]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * virtual page mapping and translated block handling | |
3 | * | |
4 | * Copyright (c) 2003 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | #include "config.h" | |
20 | #ifdef _WIN32 | |
21 | #include <windows.h> | |
22 | #else | |
23 | #include <sys/types.h> | |
24 | #include <sys/mman.h> | |
25 | #endif | |
26 | ||
27 | #include "qemu-common.h" | |
28 | #include "cpu.h" | |
29 | #include "tcg.h" | |
30 | #include "hw/hw.h" | |
31 | #include "hw/qdev.h" | |
32 | #include "osdep.h" | |
33 | #include "kvm.h" | |
34 | #include "hw/xen.h" | |
35 | #include "qemu-timer.h" | |
36 | #include "memory.h" | |
37 | #include "dma.h" | |
38 | #include "exec-memory.h" | |
39 | #if defined(CONFIG_USER_ONLY) | |
40 | #include <qemu.h> | |
41 | #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) | |
42 | #include <sys/param.h> | |
43 | #if __FreeBSD_version >= 700104 | |
44 | #define HAVE_KINFO_GETVMMAP | |
45 | #define sigqueue sigqueue_freebsd /* avoid redefinition */ | |
46 | #include <sys/time.h> | |
47 | #include <sys/proc.h> | |
48 | #include <machine/profile.h> | |
49 | #define _KERNEL | |
50 | #include <sys/user.h> | |
51 | #undef _KERNEL | |
52 | #undef sigqueue | |
53 | #include <libutil.h> | |
54 | #endif | |
55 | #endif | |
56 | #else /* !CONFIG_USER_ONLY */ | |
57 | #include "xen-mapcache.h" | |
58 | #include "trace.h" | |
59 | #endif | |
60 | ||
61 | #include "cputlb.h" | |
62 | ||
63 | #include "memory-internal.h" | |
64 | ||
65 | //#define DEBUG_TB_INVALIDATE | |
66 | //#define DEBUG_FLUSH | |
67 | //#define DEBUG_UNASSIGNED | |
68 | ||
69 | /* make various TB consistency checks */ | |
70 | //#define DEBUG_TB_CHECK | |
71 | ||
72 | //#define DEBUG_IOPORT | |
73 | //#define DEBUG_SUBPAGE | |
74 | ||
75 | #if !defined(CONFIG_USER_ONLY) | |
76 | /* TB consistency checks only implemented for usermode emulation. */ | |
77 | #undef DEBUG_TB_CHECK | |
78 | #endif | |
79 | ||
80 | #define SMC_BITMAP_USE_THRESHOLD 10 | |
81 | ||
82 | static TranslationBlock *tbs; | |
83 | static int code_gen_max_blocks; | |
84 | TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; | |
85 | static int nb_tbs; | |
86 | /* any access to the tbs or the page table must use this lock */ | |
87 | spinlock_t tb_lock = SPIN_LOCK_UNLOCKED; | |
88 | ||
89 | uint8_t *code_gen_prologue; | |
90 | static uint8_t *code_gen_buffer; | |
91 | static size_t code_gen_buffer_size; | |
92 | /* threshold to flush the translated code buffer */ | |
93 | static size_t code_gen_buffer_max_size; | |
94 | static uint8_t *code_gen_ptr; | |
95 | ||
96 | #if !defined(CONFIG_USER_ONLY) | |
97 | int phys_ram_fd; | |
98 | static int in_migration; | |
99 | ||
100 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; | |
101 | ||
102 | static MemoryRegion *system_memory; | |
103 | static MemoryRegion *system_io; | |
104 | ||
105 | AddressSpace address_space_io; | |
106 | AddressSpace address_space_memory; | |
107 | DMAContext dma_context_memory; | |
108 | ||
109 | MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty; | |
110 | static MemoryRegion io_mem_subpage_ram; | |
111 | ||
112 | #endif | |
113 | ||
114 | CPUArchState *first_cpu; | |
115 | /* current CPU in the current thread. It is only valid inside | |
116 | cpu_exec() */ | |
117 | DEFINE_TLS(CPUArchState *,cpu_single_env); | |
118 | /* 0 = Do not count executed instructions. | |
119 | 1 = Precise instruction counting. | |
120 | 2 = Adaptive rate instruction counting. */ | |
121 | int use_icount = 0; | |
122 | ||
123 | typedef struct PageDesc { | |
124 | /* list of TBs intersecting this ram page */ | |
125 | TranslationBlock *first_tb; | |
126 | /* in order to optimize self modifying code, we count the number | |
127 | of lookups we do to a given page to use a bitmap */ | |
128 | unsigned int code_write_count; | |
129 | uint8_t *code_bitmap; | |
130 | #if defined(CONFIG_USER_ONLY) | |
131 | unsigned long flags; | |
132 | #endif | |
133 | } PageDesc; | |
134 | ||
135 | /* In system mode we want L1_MAP to be based on ram offsets, | |
136 | while in user mode we want it to be based on virtual addresses. */ | |
137 | #if !defined(CONFIG_USER_ONLY) | |
138 | #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS | |
139 | # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS | |
140 | #else | |
141 | # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS | |
142 | #endif | |
143 | #else | |
144 | # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS | |
145 | #endif | |
146 | ||
147 | /* Size of the L2 (and L3, etc) page tables. */ | |
148 | #define L2_BITS 10 | |
149 | #define L2_SIZE (1 << L2_BITS) | |
150 | ||
151 | #define P_L2_LEVELS \ | |
152 | (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1) | |
153 | ||
154 | /* The bits remaining after N lower levels of page tables. */ | |
155 | #define V_L1_BITS_REM \ | |
156 | ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS) | |
157 | ||
158 | #if V_L1_BITS_REM < 4 | |
159 | #define V_L1_BITS (V_L1_BITS_REM + L2_BITS) | |
160 | #else | |
161 | #define V_L1_BITS V_L1_BITS_REM | |
162 | #endif | |
163 | ||
164 | #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS) | |
165 | ||
166 | #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS) | |
167 | ||
168 | uintptr_t qemu_real_host_page_size; | |
169 | uintptr_t qemu_host_page_size; | |
170 | uintptr_t qemu_host_page_mask; | |
171 | ||
172 | /* This is a multi-level map on the virtual address space. | |
173 | The bottom level has pointers to PageDesc. */ | |
174 | static void *l1_map[V_L1_SIZE]; | |
175 | ||
176 | #if !defined(CONFIG_USER_ONLY) | |
177 | ||
178 | static MemoryRegionSection *phys_sections; | |
179 | static unsigned phys_sections_nb, phys_sections_nb_alloc; | |
180 | static uint16_t phys_section_unassigned; | |
181 | static uint16_t phys_section_notdirty; | |
182 | static uint16_t phys_section_rom; | |
183 | static uint16_t phys_section_watch; | |
184 | ||
185 | /* Simple allocator for PhysPageEntry nodes */ | |
186 | static PhysPageEntry (*phys_map_nodes)[L2_SIZE]; | |
187 | static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc; | |
188 | ||
189 | #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1) | |
190 | ||
191 | static void io_mem_init(void); | |
192 | static void memory_map_init(void); | |
193 | static void *qemu_safe_ram_ptr(ram_addr_t addr); | |
194 | ||
195 | static MemoryRegion io_mem_watch; | |
196 | #endif | |
197 | static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, | |
198 | tb_page_addr_t phys_page2); | |
199 | ||
200 | /* statistics */ | |
201 | static int tb_flush_count; | |
202 | static int tb_phys_invalidate_count; | |
203 | ||
204 | #ifdef _WIN32 | |
205 | static inline void map_exec(void *addr, long size) | |
206 | { | |
207 | DWORD old_protect; | |
208 | VirtualProtect(addr, size, | |
209 | PAGE_EXECUTE_READWRITE, &old_protect); | |
210 | ||
211 | } | |
212 | #else | |
213 | static inline void map_exec(void *addr, long size) | |
214 | { | |
215 | unsigned long start, end, page_size; | |
216 | ||
217 | page_size = getpagesize(); | |
218 | start = (unsigned long)addr; | |
219 | start &= ~(page_size - 1); | |
220 | ||
221 | end = (unsigned long)addr + size; | |
222 | end += page_size - 1; | |
223 | end &= ~(page_size - 1); | |
224 | ||
225 | mprotect((void *)start, end - start, | |
226 | PROT_READ | PROT_WRITE | PROT_EXEC); | |
227 | } | |
228 | #endif | |
229 | ||
230 | static void page_init(void) | |
231 | { | |
232 | /* NOTE: we can always suppose that qemu_host_page_size >= | |
233 | TARGET_PAGE_SIZE */ | |
234 | #ifdef _WIN32 | |
235 | { | |
236 | SYSTEM_INFO system_info; | |
237 | ||
238 | GetSystemInfo(&system_info); | |
239 | qemu_real_host_page_size = system_info.dwPageSize; | |
240 | } | |
241 | #else | |
242 | qemu_real_host_page_size = getpagesize(); | |
243 | #endif | |
244 | if (qemu_host_page_size == 0) | |
245 | qemu_host_page_size = qemu_real_host_page_size; | |
246 | if (qemu_host_page_size < TARGET_PAGE_SIZE) | |
247 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
248 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |
249 | ||
250 | #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) | |
251 | { | |
252 | #ifdef HAVE_KINFO_GETVMMAP | |
253 | struct kinfo_vmentry *freep; | |
254 | int i, cnt; | |
255 | ||
256 | freep = kinfo_getvmmap(getpid(), &cnt); | |
257 | if (freep) { | |
258 | mmap_lock(); | |
259 | for (i = 0; i < cnt; i++) { | |
260 | unsigned long startaddr, endaddr; | |
261 | ||
262 | startaddr = freep[i].kve_start; | |
263 | endaddr = freep[i].kve_end; | |
264 | if (h2g_valid(startaddr)) { | |
265 | startaddr = h2g(startaddr) & TARGET_PAGE_MASK; | |
266 | ||
267 | if (h2g_valid(endaddr)) { | |
268 | endaddr = h2g(endaddr); | |
269 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
270 | } else { | |
271 | #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS | |
272 | endaddr = ~0ul; | |
273 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
274 | #endif | |
275 | } | |
276 | } | |
277 | } | |
278 | free(freep); | |
279 | mmap_unlock(); | |
280 | } | |
281 | #else | |
282 | FILE *f; | |
283 | ||
284 | last_brk = (unsigned long)sbrk(0); | |
285 | ||
286 | f = fopen("/compat/linux/proc/self/maps", "r"); | |
287 | if (f) { | |
288 | mmap_lock(); | |
289 | ||
290 | do { | |
291 | unsigned long startaddr, endaddr; | |
292 | int n; | |
293 | ||
294 | n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); | |
295 | ||
296 | if (n == 2 && h2g_valid(startaddr)) { | |
297 | startaddr = h2g(startaddr) & TARGET_PAGE_MASK; | |
298 | ||
299 | if (h2g_valid(endaddr)) { | |
300 | endaddr = h2g(endaddr); | |
301 | } else { | |
302 | endaddr = ~0ul; | |
303 | } | |
304 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
305 | } | |
306 | } while (!feof(f)); | |
307 | ||
308 | fclose(f); | |
309 | mmap_unlock(); | |
310 | } | |
311 | #endif | |
312 | } | |
313 | #endif | |
314 | } | |
315 | ||
316 | static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) | |
317 | { | |
318 | PageDesc *pd; | |
319 | void **lp; | |
320 | int i; | |
321 | ||
322 | #if defined(CONFIG_USER_ONLY) | |
323 | /* We can't use g_malloc because it may recurse into a locked mutex. */ | |
324 | # define ALLOC(P, SIZE) \ | |
325 | do { \ | |
326 | P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \ | |
327 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \ | |
328 | } while (0) | |
329 | #else | |
330 | # define ALLOC(P, SIZE) \ | |
331 | do { P = g_malloc0(SIZE); } while (0) | |
332 | #endif | |
333 | ||
334 | /* Level 1. Always allocated. */ | |
335 | lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1)); | |
336 | ||
337 | /* Level 2..N-1. */ | |
338 | for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) { | |
339 | void **p = *lp; | |
340 | ||
341 | if (p == NULL) { | |
342 | if (!alloc) { | |
343 | return NULL; | |
344 | } | |
345 | ALLOC(p, sizeof(void *) * L2_SIZE); | |
346 | *lp = p; | |
347 | } | |
348 | ||
349 | lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1)); | |
350 | } | |
351 | ||
352 | pd = *lp; | |
353 | if (pd == NULL) { | |
354 | if (!alloc) { | |
355 | return NULL; | |
356 | } | |
357 | ALLOC(pd, sizeof(PageDesc) * L2_SIZE); | |
358 | *lp = pd; | |
359 | } | |
360 | ||
361 | #undef ALLOC | |
362 | ||
363 | return pd + (index & (L2_SIZE - 1)); | |
364 | } | |
365 | ||
366 | static inline PageDesc *page_find(tb_page_addr_t index) | |
367 | { | |
368 | return page_find_alloc(index, 0); | |
369 | } | |
370 | ||
371 | #if !defined(CONFIG_USER_ONLY) | |
372 | ||
373 | static void phys_map_node_reserve(unsigned nodes) | |
374 | { | |
375 | if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) { | |
376 | typedef PhysPageEntry Node[L2_SIZE]; | |
377 | phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16); | |
378 | phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc, | |
379 | phys_map_nodes_nb + nodes); | |
380 | phys_map_nodes = g_renew(Node, phys_map_nodes, | |
381 | phys_map_nodes_nb_alloc); | |
382 | } | |
383 | } | |
384 | ||
385 | static uint16_t phys_map_node_alloc(void) | |
386 | { | |
387 | unsigned i; | |
388 | uint16_t ret; | |
389 | ||
390 | ret = phys_map_nodes_nb++; | |
391 | assert(ret != PHYS_MAP_NODE_NIL); | |
392 | assert(ret != phys_map_nodes_nb_alloc); | |
393 | for (i = 0; i < L2_SIZE; ++i) { | |
394 | phys_map_nodes[ret][i].is_leaf = 0; | |
395 | phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL; | |
396 | } | |
397 | return ret; | |
398 | } | |
399 | ||
400 | static void phys_map_nodes_reset(void) | |
401 | { | |
402 | phys_map_nodes_nb = 0; | |
403 | } | |
