK_GUARD() { | |
1331 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1332 | ramblock = qemu_get_ram_block(start); | |
1333 | /* Range sanity check on the ramblock */ | |
1334 | assert(start >= ramblock->offset && | |
1335 | start + length <= ramblock->offset + ramblock->used_length); | |
1336 | ||
1337 | while (page < end) { | |
1338 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1339 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1340 | unsigned long num = MIN(end - page, | |
1341 | DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1342 | ||
1343 | dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], | |
1344 | offset, num); | |
1345 | page += num; | |
1346 | } | |
1347 | ||
1348 | mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset; | |
1349 | mr_size = (end - page) << TARGET_PAGE_BITS; | |
1350 | memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); | |
1351 | } | |
1352 | ||
1353 | if (dirty && tcg_enabled()) { | |
1354 | tlb_reset_dirty_range_all(start, length); | |
1355 | } | |
1356 | ||
1357 | return dirty; | |
1358 | } | |
1359 | ||
1360 | DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty | |
1361 | (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) | |
1362 | { | |
1363 | DirtyMemoryBlocks *blocks; | |
1364 | ram_addr_t start = memory_region_get_ram_addr(mr) + offset; | |
1365 | unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); | |
1366 | ram_addr_t first = QEMU_ALIGN_DOWN(start, align); | |
1367 | ram_addr_t last = QEMU_ALIGN_UP(start + length, align); | |
1368 | DirtyBitmapSnapshot *snap; | |
1369 | unsigned long page, end, dest; | |
1370 | ||
1371 | snap = g_malloc0(sizeof(*snap) + | |
1372 | ((last - first) >> (TARGET_PAGE_BITS + 3))); | |
1373 | snap->start = first; | |
1374 | snap->end = last; | |
1375 | ||
1376 | page = first >> TARGET_PAGE_BITS; | |
1377 | end = last >> TARGET_PAGE_BITS; | |
1378 | dest = 0; | |
1379 | ||
1380 | WITH_RCU_READ_LOCK_GUARD() { | |
1381 | blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); | |
1382 | ||
1383 | while (page < end) { | |
1384 | unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; | |
1385 | unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; | |
1386 | unsigned long num = MIN(end - page, | |
1387 | DIRTY_MEMORY_BLOCK_SIZE - offset); | |
1388 | ||
1389 | assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); | |
1390 | assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); | |
1391 | offset >>= BITS_PER_LEVEL; | |
1392 | ||
1393 | bitmap_copy_and_clear_atomic(snap->dirty + dest, | |
1394 | blocks->blocks[idx] + offset, | |
1395 | num); | |
1396 | page += num; | |
1397 | dest += num >> BITS_PER_LEVEL; | |
1398 | } | |
1399 | } | |
1400 | ||
1401 | if (tcg_enabled()) { | |
1402 | tlb_reset_dirty_range_all(start, length); | |
1403 | } | |
1404 | ||
1405 | memory_region_clear_dirty_bitmap(mr, offset, length); | |
1406 | ||
1407 | return snap; | |
1408 | } | |
1409 | ||
1410 | bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, | |
1411 | ram_addr_t start, | |
1412 | ram_addr_t length) | |
1413 | { | |
1414 | unsigned long page, end; | |
1415 | ||
1416 | assert(start >= snap->start); | |
1417 | assert(start + length <= snap->end); | |
1418 | ||
1419 | end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; | |
1420 | page = (start - snap->start) >> TARGET_PAGE_BITS; | |
1421 | ||
1422 | while (page < end) { | |
1423 | if (test_bit(page, snap->dirty)) { | |
1424 | return true; | |
1425 | } | |
1426 | page++; | |
1427 | } | |
1428 | return false; | |
1429 | } | |
1430 | ||
1431 | /* Called from RCU critical section */ | |
1432 | hwaddr memory_region_section_get_iotlb(CPUState *cpu, | |
1433 | MemoryRegionSection *section) | |
1434 | { | |
1435 | AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); | |
1436 | return section - d->map.sections; | |
1437 | } | |
1438 | #endif /* defined(CONFIG_USER_ONLY) */ | |
1439 | ||
1440 | #if !defined(CONFIG_USER_ONLY) | |
1441 | ||
1442 | static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, | |
1443 | uint16_t section); | |
1444 | static subpage_t *subpage_init(FlatView *fv, hwaddr base); | |
1445 | ||
1446 | static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) = | |
1447 | qemu_anon_ram_alloc; | |
1448 | ||
1449 | /* | |
1450 | * Set a custom physical guest memory alloator. | |
1451 | * Accelerators with unusual needs may need this. Hopefully, we can | |
1452 | * get rid of it eventually. | |
1453 | */ | |
1454 | void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared)) | |
1455 | { | |
1456 | phys_mem_alloc = alloc; | |
1457 | } | |
1458 | ||
1459 | static uint16_t phys_section_add(PhysPageMap *map, | |
1460 | MemoryRegionSection *section) | |
1461 | { | |
1462 | /* The physical section number is ORed with a page-aligned | |
1463 | * pointer to produce the iotlb entries. Thus it should | |
1464 | * never overflow into the page-aligned value. | |
1465 | */ | |
1466 | assert(map->sections_nb < TARGET_PAGE_SIZE); | |
1467 | ||
1468 | if (map->sections_nb == map->sections_nb_alloc) { | |
1469 | map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); | |
1470 | map->sections = g_renew(MemoryRegionSection, map->sections, | |
1471 | map->sections_nb_alloc); | |
1472 | } | |
1473 | map->sections[map->sections_nb] = *section; | |
1474 | memory_region_ref(section->mr); | |
1475 | return map->sections_nb++; | |
1476 | } | |
1477 | ||
1478 | static void phys_section_destroy(MemoryRegion *mr) | |
1479 | { | |
1480 | bool have_sub_page = mr->subpage; | |
1481 | ||
1482 | memory_region_unref(mr); | |
1483 | ||
1484 | if (have_sub_page) { | |
1485 | subpage_t *subpage = container_of(mr, subpage_t, iomem); | |
1486 | object_unref(OBJECT(&subpage->iomem)); | |
1487 | g_free(subpage); | |
1488 | } | |
1489 | } | |
1490 | ||
1491 | static void phys_sections_free(PhysPageMap *map) | |
1492 | { | |
1493 | while (map->sections_nb > 0) { | |
1494 | MemoryRegionSection *section = &map->sections[--map->sections_nb]; | |
1495 | phys_section_destroy(section->mr); | |
1496 | } | |
1497 | g_free(map->sections); | |
1498 | g_free(map->nodes); | |
1499 | } | |
1500 | ||
1501 | static void register_subpage(FlatView *fv, MemoryRegionSection *section) | |
1502 | { | |
1503 | AddressSpaceDispatch *d = flatview_to_dispatch(fv); | |
1504 | subpage_t *subpage; | |
1505 | hwaddr base = section->offset_within_address_space | |
1506 | & TARGET_PAGE_MASK; | |
1507 | MemoryRegionSection *existing = phys_page_find(d, base); | |
1508 | MemoryRegionSection subsection = { | |
1509 | .offset_within_address_space = base, | |
1510 | .size = int128_make64(TARGET_PAGE_SIZE), | |
1511 | }; | |
1512 | hwaddr start, end; | |
1513 | ||
1514 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); | |
1515 | ||
1516 | if (!(existing->mr->subpage)) { | |
1517 | subpage = subpage_init(fv, base); | |
1518 | subsection.fv = fv; | |
1519 | subsection.mr = &subpage->iomem; | |
1520 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, | |
1521 | phys_section_add(&d->map, &subsection)); | |
1522 | } else { | |
1523 | subpage = container_of(existing->mr, subpage_t, iomem); | |
1524 | } | |
1525 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
1526 | end = start + int128_get64(section->size) - 1; | |
1527 | subpage_register(subpage, start, end, | |
1528 | phys_section_add(&d->map, section)); | |
1529 | } | |
1530 | ||
1531 | ||
1532 | static void register_multipage(FlatView *fv, | |
1533 | MemoryRegionSection *section) | |
1534 | { | |
1535 | AddressSpaceDispatch *d = flatview_to_dispatch(fv); | |
1536 | hwaddr start_addr = section->offset_within_address_space; | |
1537 | uint16_t section_index = phys_section_add(&d->map, section); | |
1538 | uint64_t num_pages = int128_get64(int128_rshift(section->size, | |
1539 | TARGET_PAGE_BITS)); | |
1540 | ||
1541 | assert(num_pages); | |
1542 | phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); | |
1543 | } | |
1544 | ||
1545 | /* | |
1546 | * The range in *section* may look like this: | |
1547 | * | |
1548 | * |s|PPPPPPP|s| | |
1549 | * | |
1550 | * where s stands for subpage and P for page. | |
1551 | */ | |
1552 | void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) | |
1553 | { | |
1554 | MemoryRegionSection remain = *section; | |
1555 | Int128 page_size = int128_make64(TARGET_PAGE_SIZE); | |
1556 | ||
1557 | /* register first subpage */ | |
1558 | if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { | |
1559 | uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) | |
1560 | - remain.offset_within_address_space; | |
1561 | ||
1562 | MemoryRegionSection now = remain; | |
1563 | now.size = int128_min(int128_make64(left), now.size); | |
1564 | register_subpage(fv, &now); | |
1565 | if (int128_eq(remain.size, now.size)) { | |
1566 | return; | |
1567 | } | |
1568 | remain.size = int128_sub(remain.size, now.size); | |
1569 | remain.offset_within_address_space += int128_get64(now.size); | |
1570 | remain.offset_within_region += int128_get64(now.size); | |
1571 | } | |
1572 | ||
1573 | /* register whole pages */ | |
1574 | if (int128_ge(remain.size, page_size)) { | |
1575 | MemoryRegionSection now = remain; | |
1576 | now.size = int128_and(now.size, int128_neg(page_size)); | |
1577 | register_multipage(fv, &now); | |
1578 | if (int128_eq(remain.size, now.size)) { | |
1579 | return; | |
1580 | } | |
1581 | remain.size = int128_sub(remain.size, now.size); | |
1582 | remain.offset_within_address_space += int128_get64(now.size); | |
1583 | remain.offset_within_region += int128_get64(now.size); | |
1584 | } | |
1585 | ||
1586 | /* register last subpage */ | |
1587 | register_subpage(fv, &remain); | |
1588 | } | |
1589 | ||
1590 | void qemu_flush_coalesced_mmio_buffer(void) | |
1591 | { | |
1592 | if (kvm_enabled()) | |
1593 | kvm_flush_coalesced_mmio_buffer(); | |
1594 | } | |
1595 | ||
1596 | void qemu_mutex_lock_ramlist(void) | |
1597 | { | |
1598 | qemu_mutex_lock(&ram_list.mutex); | |
1599 | } | |
1600 | ||
1601 | void qemu_mutex_unlock_ramlist(void) | |
1602 | { | |
1603 | qemu_mutex_unlock(&ram_list.mutex); | |
1604 | } | |
1605 | ||
1606 | void ram_block_dump(Monitor *mon) | |
1607 | { | |
1608 | RAMBlock *block; | |
1609 | char *psize; | |
1610 | ||
1611 | RCU_READ_LOCK_GUARD(); | |
1612 | monitor_printf(mon, "%24s %8s %18s %18s %18s\n", | |
1613 | "Block Name", "PSize", "Offset", "Used", "Total"); | |
1614 | RAMBLOCK_FOREACH(block) { | |
1615 | psize = size_to_str(block->page_size); | |
1616 | monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 | |
1617 | " 0x%016" PRIx64 "\n", block->idstr, psize, | |
1618 | (uint64_t)block->offset, | |
1619 | (uint64_t)block->used_length, | |
1620 | (uint64_t)block->max_length); | |
1621 | g_free(psize); | |
1622 | } | |
1623 | } | |
1624 | ||
1625 | #ifdef __linux__ | |
1626 | /* | |
1627 | * FIXME TOCTTOU: this iterates over memory backends' mem-path, which | |
1628 | * may or may not name the same files / on the same filesystem now as | |
1629 | * when we actually open and map them. Iterate over the file | |
1630 | * descriptors instead, and use qemu_fd_getpagesize(). | |
1631 | */ | |
1632 | static int find_min_backend_pagesize(Object *obj, void *opaque) | |
1633 | { | |
1634 | long *hpsize_min = opaque; | |
1635 | ||
1636 | if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { | |
1637 | HostMemoryBackend *backend = MEMORY_BACKEND(obj); | |
1638 | long hpsize = host_memory_backend_pagesize(backend); | |
1639 | ||
1640 | if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { | |
1641 | *hpsize_min = hpsize; | |
1642 | } | |
1643 | } | |
1644 | ||
1645 | return 0; | |
1646 | } | |
1647 | ||
1648 | static int find_max_backend_pagesize(Object *obj, void *opaque) | |