404 | ||
405 | ||
406 | static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index, | |
407 | hwaddr *nb, uint16_t leaf, | |
408 | int level) | |
409 | { | |
410 | PhysPageEntry *p; | |
411 | int i; | |
412 | hwaddr step = (hwaddr)1 << (level * L2_BITS); | |
413 | ||
414 | if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) { | |
415 | lp->ptr = phys_map_node_alloc(); | |
416 | p = phys_map_nodes[lp->ptr]; | |
417 | if (level == 0) { | |
418 | for (i = 0; i < L2_SIZE; i++) { | |
419 | p[i].is_leaf = 1; | |
420 | p[i].ptr = phys_section_unassigned; | |
421 | } | |
422 | } | |
423 | } else { | |
424 | p = phys_map_nodes[lp->ptr]; | |
425 | } | |
426 | lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)]; | |
427 | ||
428 | while (*nb && lp < &p[L2_SIZE]) { | |
429 | if ((*index & (step - 1)) == 0 && *nb >= step) { | |
430 | lp->is_leaf = true; | |
431 | lp->ptr = leaf; | |
432 | *index += step; | |
433 | *nb -= step; | |
434 | } else { | |
435 | phys_page_set_level(lp, index, nb, leaf, level - 1); | |
436 | } | |
437 | ++lp; | |
438 | } | |
439 | } | |
440 | ||
441 | static void phys_page_set(AddressSpaceDispatch *d, | |
442 | hwaddr index, hwaddr nb, | |
443 | uint16_t leaf) | |
444 | { | |
445 | /* Wildly overreserve - it doesn't matter much. */ | |
446 | phys_map_node_reserve(3 * P_L2_LEVELS); | |
447 | ||
448 | phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); | |
449 | } | |
450 | ||
451 | MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index) | |
452 | { | |
453 | PhysPageEntry lp = d->phys_map; | |
454 | PhysPageEntry *p; | |
455 | int i; | |
456 | uint16_t s_index = phys_section_unassigned; | |
457 | ||
458 | for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) { | |
459 | if (lp.ptr == PHYS_MAP_NODE_NIL) { | |
460 | goto not_found; | |
461 | } | |
462 | p = phys_map_nodes[lp.ptr]; | |
463 | lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)]; | |
464 | } | |
465 | ||
466 | s_index = lp.ptr; | |
467 | not_found: | |
468 | return &phys_sections[s_index]; | |
469 | } | |
470 | ||
471 | bool memory_region_is_unassigned(MemoryRegion *mr) | |
472 | { | |
473 | return mr != &io_mem_ram && mr != &io_mem_rom | |
474 | && mr != &io_mem_notdirty && !mr->rom_device | |
475 | && mr != &io_mem_watch; | |
476 | } | |
477 | ||
478 | #define mmap_lock() do { } while(0) | |
479 | #define mmap_unlock() do { } while(0) | |
480 | #endif | |
481 | ||
482 | #if defined(CONFIG_USER_ONLY) | |
483 | /* Currently it is not recommended to allocate big chunks of data in | |
484 | user mode. It will change when a dedicated libc will be used. */ | |
485 | /* ??? 64-bit hosts ought to have no problem mmaping data outside the | |
486 | region in which the guest needs to run. Revisit this. */ | |
487 | #define USE_STATIC_CODE_GEN_BUFFER | |
488 | #endif | |
489 | ||
490 | /* ??? Should configure for this, not list operating systems here. */ | |
491 | #if (defined(__linux__) \ | |
492 | || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \ | |
493 | || defined(__DragonFly__) || defined(__OpenBSD__) \ | |
494 | || defined(__NetBSD__)) | |
495 | # define USE_MMAP | |
496 | #endif | |
497 | ||
498 | /* Minimum size of the code gen buffer. This number is randomly chosen, | |
499 | but not so small that we can't have a fair number of TB's live. */ | |
500 | #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024) | |
501 | ||
502 | /* Maximum size of the code gen buffer we'd like to use. Unless otherwise | |
503 | indicated, this is constrained by the range of direct branches on the | |
504 | host cpu, as used by the TCG implementation of goto_tb. */ | |
505 | #if defined(__x86_64__) | |
506 | # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) | |
507 | #elif defined(__sparc__) | |
508 | # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) | |
509 | #elif defined(__arm__) | |
510 | # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024) | |
511 | #elif defined(__s390x__) | |
512 | /* We have a +- 4GB range on the branches; leave some slop. */ | |
513 | # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024) | |
514 | #else | |
515 | # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) | |
516 | #endif | |
517 | ||
518 | #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024) | |
519 | ||
520 | #define DEFAULT_CODE_GEN_BUFFER_SIZE \ | |
521 | (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ | |
522 | ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) | |
523 | ||
524 | static inline size_t size_code_gen_buffer(size_t tb_size) | |
525 | { | |
526 | /* Size the buffer. */ | |
527 | if (tb_size == 0) { | |
528 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
529 | tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
530 | #else | |
531 | /* ??? Needs adjustments. */ | |
532 | /* ??? If we relax the requirement that CONFIG_USER_ONLY use the | |
533 | static buffer, we could size this on RESERVED_VA, on the text | |
534 | segment size of the executable, or continue to use the default. */ | |
535 | tb_size = (unsigned long)(ram_size / 4); | |
536 | #endif | |
537 | } | |
538 | if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { | |
539 | tb_size = MIN_CODE_GEN_BUFFER_SIZE; | |
540 | } | |
541 | if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { | |
542 | tb_size = MAX_CODE_GEN_BUFFER_SIZE; | |
543 | } | |
544 | code_gen_buffer_size = tb_size; | |
545 | return tb_size; | |
546 | } | |
547 | ||
548 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
549 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] | |
550 | __attribute__((aligned(CODE_GEN_ALIGN))); | |
551 | ||
552 | static inline void *alloc_code_gen_buffer(void) | |
553 | { | |
554 | map_exec(static_code_gen_buffer, code_gen_buffer_size); | |
555 | return static_code_gen_buffer; | |
556 | } | |
557 | #elif defined(USE_MMAP) | |
558 | static inline void *alloc_code_gen_buffer(void) | |
559 | { | |
560 | int flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
561 | uintptr_t start = 0; | |
562 | void *buf; | |
563 | ||
564 | /* Constrain the position of the buffer based on the host cpu. | |
565 | Note that these addresses are chosen in concert with the | |
566 | addresses assigned in the relevant linker script file. */ | |
567 | # if defined(__PIE__) || defined(__PIC__) | |
568 | /* Don't bother setting a preferred location if we're building | |
569 | a position-independent executable. We're more likely to get | |
570 | an address near the main executable if we let the kernel | |
571 | choose the address. */ | |
572 | # elif defined(__x86_64__) && defined(MAP_32BIT) | |
573 | /* Force the memory down into low memory with the executable. | |
574 | Leave the choice of exact location with the kernel. */ | |
575 | flags |= MAP_32BIT; | |
576 | /* Cannot expect to map more than 800MB in low memory. */ | |
577 | if (code_gen_buffer_size > 800u * 1024 * 1024) { | |
578 | code_gen_buffer_size = 800u * 1024 * 1024; | |
579 | } | |
580 | # elif defined(__sparc__) | |
581 | start = 0x40000000ul; | |
582 | # elif defined(__s390x__) | |
583 | start = 0x90000000ul; | |
584 | # endif | |
585 | ||
586 | buf = mmap((void *)start, code_gen_buffer_size, | |
587 | PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0); | |
588 | return buf == MAP_FAILED ? NULL : buf; | |
589 | } | |
590 | #else | |
591 | static inline void *alloc_code_gen_buffer(void) | |
592 | { | |
593 | void *buf = g_malloc(code_gen_buffer_size); | |
594 | if (buf) { | |
595 | map_exec(buf, code_gen_buffer_size); | |
596 | } | |
597 | return buf; | |
598 | } | |
599 | #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */ | |
600 | ||
601 | static inline void code_gen_alloc(size_t tb_size) | |
602 | { | |
603 | code_gen_buffer_size = size_code_gen_buffer(tb_size); | |
604 | code_gen_buffer = alloc_code_gen_buffer(); | |
605 | if (code_gen_buffer == NULL) { | |
606 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | |
607 | exit(1); | |
608 | } | |
609 | ||
610 | qemu_madvise(code_gen_buffer, code_gen_buffer_size, QEMU_MADV_HUGEPAGE); | |
611 | ||
612 | /* Steal room for the prologue at the end of the buffer. This ensures | |
613 | (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches | |
614 | from TB's to the prologue are going to be in range. It also means | |
615 | that we don't need to mark (additional) portions of the data segment | |
616 | as executable. */ | |
617 | code_gen_prologue = code_gen_buffer + code_gen_buffer_size - 1024; | |
618 | code_gen_buffer_size -= 1024; | |
619 | ||
620 | code_gen_buffer_max_size = code_gen_buffer_size - | |
621 | (TCG_MAX_OP_SIZE * OPC_BUF_SIZE); | |
622 | code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE; | |
623 | tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock)); | |
624 | } | |
625 | ||
626 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |
627 | (in bytes) allocated to the translation buffer. Zero means default | |
628 | size. */ | |
629 | void tcg_exec_init(unsigned long tb_size) | |
630 | { | |
631 | cpu_gen_init(); | |
632 | code_gen_alloc(tb_size); | |
633 | code_gen_ptr = code_gen_buffer; | |
634 | tcg_register_jit(code_gen_buffer, code_gen_buffer_size); | |
635 | page_init(); | |
636 | #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE) | |
637 | /* There's no guest base to take into account, so go ahead and | |
638 | initialize the prologue now. */ | |
639 | tcg_prologue_init(&tcg_ctx); | |
640 | #endif | |
641 | } | |
642 | ||
643 | bool tcg_enabled(void) | |
644 | { | |
645 | return code_gen_buffer != NULL; | |
646 | } | |
647 | ||
648 | void cpu_exec_init_all(void) | |
649 | { | |
650 | #if !defined(CONFIG_USER_ONLY) | |
651 | memory_map_init(); | |
652 | io_mem_init(); | |
653 | #endif | |
654 | } | |
655 | ||
656 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) | |
657 | ||
658 | static int cpu_common_post_load(void *opaque, int version_id) | |
659 | { | |
660 | CPUArchState *env = opaque; | |
661 | ||
662 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the | |
663 | version_id is increased. */ | |
664 | env->interrupt_request &= ~0x01; | |
665 | tlb_flush(env, 1); | |
666 | ||
667 | return 0; | |
668 | } | |
669 | ||
670 | static const VMStateDescription vmstate_cpu_common = { | |
671 | .name = "cpu_common", | |
672 | .version_id = 1, | |
673 | .minimum_version_id = 1, | |
674 | .minimum_version_id_old = 1, | |
675 | .post_load = cpu_common_post_load, | |
676 | .fields = (VMStateField []) { | |
677 | VMSTATE_UINT32(halted, CPUArchState), | |
678 | VMSTATE_UINT32(interrupt_request, CPUArchState), | |
679 | VMSTATE_END_OF_LIST() | |
680 | } | |
681 | }; | |
682 | #endif | |
683 | ||
684 | CPUArchState *qemu_get_cpu(int cpu) | |
685 | { | |
686 | CPUArchState *env = first_cpu; | |
687 | ||
688 | while (env) { | |
689 | if (env->cpu_index == cpu) | |
690 | break; | |
691 | env = env->next_cpu; | |
692 | } | |
693 | ||
694 | return env; | |
695 | } | |
696 | ||
697 | void cpu_exec_init(CPUArchState *env) | |
698 | { | |
699 | #ifndef CONFIG_USER_ONLY | |
700 | CPUState *cpu = ENV_GET_CPU(env); | |
701 | #endif | |
702 | CPUArchState **penv; | |
703 | int cpu_index; | |
704 | ||
705 | #if defined(CONFIG_USER_ONLY) | |
706 | cpu_list_lock(); | |
707 | #endif | |
708 | env->next_cpu = NULL; | |
709 | penv = &first_cpu; | |
710 | cpu_index = 0; | |
711 | while (*penv != NULL) { | |
712 | penv = &(*penv)->next_cpu; | |
713 | cpu_index++; | |
714 | } | |
715 | env->cpu_index = cpu_index; | |
716 | env->numa_node = 0; | |
717 | QTAILQ_INIT(&env->breakpoints); | |
718 | QTAILQ_INIT(&env->watchpoints); | |
719 | #ifndef CONFIG_USER_ONLY | |
720 | cpu->thread_id = qemu_get_thread_id(); | |
721 | #endif | |
722 | *penv = env; | |
723 | #if defined(CONFIG_USER_ONLY) | |
724 | cpu_list_unlock(); | |
725 | #endif | |
726 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) | |
727 | vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env); | |
728 | register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION, | |
729 | cpu_save, cpu_load, env); | |
730 | #endif | |
731 | } | |
732 | ||
733 | /* Allocate a new translation block. Flush the translation buffer if | |
734 | too many translation blocks or too much generated code. */ | |
735 | static TranslationBlock *tb_alloc(target_ulong pc) | |
736 | { | |
737 | TranslationBlock *tb; | |
738 | ||
739 | if (nb_tbs >= code_gen_max_blocks || | |
740 | (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size) | |
741 | return NULL; | |
742 | tb = &tbs[nb_tbs++]; | |
743 | tb->pc = pc; | |
744 | tb->cflags = 0; | |
745 | return tb; | |
746 | } | |
747 | ||
748 | void tb_free(TranslationBlock *tb) | |
749 | { | |
750 | /* In practice this is mostly used for single use temporary TB | |
751 | Ignore the hard cases and just back up if this TB happens to | |
752 | be the last one generated. */ | |
753 | if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) { | |
754 | code_gen_ptr = tb->tc_ptr; | |
755 | nb_tbs--; | |
756 | } | |
757 | } | |
758 | ||
759 | static inline void invalidate_page_bitmap(PageDesc *p) | |
760 | { | |
761 | if (p->code_bitmap) { | |
762 | g_free(p->code_bitmap); | |
763 | p->code_bitmap = NULL; | |
764 | } | |
765 | p->code_write_count = 0; | |
766 | } | |
767 | ||
768 | /* Set to NULL all the 'first_tb' fields in all PageDescs. */ | |
769 | ||
770 | static void page_flush_tb_1 (int level, void **lp) | |
771 | { | |
772 | int i; | |
773 | ||
774 | if (*lp == NULL) { | |
775 | return; | |
776 | } | |
777 | if (level == 0) { | |
778 | PageDesc *pd = *lp; | |
779 | for (i = 0; i < L2_SIZE; ++i) { | |
780 | pd[i].first_tb = NULL; | |
781 | invalidate_page_bitmap(pd + i); | |
782 | } | |
783 | } else { | |
784 | void **pp = *lp; | |
785 | for (i = 0; i < L2_SIZE; ++i) { | |
786 | page_flush_tb_1 (level - 1, pp + i); | |
787 | } | |
788 | } | |
789 | } | |
790 | ||
791 | static void page_flush_tb(void) | |
792 | { | |
793 | int i; | |
794 | for (i = 0; i < V_L1_SIZE; i++) { | |
795 | page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i); | |
796 | } | |
797 | } | |
798 | ||
799 | /* flush all the translation blocks */ | |
800 | /* XXX: tb_flush is currently not thread safe */ | |
801 | void tb_flush(CPUArchState *env1) | |
802 | { | |
803 | CPUArchState *env; | |
804 | #if defined(DEBUG_FLUSH) | |
805 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", | |
806 | (unsigned long)(code_gen_ptr - code_gen_buffer), | |
807 | nb_tbs, nb_tbs > 0 ? | |
808 | ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0); | |
809 | #endif | |
810 | if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size) | |
811 | cpu_abort(env1, "Internal error: code buffer overflow\n"); | |
812 | ||
813 | nb_tbs = 0; | |
814 | ||
815 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
816 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | |
817 | } | |
818 | ||
819 | memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *)); | |
820 | page_flush_tb(); | |
821 | ||
822 | code_gen_ptr = code_gen_buffer; | |
823 | /* XXX: flush processor icache at this point if cache flush is | |
824 | expensive */ | |
825 | tb_flush_count++; | |
826 | } | |
827 | ||
828 | #ifdef DEBUG_TB_CHECK | |
829 | ||
830 | static void tb_invalidate_check(target_ulong address) | |
831 | { | |
832 | TranslationBlock *tb; | |
833 | int i; | |
834 | address &= TARGET_PAGE_MASK; | |
835 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { | |
836 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
837 | if (!(address + TARGET_PAGE_SIZE <= tb->pc || | |
838 | address >= tb->pc + tb->size)) { | |
839 | printf("ERROR invalidate: address=" TARGET_FMT_lx | |
840 | " PC=%08lx size=%04x\n", | |
841 | address, (long)tb->pc, tb->size); | |
842 | } | |
843 | } | |
844 | } | |
845 | } | |
846 | ||
847 | /* verify that all the pages have correct rights for code */ | |
848 | static void tb_page_check(void) | |
849 | { | |
850 | TranslationBlock *tb; | |
851 | int i, flags1, flags2; | |
852 | ||
853 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { | |
854 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | |
855 | flags1 = page_get_flags(tb->pc); | |
856 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
857 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
858 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
859 | (long)tb->pc, tb->size, flags1, flags2); | |
860 | } | |
861 | } | |
862 | } | |
863 | } | |
864 | ||
865 | #endif | |
866 | ||
867 | /* invalidate one TB */ | |
868 | static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb, | |
869 | int next_offset) | |
870 | { | |
871 | TranslationBlock *tb1; | |
872 | for(;;) { | |
873 | tb1 = *ptb; | |
874 | if (tb1 == tb) { | |
875 | *ptb = *(TranslationBlock **)((char *)tb1 + next_offset); | |
876 | break; | |
877 | } | |
878 | ptb = (TranslationBlock **)((char *)tb1 + next_offset); | |
879 | } | |
880 | } | |
881 | ||
882 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) | |
883 | { | |
884 | TranslationBlock *tb1; | |
885 | unsigned int n1; | |
886 | ||
887 | for(;;) { | |
888 | tb1 = *ptb; | |
889 | n1 = (uintptr_t)tb1 & 3; | |
890 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |
891 | if (tb1 == tb) { | |
892 | *ptb = tb1->page_next[n1]; | |
893 | break; | |
894 | } | |
895 | ptb = &tb1->page_next[n1]; | |
896 | } | |
897 | } | |
898 | ||
899 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) | |
900 | { | |
901 | TranslationBlock *tb1, **ptb; | |
902 | unsigned int n1; | |
903 | ||
904 | ptb = &tb->jmp_next[n]; | |
905 | tb1 = *ptb; | |
906 | if (tb1) { | |
907 | /* find tb(n) in circular list */ | |
908 | for(;;) { | |
909 | tb1 = *ptb; | |
910 | n1 = (uintptr_t)tb1 & 3; | |
911 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |
912 | if (n1 == n && tb1 == tb) | |
913 | break; | |
914 | if (n1 == 2) { | |
915 | ptb = &tb1->jmp_first; | |
916 | } else { | |
917 | ptb = &tb1->jmp_next[n1]; | |
918 | } | |
919 | } | |
920 | /* now we can suppress tb(n) from the list */ | |
921 | *ptb = tb->jmp_next[n]; | |
922 | ||
923 | tb->jmp_next[n] = NULL; | |
924 | } | |
925 | } | |
926 | ||
927 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
928 | another TB */ | |
929 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
930 | { | |
931 | tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n])); | |
932 | } | |
933 | ||
934 | void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) | |
935 | { | |
936 | CPUArchState *env; | |
937 | PageDesc *p; | |
938 | unsigned int h, n1; | |
939 | tb_page_addr_t phys_pc; | |
940 | TranslationBlock *tb1, *tb2; | |
941 | ||
942 | /* remove the TB from the hash list */ | |
943 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
944 | h = tb_phys_hash_func(phys_pc); | |
945 | tb_remove(&tb_phys_hash[h], tb, | |
946 | offsetof(TranslationBlock, phys_hash_next)); | |
947 | ||
948 | /* remove the TB from the page list */ | |
949 | if (tb->page_addr[0] != page_addr) { | |
950 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
951 | tb_page_remove(&p->first_tb, tb); | |
952 | invalidate_page_bitmap(p); | |
953 | } | |
954 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
955 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
956 | tb_page_remove(&p->first_tb, tb); | |
957 | invalidate_page_bitmap(p); | |
958 | } | |
959 | ||
960 | tb_invalidated_flag = 1; | |
961 | ||
962 | /* remove the TB from the hash list */ | |
963 | h = tb_jmp_cache_hash_func(tb->pc); | |
964 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
965 | if (env->tb_jmp_cache[h] == tb) | |
966 | env->tb_jmp_cache[h] = NULL; | |
967 | } | |
968 | ||
969 | /* suppress this TB from the two jump lists */ | |
970 | tb_jmp_remove(tb, 0); | |
971 | tb_jmp_remove(tb, 1); | |
972 | ||
973 | /* suppress any remaining jumps to this TB */ | |
974 | tb1 = tb->jmp_first; | |
975 | for(;;) { | |
976 | n1 = (uintptr_t)tb1 & 3; | |
977 | if (n1 == 2) | |
978 | break; | |
979 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |
980 | tb2 = tb1->jmp_next[n1]; | |
981 | tb_reset_jump(tb1, n1); | |
982 | tb1->jmp_next[n1] = NULL; | |
983 | tb1 = tb2; | |
984 | } | |
985 | tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */ | |
986 | ||
987 | tb_phys_invalidate_count++; | |
988 | } | |
989 | ||
990 | static inline void set_bits(uint8_t *tab, int start, int len) | |
991 | { | |
992 | int end, mask, end1; | |
993 | ||
994 | end = start + len; | |
995 | tab += start >> 3; | |
996 | mask = 0xff << (start & 7); | |
997 | if ((start & ~7) == (end & ~7)) { | |
998 | if (start < end) { | |
999 | mask &= ~(0xff << (end & 7)); | |
1000 | *tab |= mask; | |
1001 | } | |
1002 | } else { | |
1003 | *tab++ |= mask; | |
1004 | start = (start + 8) & ~7; | |
1005 | end1 = end & ~7; | |
1006 | while (start < end1) { | |
1007 | *tab++ = 0xff; | |
1008 | start += 8; | |
1009 | } | |
1010 | if (start < end) { | |
1011 | mask = ~(0xff << (end & 7)); | |
1012 | *tab |= mask; | |
1013 | } | |
1014 | } | |
1015 | } | |
1016 | ||
1017 | static void build_page_bitmap(PageDesc *p) | |
1018 | { | |
1019 | int n, tb_start, tb_end; | |
1020 | TranslationBlock *tb; | |
1021 | ||
1022 | p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8); | |
1023 | ||
1024 | tb = p->first_tb; | |
1025 | while (tb != NULL) { | |
1026 | n = (uintptr_t)tb & 3; | |
1027 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |
1028 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
1029 | if (n == 0) { | |
1030 | /* NOTE: tb_end may be after the end of the page, but | |
1031 | it is not a problem */ | |
1032 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
1033 | tb_end = tb_start + tb->size; | |
1034 | if (tb_end > TARGET_PAGE_SIZE) | |
1035 | tb_end = TARGET_PAGE_SIZE; | |
1036 | } else { | |
1037 | tb_start = 0; | |
1038 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
1039 | } | |
1040 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |
1041 | tb = tb->page_next[n]; | |
1042 | } | |
1043 | } | |
1044 | ||
1045 | TranslationBlock *tb_gen_code(CPUArchState *env, | |
1046 | target_ulong pc, target_ulong cs_base, | |
1047 | int flags, int cflags) | |
1048 | { | |
1049 | TranslationBlock *tb; | |
1050 | uint8_t *tc_ptr; | |
1051 | tb_page_addr_t phys_pc, phys_page2; | |
1052 | target_ulong virt_page2; | |
1053 | int code_gen_size; | |
1054 | ||
1055 | phys_pc = get_page_addr_code(env, pc); | |
1056 | tb = tb_alloc(pc); | |
1057 | if (!tb) { | |
1058 | /* flush must be done */ | |
1059 | tb_flush(env); | |
1060 | /* cannot fail at this point */ | |
1061 | tb = tb_alloc(pc); | |
1062 | /* Don't forget to invalidate previous TB info. */ | |
1063 | tb_invalidated_flag = 1; | |
1064 | } | |
1065 | tc_ptr = code_gen_ptr; | |
1066 | tb->tc_ptr = tc_ptr; | |
1067 | tb->cs_base = cs_base; | |
1068 | tb->flags = flags; | |
1069 | tb->cflags = cflags; | |
1070 | cpu_gen_code(env, tb, &code_gen_size); | |
1071 | code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size + | |
1072 | CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); | |
1073 | ||
1074 | /* check next page if needed */ | |
1075 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; | |
1076 | phys_page2 = -1; | |
1077 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { | |
1078 | phys_page2 = get_page_addr_code(env, virt_page2); | |
1079 | } | |
1080 | tb_link_page(tb, phys_pc, phys_page2); | |
1081 | return tb; | |
1082 | } | |
1083 | ||
1084 | /* | |
1085 | * Invalidate all TBs which intersect with the target physical address range | |
1086 | * [start;end[. NOTE: start and end may refer to *different* physical pages. | |
1087 | * 'is_cpu_write_access' should be true if called from a real cpu write | |
1088 | * access: the virtual CPU will exit the current TB if code is modified inside | |
1089 | * this TB. | |
1090 | */ | |
1091 | void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end, | |
1092 | int is_cpu_write_access) | |
1093 | { | |
1094 | while (start < end) { | |
1095 | tb_invalidate_phys_page_range(start, end, is_cpu_write_access); | |
1096 | start &= TARGET_PAGE_MASK; | |
1097 | start += TARGET_PAGE_SIZE; | |
1098 | } | |
1099 | } | |
1100 | ||
1101 | /* | |
1102 | * Invalidate all TBs which intersect with the target physical address range | |
1103 | * [start;end[. NOTE: start and end must refer to the *same* physical page. | |
1104 | * 'is_cpu_write_access' should be true if called from a real cpu write | |
1105 | * access: the virtual CPU will exit the current TB if code is modified inside | |
1106 | * this TB. | |
1107 | */ | |
1108 | void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, | |
1109 | int is_cpu_write_access) | |
1110 | { | |
1111 | TranslationBlock *tb, *tb_next, *saved_tb; | |
1112 | CPUArchState *env = cpu_single_env; | |
1113 | tb_page_addr_t tb_start, tb_end; | |
1114 | PageDesc *p; | |
1115 | int n; | |
1116 | #ifdef TARGET_HAS_PRECISE_SMC | |
1117 | int current_tb_not_found = is_cpu_write_access; | |
1118 | TranslationBlock *current_tb = NULL; | |
1119 | int current_tb_modified = 0; | |
1120 | target_ulong current_pc = 0; | |
1121 | target_ulong current_cs_base = 0; | |
1122 | int current_flags = 0; | |
1123 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
1124 | ||
1125 | p = page_find(start >> TARGET_PAGE_BITS); | |