1649 | { | |
1650 | long *hpsize_max = opaque; | |
1651 | ||
1652 | if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { | |
1653 | HostMemoryBackend *backend = MEMORY_BACKEND(obj); | |
1654 | long hpsize = host_memory_backend_pagesize(backend); | |
1655 | ||
1656 | if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { | |
1657 | *hpsize_max = hpsize; | |
1658 | } | |
1659 | } | |
1660 | ||
1661 | return 0; | |
1662 | } | |
1663 | ||
1664 | /* | |
1665 | * TODO: We assume right now that all mapped host memory backends are | |
1666 | * used as RAM, however some might be used for different purposes. | |
1667 | */ | |
1668 | long qemu_minrampagesize(void) | |
1669 | { | |
1670 | long hpsize = LONG_MAX; | |
1671 | long mainrampagesize; | |
1672 | Object *memdev_root; | |
1673 | MachineState *ms = MACHINE(qdev_get_machine()); | |
1674 | ||
1675 | mainrampagesize = qemu_mempath_getpagesize(mem_path); | |
1676 | ||
1677 | /* it's possible we have memory-backend objects with | |
1678 | * hugepage-backed RAM. these may get mapped into system | |
1679 | * address space via -numa parameters or memory hotplug | |
1680 | * hooks. we want to take these into account, but we | |
1681 | * also want to make sure these supported hugepage | |
1682 | * sizes are applicable across the entire range of memory | |
1683 | * we may boot from, so we take the min across all | |
1684 | * backends, and assume normal pages in cases where a | |
1685 | * backend isn't backed by hugepages. | |
1686 | */ | |
1687 | memdev_root = object_resolve_path("/objects", NULL); | |
1688 | if (memdev_root) { | |
1689 | object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); | |
1690 | } | |
1691 | if (hpsize == LONG_MAX) { | |
1692 | /* No additional memory regions found ==> Report main RAM page size */ | |
1693 | return mainrampagesize; | |
1694 | } | |
1695 | ||
1696 | /* If NUMA is disabled or the NUMA nodes are not backed with a | |
1697 | * memory-backend, then there is at least one node using "normal" RAM, | |
1698 | * so if its page size is smaller we have got to report that size instead. | |
1699 | */ | |
1700 | if (hpsize > mainrampagesize && | |
1701 | (ms->numa_state == NULL || | |
1702 | ms->numa_state->num_nodes == 0 || | |
1703 | ms->numa_state->nodes[0].node_memdev == NULL)) { | |
1704 | static bool warned; | |
1705 | if (!warned) { | |
1706 | error_report("Huge page support disabled (n/a for main memory)."); | |
1707 | warned = true; | |
1708 | } | |
1709 | return mainrampagesize; | |
1710 | } | |
1711 | ||
1712 | return hpsize; | |
1713 | } | |
1714 | ||
1715 | long qemu_maxrampagesize(void) | |
1716 | { | |
1717 | long pagesize = qemu_mempath_getpagesize(mem_path); | |
1718 | Object *memdev_root = object_resolve_path("/objects", NULL); | |
1719 | ||
1720 | if (memdev_root) { | |
1721 | object_child_foreach(memdev_root, find_max_backend_pagesize, | |
1722 | &pagesize); | |
1723 | } | |
1724 | return pagesize; | |
1725 | } | |
1726 | #else | |
1727 | long qemu_minrampagesize(void) | |
1728 | { | |
1729 | return qemu_real_host_page_size; | |
1730 | } | |
1731 | long qemu_maxrampagesize(void) | |
1732 | { | |
1733 | return qemu_real_host_page_size; | |
1734 | } | |
1735 | #endif | |
1736 | ||
1737 | #ifdef CONFIG_POSIX | |
1738 | static int64_t get_file_size(int fd) | |
1739 | { | |
1740 | int64_t size; | |
1741 | #if defined(__linux__) | |
1742 | struct stat st; | |
1743 | ||
1744 | if (fstat(fd, &st) < 0) { | |
1745 | return -errno; | |
1746 | } | |
1747 | ||
1748 | /* Special handling for devdax character devices */ | |
1749 | if (S_ISCHR(st.st_mode)) { | |
1750 | g_autofree char *subsystem_path = NULL; | |
1751 | g_autofree char *subsystem = NULL; | |
1752 | ||
1753 | subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", | |
1754 | major(st.st_rdev), minor(st.st_rdev)); | |
1755 | subsystem = g_file_read_link(subsystem_path, NULL); | |
1756 | ||
1757 | if (subsystem && g_str_has_suffix(subsystem, "/dax")) { | |
1758 | g_autofree char *size_path = NULL; | |
1759 | g_autofree char *size_str = NULL; | |
1760 | ||
1761 | size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", | |
1762 | major(st.st_rdev), minor(st.st_rdev)); | |
1763 | ||
1764 | if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { | |
1765 | return g_ascii_strtoll(size_str, NULL, 0); | |
1766 | } | |
1767 | } | |
1768 | } | |
1769 | #endif /* defined(__linux__) */ | |
1770 | ||
1771 | /* st.st_size may be zero for special files yet lseek(2) works */ | |
1772 | size = lseek(fd, 0, SEEK_END); | |
1773 | if (size < 0) { | |
1774 | return -errno; | |
1775 | } | |
1776 | return size; | |
1777 | } | |
1778 | ||
1779 | static int file_ram_open(const char *path, | |
1780 | const char *region_name, | |
1781 | bool *created, | |
1782 | Error **errp) | |
1783 | { | |
1784 | char *filename; | |
1785 | char *sanitized_name; | |
1786 | char *c; | |
1787 | int fd = -1; | |
1788 | ||
1789 | *created = false; | |
1790 | for (;;) { | |
1791 | fd = open(path, O_RDWR); | |
1792 | if (fd >= 0) { | |
1793 | /* @path names an existing file, use it */ | |
1794 | break; | |
1795 | } | |
1796 | if (errno == ENOENT) { | |
1797 | /* @path names a file that doesn't exist, create it */ | |
1798 | fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); | |
1799 | if (fd >= 0) { | |
1800 | *created = true; | |
1801 | break; | |
1802 | } | |
1803 | } else if (errno == EISDIR) { | |
1804 | /* @path names a directory, create a file there */ | |
1805 | /* Make name safe to use with mkstemp by replacing '/' with '_'. */ | |
1806 | sanitized_name = g_strdup(region_name); | |
1807 | for (c = sanitized_name; *c != '\0'; c++) { | |
1808 | if (*c == '/') { | |
1809 | *c = '_'; | |
1810 | } | |
1811 | } | |
1812 | ||
1813 | filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, | |
1814 | sanitized_name); | |
1815 | g_free(sanitized_name); | |
1816 | ||
1817 | fd = mkstemp(filename); | |
1818 | if (fd >= 0) { | |
1819 | unlink(filename); | |
1820 | g_free(filename); | |
1821 | break; | |
1822 | } | |
1823 | g_free(filename); | |
1824 | } | |
1825 | if (errno != EEXIST && errno != EINTR) { | |
1826 | error_setg_errno(errp, errno, | |
1827 | "can't open backing store %s for guest RAM", | |
1828 | path); | |
1829 | return -1; | |
1830 | } | |
1831 | /* | |
1832 | * Try again on EINTR and EEXIST. The latter happens when | |
1833 | * something else creates the file between our two open(). | |
1834 | */ | |
1835 | } | |
1836 | ||
1837 | return fd; | |
1838 | } | |
1839 | ||
1840 | static void *file_ram_alloc(RAMBlock *block, | |
1841 | ram_addr_t memory, | |
1842 | int fd, | |
1843 | bool truncate, | |
1844 | Error **errp) | |
1845 | { | |
1846 | Error *err = NULL; | |
1847 | MachineState *ms = MACHINE(qdev_get_machine()); | |
1848 | void *area; | |
1849 | ||
1850 | block->page_size = qemu_fd_getpagesize(fd); | |
1851 | if (block->mr->align % block->page_size) { | |
1852 | error_setg(errp, "alignment 0x%" PRIx64 | |
1853 | " must be multiples of page size 0x%zx", | |
1854 | block->mr->align, block->page_size); | |
1855 | return NULL; | |
1856 | } else if (block->mr->align && !is_power_of_2(block->mr->align)) { | |
1857 | error_setg(errp, "alignment 0x%" PRIx64 | |
1858 | " must be a power of two", block->mr->align); | |
1859 | return NULL; | |
1860 | } | |
1861 | block->mr->align = MAX(block->page_size, block->mr->align); | |
1862 | #if defined(__s390x__) | |
1863 | if (kvm_enabled()) { | |
1864 | block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); | |
1865 | } | |
1866 | #endif | |
1867 | ||
1868 | if (memory < block->page_size) { | |
1869 | error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " | |
1870 | "or larger than page size 0x%zx", | |
1871 | memory, block->page_size); | |
1872 | return NULL; | |
1873 | } | |
1874 | ||
1875 | memory = ROUND_UP(memory, block->page_size); | |
1876 | ||
1877 | /* | |
1878 | * ftruncate is not supported by hugetlbfs in older | |
1879 | * hosts, so don't bother bailing out on errors. | |
1880 | * If anything goes wrong with it under other filesystems, | |
1881 | * mmap will fail. | |
1882 | * | |
1883 | * Do not truncate the non-empty backend file to avoid corrupting | |
1884 | * the existing data in the file. Disabling shrinking is not | |
1885 | * enough. For example, the current vNVDIMM implementation stores | |
1886 | * the guest NVDIMM labels at the end of the backend file. If the | |
1887 | * backend file is later extended, QEMU will not be able to find | |
1888 | * those labels. Therefore, extending the non-empty backend file | |
1889 | * is disabled as well. | |
1890 | */ | |
1891 | if (truncate && ftruncate(fd, memory)) { | |
1892 | perror("ftruncate"); | |
1893 | } | |
1894 | ||
1895 | area = qemu_ram_mmap(fd, memory, block->mr->align, | |
1896 | block->flags & RAM_SHARED, block->flags & RAM_PMEM); | |
1897 | if (area == MAP_FAILED) { | |
1898 | error_setg_errno(errp, errno, | |
1899 | "unable to map backing store for guest RAM"); | |
1900 | return NULL; | |
1901 | } | |
1902 | ||
1903 | if (mem_prealloc) { | |
1904 | os_mem_prealloc(fd, area, memory, ms->smp.cpus, &err); | |
1905 | if (err) { | |
1906 | error_propagate(errp, err); | |
1907 | qemu_ram_munmap(fd, area, memory); | |
1908 | return NULL; | |
1909 | } | |
1910 | } | |
1911 | ||
1912 | block->fd = fd; | |
1913 | return area; | |
1914 | } | |
1915 | #endif | |
1916 | ||
1917 | /* Allocate space within the ram_addr_t space that governs the | |
1918 | * dirty bitmaps. | |
1919 | * Called with the ramlist lock held. | |
1920 | */ | |
1921 | static ram_addr_t find_ram_offset(ram_addr_t size) | |
1922 | { | |
1923 | RAMBlock *block, *next_block; | |
1924 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; | |
1925 | ||
1926 | assert(size != 0); /* it would hand out same offset multiple times */ | |
1927 | ||
1928 | if (QLIST_EMPTY_RCU(&ram_list.blocks)) { | |
1929 | return 0; | |
1930 | } | |
1931 | ||
1932 | RAMBLOCK_FOREACH(block) { | |
1933 | ram_addr_t candidate, next = RAM_ADDR_MAX; | |
1934 | ||
1935 | /* Align blocks to start on a 'long' in the bitmap | |
1936 | * which makes the bitmap sync'ing take the fast path. | |
1937 | */ | |
1938 | candidate = block->offset + block->max_length; | |
1939 | candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); | |
1940 | ||
1941 | /* Search for the closest following block | |
1942 | * and find the gap. | |
1943 | */ | |
1944 | RAMBLOCK_FOREACH(next_block) { | |
1945 | if (next_block->offset >= candidate) { | |
1946 | next = MIN(next, next_block->offset); | |
1947 | } | |
1948 | } | |
1949 | ||
1950 | /* If it fits remember our place and remember the size | |
1951 | * of gap, but keep going so that we might find a smaller | |
1952 | * gap to fill so avoiding fragmentation. | |
1953 | */ | |
1954 | if (next - candidate >= size && next - candidate < mingap) { | |
1955 | offset = candidate; | |
1956 | mingap = next - candidate; | |
1957 | } | |
1958 | ||
1959 | trace_find_ram_offset_loop(size, candidate, offset, next, mingap); | |
1960 | } | |
1961 | ||
1962 | if (offset == RAM_ADDR_MAX) { | |
1963 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
1964 | (uint64_t)size); | |
1965 | abort(); | |
1966 | } | |
1967 | ||
1968 | trace_find_ram_offset(size, offset); | |
1969 | ||
1970 | return offset; | |
1971 | } | |
1972 | ||
1973 | static unsigned long last_ram_page(void) | |
1974 | { | |
1975 | RAMBlock *block; | |
1976 | ram_addr_t last = 0; | |
1977 | ||
1978 | RCU_READ_LOCK_GUARD(); | |
1979 | RAMBLOCK_FOREACH(block) { | |
1980 | last = MAX(last, block->offset + block->max_length); | |
1981 | } | |
1982 | return last >> TARGET_PAGE_BITS; | |
1983 | } | |
1984 | ||
1985 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) | |