1126 | if (!p) | |
1127 | return; | |
1128 | if (!p->code_bitmap && | |
1129 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && | |
1130 | is_cpu_write_access) { | |
1131 | /* build code bitmap */ | |
1132 | build_page_bitmap(p); | |
1133 | } | |
1134 | ||
1135 | /* we remove all the TBs in the range [start, end[ */ | |
1136 | /* XXX: see if in some cases it could be faster to invalidate all the code */ | |
1137 | tb = p->first_tb; | |
1138 | while (tb != NULL) { | |
1139 | n = (uintptr_t)tb & 3; | |
1140 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |
1141 | tb_next = tb->page_next[n]; | |
1142 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
1143 | if (n == 0) { | |
1144 | /* NOTE: tb_end may be after the end of the page, but | |
1145 | it is not a problem */ | |
1146 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
1147 | tb_end = tb_start + tb->size; | |
1148 | } else { | |
1149 | tb_start = tb->page_addr[1]; | |
1150 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
1151 | } | |
1152 | if (!(tb_end <= start || tb_start >= end)) { | |
1153 | #ifdef TARGET_HAS_PRECISE_SMC | |
1154 | if (current_tb_not_found) { | |
1155 | current_tb_not_found = 0; | |
1156 | current_tb = NULL; | |
1157 | if (env->mem_io_pc) { | |
1158 | /* now we have a real cpu fault */ | |
1159 | current_tb = tb_find_pc(env->mem_io_pc); | |
1160 | } | |
1161 | } | |
1162 | if (current_tb == tb && | |
1163 | (current_tb->cflags & CF_COUNT_MASK) != 1) { | |
1164 | /* If we are modifying the current TB, we must stop | |
1165 | its execution. We could be more precise by checking | |
1166 | that the modification is after the current PC, but it | |
1167 | would require a specialized function to partially | |
1168 | restore the CPU state */ | |
1169 | ||
1170 | current_tb_modified = 1; | |
1171 | cpu_restore_state(current_tb, env, env->mem_io_pc); | |
1172 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, | |
1173 | ¤t_flags); | |
1174 | } | |
1175 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
1176 | /* we need to do that to handle the case where a signal | |
1177 | occurs while doing tb_phys_invalidate() */ | |
1178 | saved_tb = NULL; | |
1179 | if (env) { | |
1180 | saved_tb = env->current_tb; | |
1181 | env->current_tb = NULL; | |
1182 | } | |
1183 | tb_phys_invalidate(tb, -1); | |
1184 | if (env) { | |
1185 | env->current_tb = saved_tb; | |
1186 | if (env->interrupt_request && env->current_tb) | |
1187 | cpu_interrupt(env, env->interrupt_request); | |
1188 | } | |
1189 | } | |
1190 | tb = tb_next; | |
1191 | } | |
1192 | #if !defined(CONFIG_USER_ONLY) | |
1193 | /* if no code remaining, no need to continue to use slow writes */ | |
1194 | if (!p->first_tb) { | |
1195 | invalidate_page_bitmap(p); | |
1196 | if (is_cpu_write_access) { | |
1197 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); | |
1198 | } | |
1199 | } | |
1200 | #endif | |
1201 | #ifdef TARGET_HAS_PRECISE_SMC | |
1202 | if (current_tb_modified) { | |
1203 | /* we generate a block containing just the instruction | |
1204 | modifying the memory. It will ensure that it cannot modify | |
1205 | itself */ | |
1206 | env->current_tb = NULL; | |
1207 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); | |
1208 | cpu_resume_from_signal(env, NULL); | |
1209 | } | |
1210 | #endif | |
1211 | } | |
1212 | ||
1213 | /* len must be <= 8 and start must be a multiple of len */ | |
1214 | static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len) | |
1215 | { | |
1216 | PageDesc *p; | |
1217 | int offset, b; | |
1218 | #if 0 | |
1219 | if (1) { | |
1220 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", | |
1221 | cpu_single_env->mem_io_vaddr, len, | |
1222 | cpu_single_env->eip, | |
1223 | cpu_single_env->eip + | |
1224 | (intptr_t)cpu_single_env->segs[R_CS].base); | |
1225 | } | |
1226 | #endif | |
1227 | p = page_find(start >> TARGET_PAGE_BITS); | |
1228 | if (!p) | |
1229 | return; | |
1230 | if (p->code_bitmap) { | |
1231 | offset = start & ~TARGET_PAGE_MASK; | |
1232 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |
1233 | if (b & ((1 << len) - 1)) | |
1234 | goto do_invalidate; | |
1235 | } else { | |
1236 | do_invalidate: | |
1237 | tb_invalidate_phys_page_range(start, start + len, 1); | |
1238 | } | |
1239 | } | |
1240 | ||
1241 | #if !defined(CONFIG_SOFTMMU) | |
1242 | static void tb_invalidate_phys_page(tb_page_addr_t addr, | |
1243 | uintptr_t pc, void *puc) | |
1244 | { | |
1245 | TranslationBlock *tb; | |
1246 | PageDesc *p; | |
1247 | int n; | |
1248 | #ifdef TARGET_HAS_PRECISE_SMC | |
1249 | TranslationBlock *current_tb = NULL; | |
1250 | CPUArchState *env = cpu_single_env; | |
1251 | int current_tb_modified = 0; | |
1252 | target_ulong current_pc = 0; | |
1253 | target_ulong current_cs_base = 0; | |
1254 | int current_flags = 0; | |
1255 | #endif | |
1256 | ||
1257 | addr &= TARGET_PAGE_MASK; | |
1258 | p = page_find(addr >> TARGET_PAGE_BITS); | |
1259 | if (!p) | |
1260 | return; | |
1261 | tb = p->first_tb; | |
1262 | #ifdef TARGET_HAS_PRECISE_SMC | |
1263 | if (tb && pc != 0) { | |
1264 | current_tb = tb_find_pc(pc); | |
1265 | } | |
1266 | #endif | |
1267 | while (tb != NULL) { | |
1268 | n = (uintptr_t)tb & 3; | |
1269 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |
1270 | #ifdef TARGET_HAS_PRECISE_SMC | |
1271 | if (current_tb == tb && | |
1272 | (current_tb->cflags & CF_COUNT_MASK) != 1) { | |
1273 | /* If we are modifying the current TB, we must stop | |
1274 | its execution. We could be more precise by checking | |
1275 | that the modification is after the current PC, but it | |
1276 | would require a specialized function to partially | |
1277 | restore the CPU state */ | |
1278 | ||
1279 | current_tb_modified = 1; | |
1280 | cpu_restore_state(current_tb, env, pc); | |
1281 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, | |
1282 | ¤t_flags); | |
1283 | } | |
1284 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
1285 | tb_phys_invalidate(tb, addr); | |
1286 | tb = tb->page_next[n]; | |
1287 | } | |
1288 | p->first_tb = NULL; | |
1289 | #ifdef TARGET_HAS_PRECISE_SMC | |
1290 | if (current_tb_modified) { | |
1291 | /* we generate a block containing just the instruction | |
1292 | modifying the memory. It will ensure that it cannot modify | |
1293 | itself */ | |
1294 | env->current_tb = NULL; | |
1295 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); | |
1296 | cpu_resume_from_signal(env, puc); | |
1297 | } | |
1298 | #endif | |
1299 | } | |
1300 | #endif | |
1301 | ||
1302 | /* add the tb in the target page and protect it if necessary */ | |
1303 | static inline void tb_alloc_page(TranslationBlock *tb, | |
1304 | unsigned int n, tb_page_addr_t page_addr) | |
1305 | { | |
1306 | PageDesc *p; | |
1307 | #ifndef CONFIG_USER_ONLY | |
1308 | bool page_already_protected; | |
1309 | #endif | |
1310 | ||
1311 | tb->page_addr[n] = page_addr; | |
1312 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1); | |
1313 | tb->page_next[n] = p->first_tb; | |
1314 | #ifndef CONFIG_USER_ONLY | |
1315 | page_already_protected = p->first_tb != NULL; | |
1316 | #endif | |
1317 | p->first_tb = (TranslationBlock *)((uintptr_t)tb | n); | |
1318 | invalidate_page_bitmap(p); | |
1319 | ||
1320 | #if defined(TARGET_HAS_SMC) || 1 | |
1321 | ||
1322 | #if defined(CONFIG_USER_ONLY) | |
1323 | if (p->flags & PAGE_WRITE) { | |
1324 | target_ulong addr; | |
1325 | PageDesc *p2; | |
1326 | int prot; | |
1327 | ||
1328 | /* force the host page as non writable (writes will have a | |
1329 | page fault + mprotect overhead) */ | |
1330 | page_addr &= qemu_host_page_mask; | |
1331 | prot = 0; | |
1332 | for(addr = page_addr; addr < page_addr + qemu_host_page_size; | |
1333 | addr += TARGET_PAGE_SIZE) { | |
1334 | ||
1335 | p2 = page_find (addr >> TARGET_PAGE_BITS); | |
1336 | if (!p2) | |
1337 | continue; | |
1338 | prot |= p2->flags; | |
1339 | p2->flags &= ~PAGE_WRITE; | |
1340 | } | |
1341 | mprotect(g2h(page_addr), qemu_host_page_size, | |
1342 | (prot & PAGE_BITS) & ~PAGE_WRITE); | |
1343 | #ifdef DEBUG_TB_INVALIDATE | |
1344 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", | |
1345 | page_addr); | |
1346 | #endif | |
1347 | } | |
1348 | #else | |
1349 | /* if some code is already present, then the pages are already | |
1350 | protected. So we handle the case where only the first TB is | |
1351 | allocated in a physical page */ | |
1352 | if (!page_already_protected) { | |
1353 | tlb_protect_code(page_addr); | |
1354 | } | |
1355 | #endif | |
1356 | ||
1357 | #endif /* TARGET_HAS_SMC */ | |
1358 | } | |
1359 | ||
1360 | /* add a new TB and link it to the physical page tables. phys_page2 is | |
1361 | (-1) to indicate that only one page contains the TB. */ | |
1362 | static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, | |
1363 | tb_page_addr_t phys_page2) | |
1364 | { | |
1365 | unsigned int h; | |
1366 | TranslationBlock **ptb; | |
1367 | ||
1368 | /* Grab the mmap lock to stop another thread invalidating this TB | |
1369 | before we are done. */ | |
1370 | mmap_lock(); | |
1371 | /* add in the physical hash table */ | |
1372 | h = tb_phys_hash_func(phys_pc); | |
1373 | ptb = &tb_phys_hash[h]; | |
1374 | tb->phys_hash_next = *ptb; | |
1375 | *ptb = tb; | |
1376 | ||
1377 | /* add in the page list */ | |
1378 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); | |
1379 | if (phys_page2 != -1) | |
1380 | tb_alloc_page(tb, 1, phys_page2); | |
1381 | else | |
1382 | tb->page_addr[1] = -1; | |
1383 | ||
1384 | tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); | |
1385 | tb->jmp_next[0] = NULL; | |
1386 | tb->jmp_next[1] = NULL; | |
1387 | ||
1388 | /* init original jump addresses */ | |
1389 | if (tb->tb_next_offset[0] != 0xffff) | |
1390 | tb_reset_jump(tb, 0); | |
1391 | if (tb->tb_next_offset[1] != 0xffff) | |
1392 | tb_reset_jump(tb, 1); | |
1393 | ||
1394 | #ifdef DEBUG_TB_CHECK | |
1395 | tb_page_check(); | |
1396 | #endif | |
1397 | mmap_unlock(); | |
1398 | } | |
1399 | ||
1400 | #if defined(CONFIG_QEMU_LDST_OPTIMIZATION) && defined(CONFIG_SOFTMMU) | |
1401 | /* check whether the given addr is in TCG generated code buffer or not */ | |
1402 | bool is_tcg_gen_code(uintptr_t tc_ptr) | |
1403 | { | |
1404 | /* This can be called during code generation, code_gen_buffer_max_size | |
1405 | is used instead of code_gen_ptr for upper boundary checking */ | |
1406 | return (tc_ptr >= (uintptr_t)code_gen_buffer && | |
1407 | tc_ptr < (uintptr_t)(code_gen_buffer + code_gen_buffer_max_size)); | |
1408 | } | |
1409 | #endif | |
1410 | ||
1411 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < | |
1412 | tb[1].tc_ptr. Return NULL if not found */ | |
1413 | TranslationBlock *tb_find_pc(uintptr_t tc_ptr) | |
1414 | { | |
1415 | int m_min, m_max, m; | |
1416 | uintptr_t v; | |
1417 | TranslationBlock *tb; | |
1418 | ||
1419 | if (nb_tbs <= 0) | |
1420 | return NULL; | |
1421 | if (tc_ptr < (uintptr_t)code_gen_buffer || | |
1422 | tc_ptr >= (uintptr_t)code_gen_ptr) { | |
1423 | return NULL; | |
1424 | } | |
1425 | /* binary search (cf Knuth) */ | |
1426 | m_min = 0; | |
1427 | m_max = nb_tbs - 1; | |
1428 | while (m_min <= m_max) { | |
1429 | m = (m_min + m_max) >> 1; | |
1430 | tb = &tbs[m]; | |
1431 | v = (uintptr_t)tb->tc_ptr; | |
1432 | if (v == tc_ptr) | |
1433 | return tb; | |
1434 | else if (tc_ptr < v) { | |
1435 | m_max = m - 1; | |
1436 | } else { | |
1437 | m_min = m + 1; | |
1438 | } | |
1439 | } | |
1440 | return &tbs[m_max]; | |
1441 | } | |
1442 | ||
1443 | static void tb_reset_jump_recursive(TranslationBlock *tb); | |
1444 | ||
1445 | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n) | |
1446 | { | |
1447 | TranslationBlock *tb1, *tb_next, **ptb; | |
1448 | unsigned int n1; | |
1449 | ||
1450 | tb1 = tb->jmp_next[n]; | |
1451 | if (tb1 != NULL) { | |
1452 | /* find head of list */ | |
1453 | for(;;) { | |
1454 | n1 = (uintptr_t)tb1 & 3; | |
1455 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |
1456 | if (n1 == 2) | |
1457 | break; | |
1458 | tb1 = tb1->jmp_next[n1]; | |
1459 | } | |
1460 | /* we are now sure now that tb jumps to tb1 */ | |
1461 | tb_next = tb1; | |
1462 | ||
1463 | /* remove tb from the jmp_first list */ | |
1464 | ptb = &tb_next->jmp_first; | |
1465 | for(;;) { | |
1466 | tb1 = *ptb; | |
1467 | n1 = (uintptr_t)tb1 & 3; | |
1468 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |
1469 | if (n1 == n && tb1 == tb) | |
1470 | break; | |
1471 | ptb = &tb1->jmp_next[n1]; | |
1472 | } | |
1473 | *ptb = tb->jmp_next[n]; | |
1474 | tb->jmp_next[n] = NULL; | |
1475 | ||
1476 | /* suppress the jump to next tb in generated code */ | |
1477 | tb_reset_jump(tb, n); | |
1478 | ||
1479 | /* suppress jumps in the tb on which we could have jumped */ | |
1480 | tb_reset_jump_recursive(tb_next); | |
1481 | } | |
1482 | } | |
1483 | ||
1484 | static void tb_reset_jump_recursive(TranslationBlock *tb) | |
1485 | { | |
1486 | tb_reset_jump_recursive2(tb, 0); | |
1487 | tb_reset_jump_recursive2(tb, 1); | |
1488 | } | |
1489 | ||
1490 | #if defined(TARGET_HAS_ICE) | |
1491 | #if defined(CONFIG_USER_ONLY) | |
1492 | static void breakpoint_invalidate(CPUArchState *env, target_ulong pc) | |
1493 | { | |
1494 | tb_invalidate_phys_page_range(pc, pc + 1, 0); | |
1495 | } | |
1496 | #else | |
1497 | void tb_invalidate_phys_addr(hwaddr addr) | |
1498 | { | |
1499 | ram_addr_t ram_addr; | |
1500 | MemoryRegionSection *section; | |
1501 | ||
1502 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
1503 | if (!(memory_region_is_ram(section->mr) | |
1504 | || (section->mr->rom_device && section->mr->readable))) { | |
1505 | return; | |
1506 | } | |
1507 | ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
1508 | + memory_region_section_addr(section, addr); | |
1509 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); | |
1510 | } | |
1511 | ||
1512 | static void breakpoint_invalidate(CPUArchState *env, target_ulong pc) | |
1513 | { | |
1514 | tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) | | |
1515 | (pc & ~TARGET_PAGE_MASK)); | |
1516 | } | |
1517 | #endif | |
1518 | #endif /* TARGET_HAS_ICE */ | |
1519 | ||
1520 | #if defined(CONFIG_USER_ONLY) | |
1521 | void cpu_watchpoint_remove_all(CPUArchState *env, int mask) | |
1522 | ||
1523 | { | |
1524 | } | |
1525 | ||
1526 | int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len, | |
1527 | int flags, CPUWatchpoint **watchpoint) | |
1528 | { | |
1529 | return -ENOSYS; | |
1530 | } | |
1531 | #else | |
1532 | /* Add a watchpoint. */ | |
1533 | int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len, | |
1534 | int flags, CPUWatchpoint **watchpoint) | |
1535 | { | |
1536 | target_ulong len_mask = ~(len - 1); | |
1537 | CPUWatchpoint *wp; | |
1538 | ||
1539 | /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */ | |
1540 | if ((len & (len - 1)) || (addr & ~len_mask) || | |
1541 | len == 0 || len > TARGET_PAGE_SIZE) { | |
1542 | fprintf(stderr, "qemu: tried to set invalid watchpoint at " | |
1543 | TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len); | |
1544 | return -EINVAL; | |
1545 | } | |
1546 | wp = g_malloc(sizeof(*wp)); | |
1547 | ||
1548 | wp->vaddr = addr; | |
1549 | wp->len_mask = len_mask; | |
1550 | wp->flags = flags; | |
1551 | ||
1552 | /* keep all GDB-injected watchpoints in front */ | |
1553 | if (flags & BP_GDB) | |
1554 | QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry); | |
1555 | else | |
1556 | QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry); | |
1557 | ||
1558 | tlb_flush_page(env, addr); | |
1559 | ||
1560 | if (watchpoint) | |
1561 | *watchpoint = wp; | |
1562 | return 0; | |
1563 | } | |
1564 | ||
1565 | /* Remove a specific watchpoint. */ | |
1566 | int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len, | |
1567 | int flags) | |
1568 | { | |
1569 | target_ulong len_mask = ~(len - 1); | |
1570 | CPUWatchpoint *wp; | |
1571 | ||
1572 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
1573 | if (addr == wp->vaddr && len_mask == wp->len_mask | |
1574 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { | |
1575 | cpu_watchpoint_remove_by_ref(env, wp); | |
1576 | return 0; | |
1577 | } | |
1578 | } | |
1579 | return -ENOENT; | |
1580 | } | |
1581 | ||
1582 | /* Remove a specific watchpoint by reference. */ | |
1583 | void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint) | |
1584 | { | |
1585 | QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry); | |
1586 | ||
1587 | tlb_flush_page(env, watchpoint->vaddr); | |
1588 | ||
1589 | g_free(watchpoint); | |
1590 | } | |
1591 | ||
1592 | /* Remove all matching watchpoints. */ | |
1593 | void cpu_watchpoint_remove_all(CPUArchState *env, int mask) | |
1594 | { | |
1595 | CPUWatchpoint *wp, *next; | |
1596 | ||
1597 | QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) { | |
1598 | if (wp->flags & mask) | |
1599 | cpu_watchpoint_remove_by_ref(env, wp); | |
1600 | } | |
1601 | } | |
1602 | #endif | |
1603 | ||
1604 | /* Add a breakpoint. */ | |
1605 | int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags, | |
1606 | CPUBreakpoint **breakpoint) | |
1607 | { | |
1608 | #if defined(TARGET_HAS_ICE) | |
1609 | CPUBreakpoint *bp; | |
1610 | ||
1611 | bp = g_malloc(sizeof(*bp)); | |
1612 | ||
1613 | bp->pc = pc; | |
1614 | bp->flags = flags; | |
1615 | ||
1616 | /* keep all GDB-injected breakpoints in front */ | |
1617 | if (flags & BP_GDB) | |
1618 | QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry); | |
1619 | else | |
1620 | QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry); | |
1621 | ||
1622 | breakpoint_invalidate(env, pc); | |
1623 | ||
1624 | if (breakpoint) | |
1625 | *breakpoint = bp; | |
1626 | return 0; | |
1627 | #else | |
1628 | return -ENOSYS; | |
1629 | #endif | |
1630 | } | |
1631 | ||
1632 | /* Remove a specific breakpoint. */ | |
1633 | int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags) | |
1634 | { | |
1635 | #if defined(TARGET_HAS_ICE) | |
1636 | CPUBreakpoint *bp; | |
1637 | ||
1638 | QTAILQ_FOREACH(bp, &env->breakpoints, entry) { | |
1639 | if (bp->pc == pc && bp->flags == flags) { | |
1640 | cpu_breakpoint_remove_by_ref(env, bp); | |
1641 | return 0; | |
1642 | } | |
1643 | } | |
1644 | return -ENOENT; | |
1645 | #else | |
1646 | return -ENOSYS; | |
1647 | #endif | |
1648 | } | |
1649 | ||
1650 | /* Remove a specific breakpoint by reference. */ | |
1651 | void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint) | |
1652 | { | |
1653 | #if defined(TARGET_HAS_ICE) | |
1654 | QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry); | |
1655 | ||
1656 | breakpoint_invalidate(env, breakpoint->pc); | |
1657 | ||
1658 | g_free(breakpoint); | |
1659 | #endif | |
1660 | } | |
1661 | ||
1662 | /* Remove all matching breakpoints. */ | |
1663 | void cpu_breakpoint_remove_all(CPUArchState *env, int mask) | |
1664 | { | |
1665 | #if defined(TARGET_HAS_ICE) | |
1666 | CPUBreakpoint *bp, *next; | |
1667 | ||
1668 | QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) { | |
1669 | if (bp->flags & mask) | |
1670 | cpu_breakpoint_remove_by_ref(env, bp); | |
1671 | } | |
1672 | #endif | |
1673 | } | |
1674 | ||
1675 | /* enable or disable single step mode. EXCP_DEBUG is returned by the | |
1676 | CPU loop after each instruction */ | |
1677 | void cpu_single_step(CPUArchState *env, int enabled) | |
1678 | { | |
1679 | #if defined(TARGET_HAS_ICE) | |
1680 | if (env->singlestep_enabled != enabled) { | |
1681 | env->singlestep_enabled = enabled; | |
1682 | if (kvm_enabled()) | |
1683 | kvm_update_guest_debug(env, 0); | |
1684 | else { | |
1685 | /* must flush all the translated code to avoid inconsistencies */ | |
1686 | /* XXX: only flush what is necessary */ | |
1687 | tb_flush(env); | |
1688 | } | |
1689 | } | |
1690 | #endif | |
1691 | } | |
1692 | ||
1693 | static void cpu_unlink_tb(CPUArchState *env) | |
1694 | { | |
1695 | /* FIXME: TB unchaining isn't SMP safe. For now just ignore the | |
1696 | problem and hope the cpu will stop of its own accord. For userspace | |
1697 | emulation this often isn't actually as bad as it sounds. Often | |
1698 | signals are used primarily to interrupt blocking syscalls. */ | |
1699 | TranslationBlock *tb; | |
1700 | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED; | |
1701 | ||
1702 | spin_lock(&interrupt_lock); | |
1703 | tb = env->current_tb; | |
1704 | /* if the cpu is currently executing code, we must unlink it and | |
1705 | all the potentially executing TB */ | |
1706 | if (tb) { | |
1707 | env->current_tb = NULL; | |
1708 | tb_reset_jump_recursive(tb); | |
1709 | } | |
1710 | spin_unlock(&interrupt_lock); | |
1711 | } | |
1712 | ||
1713 | #ifndef CONFIG_USER_ONLY | |
1714 | /* mask must never be zero, except for A20 change call */ | |
1715 | static void tcg_handle_interrupt(CPUArchState *env, int mask) | |
1716 | { | |
1717 | CPUState *cpu = ENV_GET_CPU(env); | |
1718 | int old_mask; | |
1719 | ||
1720 | old_mask = env->interrupt_request; | |
1721 | env->interrupt_request |= mask; | |
1722 | ||
1723 | /* | |
1724 | * If called from iothread context, wake the target cpu in | |
1725 | * case its halted. | |
1726 | */ | |
1727 | if (!qemu_cpu_is_self(cpu)) { | |
1728 | qemu_cpu_kick(cpu); | |
1729 | return; | |
1730 | } | |
1731 | ||
1732 | if (use_icount) { | |
1733 | env->icount_decr.u16.high = 0xffff; | |
1734 | if (!can_do_io(env) | |
1735 | && (mask & ~old_mask) != 0) { | |
1736 | cpu_abort(env, "Raised interrupt while not in I/O function"); | |
1737 | } | |
1738 | } else { | |
1739 | cpu_unlink_tb(env); | |
1740 | } | |
1741 | } | |
1742 | ||
1743 | CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt; | |
1744 | ||
1745 | #else /* CONFIG_USER_ONLY */ | |
1746 | ||
1747 | void cpu_interrupt(CPUArchState *env, int mask) | |
1748 | { | |
1749 | env->interrupt_request |= mask; | |
1750 | cpu_unlink_tb(env); | |
1751 | } | |
1752 | #endif /* CONFIG_USER_ONLY */ | |
1753 | ||
1754 | void cpu_reset_interrupt(CPUArchState *env, int mask) | |
1755 | { | |
1756 | env->interrupt_request &= ~mask; | |
1757 | } | |
1758 | ||
1759 | void cpu_exit(CPUArchState *env) | |
1760 | { | |
1761 | env->exit_request = 1; | |
1762 | cpu_unlink_tb(env); | |
1763 | } | |
1764 | ||
1765 | void cpu_abort(CPUArchState *env, const char *fmt, ...) | |
1766 | { | |
1767 | va_list ap; | |
1768 | va_list ap2; | |
1769 | ||
1770 | va_start(ap, fmt); | |
1771 | va_copy(ap2, ap); | |
1772 | fprintf(stderr, "qemu: fatal: "); | |
1773 | vfprintf(stderr, fmt, ap); | |
1774 | fprintf(stderr, "\n"); | |
1775 | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); | |
1776 | if (qemu_log_enabled()) { | |
1777 | qemu_log("qemu: fatal: "); | |
1778 | qemu_log_vprintf(fmt, ap2); | |
1779 | qemu_log("\n"); | |
1780 | log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP); | |
1781 | qemu_log_flush(); | |
1782 | qemu_log_close(); | |
1783 | } | |
1784 | va_end(ap2); | |
1785 | va_end(ap); | |
1786 | #if defined(CONFIG_USER_ONLY) | |
1787 | { | |
1788 | struct sigaction act; | |
1789 | sigfillset(&act.sa_mask); | |
1790 | act.sa_handler = SIG_DFL; | |
1791 | sigaction(SIGABRT, &act, NULL); | |
1792 | } | |
1793 | #endif | |
1794 | abort(); | |
1795 | } | |
1796 | ||
1797 | CPUArchState *cpu_copy(CPUArchState *env) | |
1798 | { | |
1799 | CPUArchState *new_env = cpu_init(env->cpu_model_str); | |
1800 | CPUArchState *next_cpu = new_env->next_cpu; | |
1801 | int cpu_index = new_env->cpu_index; | |
1802 | #if defined(TARGET_HAS_ICE) | |
1803 | CPUBreakpoint *bp; | |
1804 | CPUWatchpoint *wp; | |
1805 | #endif | |
1806 | ||
1807 | memcpy(new_env, env, sizeof(CPUArchState)); | |
1808 | ||
1809 | /* Preserve chaining and index. */ | |
1810 | new_env->next_cpu = next_cpu; | |
1811 | new_env->cpu_index = cpu_index; | |
1812 | ||
1813 | /* Clone all break/watchpoints. | |
1814 | Note: Once we support ptrace with hw-debug register access, make sure | |
1815 | BP_CPU break/watchpoints are handled correctly on clone. */ | |
1816 | QTAILQ_INIT(&env->breakpoints); | |
1817 | QTAILQ_INIT(&env->watchpoints); | |
1818 | #if defined(TARGET_HAS_ICE) | |
1819 | QTAILQ_FOREACH(bp, &env->breakpoints, entry) { | |
1820 | cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL); | |
1821 | } | |
1822 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
1823 | cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1, | |
1824 | wp->flags, NULL); | |
1825 | } | |
1826 | #endif | |
1827 | ||
1828 | return new_env; | |
1829 | } | |
1830 | ||
1831 | #if !defined(CONFIG_USER_ONLY) | |
1832 | void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr) | |
1833 | { | |
1834 | unsigned int i; | |
1835 | ||
1836 | /* Discard jump cache entries for any tb which might potentially | |
1837 | overlap the flushed page. */ | |
1838 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
1839 | memset (&env->tb_jmp_cache[i], 0, | |
1840 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1841 | ||
1842 | i = tb_jmp_cache_hash_page(addr); | |
1843 | memset (&env->tb_jmp_cache[i], 0, | |
1844 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | |
1845 | } | |
1846 | ||
1847 | static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end, | |
1848 | uintptr_t length) | |
1849 | { | |
1850 | uintptr_t start1; | |
1851 | ||