1986 | { | |
1987 | int ret; | |
1988 | ||
1989 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
1990 | if (!machine_dump_guest_core(current_machine)) { | |
1991 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); | |
1992 | if (ret) { | |
1993 | perror("qemu_madvise"); | |
1994 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
1995 | "but dump_guest_core=off specified\n"); | |
1996 | } | |
1997 | } | |
1998 | } | |
1999 | ||
2000 | const char *qemu_ram_get_idstr(RAMBlock *rb) | |
2001 | { | |
2002 | return rb->idstr; | |
2003 | } | |
2004 | ||
2005 | void *qemu_ram_get_host_addr(RAMBlock *rb) | |
2006 | { | |
2007 | return rb->host; | |
2008 | } | |
2009 | ||
2010 | ram_addr_t qemu_ram_get_offset(RAMBlock *rb) | |
2011 | { | |
2012 | return rb->offset; | |
2013 | } | |
2014 | ||
2015 | ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) | |
2016 | { | |
2017 | return rb->used_length; | |
2018 | } | |
2019 | ||
2020 | bool qemu_ram_is_shared(RAMBlock *rb) | |
2021 | { | |
2022 | return rb->flags & RAM_SHARED; | |
2023 | } | |
2024 | ||
2025 | /* Note: Only set at the start of postcopy */ | |
2026 | bool qemu_ram_is_uf_zeroable(RAMBlock *rb) | |
2027 | { | |
2028 | return rb->flags & RAM_UF_ZEROPAGE; | |
2029 | } | |
2030 | ||
2031 | void qemu_ram_set_uf_zeroable(RAMBlock *rb) | |
2032 | { | |
2033 | rb->flags |= RAM_UF_ZEROPAGE; | |
2034 | } | |
2035 | ||
2036 | bool qemu_ram_is_migratable(RAMBlock *rb) | |
2037 | { | |
2038 | return rb->flags & RAM_MIGRATABLE; | |
2039 | } | |
2040 | ||
2041 | void qemu_ram_set_migratable(RAMBlock *rb) | |
2042 | { | |
2043 | rb->flags |= RAM_MIGRATABLE; | |
2044 | } | |
2045 | ||
2046 | void qemu_ram_unset_migratable(RAMBlock *rb) | |
2047 | { | |
2048 | rb->flags &= ~RAM_MIGRATABLE; | |
2049 | } | |
2050 | ||
2051 | /* Called with iothread lock held. */ | |
2052 | void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) | |
2053 | { | |
2054 | RAMBlock *block; | |
2055 | ||
2056 | assert(new_block); | |
2057 | assert(!new_block->idstr[0]); | |
2058 | ||
2059 | if (dev) { | |
2060 | char *id = qdev_get_dev_path(dev); | |
2061 | if (id) { | |
2062 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
2063 | g_free(id); | |
2064 | } | |
2065 | } | |
2066 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
2067 | ||
2068 | RCU_READ_LOCK_GUARD(); | |
2069 | RAMBLOCK_FOREACH(block) { | |
2070 | if (block != new_block && | |
2071 | !strcmp(block->idstr, new_block->idstr)) { | |
2072 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", | |
2073 | new_block->idstr); | |
2074 | abort(); | |
2075 | } | |
2076 | } | |
2077 | } | |
2078 | ||
2079 | /* Called with iothread lock held. */ | |
2080 | void qemu_ram_unset_idstr(RAMBlock *block) | |
2081 | { | |
2082 | /* FIXME: arch_init.c assumes that this is not called throughout | |
2083 | * migration. Ignore the problem since hot-unplug during migration | |
2084 | * does not work anyway. | |
2085 | */ | |
2086 | if (block) { | |
2087 | memset(block->idstr, 0, sizeof(block->idstr)); | |
2088 | } | |
2089 | } | |
2090 | ||
2091 | size_t qemu_ram_pagesize(RAMBlock *rb) | |
2092 | { | |
2093 | return rb->page_size; | |
2094 | } | |
2095 | ||
2096 | /* Returns the largest size of page in use */ | |
2097 | size_t qemu_ram_pagesize_largest(void) | |
2098 | { | |
2099 | RAMBlock *block; | |
2100 | size_t largest = 0; | |
2101 | ||
2102 | RAMBLOCK_FOREACH(block) { | |
2103 | largest = MAX(largest, qemu_ram_pagesize(block)); | |
2104 | } | |
2105 | ||
2106 | return largest; | |
2107 | } | |
2108 | ||
2109 | static int memory_try_enable_merging(void *addr, size_t len) | |
2110 | { | |
2111 | if (!machine_mem_merge(current_machine)) { | |
2112 | /* disabled by the user */ | |
2113 | return 0; | |
2114 | } | |
2115 | ||
2116 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
2117 | } | |
2118 | ||
2119 | /* Only legal before guest might have detected the memory size: e.g. on | |
2120 | * incoming migration, or right after reset. | |
2121 | * | |
2122 | * As memory core doesn't know how is memory accessed, it is up to | |
2123 | * resize callback to update device state and/or add assertions to detect | |
2124 | * misuse, if necessary. | |
2125 | */ | |
2126 | int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) | |
2127 | { | |
2128 | assert(block); | |
2129 | ||
2130 | newsize = HOST_PAGE_ALIGN(newsize); | |
2131 | ||
2132 | if (block->used_length == newsize) { | |
2133 | return 0; | |
2134 | } | |
2135 | ||
2136 | if (!(block->flags & RAM_RESIZEABLE)) { | |
2137 | error_setg_errno(errp, EINVAL, | |
2138 | "Length mismatch: %s: 0x" RAM_ADDR_FMT | |
2139 | " in != 0x" RAM_ADDR_FMT, block->idstr, | |
2140 | newsize, block->used_length); | |
2141 | return -EINVAL; | |
2142 | } | |
2143 | ||
2144 | if (block->max_length < newsize) { | |
2145 | error_setg_errno(errp, EINVAL, | |
2146 | "Length too large: %s: 0x" RAM_ADDR_FMT | |
2147 | " > 0x" RAM_ADDR_FMT, block->idstr, | |
2148 | newsize, block->max_length); | |
2149 | return -EINVAL; | |
2150 | } | |
2151 | ||
2152 | cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); | |
2153 | block->used_length = newsize; | |
2154 | cpu_physical_memory_set_dirty_range(block->offset, block->used_length, | |
2155 | DIRTY_CLIENTS_ALL); | |
2156 | memory_region_set_size(block->mr, newsize); | |
2157 | if (block->resized) { | |
2158 | block->resized(block->idstr, newsize, block->host); | |
2159 | } | |
2160 | return 0; | |
2161 | } | |
2162 | ||
2163 | /* | |
2164 | * Trigger sync on the given ram block for range [start, start + length] | |
2165 | * with the backing store if one is available. | |
2166 | * Otherwise no-op. | |
2167 | * @Note: this is supposed to be a synchronous op. | |
2168 | */ | |
2169 | void qemu_ram_writeback(RAMBlock *block, ram_addr_t start, ram_addr_t length) | |
2170 | { | |
2171 | void *addr = ramblock_ptr(block, start); | |
2172 | ||
2173 | /* The requested range should fit in within the block range */ | |
2174 | g_assert((start + length) <= block->used_length); | |
2175 | ||
2176 | #ifdef CONFIG_LIBPMEM | |
2177 | /* The lack of support for pmem should not block the sync */ | |
2178 | if (ramblock_is_pmem(block)) { | |
2179 | pmem_persist(addr, length); | |
2180 | return; | |
2181 | } | |
2182 | #endif | |
2183 | if (block->fd >= 0) { | |
2184 | /** | |
2185 | * Case there is no support for PMEM or the memory has not been | |
2186 | * specified as persistent (or is not one) - use the msync. | |
2187 | * Less optimal but still achieves the same goal | |
2188 | */ | |
2189 | if (qemu_msync(addr, length, block->fd)) { | |
2190 | warn_report("%s: failed to sync memory range: start: " | |
2191 | RAM_ADDR_FMT " length: " RAM_ADDR_FMT, | |
2192 | __func__, start, length); | |
2193 | } | |
2194 | } | |
2195 | } | |
2196 | ||
2197 | /* Called with ram_list.mutex held */ | |
2198 | static void dirty_memory_extend(ram_addr_t old_ram_size, | |
2199 | ram_addr_t new_ram_size) | |
2200 | { | |
2201 | ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, | |
2202 | DIRTY_MEMORY_BLOCK_SIZE); | |
2203 | ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, | |
2204 | DIRTY_MEMORY_BLOCK_SIZE); | |
2205 | int i; | |
2206 | ||
2207 | /* Only need to extend if block count increased */ | |
2208 | if (new_num_blocks <= old_num_blocks) { | |
2209 | return; | |
2210 | } | |
2211 | ||
2212 | for (i = 0; i < DIRTY_MEMORY_NUM; i++) { | |
2213 | DirtyMemoryBlocks *old_blocks; | |
2214 | DirtyMemoryBlocks *new_blocks; | |
2215 | int j; | |
2216 | ||
2217 | old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); | |
2218 | new_blocks = g_malloc(sizeof(*new_blocks) + | |
2219 | sizeof(new_blocks->blocks[0]) * new_num_blocks); | |
2220 | ||
2221 | if (old_num_blocks) { | |
2222 | memcpy(new_blocks->blocks, old_blocks->blocks, | |
2223 | old_num_blocks * sizeof(old_blocks->blocks[0])); | |
2224 | } | |
2225 | ||
2226 | for (j = old_num_blocks; j < new_num_blocks; j++) { | |
2227 | new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); | |
2228 | } | |
2229 | ||
2230 | atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); | |
2231 | ||
2232 | if (old_blocks) { | |
2233 | g_free_rcu(old_blocks, rcu); | |
2234 | } | |
2235 | } | |
2236 | } | |
2237 | ||
2238 | static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared) | |
2239 | { | |
2240 | RAMBlock *block; | |
2241 | RAMBlock *last_block = NULL; | |
2242 | ram_addr_t old_ram_size, new_ram_size; | |
2243 | Error *err = NULL; | |
2244 | ||
2245 | old_ram_size = last_ram_page(); | |
2246 | ||
2247 | qemu_mutex_lock_ramlist(); | |
2248 | new_block->offset = find_ram_offset(new_block->max_length); | |
2249 | ||
2250 | if (!new_block->host) { | |
2251 | if (xen_enabled()) { | |
2252 | xen_ram_alloc(new_block->offset, new_block->max_length, | |
2253 | new_block->mr, &err); | |
2254 | if (err) { | |
2255 | error_propagate(errp, err); | |
2256 | qemu_mutex_unlock_ramlist(); | |
2257 | return; | |
2258 | } | |
2259 | } else { | |
2260 | new_block->host = phys_mem_alloc(new_block->max_length, | |
2261 | &new_block->mr->align, shared); | |
2262 | if (!new_block->host) { | |
2263 | error_setg_errno(errp, errno, | |
2264 | "cannot set up guest memory '%s'", | |
2265 | memory_region_name(new_block->mr)); | |
2266 | qemu_mutex_unlock_ramlist(); | |
2267 | return; | |
2268 | } | |
2269 | memory_try_enable_merging(new_block->host, new_block->max_length); | |
2270 | } | |
2271 | } | |
2272 | ||
2273 | new_ram_size = MAX(old_ram_size, | |
2274 | (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); | |
2275 | if (new_ram_size > old_ram_size) { | |
2276 | dirty_memory_extend(old_ram_size, new_ram_size); | |
2277 | } | |
2278 | /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, | |
2279 | * QLIST (which has an RCU-friendly variant) does not have insertion at | |
2280 | * tail, so save the last element in last_block. | |
2281 | */ | |
2282 | RAMBLOCK_FOREACH(block) { | |
2283 | last_block = block; | |
2284 | if (block->max_length < new_block->max_length) { | |
2285 | break; | |
2286 | } | |
2287 | } | |
2288 | if (block) { | |
2289 | QLIST_INSERT_BEFORE_RCU(block, new_block, next); | |
2290 | } else if (last_block) { | |
2291 | QLIST_INSERT_AFTER_RCU(last_block, new_block, next); | |
2292 | } else { /* list is empty */ | |
2293 | QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); | |
2294 | } | |
2295 | ram_list.mru_block = NULL; | |
2296 | ||
2297 | /* Write list before version */ | |
2298 | smp_wmb(); | |
2299 | ram_list.version++; | |
2300 | qemu_mutex_unlock_ramlist(); | |
2301 | ||
2302 | cpu_physical_memory_set_dirty_range(new_block->offset, | |
2303 | new_block->used_length, | |
2304 | DIRTY_CLIENTS_ALL); | |
2305 | ||
2306 | if (new_block->host) { | |
2307 | qemu_ram_setup_dump(new_block->host, new_block->max_length); | |
2308 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); | |
2309 | /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */ | |
2310 | qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); | |
2311 | ram_block_notify_add(new_block->host, new_block->max_length); | |
2312 | } | |
2313 | } | |
2314 | ||
2315 | #ifdef CONFIG_POSIX | |
2316 | RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, | |
2317 | uint32_t ram_flags, int fd, | |
2318 | Error **errp) | |
2319 | { | |
2320 | RAMBlock *new_block; | |
2321 | Error *local_err = NULL; | |
2322 | int64_t file_size; | |
2323 | ||
2324 | /* Just support these ram flags by now. */ | |
2325 | assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0); | |
2326 | ||
2327 | if (xen_enabled()) { | |
2328 | error_setg(errp, "-mem-path not supported with Xen"); | |
2329 | return NULL; | |
2330 | } | |
2331 | ||