1852 | /* we modify the TLB cache so that the dirty bit will be set again | |
1853 | when accessing the range */ | |
1854 | start1 = (uintptr_t)qemu_safe_ram_ptr(start); | |
1855 | /* Check that we don't span multiple blocks - this breaks the | |
1856 | address comparisons below. */ | |
1857 | if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1 | |
1858 | != (end - 1) - start) { | |
1859 | abort(); | |
1860 | } | |
1861 | cpu_tlb_reset_dirty_all(start1, length); | |
1862 | ||
1863 | } | |
1864 | ||
1865 | /* Note: start and end must be within the same ram block. */ | |
1866 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, | |
1867 | int dirty_flags) | |
1868 | { | |
1869 | uintptr_t length; | |
1870 | ||
1871 | start &= TARGET_PAGE_MASK; | |
1872 | end = TARGET_PAGE_ALIGN(end); | |
1873 | ||
1874 | length = end - start; | |
1875 | if (length == 0) | |
1876 | return; | |
1877 | cpu_physical_memory_mask_dirty_range(start, length, dirty_flags); | |
1878 | ||
1879 | if (tcg_enabled()) { | |
1880 | tlb_reset_dirty_range_all(start, end, length); | |
1881 | } | |
1882 | } | |
1883 | ||
1884 | static int cpu_physical_memory_set_dirty_tracking(int enable) | |
1885 | { | |
1886 | int ret = 0; | |
1887 | in_migration = enable; | |
1888 | return ret; | |
1889 | } | |
1890 | ||
1891 | hwaddr memory_region_section_get_iotlb(CPUArchState *env, | |
1892 | MemoryRegionSection *section, | |
1893 | target_ulong vaddr, | |
1894 | hwaddr paddr, | |
1895 | int prot, | |
1896 | target_ulong *address) | |
1897 | { | |
1898 | hwaddr iotlb; | |
1899 | CPUWatchpoint *wp; | |
1900 | ||
1901 | if (memory_region_is_ram(section->mr)) { | |
1902 | /* Normal RAM. */ | |
1903 | iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
1904 | + memory_region_section_addr(section, paddr); | |
1905 | if (!section->readonly) { | |
1906 | iotlb |= phys_section_notdirty; | |
1907 | } else { | |
1908 | iotlb |= phys_section_rom; | |
1909 | } | |
1910 | } else { | |
1911 | /* IO handlers are currently passed a physical address. | |
1912 | It would be nice to pass an offset from the base address | |
1913 | of that region. This would avoid having to special case RAM, | |
1914 | and avoid full address decoding in every device. | |
1915 | We can't use the high bits of pd for this because | |
1916 | IO_MEM_ROMD uses these as a ram address. */ | |
1917 | iotlb = section - phys_sections; | |
1918 | iotlb += memory_region_section_addr(section, paddr); | |
1919 | } | |
1920 | ||
1921 | /* Make accesses to pages with watchpoints go via the | |
1922 | watchpoint trap routines. */ | |
1923 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
1924 | if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) { | |
1925 | /* Avoid trapping reads of pages with a write breakpoint. */ | |
1926 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | |
1927 | iotlb = phys_section_watch + paddr; | |
1928 | *address |= TLB_MMIO; | |
1929 | break; | |
1930 | } | |
1931 | } | |
1932 | } | |
1933 | ||
1934 | return iotlb; | |
1935 | } | |
1936 | ||
1937 | #else | |
1938 | /* | |
1939 | * Walks guest process memory "regions" one by one | |
1940 | * and calls callback function 'fn' for each region. | |
1941 | */ | |
1942 | ||
1943 | struct walk_memory_regions_data | |
1944 | { | |
1945 | walk_memory_regions_fn fn; | |
1946 | void *priv; | |
1947 | uintptr_t start; | |
1948 | int prot; | |
1949 | }; | |
1950 | ||
1951 | static int walk_memory_regions_end(struct walk_memory_regions_data *data, | |
1952 | abi_ulong end, int new_prot) | |
1953 | { | |
1954 | if (data->start != -1ul) { | |
1955 | int rc = data->fn(data->priv, data->start, end, data->prot); | |
1956 | if (rc != 0) { | |
1957 | return rc; | |
1958 | } | |
1959 | } | |
1960 | ||
1961 | data->start = (new_prot ? end : -1ul); | |
1962 | data->prot = new_prot; | |
1963 | ||
1964 | return 0; | |
1965 | } | |
1966 | ||
1967 | static int walk_memory_regions_1(struct walk_memory_regions_data *data, | |
1968 | abi_ulong base, int level, void **lp) | |
1969 | { | |
1970 | abi_ulong pa; | |
1971 | int i, rc; | |
1972 | ||
1973 | if (*lp == NULL) { | |
1974 | return walk_memory_regions_end(data, base, 0); | |
1975 | } | |
1976 | ||
1977 | if (level == 0) { | |
1978 | PageDesc *pd = *lp; | |
1979 | for (i = 0; i < L2_SIZE; ++i) { | |
1980 | int prot = pd[i].flags; | |
1981 | ||
1982 | pa = base | (i << TARGET_PAGE_BITS); | |
1983 | if (prot != data->prot) { | |
1984 | rc = walk_memory_regions_end(data, pa, prot); | |
1985 | if (rc != 0) { | |
1986 | return rc; | |
1987 | } | |
1988 | } | |
1989 | } | |
1990 | } else { | |
1991 | void **pp = *lp; | |
1992 | for (i = 0; i < L2_SIZE; ++i) { | |
1993 | pa = base | ((abi_ulong)i << | |
1994 | (TARGET_PAGE_BITS + L2_BITS * level)); | |
1995 | rc = walk_memory_regions_1(data, pa, level - 1, pp + i); | |
1996 | if (rc != 0) { | |
1997 | return rc; | |
1998 | } | |
1999 | } | |
2000 | } | |
2001 | ||
2002 | return 0; | |
2003 | } | |
2004 | ||
2005 | int walk_memory_regions(void *priv, walk_memory_regions_fn fn) | |
2006 | { | |
2007 | struct walk_memory_regions_data data; | |
2008 | uintptr_t i; | |
2009 | ||
2010 | data.fn = fn; | |
2011 | data.priv = priv; | |
2012 | data.start = -1ul; | |
2013 | data.prot = 0; | |
2014 | ||
2015 | for (i = 0; i < V_L1_SIZE; i++) { | |
2016 | int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT, | |
2017 | V_L1_SHIFT / L2_BITS - 1, l1_map + i); | |
2018 | if (rc != 0) { | |
2019 | return rc; | |
2020 | } | |
2021 | } | |
2022 | ||
2023 | return walk_memory_regions_end(&data, 0, 0); | |
2024 | } | |
2025 | ||
2026 | static int dump_region(void *priv, abi_ulong start, | |
2027 | abi_ulong end, unsigned long prot) | |
2028 | { | |
2029 | FILE *f = (FILE *)priv; | |
2030 | ||
2031 | (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx | |
2032 | " "TARGET_ABI_FMT_lx" %c%c%c\n", | |
2033 | start, end, end - start, | |
2034 | ((prot & PAGE_READ) ? 'r' : '-'), | |
2035 | ((prot & PAGE_WRITE) ? 'w' : '-'), | |
2036 | ((prot & PAGE_EXEC) ? 'x' : '-')); | |
2037 | ||
2038 | return (0); | |
2039 | } | |
2040 | ||
2041 | /* dump memory mappings */ | |
2042 | void page_dump(FILE *f) | |
2043 | { | |
2044 | (void) fprintf(f, "%-8s %-8s %-8s %s\n", | |
2045 | "start", "end", "size", "prot"); | |
2046 | walk_memory_regions(f, dump_region); | |
2047 | } | |
2048 | ||
2049 | int page_get_flags(target_ulong address) | |
2050 | { | |
2051 | PageDesc *p; | |
2052 | ||
2053 | p = page_find(address >> TARGET_PAGE_BITS); | |
2054 | if (!p) | |
2055 | return 0; | |
2056 | return p->flags; | |
2057 | } | |
2058 | ||
2059 | /* Modify the flags of a page and invalidate the code if necessary. | |
2060 | The flag PAGE_WRITE_ORG is positioned automatically depending | |
2061 | on PAGE_WRITE. The mmap_lock should already be held. */ | |
2062 | void page_set_flags(target_ulong start, target_ulong end, int flags) | |
2063 | { | |
2064 | target_ulong addr, len; | |
2065 | ||
2066 | /* This function should never be called with addresses outside the | |
2067 | guest address space. If this assert fires, it probably indicates | |
2068 | a missing call to h2g_valid. */ | |
2069 | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS | |
2070 | assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); | |
2071 | #endif | |
2072 | assert(start < end); | |
2073 | ||
2074 | start = start & TARGET_PAGE_MASK; | |
2075 | end = TARGET_PAGE_ALIGN(end); | |
2076 | ||
2077 | if (flags & PAGE_WRITE) { | |
2078 | flags |= PAGE_WRITE_ORG; | |
2079 | } | |
2080 | ||
2081 | for (addr = start, len = end - start; | |
2082 | len != 0; | |
2083 | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
2084 | PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
2085 | ||
2086 | /* If the write protection bit is set, then we invalidate | |
2087 | the code inside. */ | |
2088 | if (!(p->flags & PAGE_WRITE) && | |
2089 | (flags & PAGE_WRITE) && | |
2090 | p->first_tb) { | |
2091 | tb_invalidate_phys_page(addr, 0, NULL); | |
2092 | } | |
2093 | p->flags = flags; | |
2094 | } | |
2095 | } | |
2096 | ||
2097 | int page_check_range(target_ulong start, target_ulong len, int flags) | |
2098 | { | |
2099 | PageDesc *p; | |
2100 | target_ulong end; | |
2101 | target_ulong addr; | |
2102 | ||
2103 | /* This function should never be called with addresses outside the | |
2104 | guest address space. If this assert fires, it probably indicates | |
2105 | a missing call to h2g_valid. */ | |
2106 | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS | |
2107 | assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); | |
2108 | #endif | |
2109 | ||
2110 | if (len == 0) { | |
2111 | return 0; | |
2112 | } | |
2113 | if (start + len - 1 < start) { | |
2114 | /* We've wrapped around. */ | |
2115 | return -1; | |
2116 | } | |
2117 | ||
2118 | end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */ | |
2119 | start = start & TARGET_PAGE_MASK; | |
2120 | ||
2121 | for (addr = start, len = end - start; | |
2122 | len != 0; | |
2123 | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
2124 | p = page_find(addr >> TARGET_PAGE_BITS); | |
2125 | if( !p ) | |
2126 | return -1; | |
2127 | if( !(p->flags & PAGE_VALID) ) | |
2128 | return -1; | |
2129 | ||
2130 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) | |
2131 | return -1; | |
2132 | if (flags & PAGE_WRITE) { | |
2133 | if (!(p->flags & PAGE_WRITE_ORG)) | |
2134 | return -1; | |
2135 | /* unprotect the page if it was put read-only because it | |
2136 | contains translated code */ | |
2137 | if (!(p->flags & PAGE_WRITE)) { | |
2138 | if (!page_unprotect(addr, 0, NULL)) | |
2139 | return -1; | |
2140 | } | |
2141 | return 0; | |
2142 | } | |
2143 | } | |
2144 | return 0; | |
2145 | } | |
2146 | ||
2147 | /* called from signal handler: invalidate the code and unprotect the | |
2148 | page. Return TRUE if the fault was successfully handled. */ | |
2149 | int page_unprotect(target_ulong address, uintptr_t pc, void *puc) | |
2150 | { | |
2151 | unsigned int prot; | |
2152 | PageDesc *p; | |
2153 | target_ulong host_start, host_end, addr; | |
2154 | ||
2155 | /* Technically this isn't safe inside a signal handler. However we | |
2156 | know this only ever happens in a synchronous SEGV handler, so in | |
2157 | practice it seems to be ok. */ | |
2158 | mmap_lock(); | |
2159 | ||
2160 | p = page_find(address >> TARGET_PAGE_BITS); | |
2161 | if (!p) { | |
2162 | mmap_unlock(); | |
2163 | return 0; | |
2164 | } | |
2165 | ||
2166 | /* if the page was really writable, then we change its | |
2167 | protection back to writable */ | |
2168 | if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) { | |
2169 | host_start = address & qemu_host_page_mask; | |
2170 | host_end = host_start + qemu_host_page_size; | |
2171 | ||
2172 | prot = 0; | |
2173 | for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) { | |
2174 | p = page_find(addr >> TARGET_PAGE_BITS); | |
2175 | p->flags |= PAGE_WRITE; | |
2176 | prot |= p->flags; | |
2177 | ||
2178 | /* and since the content will be modified, we must invalidate | |
2179 | the corresponding translated code. */ | |
2180 | tb_invalidate_phys_page(addr, pc, puc); | |
2181 | #ifdef DEBUG_TB_CHECK | |
2182 | tb_invalidate_check(addr); | |
2183 | #endif | |
2184 | } | |
2185 | mprotect((void *)g2h(host_start), qemu_host_page_size, | |
2186 | prot & PAGE_BITS); | |
2187 | ||
2188 | mmap_unlock(); | |
2189 | return 1; | |
2190 | } | |
2191 | mmap_unlock(); | |
2192 | return 0; | |
2193 | } | |
2194 | #endif /* defined(CONFIG_USER_ONLY) */ | |
2195 | ||
2196 | #if !defined(CONFIG_USER_ONLY) | |
2197 | ||
2198 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) | |
2199 | typedef struct subpage_t { | |
2200 | MemoryRegion iomem; | |
2201 | hwaddr base; | |
2202 | uint16_t sub_section[TARGET_PAGE_SIZE]; | |
2203 | } subpage_t; | |
2204 | ||
2205 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
2206 | uint16_t section); | |
2207 | static subpage_t *subpage_init(hwaddr base); | |
2208 | static void destroy_page_desc(uint16_t section_index) | |
2209 | { | |
2210 | MemoryRegionSection *section = &phys_sections[section_index]; | |
2211 | MemoryRegion *mr = section->mr; | |
2212 | ||
2213 | if (mr->subpage) { | |
2214 | subpage_t *subpage = container_of(mr, subpage_t, iomem); | |
2215 | memory_region_destroy(&subpage->iomem); | |
2216 | g_free(subpage); | |
2217 | } | |
2218 | } | |
2219 | ||
2220 | static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level) | |
2221 | { | |
2222 | unsigned i; | |
2223 | PhysPageEntry *p; | |
2224 | ||
2225 | if (lp->ptr == PHYS_MAP_NODE_NIL) { | |
2226 | return; | |
2227 | } | |
2228 | ||