2332 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
2333 | error_setg(errp, | |
2334 | "host lacks kvm mmu notifiers, -mem-path unsupported"); | |
2335 | return NULL; | |
2336 | } | |
2337 | ||
2338 | if (phys_mem_alloc != qemu_anon_ram_alloc) { | |
2339 | /* | |
2340 | * file_ram_alloc() needs to allocate just like | |
2341 | * phys_mem_alloc, but we haven't bothered to provide | |
2342 | * a hook there. | |
2343 | */ | |
2344 | error_setg(errp, | |
2345 | "-mem-path not supported with this accelerator"); | |
2346 | return NULL; | |
2347 | } | |
2348 | ||
2349 | size = HOST_PAGE_ALIGN(size); | |
2350 | file_size = get_file_size(fd); | |
2351 | if (file_size > 0 && file_size < size) { | |
2352 | error_setg(errp, "backing store %s size 0x%" PRIx64 | |
2353 | " does not match 'size' option 0x" RAM_ADDR_FMT, | |
2354 | mem_path, file_size, size); | |
2355 | return NULL; | |
2356 | } | |
2357 | ||
2358 | new_block = g_malloc0(sizeof(*new_block)); | |
2359 | new_block->mr = mr; | |
2360 | new_block->used_length = size; | |
2361 | new_block->max_length = size; | |
2362 | new_block->flags = ram_flags; | |
2363 | new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp); | |
2364 | if (!new_block->host) { | |
2365 | g_free(new_block); | |
2366 | return NULL; | |
2367 | } | |
2368 | ||
2369 | ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED); | |
2370 | if (local_err) { | |
2371 | g_free(new_block); | |
2372 | error_propagate(errp, local_err); | |
2373 | return NULL; | |
2374 | } | |
2375 | return new_block; | |
2376 | ||
2377 | } | |
2378 | ||
2379 | ||
2380 | RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, | |
2381 | uint32_t ram_flags, const char *mem_path, | |
2382 | Error **errp) | |
2383 | { | |
2384 | int fd; | |
2385 | bool created; | |
2386 | RAMBlock *block; | |
2387 | ||
2388 | fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp); | |
2389 | if (fd < 0) { | |
2390 | return NULL; | |
2391 | } | |
2392 | ||
2393 | block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp); | |
2394 | if (!block) { | |
2395 | if (created) { | |
2396 | unlink(mem_path); | |
2397 | } | |
2398 | close(fd); | |
2399 | return NULL; | |
2400 | } | |
2401 | ||
2402 | return block; | |
2403 | } | |
2404 | #endif | |
2405 | ||
2406 | static | |
2407 | RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, | |
2408 | void (*resized)(const char*, | |
2409 | uint64_t length, | |
2410 | void *host), | |
2411 | void *host, bool resizeable, bool share, | |
2412 | MemoryRegion *mr, Error **errp) | |
2413 | { | |
2414 | RAMBlock *new_block; | |
2415 | Error *local_err = NULL; | |
2416 | ||
2417 | size = HOST_PAGE_ALIGN(size); | |
2418 | max_size = HOST_PAGE_ALIGN(max_size); | |
2419 | new_block = g_malloc0(sizeof(*new_block)); | |
2420 | new_block->mr = mr; | |
2421 | new_block->resized = resized; | |
2422 | new_block->used_length = size; | |
2423 | new_block->max_length = max_size; | |
2424 | assert(max_size >= size); | |
2425 | new_block->fd = -1; | |
2426 | new_block->page_size = qemu_real_host_page_size; | |
2427 | new_block->host = host; | |
2428 | if (host) { | |
2429 | new_block->flags |= RAM_PREALLOC; | |
2430 | } | |
2431 | if (resizeable) { | |
2432 | new_block->flags |= RAM_RESIZEABLE; | |
2433 | } | |
2434 | ram_block_add(new_block, &local_err, share); | |
2435 | if (local_err) { | |
2436 | g_free(new_block); | |
2437 | error_propagate(errp, local_err); | |
2438 | return NULL; | |
2439 | } | |
2440 | return new_block; | |
2441 | } | |
2442 | ||
2443 | RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, | |
2444 | MemoryRegion *mr, Error **errp) | |
2445 | { | |
2446 | return qemu_ram_alloc_internal(size, size, NULL, host, false, | |
2447 | false, mr, errp); | |
2448 | } | |
2449 | ||
2450 | RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share, | |
2451 | MemoryRegion *mr, Error **errp) | |
2452 | { | |
2453 | return qemu_ram_alloc_internal(size, size, NULL, NULL, false, | |
2454 | share, mr, errp); | |
2455 | } | |
2456 | ||
2457 | RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, | |
2458 | void (*resized)(const char*, | |
2459 | uint64_t length, | |
2460 | void *host), | |
2461 | MemoryRegion *mr, Error **errp) | |
2462 | { | |
2463 | return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, | |
2464 | false, mr, errp); | |
2465 | } | |
2466 | ||
2467 | static void reclaim_ramblock(RAMBlock *block) | |
2468 | { | |
2469 | if (block->flags & RAM_PREALLOC) { | |
2470 | ; | |
2471 | } else if (xen_enabled()) { | |
2472 | xen_invalidate_map_cache_entry(block->host); | |
2473 | #ifndef _WIN32 | |
2474 | } else if (block->fd >= 0) { | |
2475 | qemu_ram_munmap(block->fd, block->host, block->max_length); | |
2476 | close(block->fd); | |
2477 | #endif | |
2478 | } else { | |
2479 | qemu_anon_ram_free(block->host, block->max_length); | |
2480 | } | |
2481 | g_free(block); | |
2482 | } | |
2483 | ||
2484 | void qemu_ram_free(RAMBlock *block) | |
2485 | { | |
2486 | if (!block) { | |
2487 | return; | |
2488 | } | |
2489 | ||
2490 | if (block->host) { | |
2491 | ram_block_notify_remove(block->host, block->max_length); | |
2492 | } | |
2493 | ||
2494 | qemu_mutex_lock_ramlist(); | |
2495 | QLIST_REMOVE_RCU(block, next); | |
2496 | ram_list.mru_block = NULL; | |
2497 | /* Write list before version */ | |
2498 | smp_wmb(); | |
2499 | ram_list.version++; | |
2500 | call_rcu(block, reclaim_ramblock, rcu); | |
2501 | qemu_mutex_unlock_ramlist(); | |
2502 | } | |
2503 | ||
2504 | #ifndef _WIN32 | |
2505 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
2506 | { | |
2507 | RAMBlock *block; | |
2508 | ram_addr_t offset; | |
2509 | int flags; | |
2510 | void *area, *vaddr; | |
2511 | ||
2512 | RAMBLOCK_FOREACH(block) { | |
2513 | offset = addr - block->offset; | |
2514 | if (offset < block->max_length) { | |
2515 | vaddr = ramblock_ptr(block, offset); | |
2516 | if (block->flags & RAM_PREALLOC) { | |
2517 | ; | |
2518 | } else if (xen_enabled()) { | |
2519 | abort(); | |
2520 | } else { | |
2521 | flags = MAP_FIXED; | |
2522 | if (block->fd >= 0) { | |
2523 | flags |= (block->flags & RAM_SHARED ? | |
2524 | MAP_SHARED : MAP_PRIVATE); | |
2525 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
2526 | flags, block->fd, offset); | |
2527 | } else { | |
2528 | /* | |
2529 | * Remap needs to match alloc. Accelerators that | |
2530 | * set phys_mem_alloc never remap. If they did, | |
2531 | * we'd need a remap hook here. | |
2532 | */ | |
2533 | assert(phys_mem_alloc == qemu_anon_ram_alloc); | |
2534 | ||
2535 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; | |
2536 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
2537 | flags, -1, 0); | |
2538 | } | |
2539 | if (area != vaddr) { | |
2540 | error_report("Could not remap addr: " | |
2541 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "", | |
2542 | length, addr); | |
2543 | exit(1); | |
2544 | } | |
2545 | memory_try_enable_merging(vaddr, length); | |
2546 | qemu_ram_setup_dump(vaddr, length); | |
2547 | } | |
2548 | } | |
2549 | } | |
2550 | } | |
2551 | #endif /* !_WIN32 */ | |
2552 | ||
2553 | /* Return a host pointer to ram allocated with qemu_ram_alloc. | |
2554 | * This should not be used for general purpose DMA. Use address_space_map | |
2555 | * or address_space_rw instead. For local memory (e.g. video ram) that the | |
2556 | * device owns, use memory_region_get_ram_ptr. | |
2557 | * | |
2558 | * Called within RCU critical section. | |
2559 | */ | |
2560 | void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) | |
2561 | { | |
2562 | RAMBlock *block = ram_block; | |
2563 | ||
2564 | if (block == NULL) { | |
2565 | block = qemu_get_ram_block(addr); | |
2566 | addr -= block->offset; | |
2567 | } | |
2568 | ||
2569 | if (xen_enabled() && block->host == NULL) { | |
2570 | /* We need to check if the requested address is in the RAM | |
2571 | * because we don't want to map the entire memory in QEMU. | |
2572 | * In that case just map until the end of the page. | |
2573 | */ | |
2574 | if (block->offset == 0) { | |
2575 | return xen_map_cache(addr, 0, 0, false); | |
2576 | } | |
2577 | ||
2578 | block->host = xen_map_cache(block->offset, block->max_length, 1, false); | |
2579 | } | |
2580 | return ramblock_ptr(block, addr); | |
2581 | } | |
2582 | ||
2583 | /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr | |
2584 | * but takes a size argument. | |
2585 | * | |
2586 | * Called within RCU critical section. | |
2587 | */ | |
2588 | static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, | |
2589 | hwaddr *size, bool lock) | |
2590 | { | |
2591 | RAMBlock *block = ram_block; | |
2592 | if (*size == 0) { | |
2593 | return NULL; | |
2594 | } | |
2595 | ||
2596 | if (block == NULL) { | |
2597 | block = qemu_get_ram_block(addr); | |
2598 | addr -= block->offset; | |
2599 | } | |
2600 | *size = MIN(*size, block->max_length - addr); | |
2601 | ||
2602 | if (xen_enabled() && block->host == NULL) { | |
2603 | /* We need to check if the requested address is in the RAM | |
2604 | * because we don't want to map the entire memory in QEMU. | |
2605 | * In that case just map the requested area. | |
2606 | */ | |
2607 | if (block->offset == 0) { | |
2608 | return xen_map_cache(addr, *size, lock, lock); | |
2609 | } | |
2610 | ||
2611 | block->host = xen_map_cache(block->offset, block->max_length, 1, lock); | |
2612 | } | |
2613 | ||
2614 | return ramblock_ptr(block, addr); | |
2615 | } | |
2616 | ||
2617 | /* Return the offset of a hostpointer within a ramblock */ | |
2618 | ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) | |
2619 | { | |
2620 | ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; | |
2621 | assert((uintptr_t)host >= (uintptr_t)rb->host); | |
2622 | assert(res < rb->max_length); | |
2623 | ||
2624 | return res; | |
2625 | } | |
2626 | ||
2627 | /* | |
2628 | * Translates a host ptr back to a RAMBlock, a ram_addr and an offset | |
2629 | * in that RAMBlock. | |
2630 | * | |
2631 | * ptr: Host pointer to look up | |
2632 | * round_offset: If true round the result offset down to a page boundary | |
2633 | * *ram_addr: set to result ram_addr | |
2634 | * *offset: set to result offset within the RAMBlock | |
2635 | * | |
2636 | * Returns: RAMBlock (or NULL if not found) | |
2637 | * | |
2638 | * By the time this function returns, the returned pointer is not protected | |
2639 | * by RCU anymore. If the caller is not within an RCU critical section and | |
2640 | * does not hold the iothread lock, it must have other means of protecting the | |
2641 | * pointer, such as a reference to the region that includes the incoming | |
2642 | * ram_addr_t. | |
2643 | */ | |
2644 | RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, | |
2645 | ram_addr_t *offset) | |
2646 | { | |
2647 | RAMBlock *block; | |
2648 | uint8_t *host = ptr; | |
2649 | ||
2650 | if (xen_enabled()) { | |
2651 | ram_addr_t ram_addr; | |
2652 | RCU_READ_LOCK_GUARD(); | |
2653 | ram_addr = xen_ram_addr_from_mapcache(ptr); | |
2654 | block = qemu_get_ram_block(ram_addr); | |
2655 | if (block) { | |
2656 | *offset = ram_addr - block->offset; | |
2657 | } | |
2658 | return block; | |
2659 | } | |
2660 | ||
2661 | RCU_READ_LOCK_GUARD(); | |
2662 | block = atomic_rcu_read(&ram_list.mru_block); | |
2663 | if (block && block->host && host - block->host < block->max_length) { | |
2664 | goto found; | |
2665 | } | |
2666 | ||
2667 | RAMBLOCK_FOREACH(block) { | |
2668 | /* This case append when the block is not mapped. */ | |
2669 | if (block->host == NULL) { | |
2670 | continue; | |
2671 | } | |
2672 | if (host - block->host < block->max_length) { | |
2673 | goto found; | |
2674 | } | |
2675 | } | |
2676 | ||
2677 | return NULL; | |
2678 | ||
2679 | found: | |
2680 | *offset = (host - block->host); | |
2681 | if (round_offset) { | |
2682 | *offset &= TARGET_PAGE_MASK; | |
2683 | } | |
2684 | return block; | |
2685 | } | |
2686 | ||
2687 | /* | |
2688 | * Finds the named RAMBlock | |
2689 | * | |
2690 | * name: The name of RAMBlock to find | |
2691 | * | |
2692 | * Returns: RAMBlock (or NULL if not found) | |
2693 | */ | |
2694 | RAMBlock *qemu_ram_block_by_name(const char *name) | |
2695 | { | |
2696 | RAMBlock *block; | |
2697 | ||
2698 | RAMBLOCK_FOREACH(block) { | |
2699 | if (!strcmp(name, block->idstr)) { | |
2700 | return block; | |
2701 | } | |
2702 | } | |
2703 | ||
2704 | return NULL; | |
2705 | } | |
2706 | ||
2707 | /* Some of the softmmu routines need to translate from a host pointer | |
2708 | (typically a TLB entry) back to a ram offset. */ | |
2709 | ram_addr_t qemu_ram_addr_from_host(void *ptr) | |
2710 | { | |
2711 | RAMBlock *block; | |
2712 | ram_addr_t offset; | |
2713 | ||
2714 | block = qemu_ram_block_from_host(ptr, false, &offset); | |
2715 | if (!block) { | |
2716 | return RAM_ADDR_INVALID; | |
2717 | } | |
2718 | ||
2719 | return block->offset + offset; | |
2720 | } | |
2721 | ||
2722 | /* Generate a debug exception if a watchpoint has been hit. */ | |
2723 | void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, | |
2724 | MemTxAttrs attrs, int flags, uintptr_t ra) | |
2725 | { | |
2726 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
2727 | CPUWatchpoint *wp; | |
2728 | ||
2729 | assert(tcg_enabled()); | |
2730 | if (cpu->watchpoint_hit) { | |
2731 | /* | |
2732 | * We re-entered the check after replacing the TB. | |
2733 | * Now raise the debug interrupt so that it will | |
2734 | * trigger after the current instruction. | |
2735 | */ | |
2736 | qemu_mutex_lock_iothread(); | |
2737 | cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); | |
2738 | qemu_mutex_unlock_iothread(); | |
2739 | return; | |
2740 | } | |
2741 | ||
2742 | addr = cc->adjust_watchpoint_address(cpu, addr, len); | |
2743 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
2744 | if (watchpoint_address_matches(wp, addr, len) | |
2745 | && (wp->flags & flags)) { | |
2746 | if (flags == BP_MEM_READ) { | |
2747 | wp->flags |= BP_WATCHPOINT_HIT_READ; | |
2748 | } else { | |
2749 | wp->flags |= BP_WATCHPOINT_HIT_WRITE; | |
2750 | } | |
2751 | wp->hitaddr = MAX(addr, wp->vaddr); | |
2752 | wp->hitattrs = attrs; | |
2753 | if (!cpu->watchpoint_hit) { | |
2754 | if (wp->flags & BP_CPU && | |
2755 | !cc->debug_check_watchpoint(cpu, wp)) { | |
2756 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2757 | continue; | |
2758 | } | |
2759 | cpu->watchpoint_hit = wp; | |
2760 | ||
2761 | mmap_lock(); | |
2762 | tb_check_watchpoint(cpu, ra); | |
2763 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | |
2764 | cpu->exception_index = EXCP_DEBUG; | |
2765 | mmap_unlock(); | |
2766 | cpu_loop_exit_restore(cpu, ra); | |
2767 | } else { | |
2768 | /* Force execution of one insn next time. */ | |
2769 | cpu->cflags_next_tb = 1 | curr_cflags(); | |
2770 | mmap_unlock(); | |
2771 | if (ra) { | |
2772 | cpu_restore_state(cpu, ra, true); | |
2773 | } | |
2774 | cpu_loop_exit_noexc(cpu); | |
2775 | } | |
2776 | } | |
2777 | } else { | |
2778 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2779 | } | |
2780 | } | |
2781 | } | |
2782 | ||
2783 | static MemTxResult flatview_read(FlatView *fv, hwaddr addr, | |
2784 | MemTxAttrs attrs, uint8_t *buf, hwaddr len); | |
2785 | static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, | |
2786 | const uint8_t *buf, hwaddr len); | |
2787 | static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, | |
2788 | bool is_write, MemTxAttrs attrs); | |
2789 | ||
2790 | static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, | |
2791 | unsigned len, MemTxAttrs attrs) | |
2792 | { | |
2793 | subpage_t *subpage = opaque; | |
2794 | uint8_t buf[8]; | |
2795 | MemTxResult res; | |
2796 | ||
2797 | #if defined(DEBUG_SUBPAGE) | |
2798 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, | |
2799 | subpage, len, addr); | |
2800 | #endif | |
2801 | res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); | |
2802 | if (res) { | |
2803 | return res; | |
2804 | } | |
2805 | *data = ldn_p(buf, len); | |
2806 | return MEMTX_OK; | |
2807 | } | |
2808 | ||
2809 | static MemTxResult subpage_write(void *opaque, hwaddr addr, | |
2810 | uint64_t value, unsigned len, MemTxAttrs attrs) | |
2811 | { | |
2812 | subpage_t *subpage = opaque; | |
2813 | uint8_t buf[8]; | |
2814 | ||
2815 | #if defined(DEBUG_SUBPAGE) | |
2816 | printf("%s: subpage %p len %u addr " TARGET_FMT_plx | |
2817 | " value %"PRIx64"\n", | |
2818 | __func__, subpage, len, addr, value); | |
2819 | #endif | |
2820 | stn_p(buf, len, value); | |
2821 | return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); | |
2822 | } | |
2823 | ||
2824 | static bool subpage_accepts(void *opaque, hwaddr addr, | |
2825 | unsigned len, bool is_write, | |
2826 | MemTxAttrs attrs) | |
2827 | { | |
2828 | subpage_t *subpage = opaque; | |
2829 | #if defined(DEBUG_SUBPAGE) | |
2830 | printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", | |
2831 | __func__, subpage, is_write ? 'w' : 'r', len, addr); | |
2832 | #endif | |
2833 | ||
2834 | return flatview_access_valid(subpage->fv, addr + subpage->base, | |
2835 | len, is_write, attrs); | |
2836 | } | |
2837 | ||
2838 | static const MemoryRegionOps subpage_ops = { | |
2839 | .read_with_attrs = subpage_read, | |
2840 | .write_with_attrs = subpage_write, | |
2841 | .impl.min_access_size = 1, | |
2842 | .impl.max_access_size = 8, | |
2843 | .valid.min_access_size = 1, | |
2844 | .valid.max_access_size = 8, | |
2845 | .valid.accepts = subpage_accepts, | |
2846 | .endianness = DEVICE_NATIVE_ENDIAN, | |
2847 | }; | |
2848 | ||
2849 | static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, | |
2850 | uint16_t section) | |
2851 | { | |
2852 | int idx, eidx; | |
2853 | ||
2854 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
2855 | return -1; | |
2856 | idx = SUBPAGE_IDX(start); | |
2857 | eidx = SUBPAGE_IDX(end); | |
2858 | #if defined(DEBUG_SUBPAGE) | |
2859 | printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", | |
2860 | __func__, mmio, start, end, idx, eidx, section); | |
2861 | #endif | |
2862 | for (; idx <= eidx; idx++) { | |
2863 | mmio->sub_section[idx] = section; | |
2864 | } | |
2865 | ||
2866 | return 0; | |
2867 | } | |
2868 | ||
2869 | static subpage_t *subpage_init(FlatView *fv, hwaddr base) | |
2870 | { | |
2871 | subpage_t *mmio; | |
2872 | ||
2873 | /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ | |
2874 | mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); | |
2875 | mmio->fv = fv; | |
2876 | mmio->base = base; | |
2877 | memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, | |
2878 | NULL, TARGET_PAGE_SIZE); | |
2879 | mmio->iomem.subpage = true; | |
2880 | #if defined(DEBUG_SUBPAGE) | |
2881 | printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, | |
2882 | mmio, base, TARGET_PAGE_SIZE); | |
2883 | #endif | |
2884 | ||
2885 | return mmio; | |
2886 | } | |
2887 | ||
2888 | static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) | |
2889 | { | |
2890 | assert(fv); | |
2891 | MemoryRegionSection section = { | |
2892 | .fv = fv, | |
2893 | .mr = mr, | |
2894 | .offset_within_address_space = 0, | |
2895 | .offset_within_region = 0, | |
2896 | .size = int128_2_64(), | |
2897 | }; | |
2898 | ||
2899 | return phys_section_add(map, §ion); | |
2900 | } | |
2901 | ||
2902 | MemoryRegionSection *iotlb_to_section(CPUState *cpu, | |
2903 | hwaddr index, MemTxAttrs attrs) | |
2904 | { | |
2905 | int asidx = cpu_asidx_from_attrs(cpu, attrs); | |
2906 | CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; | |
2907 | AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); | |
2908 | MemoryRegionSection *sections = d->map.sections; | |
2909 | ||
2910 | return §ions[index & ~TARGET_PAGE_MASK]; | |
2911 | } | |
2912 | ||
2913 | static void io_mem_init(void) | |
2914 | { | |
2915 | memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, | |
2916 | NULL, UINT64_MAX); | |
2917 | } | |
2918 | ||
2919 | AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) | |
2920 | { | |
2921 | AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); | |
2922 | uint16_t n; | |
2923 | ||
2924 | n = dummy_section(&d->map, fv, &io_mem_unassigned); | |
2925 | assert(n == PHYS_SECTION_UNASSIGNED); | |
2926 | ||
2927 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; | |
2928 | ||
2929 | return d; | |
2930 | } | |
2931 | ||
2932 | void address_space_dispatch_free(AddressSpaceDispatch *d) | |
2933 | { | |
2934 | phys_sections_free(&d->map); | |
2935 | g_free(d); | |
2936 | } | |
2937 | ||
2938 | static void do_nothing(CPUState *cpu, run_on_cpu_data d) | |
2939 | { | |
2940 | } | |
2941 | ||
2942 | static void tcg_log_global_after_sync(MemoryListener *listener) | |
2943 | { | |
2944 | CPUAddressSpace *cpuas; | |
2945 | ||
2946 | /* Wait for the CPU to end the current TB. This avoids the following | |
2947 | * incorrect race: | |
2948 | * | |
2949 | * vCPU migration | |
2950 | * ---------------------- ------------------------- | |
2951 | * TLB check -> slow path | |
2952 | * notdirty_mem_write | |
2953 | * write to RAM | |
2954 | * mark dirty | |
2955 | * clear dirty flag | |
2956 | * TLB check -> fast path | |
2957 | * read memory | |
2958 | * write to RAM | |
2959 | * | |
2960 | * by pushing the migration thread's memory read after the vCPU thread has | |
2961 | * written the memory. | |
2962 | */ | |
2963 | if (replay_mode == REPLAY_MODE_NONE) { | |
2964 | /* | |
2965 | * VGA can make calls to this function while updating the screen. | |
2966 | * In record/replay mode this causes a deadlock, because | |
2967 | * run_on_cpu waits for rr mutex. Therefore no races are possible | |
2968 | * in this case and no need for making run_on_cpu when | |
2969 | * record/replay is not enabled. | |
2970 | */ | |
2971 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); | |
2972 | run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); | |
2973 | } | |
2974 | } | |
2975 | ||
2976 | static void tcg_commit(MemoryListener *listener) | |
2977 | { | |
2978 | CPUAddressSpace *cpuas; | |
2979 | AddressSpaceDispatch *d; | |
2980 | ||
2981 | assert(tcg_enabled()); | |
2982 | /* since each CPU stores ram addresses in its TLB cache, we must | |
2983 | reset the modified entries */ | |
2984 | cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); | |
2985 | cpu_reloading_memory_map(); | |
2986 | /* The CPU and TLB are protected by the iothread lock. | |
2987 | * We reload the dispatch pointer now because cpu_reloading_memory_map() | |
2988 | * may have split the RCU critical section. | |
2989 | */ | |
2990 | d = address_space_to_dispatch(cpuas->as); | |
2991 | atomic_rcu_set(&cpuas->memory_dispatch, d); | |
2992 | tlb_flush(cpuas->cpu); | |
2993 | } | |
2994 | ||
2995 | static void memory_map_init(void) | |
2996 | { | |
2997 | system_memory = g_malloc(sizeof(*system_memory)); | |
2998 | ||
2999 | memory_region_init(system_memory, NULL, "system", UINT64_MAX); | |
3000 | address_space_init(&address_space_memory, system_memory, "memory"); | |
3001 | ||
3002 | system_io = g_malloc(sizeof(*system_io)); | |
3003 | memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", | |
3004 | 65536); | |
3005 | address_space_init(&address_space_io, system_io, "I/O"); | |
3006 | } | |
3007 | ||
3008 | MemoryRegion *get_system_memory(void) | |
3009 | { | |
3010 | return system_memory; | |
3011 | } | |
3012 | ||
3013 | MemoryRegion *get_system_io(void) | |
3014 | { | |
3015 | return system_io; | |
3016 | } | |
3017 | ||
3018 | #endif /* !defined(CONFIG_USER_ONLY) */ | |