2229 | p = phys_map_nodes[lp->ptr]; | |
2230 | for (i = 0; i < L2_SIZE; ++i) { | |
2231 | if (!p[i].is_leaf) { | |
2232 | destroy_l2_mapping(&p[i], level - 1); | |
2233 | } else { | |
2234 | destroy_page_desc(p[i].ptr); | |
2235 | } | |
2236 | } | |
2237 | lp->is_leaf = 0; | |
2238 | lp->ptr = PHYS_MAP_NODE_NIL; | |
2239 | } | |
2240 | ||
2241 | static void destroy_all_mappings(AddressSpaceDispatch *d) | |
2242 | { | |
2243 | destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1); | |
2244 | phys_map_nodes_reset(); | |
2245 | } | |
2246 | ||
2247 | static uint16_t phys_section_add(MemoryRegionSection *section) | |
2248 | { | |
2249 | if (phys_sections_nb == phys_sections_nb_alloc) { | |
2250 | phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16); | |
2251 | phys_sections = g_renew(MemoryRegionSection, phys_sections, | |
2252 | phys_sections_nb_alloc); | |
2253 | } | |
2254 | phys_sections[phys_sections_nb] = *section; | |
2255 | return phys_sections_nb++; | |
2256 | } | |
2257 | ||
2258 | static void phys_sections_clear(void) | |
2259 | { | |
2260 | phys_sections_nb = 0; | |
2261 | } | |
2262 | ||
2263 | static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section) | |
2264 | { | |
2265 | subpage_t *subpage; | |
2266 | hwaddr base = section->offset_within_address_space | |
2267 | & TARGET_PAGE_MASK; | |
2268 | MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS); | |
2269 | MemoryRegionSection subsection = { | |
2270 | .offset_within_address_space = base, | |
2271 | .size = TARGET_PAGE_SIZE, | |
2272 | }; | |
2273 | hwaddr start, end; | |
2274 | ||
2275 | assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); | |
2276 | ||
2277 | if (!(existing->mr->subpage)) { | |
2278 | subpage = subpage_init(base); | |
2279 | subsection.mr = &subpage->iomem; | |
2280 | phys_page_set(d, base >> TARGET_PAGE_BITS, 1, | |
2281 | phys_section_add(&subsection)); | |
2282 | } else { | |
2283 | subpage = container_of(existing->mr, subpage_t, iomem); | |
2284 | } | |
2285 | start = section->offset_within_address_space & ~TARGET_PAGE_MASK; | |
2286 | end = start + section->size - 1; | |
2287 | subpage_register(subpage, start, end, phys_section_add(section)); | |
2288 | } | |
2289 | ||
2290 | ||
2291 | static void register_multipage(AddressSpaceDispatch *d, MemoryRegionSection *section) | |
2292 | { | |
2293 | hwaddr start_addr = section->offset_within_address_space; | |
2294 | ram_addr_t size = section->size; | |
2295 | hwaddr addr; | |
2296 | uint16_t section_index = phys_section_add(section); | |
2297 | ||
2298 | assert(size); | |
2299 | ||
2300 | addr = start_addr; | |
2301 | phys_page_set(d, addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS, | |
2302 | section_index); | |
2303 | } | |
2304 | ||
2305 | static void mem_add(MemoryListener *listener, MemoryRegionSection *section) | |
2306 | { | |
2307 | AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener); | |
2308 | MemoryRegionSection now = *section, remain = *section; | |
2309 | ||
2310 | if ((now.offset_within_address_space & ~TARGET_PAGE_MASK) | |
2311 | || (now.size < TARGET_PAGE_SIZE)) { | |
2312 | now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space) | |
2313 | - now.offset_within_address_space, | |
2314 | now.size); | |
2315 | register_subpage(d, &now); | |
2316 | remain.size -= now.size; | |
2317 | remain.offset_within_address_space += now.size; | |
2318 | remain.offset_within_region += now.size; | |
2319 | } | |
2320 | while (remain.size >= TARGET_PAGE_SIZE) { | |
2321 | now = remain; | |
2322 | if (remain.offset_within_region & ~TARGET_PAGE_MASK) { | |
2323 | now.size = TARGET_PAGE_SIZE; | |
2324 | register_subpage(d, &now); | |
2325 | } else { | |
2326 | now.size &= TARGET_PAGE_MASK; | |
2327 | register_multipage(d, &now); | |
2328 | } | |
2329 | remain.size -= now.size; | |
2330 | remain.offset_within_address_space += now.size; | |
2331 | remain.offset_within_region += now.size; | |
2332 | } | |
2333 | now = remain; | |
2334 | if (now.size) { | |
2335 | register_subpage(d, &now); | |
2336 | } | |
2337 | } | |
2338 | ||
2339 | void qemu_flush_coalesced_mmio_buffer(void) | |
2340 | { | |
2341 | if (kvm_enabled()) | |
2342 | kvm_flush_coalesced_mmio_buffer(); | |
2343 | } | |
2344 | ||
2345 | #if defined(__linux__) && !defined(TARGET_S390X) | |
2346 | ||
2347 | #include <sys/vfs.h> | |
2348 | ||
2349 | #define HUGETLBFS_MAGIC 0x958458f6 | |
2350 | ||
2351 | static long gethugepagesize(const char *path) | |
2352 | { | |
2353 | struct statfs fs; | |
2354 | int ret; | |
2355 | ||
2356 | do { | |
2357 | ret = statfs(path, &fs); | |
2358 | } while (ret != 0 && errno == EINTR); | |
2359 | ||
2360 | if (ret != 0) { | |
2361 | perror(path); | |
2362 | return 0; | |
2363 | } | |
2364 | ||
2365 | if (fs.f_type != HUGETLBFS_MAGIC) | |
2366 | fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path); | |
2367 | ||
2368 | return fs.f_bsize; | |
2369 | } | |
2370 | ||
2371 | static void *file_ram_alloc(RAMBlock *block, | |
2372 | ram_addr_t memory, | |
2373 | const char *path) | |
2374 | { | |
2375 | char *filename; | |
2376 | void *area; | |
2377 | int fd; | |
2378 | #ifdef MAP_POPULATE | |
2379 | int flags; | |
2380 | #endif | |
2381 | unsigned long hpagesize; | |
2382 | ||
2383 | hpagesize = gethugepagesize(path); | |
2384 | if (!hpagesize) { | |
2385 | return NULL; | |
2386 | } | |
2387 | ||
2388 | if (memory < hpagesize) { | |
2389 | return NULL; | |
2390 | } | |
2391 | ||
2392 | if (kvm_enabled() && !kvm_has_sync_mmu()) { | |
2393 | fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n"); | |
2394 | return NULL; | |
2395 | } | |
2396 | ||
2397 | if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) { | |
2398 | return NULL; | |
2399 | } | |
2400 | ||
2401 | fd = mkstemp(filename); | |
2402 | if (fd < 0) { | |
2403 | perror("unable to create backing store for hugepages"); | |
2404 | free(filename); | |
2405 | return NULL; | |
2406 | } | |
2407 | unlink(filename); | |
2408 | free(filename); | |
2409 | ||
2410 | memory = (memory+hpagesize-1) & ~(hpagesize-1); | |
2411 | ||
2412 | /* | |
2413 | * ftruncate is not supported by hugetlbfs in older | |
2414 | * hosts, so don't bother bailing out on errors. | |
2415 | * If anything goes wrong with it under other filesystems, | |
2416 | * mmap will fail. | |
2417 | */ | |
2418 | if (ftruncate(fd, memory)) | |
2419 | perror("ftruncate"); | |
2420 | ||
2421 | #ifdef MAP_POPULATE | |
2422 | /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case | |
2423 | * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED | |
2424 | * to sidestep this quirk. | |
2425 | */ | |
2426 | flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE; | |
2427 | area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0); | |
2428 | #else | |
2429 | area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); | |
2430 | #endif | |
2431 | if (area == MAP_FAILED) { | |
2432 | perror("file_ram_alloc: can't mmap RAM pages"); | |
2433 | close(fd); | |
2434 | return (NULL); | |
2435 | } | |
2436 | block->fd = fd; | |
2437 | return area; | |
2438 | } | |
2439 | #endif | |
2440 | ||
2441 | static ram_addr_t find_ram_offset(ram_addr_t size) | |
2442 | { | |
2443 | RAMBlock *block, *next_block; | |
2444 | ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; | |
2445 | ||
2446 | if (QLIST_EMPTY(&ram_list.blocks)) | |
2447 | return 0; | |
2448 | ||
2449 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
2450 | ram_addr_t end, next = RAM_ADDR_MAX; | |
2451 | ||
2452 | end = block->offset + block->length; | |
2453 | ||
2454 | QLIST_FOREACH(next_block, &ram_list.blocks, next) { | |
2455 | if (next_block->offset >= end) { | |
2456 | next = MIN(next, next_block->offset); | |
2457 | } | |
2458 | } | |
2459 | if (next - end >= size && next - end < mingap) { | |
2460 | offset = end; | |
2461 | mingap = next - end; | |
2462 | } | |
2463 | } | |
2464 | ||
2465 | if (offset == RAM_ADDR_MAX) { | |
2466 | fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", | |
2467 | (uint64_t)size); | |
2468 | abort(); | |
2469 | } | |
2470 | ||
2471 | return offset; | |
2472 | } | |
2473 | ||
2474 | ram_addr_t last_ram_offset(void) | |
2475 | { | |
2476 | RAMBlock *block; | |
2477 | ram_addr_t last = 0; | |
2478 | ||
2479 | QLIST_FOREACH(block, &ram_list.blocks, next) | |
2480 | last = MAX(last, block->offset + block->length); | |
2481 | ||
2482 | return last; | |
2483 | } | |
2484 | ||
2485 | static void qemu_ram_setup_dump(void *addr, ram_addr_t size) | |
2486 | { | |
2487 | int ret; | |
2488 | QemuOpts *machine_opts; | |
2489 | ||
2490 | /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ | |
2491 | machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0); | |
2492 | if (machine_opts && | |
2493 | !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) { | |
2494 | ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); | |
2495 | if (ret) { | |
2496 | perror("qemu_madvise"); | |
2497 | fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " | |
2498 | "but dump_guest_core=off specified\n"); | |
2499 | } | |
2500 | } | |
2501 | } | |
2502 | ||
2503 | void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev) | |
2504 | { | |
2505 | RAMBlock *new_block, *block; | |
2506 | ||
2507 | new_block = NULL; | |
2508 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
2509 | if (block->offset == addr) { | |
2510 | new_block = block; | |
2511 | break; | |
2512 | } | |
2513 | } | |
2514 | assert(new_block); | |
2515 | assert(!new_block->idstr[0]); | |
2516 | ||
2517 | if (dev) { | |
2518 | char *id = qdev_get_dev_path(dev); | |
2519 | if (id) { | |
2520 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | |
2521 | g_free(id); | |
2522 | } | |
2523 | } | |
2524 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | |
2525 | ||
2526 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
2527 | if (block != new_block && !strcmp(block->idstr, new_block->idstr)) { | |
2528 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", | |
2529 | new_block->idstr); | |
2530 | abort(); | |
2531 | } | |
2532 | } | |
2533 | } | |
2534 | ||
2535 | static int memory_try_enable_merging(void *addr, size_t len) | |
2536 | { | |
2537 | QemuOpts *opts; | |
2538 | ||
2539 | opts = qemu_opts_find(qemu_find_opts("machine"), 0); | |
2540 | if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) { | |
2541 | /* disabled by the user */ | |
2542 | return 0; | |
2543 | } | |
2544 | ||
2545 | return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); | |
2546 | } | |
2547 | ||
2548 | ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, | |
2549 | MemoryRegion *mr) | |
2550 | { | |
2551 | RAMBlock *new_block; | |
2552 | ||
2553 | size = TARGET_PAGE_ALIGN(size); | |
2554 | new_block = g_malloc0(sizeof(*new_block)); | |
2555 | ||
2556 | new_block->mr = mr; | |
2557 | new_block->offset = find_ram_offset(size); | |
2558 | if (host) { | |
2559 | new_block->host = host; | |
2560 | new_block->flags |= RAM_PREALLOC_MASK; | |
2561 | } else { | |
2562 | if (mem_path) { | |
2563 | #if defined (__linux__) && !defined(TARGET_S390X) | |
2564 | new_block->host = file_ram_alloc(new_block, size, mem_path); | |
2565 | if (!new_block->host) { | |
2566 | new_block->host = qemu_vmalloc(size); | |
2567 | memory_try_enable_merging(new_block->host, size); | |
2568 | } | |
2569 | #else | |
2570 | fprintf(stderr, "-mem-path option unsupported\n"); | |
2571 | exit(1); | |
2572 | #endif | |
2573 | } else { | |
2574 | if (xen_enabled()) { | |
2575 | xen_ram_alloc(new_block->offset, size, mr); | |
2576 | } else if (kvm_enabled()) { | |
2577 | /* some s390/kvm configurations have special constraints */ | |
2578 | new_block->host = kvm_vmalloc(size); | |
2579 | } else { | |
2580 | new_block->host = qemu_vmalloc(size); | |
2581 | } | |
2582 | memory_try_enable_merging(new_block->host, size); | |
2583 | } | |
2584 | } | |
2585 | new_block->length = size; | |
2586 | ||
2587 | QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next); | |
2588 | ||
2589 | ram_list.phys_dirty = g_realloc(ram_list.phys_dirty, | |
2590 | last_ram_offset() >> TARGET_PAGE_BITS); | |
2591 | memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS), | |
2592 | 0, size >> TARGET_PAGE_BITS); | |
2593 | cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff); | |
2594 | ||
2595 | qemu_ram_setup_dump(new_block->host, size); | |
2596 | qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE); | |
2597 | ||
2598 | if (kvm_enabled()) | |
2599 | kvm_setup_guest_memory(new_block->host, size); | |
2600 | ||
2601 | return new_block->offset; | |
2602 | } | |
2603 | ||
2604 | ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr) | |