3019 | ||
3020 | /* physical memory access (slow version, mainly for debug) */ | |
3021 | #if defined(CONFIG_USER_ONLY) | |
3022 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, | |
3023 | uint8_t *buf, target_ulong len, int is_write) | |
3024 | { | |
3025 | int flags; | |
3026 | target_ulong l, page; | |
3027 | void * p; | |
3028 | ||
3029 | while (len > 0) { | |
3030 | page = addr & TARGET_PAGE_MASK; | |
3031 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3032 | if (l > len) | |
3033 | l = len; | |
3034 | flags = page_get_flags(page); | |
3035 | if (!(flags & PAGE_VALID)) | |
3036 | return -1; | |
3037 | if (is_write) { | |
3038 | if (!(flags & PAGE_WRITE)) | |
3039 | return -1; | |
3040 | /* XXX: this code should not depend on lock_user */ | |
3041 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) | |
3042 | return -1; | |
3043 | memcpy(p, buf, l); | |
3044 | unlock_user(p, addr, l); | |
3045 | } else { | |
3046 | if (!(flags & PAGE_READ)) | |
3047 | return -1; | |
3048 | /* XXX: this code should not depend on lock_user */ | |
3049 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) | |
3050 | return -1; | |
3051 | memcpy(buf, p, l); | |
3052 | unlock_user(p, addr, 0); | |
3053 | } | |
3054 | len -= l; | |
3055 | buf += l; | |
3056 | addr += l; | |
3057 | } | |
3058 | return 0; | |
3059 | } | |
3060 | ||
3061 | #else | |
3062 | ||
3063 | static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, | |
3064 | hwaddr length) | |
3065 | { | |
3066 | uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); | |
3067 | addr += memory_region_get_ram_addr(mr); | |
3068 | ||
3069 | /* No early return if dirty_log_mask is or becomes 0, because | |
3070 | * cpu_physical_memory_set_dirty_range will still call | |
3071 | * xen_modified_memory. | |
3072 | */ | |
3073 | if (dirty_log_mask) { | |
3074 | dirty_log_mask = | |
3075 | cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); | |
3076 | } | |
3077 | if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { | |
3078 | assert(tcg_enabled()); | |
3079 | tb_invalidate_phys_range(addr, addr + length); | |
3080 | dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); | |
3081 | } | |
3082 | cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); | |
3083 | } | |
3084 | ||
3085 | void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) | |
3086 | { | |
3087 | /* | |
3088 | * In principle this function would work on other memory region types too, | |
3089 | * but the ROM device use case is the only one where this operation is | |
3090 | * necessary. Other memory regions should use the | |
3091 | * address_space_read/write() APIs. | |
3092 | */ | |
3093 | assert(memory_region_is_romd(mr)); | |
3094 | ||
3095 | invalidate_and_set_dirty(mr, addr, size); | |
3096 | } | |
3097 | ||
3098 | static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) | |
3099 | { | |
3100 | unsigned access_size_max = mr->ops->valid.max_access_size; | |
3101 | ||
3102 | /* Regions are assumed to support 1-4 byte accesses unless | |
3103 | otherwise specified. */ | |
3104 | if (access_size_max == 0) { | |
3105 | access_size_max = 4; | |
3106 | } | |
3107 | ||
3108 | /* Bound the maximum access by the alignment of the address. */ | |
3109 | if (!mr->ops->impl.unaligned) { | |
3110 | unsigned align_size_max = addr & -addr; | |
3111 | if (align_size_max != 0 && align_size_max < access_size_max) { | |
3112 | access_size_max = align_size_max; | |
3113 | } | |
3114 | } | |
3115 | ||
3116 | /* Don't attempt accesses larger than the maximum. */ | |
3117 | if (l > access_size_max) { | |
3118 | l = access_size_max; | |
3119 | } | |
3120 | l = pow2floor(l); | |
3121 | ||
3122 | return l; | |
3123 | } | |
3124 | ||
3125 | static bool prepare_mmio_access(MemoryRegion *mr) | |
3126 | { | |
3127 | bool unlocked = !qemu_mutex_iothread_locked(); | |
3128 | bool release_lock = false; | |
3129 | ||
3130 | if (unlocked && mr->global_locking) { | |
3131 | qemu_mutex_lock_iothread(); | |
3132 | unlocked = false; | |
3133 | release_lock = true; | |
3134 | } | |
3135 | if (mr->flush_coalesced_mmio) { | |
3136 | if (unlocked) { | |
3137 | qemu_mutex_lock_iothread(); | |
3138 | } | |
3139 | qemu_flush_coalesced_mmio_buffer(); | |
3140 | if (unlocked) { | |
3141 | qemu_mutex_unlock_iothread(); | |
3142 | } | |
3143 | } | |
3144 | ||
3145 | return release_lock; | |
3146 | } | |
3147 | ||
3148 | /* Called within RCU critical section. */ | |
3149 | static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, | |
3150 | MemTxAttrs attrs, | |
3151 | const uint8_t *buf, | |
3152 | hwaddr len, hwaddr addr1, | |
3153 | hwaddr l, MemoryRegion *mr) | |
3154 | { | |
3155 | uint8_t *ptr; | |
3156 | uint64_t val; | |
3157 | MemTxResult result = MEMTX_OK; | |
3158 | bool release_lock = false; | |
3159 | ||
3160 | for (;;) { | |
3161 | if (!memory_access_is_direct(mr, true)) { | |
3162 | release_lock |= prepare_mmio_access(mr); | |
3163 | l = memory_access_size(mr, l, addr1); | |
3164 | /* XXX: could force current_cpu to NULL to avoid | |
3165 | potential bugs */ | |
3166 | val = ldn_he_p(buf, l); | |
3167 | result |= memory_region_dispatch_write(mr, addr1, val, | |
3168 | size_memop(l), attrs); | |
3169 | } else { | |
3170 | /* RAM case */ | |
3171 | ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); | |
3172 | memcpy(ptr, buf, l); | |
3173 | invalidate_and_set_dirty(mr, addr1, l); | |
3174 | } | |
3175 | ||
3176 | if (release_lock) { | |
3177 | qemu_mutex_unlock_iothread(); | |
3178 | release_lock = false; | |
3179 | } | |
3180 | ||
3181 | len -= l; | |
3182 | buf += l; | |
3183 | addr += l; | |
3184 | ||
3185 | if (!len) { | |
3186 | break; | |
3187 | } | |
3188 | ||
3189 | l = len; | |
3190 | mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); | |
3191 | } | |
3192 | ||
3193 | return result; | |
3194 | } | |
3195 | ||
3196 | /* Called from RCU critical section. */ | |
3197 | static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, | |
3198 | const uint8_t *buf, hwaddr len) | |
3199 | { | |
3200 | hwaddr l; | |
3201 | hwaddr addr1; | |
3202 | MemoryRegion *mr; | |
3203 | MemTxResult result = MEMTX_OK; | |
3204 | ||
3205 | l = len; | |
3206 | mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); | |
3207 | result = flatview_write_continue(fv, addr, attrs, buf, len, | |
3208 | addr1, l, mr); | |
3209 | ||
3210 | return result; | |
3211 | } | |
3212 | ||
3213 | /* Called within RCU critical section. */ | |
3214 | MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, | |
3215 | MemTxAttrs attrs, uint8_t *buf, | |
3216 | hwaddr len, hwaddr addr1, hwaddr l, | |
3217 | MemoryRegion *mr) | |
3218 | { | |
3219 | uint8_t *ptr; | |
3220 | uint64_t val; | |
3221 | MemTxResult result = MEMTX_OK; | |
3222 | bool release_lock = false; | |
3223 | ||
3224 | for (;;) { | |
3225 | if (!memory_access_is_direct(mr, false)) { | |
3226 | /* I/O case */ | |
3227 | release_lock |= prepare_mmio_access(mr); | |
3228 | l = memory_access_size(mr, l, addr1); | |
3229 | result |= memory_region_dispatch_read(mr, addr1, &val, | |
3230 | size_memop(l), attrs); | |
3231 | stn_he_p(buf, l, val); | |
3232 | } else { | |
3233 | /* RAM case */ | |
3234 | ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); | |
3235 | memcpy(buf, ptr, l); | |
3236 | } | |
3237 | ||
3238 | if (release_lock) { | |
3239 | qemu_mutex_unlock_iothread(); | |
3240 | release_lock = false; | |
3241 | } | |
3242 | ||
3243 | len -= l; | |
3244 | buf += l; | |
3245 | addr += l; | |
3246 | ||
3247 | if (!len) { | |
3248 | break; | |
3249 | } | |
3250 | ||
3251 | l = len; | |
3252 | mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); | |
3253 | } | |
3254 | ||
3255 | return result; | |
3256 | } | |
3257 | ||
3258 | /* Called from RCU critical section. */ | |
3259 | static MemTxResult flatview_read(FlatView *fv, hwaddr addr, | |
3260 | MemTxAttrs attrs, uint8_t *buf, hwaddr len) | |
3261 | { | |
3262 | hwaddr l; | |
3263 | hwaddr addr1; | |
3264 | MemoryRegion *mr; | |
3265 | ||
3266 | l = len; | |
3267 | mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); | |
3268 | return flatview_read_continue(fv, addr, attrs, buf, len, | |
3269 | addr1, l, mr); | |
3270 | } | |
3271 | ||
3272 | MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, | |
3273 | MemTxAttrs attrs, uint8_t *buf, hwaddr len) | |
3274 | { | |
3275 | MemTxResult result = MEMTX_OK; | |
3276 | FlatView *fv; | |
3277 | ||
3278 | if (len > 0) { | |
3279 | RCU_READ_LOCK_GUARD(); | |
3280 | fv = address_space_to_flatview(as); | |
3281 | result = flatview_read(fv, addr, attrs, buf, len); | |
3282 | } | |
3283 | ||
3284 | return result; | |
3285 | } | |
3286 | ||
3287 | MemTxResult address_space_write(AddressSpace *as, hwaddr addr, | |
3288 | MemTxAttrs attrs, | |
3289 | const uint8_t *buf, hwaddr len) | |
3290 | { | |
3291 | MemTxResult result = MEMTX_OK; | |
3292 | FlatView *fv; | |
3293 | ||
3294 | if (len > 0) { | |
3295 | RCU_READ_LOCK_GUARD(); | |
3296 | fv = address_space_to_flatview(as); | |
3297 | result = flatview_write(fv, addr, attrs, buf, len); | |
3298 | } | |
3299 | ||
3300 | return result; | |
3301 | } | |
3302 | ||
3303 | MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, | |
3304 | uint8_t *buf, hwaddr len, bool is_write) | |
3305 | { | |
3306 | if (is_write) { | |
3307 | return address_space_write(as, addr, attrs, buf, len); | |
3308 | } else { | |
3309 | return address_space_read_full(as, addr, attrs, buf, len); | |
3310 | } | |
3311 | } | |
3312 | ||
3313 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, | |
3314 | hwaddr len, int is_write) | |
3315 | { | |
3316 | address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, | |
3317 | buf, len, is_write); | |
3318 | } | |
3319 | ||
3320 | enum write_rom_type { | |
3321 | WRITE_DATA, | |
3322 | FLUSH_CACHE, | |
3323 | }; | |
3324 | ||
3325 | static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, | |
3326 | hwaddr addr, | |
3327 | MemTxAttrs attrs, | |
3328 | const uint8_t *buf, | |
3329 | hwaddr len, | |
3330 | enum write_rom_type type) | |
3331 | { | |
3332 | hwaddr l; | |
3333 | uint8_t *ptr; | |
3334 | hwaddr addr1; | |
3335 | MemoryRegion *mr; | |
3336 | ||
3337 | RCU_READ_LOCK_GUARD(); | |
3338 | while (len > 0) { | |
3339 | l = len; | |
3340 | mr = address_space_translate(as, addr, &addr1, &l, true, attrs); | |
3341 | ||
3342 | if (!(memory_region_is_ram(mr) || | |
3343 | memory_region_is_romd(mr))) { | |
3344 | l = memory_access_size(mr, l, addr1); | |
3345 | } else { | |
3346 | /* ROM/RAM case */ | |
3347 | ptr = qemu_map_ram_ptr(mr->ram_block, addr1); | |
3348 | switch (type) { | |
3349 | case WRITE_DATA: | |
3350 | memcpy(ptr, buf, l); | |
3351 | invalidate_and_set_dirty(mr, addr1, l); | |
3352 | break; | |
3353 | case FLUSH_CACHE: | |
3354 | flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); | |
3355 | break; | |
3356 | } | |
3357 | } | |
3358 | len -= l; | |
3359 | buf += l; | |
3360 | addr += l; | |
3361 | } | |
3362 | return MEMTX_OK; | |
3363 | } | |
3364 | ||
3365 | /* used for ROM loading : can write in RAM and ROM */ | |
3366 | MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, | |
3367 | MemTxAttrs attrs, | |
3368 | const uint8_t *buf, hwaddr len) | |
3369 | { | |
3370 | return address_space_write_rom_internal(as, addr, attrs, | |
3371 | buf, len, WRITE_DATA); | |
3372 | } | |
3373 | ||
3374 | void cpu_flush_icache_range(hwaddr start, hwaddr len) | |
3375 | { | |
3376 | /* | |
3377 | * This function should do the same thing as an icache flush that was | |
3378 | * triggered from within the guest. For TCG we are always cache coherent, | |
3379 | * so there is no need to flush anything. For KVM / Xen we need to flush | |
3380 | * the host's instruction cache at least. | |
3381 | */ | |
3382 | if (tcg_enabled()) { | |
3383 | return; | |
3384 | } | |
3385 | ||
3386 | address_space_write_rom_internal(&address_space_memory, | |
3387 | start, MEMTXATTRS_UNSPECIFIED, | |
3388 | NULL, len, FLUSH_CACHE); | |
3389 | } | |
3390 | ||
3391 | typedef struct { | |
3392 | MemoryRegion *mr; | |
3393 | void *buffer; | |
3394 | hwaddr addr; | |
3395 | hwaddr len; | |
3396 | bool in_use; | |
3397 | } BounceBuffer; | |
3398 | ||
3399 | static BounceBuffer bounce; | |
3400 | ||
3401 | typedef struct MapClient { | |
3402 | QEMUBH *bh; | |
3403 | QLIST_ENTRY(MapClient) link; | |
3404 | } MapClient; | |
3405 | ||
3406 | QemuMutex map_client_list_lock; | |
3407 | static QLIST_HEAD(, MapClient) map_client_list | |
3408 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
3409 | ||
3410 | static void cpu_unregister_map_client_do(MapClient *client) | |
3411 | { | |
3412 | QLIST_REMOVE(client, link); | |
3413 | g_free(client); | |
3414 | } | |
3415 | ||
3416 | static void cpu_notify_map_clients_locked(void) | |
3417 | { | |
3418 | MapClient *client; | |
3419 | ||
3420 | while (!QLIST_EMPTY(&map_client_list)) { | |
3421 | client = QLIST_FIRST(&map_client_list); | |
3422 | qemu_bh_schedule(client->bh); | |
3423 | cpu_unregister_map_client_do(client); | |
3424 | } | |
3425 | } | |
3426 | ||
3427 | void cpu_register_map_client(QEMUBH *bh) | |
3428 | { | |
3429 | MapClient *client = g_malloc(sizeof(*client)); | |
3430 | ||
3431 | qemu_mutex_lock(&map_client_list_lock); | |
3432 | client->bh = bh; | |
3433 | QLIST_INSERT_HEAD(&map_client_list, client, link); | |
3434 | if (!atomic_read(&bounce.in_use)) { | |
3435 | cpu_notify_map_clients_locked(); | |
3436 | } | |
3437 | qemu_mutex_unlock(&map_client_list_lock); | |
3438 | } | |
3439 | ||
3440 | void cpu_exec_init_all(void) | |
3441 | { | |
3442 | qemu_mutex_init(&ram_list.mutex); | |
3443 | /* The data structures we set up here depend on knowing the page size, | |
3444 | * so no more changes can be made after this point. | |
3445 | * In an ideal world, nothing we did before we had finished the | |
3446 | * machine setup would care about the target page size, and we could | |
3447 | * do this much later, rather than requiring board models to state | |
3448 | * up front what their requirements are. | |
3449 | */ | |
3450 | finalize_target_page_bits(); | |
3451 | io_mem_init(); | |
3452 | memory_map_init(); | |
3453 | qemu_mutex_init(&map_client_list_lock); | |
3454 | } | |
3455 | ||
3456 | void cpu_unregister_map_client(QEMUBH *bh) | |
3457 | { | |
3458 | MapClient *client; | |
3459 | ||
3460 | qemu_mutex_lock(&map_client_list_lock); | |
3461 | QLIST_FOREACH(client, &map_client_list, link) { | |
3462 | if (client->bh == bh) { | |
3463 | cpu_unregister_map_client_do(client); | |
3464 | break; | |
3465 | } | |
3466 | } | |
3467 | qemu_mutex_unlock(&map_client_list_lock); | |
3468 | } | |
3469 | ||
3470 | static void cpu_notify_map_clients(void) | |
3471 | { | |
3472 | qemu_mutex_lock(&map_client_list_lock); | |
3473 | cpu_notify_map_clients_locked(); | |
3474 | qemu_mutex_unlock(&map_client_list_lock); | |
3475 | } | |
3476 | ||
3477 | static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, | |
3478 | bool is_write, MemTxAttrs attrs) | |
3479 | { | |
3480 | MemoryRegion *mr; | |
3481 | hwaddr l, xlat; | |
3482 | ||
3483 | while (len > 0) { | |
3484 | l = len; | |
3485 | mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); | |
3486 | if (!memory_access_is_direct(mr, is_write)) { | |
3487 | l = memory_access_size(mr, l, addr); | |
3488 | if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { | |
3489 | return false; | |
3490 | } | |
3491 | } | |
3492 | ||
3493 | len -= l; | |
3494 | addr += l; | |
3495 | } | |
3496 | return true; | |
3497 | } | |
3498 | ||
3499 | bool address_space_access_valid(AddressSpace *as, hwaddr addr, | |
3500 | hwaddr len, bool is_write, | |
3501 | MemTxAttrs attrs) | |
3502 | { | |
3503 | FlatView *fv; | |
3504 | bool result; | |
3505 | ||
3506 | RCU_READ_LOCK_GUARD(); | |
3507 | fv = address_space_to_flatview(as); | |
3508 | result = flatview_access_valid(fv, addr, len, is_write, attrs); | |
3509 | return result; | |
3510 | } | |
3511 | ||
3512 | static hwaddr | |
3513 | flatview_extend_translation(FlatView *fv, hwaddr addr, | |
3514 | hwaddr target_len, | |
3515 | MemoryRegion *mr, hwaddr base, hwaddr len, | |
3516 | bool is_write, MemTxAttrs attrs) | |
3517 | { | |
3518 | hwaddr done = 0; | |
3519 | hwaddr xlat; | |
3520 | MemoryRegion *this_mr; | |
3521 | ||
3522 | for (;;) { | |
3523 | target_len -= len; | |
3524 | addr += len; | |
3525 | done += len; | |
3526 | if (target_len == 0) { | |
3527 | return done; | |
3528 | } | |
3529 | ||
3530 | len = target_len; | |
3531 | this_mr = flatview_translate(fv, addr, &xlat, | |
3532 | &len, is_write, attrs); | |
3533 | if (this_mr != mr || xlat != base + done) { | |
3534 | return done; | |
3535 | } | |
3536 | } | |
3537 | } | |
3538 | ||
3539 | /* Map a physical memory region into a host virtual address. | |
3540 | * May map a subset of the requested range, given by and returned in *plen. | |
3541 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3542 | * Use only for reads OR writes - not for read-modify-write operations. | |
3543 | * Use cpu_register_map_client() to know when retrying the map operation is | |
3544 | * likely to succeed. | |
3545 | */ | |
3546 | void *address_space_map(AddressSpace *as, | |
3547 | hwaddr addr, | |
3548 | hwaddr *plen, | |
3549 | bool is_write, | |
3550 | MemTxAttrs attrs) | |
3551 | { | |
3552 | hwaddr len = *plen; | |
3553 | hwaddr l, xlat; | |
3554 | MemoryRegion *mr; | |
3555 | void *ptr; | |
3556 | FlatView *fv; | |
3557 | ||
3558 | if (len == 0) { | |
3559 | return NULL; | |
3560 | } | |
3561 | ||
3562 | l = len; | |
3563 | RCU_READ_LOCK_GUARD(); | |
3564 | fv = address_space_to_flatview(as); | |
3565 | mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); | |
3566 | ||
3567 | if (!memory_access_is_direct(mr, is_write)) { | |
3568 | if (atomic_xchg(&bounce.in_use, true)) { | |
3569 | return NULL; | |
3570 | } | |
3571 | /* Avoid unbounded allocations */ | |
3572 | l = MIN(l, TARGET_PAGE_SIZE); | |
3573 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); | |
3574 | bounce.addr = addr; | |
3575 | bounce.len = l; | |
3576 | ||
3577 | memory_region_ref(mr); | |
3578 | bounce.mr = mr; | |
3579 | if (!is_write) { | |
3580 | flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, | |
3581 | bounce.buffer, l); | |
3582 | } | |
3583 | ||
3584 | *plen = l; | |
3585 | return bounce.buffer; | |
3586 | } | |
3587 | ||
3588 | ||
3589 | memory_region_ref(mr); | |
3590 | *plen = flatview_extend_translation(fv, addr, len, mr, xlat, | |
3591 | l, is_write, attrs); | |
3592 | ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); | |
3593 | ||
3594 | return ptr; | |
3595 | } | |
3596 | ||
3597 | /* Unmaps a memory region previously mapped by address_space_map(). | |
3598 | * Will also mark the memory as dirty if is_write == 1. access_len gives | |
3599 | * the amount of memory that was actually read or written by the caller. | |
3600 | */ | |
3601 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, | |
3602 | int is_write, hwaddr access_len) | |
3603 | { | |
3604 | if (buffer != bounce.buffer) { | |
3605 | MemoryRegion *mr; | |
3606 | ram_addr_t addr1; | |
3607 | ||
3608 | mr = memory_region_from_host(buffer, &addr1); | |
3609 | assert(mr != NULL); | |
3610 | if (is_write) { | |
3611 | invalidate_and_set_dirty(mr, addr1, access_len); | |
3612 | } | |
3613 | if (xen_enabled()) { | |
3614 | xen_invalidate_map_cache_entry(buffer); | |
3615 | } | |
3616 | memory_region_unref(mr); | |
3617 | return; | |
3618 | } | |
3619 | if (is_write) { | |
3620 | address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, | |
3621 | bounce.buffer, access_len); | |
3622 | } | |
3623 | qemu_vfree(bounce.buffer); | |
3624 | bounce.buffer = NULL; | |
3625 | memory_region_unref(bounce.mr); | |
3626 | atomic_mb_set(&bounce.in_use, false); | |
3627 | cpu_notify_map_clients(); | |
3628 | } | |
3629 | ||
3630 | void *cpu_physical_memory_map(hwaddr addr, | |
3631 | hwaddr *plen, | |
3632 | int is_write) | |
3633 | { | |
3634 | return address_space_map(&address_space_memory, addr, plen, is_write, | |
3635 | MEMTXATTRS_UNSPECIFIED); | |
3636 | } | |
3637 | ||
3638 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, | |
3639 | int is_write, hwaddr access_len) | |
3640 | { | |
3641 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3642 | } | |
3643 | ||
3644 | #define ARG1_DECL AddressSpace *as | |
3645 | #define ARG1 as | |
3646 | #define SUFFIX | |
3647 | #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) | |
3648 | #define RCU_READ_LOCK(...) rcu_read_lock() | |
3649 | #define RCU_READ_UNLOCK(...) rcu_read_unlock() | |
3650 | #include "memory_ldst.inc.c" | |
3651 | ||
3652 | int64_t address_space_cache_init(MemoryRegionCache *cache, | |
3653 | AddressSpace *as, | |
3654 | hwaddr addr, | |
3655 | hwaddr len, | |
3656 | bool is_write) | |
3657 | { | |
3658 | AddressSpaceDispatch *d; | |
3659 | hwaddr l; | |
3660 | MemoryRegion *mr; | |
3661 | ||
3662 | assert(len > 0); | |
3663 | ||
3664 | l = len; | |
3665 | cache->fv = address_space_get_flatview(as); | |
3666 | d = flatview_to_dispatch(cache->fv); | |
3667 | cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); | |
3668 | ||
3669 | mr = cache->mrs.mr; | |
3670 | memory_region_ref(mr); | |
3671 | if (memory_access_is_direct(mr, is_write)) { | |
3672 | /* We don't care about the memory attributes here as we're only | |
3673 | * doing this if we found actual RAM, which behaves the same | |
3674 | * regardless of attributes; so UNSPECIFIED is fine. | |
3675 | */ | |
3676 | l = flatview_extend_translation(cache->fv, addr, len, mr, | |
3677 | cache->xlat, l, is_write, | |
3678 | MEMTXATTRS_UNSPECIFIED); | |
3679 | cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); | |
3680 | } else { | |
3681 | cache->ptr = NULL; | |
3682 | } | |
3683 | ||
3684 | cache->len = l; | |
3685 | cache->is_write = is_write; | |
3686 | return l; | |
3687 | } | |
3688 | ||
3689 | void address_space_cache_invalidate(MemoryRegionCache *cache, | |
3690 | hwaddr addr, | |
3691 | hwaddr access_len) | |
3692 | { | |
3693 | assert(cache->is_write); | |
3694 | if (likely(cache->ptr)) { | |
3695 | invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); | |
3696 | } | |
3697 | } | |
3698 | ||
3699 | void address_space_cache_destroy(MemoryRegionCache *cache) | |
3700 | { | |
3701 | if (!cache->mrs.mr) { | |
3702 | return; | |
3703 | } | |
3704 | ||
3705 | if (xen_enabled()) { | |
3706 | xen_invalidate_map_cache_entry(cache->ptr); | |
3707 | } | |
3708 | memory_region_unref(cache->mrs.mr); | |
3709 | flatview_unref(cache->fv); | |
3710 | cache->mrs.mr = NULL; | |
3711 | cache->fv = NULL; | |
3712 | } | |
3713 | ||
3714 | /* Called from RCU critical section. This function has the same | |
3715 | * semantics as address_space_translate, but it only works on a | |
3716 | * predefined range of a MemoryRegion that was mapped with | |
3717 | * address_space_cache_init. | |
3718 | */ | |
3719 | static inline MemoryRegion *address_space_translate_cached( | |
3720 | MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, | |
3721 | hwaddr *plen, bool is_write, MemTxAttrs attrs) | |
3722 | { | |
3723 | MemoryRegionSection section; | |
3724 | MemoryRegion *mr; | |
3725 | IOMMUMemoryRegion *iommu_mr; | |
3726 | AddressSpace *target_as; | |
3727 | ||
3728 | assert(!cache->ptr); | |
3729 | *xlat = addr + cache->xlat; | |
3730 | ||
3731 | mr = cache->mrs.mr; | |
3732 | iommu_mr = memory_region_get_iommu(mr); | |
3733 | if (!iommu_mr) { | |
3734 | /* MMIO region. */ | |
3735 | return mr; | |
3736 | } | |
3737 | ||
3738 | section = address_space_translate_iommu(iommu_mr, xlat, plen, | |
3739 | NULL, is_write, true, | |
3740 | &target_as, attrs); | |
3741 | return section.mr; | |
3742 | } | |
3743 | ||
3744 | /* Called from RCU critical section. address_space_read_cached uses this | |
3745 | * out of line function when the target is an MMIO or IOMMU region. | |
3746 | */ | |
3747 | void | |
3748 | address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, | |
3749 | void *buf, hwaddr len) | |
3750 | { | |
3751 | hwaddr addr1, l; | |
3752 | MemoryRegion *mr; | |
3753 | ||
3754 | l = len; | |
3755 | mr = address_space_translate_cached(cache, addr, &addr1, &l, false, | |
3756 | MEMTXATTRS_UNSPECIFIED); | |
3757 | flatview_read_continue(cache->fv, | |
3758 | addr, MEMTXATTRS_UNSPECIFIED, buf, len, | |
3759 | addr1, l, mr); | |
3760 | } | |
3761 | ||
3762 | /* Called from RCU critical section. address_space_write_cached uses this | |
3763 | * out of line function when the target is an MMIO or IOMMU region. | |
3764 | */ | |
3765 | void | |
3766 | address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, | |
3767 | const void *buf, hwaddr len) | |
3768 | { | |
3769 | hwaddr addr1, l; | |
3770 | MemoryRegion *mr; | |
3771 | ||
3772 | l = len; | |
3773 | mr = address_space_translate_cached(cache, addr, &addr1, &l, true, | |
3774 | MEMTXATTRS_UNSPECIFIED); | |
3775 | flatview_write_continue(cache->fv, | |
3776 | addr, MEMTXATTRS_UNSPECIFIED, buf, len, | |
3777 | addr1, l, mr); | |
3778 | } | |
3779 | ||
3780 | #define ARG1_DECL MemoryRegionCache *cache | |
3781 | #define ARG1 cache | |
3782 | #define SUFFIX _cached_slow | |
3783 | #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) | |
3784 | #define RCU_READ_LOCK() ((void)0) | |
3785 | #define RCU_READ_UNLOCK() ((void)0) | |
3786 | #include "memory_ldst.inc.c" | |
3787 | ||
3788 | /* virtual memory access for debug (includes writing to ROM) */ | |
3789 | int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, | |
3790 | uint8_t *buf, target_ulong len, int is_write) | |
3791 | { | |
3792 | hwaddr phys_addr; | |
3793 | target_ulong l, page; | |
3794 | ||
3795 | cpu_synchronize_state(cpu); | |
3796 | while (len > 0) { | |
3797 | int asidx; | |
3798 | MemTxAttrs attrs; | |
3799 | ||
3800 | page = addr & TARGET_PAGE_MASK; | |
3801 | phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); | |
3802 | asidx = cpu_asidx_from_attrs(cpu, attrs); | |
3803 | /* if no physical page mapped, return an error */ | |
3804 | if (phys_addr == -1) | |
3805 | return -1; | |
3806 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3807 | if (l > len) | |
3808 | l = len; | |
3809 | phys_addr += (addr & ~TARGET_PAGE_MASK); | |
3810 | if (is_write) { | |
3811 | address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, | |
3812 | attrs, buf, l); | |
3813 | } else { | |
3814 | address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, | |
3815 | attrs, buf, l, 0); | |
3816 | } | |
3817 | len -= l; | |
3818 | buf += l; | |
3819 | addr += l; | |
3820 | } | |
3821 | return 0; | |
3822 | } | |
3823 | ||
3824 | /* | |
3825 | * Allows code that needs to deal with migration bitmaps etc to still be built | |
3826 | * target independent. | |
3827 | */ | |
3828 | size_t qemu_target_page_size(void) | |
3829 | { | |
3830 | return TARGET_PAGE_SIZE; | |
3831 | } | |
3832 | ||
3833 | int qemu_target_page_bits(void) | |
3834 | { | |
3835 | return TARGET_PAGE_BITS; | |
3836 | } | |
3837 | ||
3838 | int qemu_target_page_bits_min(void) | |
3839 | { | |
3840 | return TARGET_PAGE_BITS_MIN; | |
3841 | } | |
3842 | #endif | |
3843 | ||
3844 | bool target_words_bigendian(void) | |
3845 | { | |
3846 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3847 | return true; | |
3848 | #else | |
3849 | return false; | |
3850 | #endif | |
3851 | } | |
3852 | ||
3853 | #ifndef CONFIG_USER_ONLY | |
3854 | bool cpu_physical_memory_is_io(hwaddr phys_addr) | |
3855 | { | |
3856 | MemoryRegion*mr; | |
3857 | hwaddr l = 1; | |
3858 | bool res; | |
3859 | ||
3860 | RCU_READ_LOCK_GUARD(); | |
3861 | mr = address_space_translate(&address_space_memory, | |
3862 | phys_addr, &phys_addr, &l, false, | |
3863 | MEMTXATTRS_UNSPECIFIED); | |
3864 | ||
3865 | res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); | |
3866 | return res; | |
3867 | } | |
3868 | ||
3869 | int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) | |
3870 | { | |
3871 | RAMBlock *block; | |
3872 | int ret = 0; | |
3873 | ||
3874 | RCU_READ_LOCK_GUARD(); | |
3875 | RAMBLOCK_FOREACH(block) { | |
3876 | ret = func(block, opaque); | |
3877 | if (ret) { | |
3878 | break; | |
3879 | } | |
3880 | } | |
3881 | return ret; | |
3882 | } | |
3883 | ||
3884 | /* | |
3885 | * Unmap pages of memory from start to start+length such that | |
3886 | * they a) read as 0, b) Trigger whatever fault mechanism | |
3887 | * the OS provides for postcopy. | |
3888 | * The pages must be unmapped by the end of the function. | |
3889 | * Returns: 0 on success, none-0 on failure | |
3890 | * | |
3891 | */ | |
3892 | int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) | |
3893 | { | |
3894 | int ret = -1; | |
3895 | ||
3896 | uint8_t *host_startaddr = rb->host + start; | |
3897 | ||
3898 | if ((uintptr_t)host_startaddr & (rb->page_size - 1)) { | |
3899 | error_report("ram_block_discard_range: Unaligned start address: %p", | |
3900 | host_startaddr); | |
3901 | goto err; | |
3902 | } | |
3903 | ||
3904 | if ((start + length) <= rb->used_length) { | |
3905 | bool need_madvise, need_fallocate; | |
3906 | uint8_t *host_endaddr = host_startaddr + length; | |
3907 | if ((uintptr_t)host_endaddr & (rb->page_size - 1)) { | |
3908 | error_report("ram_block_discard_range: Unaligned end address: %p", | |
3909 | host_endaddr); | |
3910 | goto err; | |
3911 | } | |
3912 | ||
3913 | errno = ENOTSUP; /* If we are missing MADVISE etc */ | |
3914 | ||
3915 | /* The logic here is messy; | |
3916 | * madvise DONTNEED fails for hugepages | |
3917 | * fallocate works on hugepages and shmem | |
3918 | */ | |
3919 | need_madvise = (rb->page_size == qemu_host_page_size); | |
3920 | need_fallocate = rb->fd != -1; | |
3921 | if (need_fallocate) { | |
3922 | /* For a file, this causes the area of the file to be zero'd | |
3923 | * if read, and for hugetlbfs also causes it to be unmapped | |
3924 | * so a userfault will trigger. | |
3925 | */ | |
3926 | #ifdef CONFIG_FALLOCATE_PUNCH_HOLE | |
3927 | ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, | |
3928 | start, length); | |
3929 | if (ret) { | |
3930 | ret = -errno; | |
3931 | error_report("ram_block_discard_range: Failed to fallocate " | |
3932 | "%s:%" PRIx64 " +%zx (%d)", | |
3933 | rb->idstr, start, length, ret); | |
3934 | goto err; | |
3935 | } | |
3936 | #else | |
3937 | ret = -ENOSYS; | |
3938 | error_report("ram_block_discard_range: fallocate not available/file" | |
3939 | "%s:%" PRIx64 " +%zx (%d)", | |
3940 | rb->idstr, start, length, ret); | |
3941 | goto err; | |
3942 | #endif | |
3943 | } | |
3944 | if (need_madvise) { | |
3945 | /* For normal RAM this causes it to be unmapped, | |
3946 | * for shared memory it causes the local mapping to disappear | |
3947 | * and to fall back on the file contents (which we just | |
3948 | * fallocate'd away). | |
3949 | */ | |
3950 | #if defined(CONFIG_MADVISE) | |
3951 | ret = madvise(host_startaddr, length, MADV_DONTNEED); | |
3952 | if (ret) { | |
3953 | ret = -errno; | |
3954 | error_report("ram_block_discard_range: Failed to discard range " | |
3955 | "%s:%" PRIx64 " +%zx (%d)", | |
3956 | rb->idstr, start, length, ret); | |
3957 | goto err; | |
3958 | } | |
3959 | #else | |
3960 | ret = -ENOSYS; | |
3961 | error_report("ram_block_discard_range: MADVISE not available" | |
3962 | "%s:%" PRIx64 " +%zx (%d)", | |
3963 | rb->idstr, start, length, ret); | |
3964 | goto err; | |
3965 | #endif | |
3966 | } | |
3967 | trace_ram_block_discard_range(rb->idstr, host_startaddr, length, | |
3968 | need_madvise, need_fallocate, ret); | |
3969 | } else { | |
3970 | error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 | |
3971 | "/%zx/" RAM_ADDR_FMT")", | |
3972 | rb->idstr, start, length, rb->used_length); | |
3973 | } | |
3974 | ||
3975 | err: | |
3976 | return ret; | |
3977 | } | |
3978 | ||
3979 | bool ramblock_is_pmem(RAMBlock *rb) | |
3980 | { | |
3981 | return rb->flags & RAM_PMEM; | |
3982 | } | |
3983 | ||
3984 | #endif | |
3985 | ||
3986 | void page_size_init(void) | |
3987 | { | |
3988 | /* NOTE: we can always suppose that qemu_host_page_size >= | |
3989 | TARGET_PAGE_SIZE */ | |
3990 | if (qemu_host_page_size == 0) { | |
3991 | qemu_host_page_size = qemu_real_host_page_size; | |
3992 | } | |
3993 | if (qemu_host_page_size < TARGET_PAGE_SIZE) { | |
3994 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
3995 | } | |
3996 | qemu_host_page_mask = -(intptr_t)qemu_host_page_size; | |
3997 | } | |
3998 | ||
3999 | #if !defined(CONFIG_USER_ONLY) | |
4000 | ||
4001 | static void mtree_print_phys_entries(int start, int end, int skip, int ptr) | |
4002 | { | |
4003 | if (start == end - 1) { | |
4004 | qemu_printf("\t%3d ", start); | |
4005 | } else { | |
4006 | qemu_printf("\t%3d..%-3d ", start, end - 1); | |
4007 | } | |
4008 | qemu_printf(" skip=%d ", skip); | |
4009 | if (ptr == PHYS_MAP_NODE_NIL) { | |
4010 | qemu_printf(" ptr=NIL"); | |
4011 | } else if (!skip) { | |
4012 | qemu_printf(" ptr=#%d", ptr); | |
4013 | } else { | |
4014 | qemu_printf(" ptr=[%d]", ptr); | |
4015 | } | |
4016 | qemu_printf("\n"); | |
4017 | } | |
4018 | ||
4019 | #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ | |
4020 | int128_sub((size), int128_one())) : 0) | |
4021 | ||
4022 | void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) | |
4023 | { | |
4024 | int i; | |
4025 | ||
4026 | qemu_printf(" Dispatch\n"); | |
4027 | qemu_printf(" Physical sections\n"); | |
4028 | ||
4029 | for (i = 0; i < d->map.sections_nb; ++i) { | |
4030 | MemoryRegionSection *s = d->map.sections + i; | |
4031 | const char *names[] = { " [unassigned]", " [not dirty]", | |
4032 | " [ROM]", " [watch]" }; | |
4033 | ||
4034 | qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx | |
4035 | " %s%s%s%s%s", | |
4036 | i, | |
4037 | s->offset_within_address_space, | |
4038 | s->offset_within_address_space + MR_SIZE(s->mr->size), | |
4039 | s->mr->name ? s->mr->name : "(noname)", | |
4040 | i < ARRAY_SIZE(names) ? names[i] : "", | |
4041 | s->mr == root ? " [ROOT]" : "", | |
4042 | s == d->mru_section ? " [MRU]" : "", | |
4043 | s->mr->is_iommu ? " [iommu]" : ""); | |
4044 | ||
4045 | if (s->mr->alias) { | |
4046 | qemu_printf(" alias=%s", s->mr->alias->name ? | |
4047 | s->mr->alias->name : "noname"); | |
4048 | } | |
4049 | qemu_printf("\n"); | |
4050 | } | |
4051 | ||
4052 | qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", | |
4053 | P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); | |
4054 | for (i = 0; i < d->map.nodes_nb; ++i) { | |
4055 | int j, jprev; | |
4056 | PhysPageEntry prev; | |
4057 | Node *n = d->map.nodes + i; | |
4058 | ||
4059 | qemu_printf(" [%d]\n", i); | |
4060 | ||
4061 | for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { | |
4062 | PhysPageEntry *pe = *n + j; | |
4063 | ||
4064 | if (pe->ptr == prev.ptr && pe->skip == prev.skip) { | |
4065 | continue; | |
4066 | } | |
4067 | ||
4068 | mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); | |
4069 | ||
4070 | jprev = j; | |
4071 | prev = *pe; | |
4072 | } | |
4073 | ||
4074 | if (jprev != ARRAY_SIZE(*n)) { | |
4075 | mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); | |
4076 | } | |
4077 | } | |
4078 | } | |
4079 | ||
4080 | #endif |