2605 | { | |
2606 | return qemu_ram_alloc_from_ptr(size, NULL, mr); | |
2607 | } | |
2608 | ||
2609 | void qemu_ram_free_from_ptr(ram_addr_t addr) | |
2610 | { | |
2611 | RAMBlock *block; | |
2612 | ||
2613 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
2614 | if (addr == block->offset) { | |
2615 | QLIST_REMOVE(block, next); | |
2616 | g_free(block); | |
2617 | return; | |
2618 | } | |
2619 | } | |
2620 | } | |
2621 | ||
2622 | void qemu_ram_free(ram_addr_t addr) | |
2623 | { | |
2624 | RAMBlock *block; | |
2625 | ||
2626 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
2627 | if (addr == block->offset) { | |
2628 | QLIST_REMOVE(block, next); | |
2629 | if (block->flags & RAM_PREALLOC_MASK) { | |
2630 | ; | |
2631 | } else if (mem_path) { | |
2632 | #if defined (__linux__) && !defined(TARGET_S390X) | |
2633 | if (block->fd) { | |
2634 | munmap(block->host, block->length); | |
2635 | close(block->fd); | |
2636 | } else { | |
2637 | qemu_vfree(block->host); | |
2638 | } | |
2639 | #else | |
2640 | abort(); | |
2641 | #endif | |
2642 | } else { | |
2643 | #if defined(TARGET_S390X) && defined(CONFIG_KVM) | |
2644 | munmap(block->host, block->length); | |
2645 | #else | |
2646 | if (xen_enabled()) { | |
2647 | xen_invalidate_map_cache_entry(block->host); | |
2648 | } else { | |
2649 | qemu_vfree(block->host); | |
2650 | } | |
2651 | #endif | |
2652 | } | |
2653 | g_free(block); | |
2654 | return; | |
2655 | } | |
2656 | } | |
2657 | ||
2658 | } | |
2659 | ||
2660 | #ifndef _WIN32 | |
2661 | void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) | |
2662 | { | |
2663 | RAMBlock *block; | |
2664 | ram_addr_t offset; | |
2665 | int flags; | |
2666 | void *area, *vaddr; | |
2667 | ||
2668 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
2669 | offset = addr - block->offset; | |
2670 | if (offset < block->length) { | |
2671 | vaddr = block->host + offset; | |
2672 | if (block->flags & RAM_PREALLOC_MASK) { | |
2673 | ; | |
2674 | } else { | |
2675 | flags = MAP_FIXED; | |
2676 | munmap(vaddr, length); | |
2677 | if (mem_path) { | |
2678 | #if defined(__linux__) && !defined(TARGET_S390X) | |
2679 | if (block->fd) { | |
2680 | #ifdef MAP_POPULATE | |
2681 | flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED : | |
2682 | MAP_PRIVATE; | |
2683 | #else | |
2684 | flags |= MAP_PRIVATE; | |
2685 | #endif | |
2686 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
2687 | flags, block->fd, offset); | |
2688 | } else { | |
2689 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; | |
2690 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
2691 | flags, -1, 0); | |
2692 | } | |
2693 | #else | |
2694 | abort(); | |
2695 | #endif | |
2696 | } else { | |
2697 | #if defined(TARGET_S390X) && defined(CONFIG_KVM) | |
2698 | flags |= MAP_SHARED | MAP_ANONYMOUS; | |
2699 | area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE, | |
2700 | flags, -1, 0); | |
2701 | #else | |
2702 | flags |= MAP_PRIVATE | MAP_ANONYMOUS; | |
2703 | area = mmap(vaddr, length, PROT_READ | PROT_WRITE, | |
2704 | flags, -1, 0); | |
2705 | #endif | |
2706 | } | |
2707 | if (area != vaddr) { | |
2708 | fprintf(stderr, "Could not remap addr: " | |
2709 | RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", | |
2710 | length, addr); | |
2711 | exit(1); | |
2712 | } | |
2713 | memory_try_enable_merging(vaddr, length); | |
2714 | qemu_ram_setup_dump(vaddr, length); | |
2715 | } | |
2716 | return; | |
2717 | } | |
2718 | } | |
2719 | } | |
2720 | #endif /* !_WIN32 */ | |
2721 | ||
2722 | /* Return a host pointer to ram allocated with qemu_ram_alloc. | |
2723 | With the exception of the softmmu code in this file, this should | |
2724 | only be used for local memory (e.g. video ram) that the device owns, | |
2725 | and knows it isn't going to access beyond the end of the block. | |
2726 | ||
2727 | It should not be used for general purpose DMA. | |
2728 | Use cpu_physical_memory_map/cpu_physical_memory_rw instead. | |
2729 | */ | |
2730 | void *qemu_get_ram_ptr(ram_addr_t addr) | |
2731 | { | |
2732 | RAMBlock *block; | |
2733 | ||
2734 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
2735 | if (addr - block->offset < block->length) { | |
2736 | /* Move this entry to to start of the list. */ | |
2737 | if (block != QLIST_FIRST(&ram_list.blocks)) { | |
2738 | QLIST_REMOVE(block, next); | |
2739 | QLIST_INSERT_HEAD(&ram_list.blocks, block, next); | |
2740 | } | |
2741 | if (xen_enabled()) { | |
2742 | /* We need to check if the requested address is in the RAM | |
2743 | * because we don't want to map the entire memory in QEMU. | |
2744 | * In that case just map until the end of the page. | |
2745 | */ | |
2746 | if (block->offset == 0) { | |
2747 | return xen_map_cache(addr, 0, 0); | |
2748 | } else if (block->host == NULL) { | |
2749 | block->host = | |
2750 | xen_map_cache(block->offset, block->length, 1); | |
2751 | } | |
2752 | } | |
2753 | return block->host + (addr - block->offset); | |
2754 | } | |
2755 | } | |
2756 | ||
2757 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
2758 | abort(); | |
2759 | ||
2760 | return NULL; | |
2761 | } | |
2762 | ||
2763 | /* Return a host pointer to ram allocated with qemu_ram_alloc. | |
2764 | * Same as qemu_get_ram_ptr but avoid reordering ramblocks. | |
2765 | */ | |
2766 | static void *qemu_safe_ram_ptr(ram_addr_t addr) | |
2767 | { | |
2768 | RAMBlock *block; | |
2769 | ||
2770 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
2771 | if (addr - block->offset < block->length) { | |
2772 | if (xen_enabled()) { | |
2773 | /* We need to check if the requested address is in the RAM | |
2774 | * because we don't want to map the entire memory in QEMU. | |
2775 | * In that case just map until the end of the page. | |
2776 | */ | |
2777 | if (block->offset == 0) { | |
2778 | return xen_map_cache(addr, 0, 0); | |
2779 | } else if (block->host == NULL) { | |
2780 | block->host = | |
2781 | xen_map_cache(block->offset, block->length, 1); | |
2782 | } | |
2783 | } | |
2784 | return block->host + (addr - block->offset); | |
2785 | } | |
2786 | } | |
2787 | ||
2788 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
2789 | abort(); | |
2790 | ||
2791 | return NULL; | |
2792 | } | |
2793 | ||
2794 | /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr | |
2795 | * but takes a size argument */ | |
2796 | static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size) | |
2797 | { | |
2798 | if (*size == 0) { | |
2799 | return NULL; | |
2800 | } | |
2801 | if (xen_enabled()) { | |
2802 | return xen_map_cache(addr, *size, 1); | |
2803 | } else { | |
2804 | RAMBlock *block; | |
2805 | ||
2806 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
2807 | if (addr - block->offset < block->length) { | |
2808 | if (addr - block->offset + *size > block->length) | |
2809 | *size = block->length - addr + block->offset; | |
2810 | return block->host + (addr - block->offset); | |
2811 | } | |
2812 | } | |
2813 | ||
2814 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | |
2815 | abort(); | |
2816 | } | |
2817 | } | |
2818 | ||
2819 | void qemu_put_ram_ptr(void *addr) | |
2820 | { | |
2821 | trace_qemu_put_ram_ptr(addr); | |
2822 | } | |
2823 | ||
2824 | int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr) | |
2825 | { | |
2826 | RAMBlock *block; | |
2827 | uint8_t *host = ptr; | |
2828 | ||
2829 | if (xen_enabled()) { | |
2830 | *ram_addr = xen_ram_addr_from_mapcache(ptr); | |
2831 | return 0; | |
2832 | } | |
2833 | ||
2834 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
2835 | /* This case append when the block is not mapped. */ | |
2836 | if (block->host == NULL) { | |
2837 | continue; | |
2838 | } | |
2839 | if (host - block->host < block->length) { | |
2840 | *ram_addr = block->offset + (host - block->host); | |
2841 | return 0; | |
2842 | } | |
2843 | } | |
2844 | ||
2845 | return -1; | |
2846 | } | |
2847 | ||
2848 | /* Some of the softmmu routines need to translate from a host pointer | |
2849 | (typically a TLB entry) back to a ram offset. */ | |
2850 | ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) | |
2851 | { | |
2852 | ram_addr_t ram_addr; | |
2853 | ||
2854 | if (qemu_ram_addr_from_host(ptr, &ram_addr)) { | |
2855 | fprintf(stderr, "Bad ram pointer %p\n", ptr); | |
2856 | abort(); | |
2857 | } | |
2858 | return ram_addr; | |
2859 | } | |
2860 | ||
2861 | static uint64_t unassigned_mem_read(void *opaque, hwaddr addr, | |
2862 | unsigned size) | |
2863 | { | |
2864 | #ifdef DEBUG_UNASSIGNED | |
2865 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | |
2866 | #endif | |
2867 | #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) | |
2868 | cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size); | |
2869 | #endif | |
2870 | return 0; | |
2871 | } | |
2872 | ||
2873 | static void unassigned_mem_write(void *opaque, hwaddr addr, | |
2874 | uint64_t val, unsigned size) | |
2875 | { | |
2876 | #ifdef DEBUG_UNASSIGNED | |
2877 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val); | |
2878 | #endif | |
2879 | #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) | |
2880 | cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size); | |
2881 | #endif | |
2882 | } | |
2883 | ||
2884 | static const MemoryRegionOps unassigned_mem_ops = { | |
2885 | .read = unassigned_mem_read, | |
2886 | .write = unassigned_mem_write, | |
2887 | .endianness = DEVICE_NATIVE_ENDIAN, | |
2888 | }; | |
2889 | ||
2890 | static uint64_t error_mem_read(void *opaque, hwaddr addr, | |
2891 | unsigned size) | |
2892 | { | |
2893 | abort(); | |
2894 | } | |
2895 | ||
2896 | static void error_mem_write(void *opaque, hwaddr addr, | |
2897 | uint64_t value, unsigned size) | |
2898 | { | |
2899 | abort(); | |
2900 | } | |
2901 | ||
2902 | static const MemoryRegionOps error_mem_ops = { | |
2903 | .read = error_mem_read, | |
2904 | .write = error_mem_write, | |
2905 | .endianness = DEVICE_NATIVE_ENDIAN, | |
2906 | }; | |
2907 | ||
2908 | static const MemoryRegionOps rom_mem_ops = { | |
2909 | .read = error_mem_read, | |
2910 | .write = unassigned_mem_write, | |
2911 | .endianness = DEVICE_NATIVE_ENDIAN, | |
2912 | }; | |
2913 | ||
2914 | static void notdirty_mem_write(void *opaque, hwaddr ram_addr, | |
2915 | uint64_t val, unsigned size) | |
2916 | { | |
2917 | int dirty_flags; | |
2918 | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); | |
2919 | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | |
2920 | #if !defined(CONFIG_USER_ONLY) | |
2921 | tb_invalidate_phys_page_fast(ram_addr, size); | |
2922 | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); | |
2923 | #endif | |
2924 | } | |
2925 | switch (size) { | |
2926 | case 1: | |
2927 | stb_p(qemu_get_ram_ptr(ram_addr), val); | |
2928 | break; | |
2929 | case 2: | |
2930 | stw_p(qemu_get_ram_ptr(ram_addr), val); | |
2931 | break; | |
2932 | case 4: | |
2933 | stl_p(qemu_get_ram_ptr(ram_addr), val); | |
2934 | break; | |
2935 | default: | |
2936 | abort(); | |
2937 | } | |
2938 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); | |
2939 | cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags); | |
2940 | /* we remove the notdirty callback only if the code has been | |
2941 | flushed */ | |
2942 | if (dirty_flags == 0xff) | |
2943 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); | |
2944 | } | |
2945 | ||
2946 | static const MemoryRegionOps notdirty_mem_ops = { | |
2947 | .read = error_mem_read, | |
2948 | .write = notdirty_mem_write, | |
2949 | .endianness = DEVICE_NATIVE_ENDIAN, | |
2950 | }; | |
2951 | ||
2952 | /* Generate a debug exception if a watchpoint has been hit. */ | |
2953 | static void check_watchpoint(int offset, int len_mask, int flags) | |
2954 | { | |
2955 | CPUArchState *env = cpu_single_env; | |
2956 | target_ulong pc, cs_base; | |
2957 | TranslationBlock *tb; | |
2958 | target_ulong vaddr; | |
2959 | CPUWatchpoint *wp; | |
2960 | int cpu_flags; | |
2961 | ||
2962 | if (env->watchpoint_hit) { | |
2963 | /* We re-entered the check after replacing the TB. Now raise | |
2964 | * the debug interrupt so that is will trigger after the | |
2965 | * current instruction. */ | |
2966 | cpu_interrupt(env, CPU_INTERRUPT_DEBUG); | |
2967 | return; | |
2968 | } | |
2969 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; | |
2970 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { | |
2971 | if ((vaddr == (wp->vaddr & len_mask) || | |
2972 | (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) { | |
2973 | wp->flags |= BP_WATCHPOINT_HIT; | |
2974 | if (!env->watchpoint_hit) { | |
2975 | env->watchpoint_hit = wp; | |
2976 | tb = tb_find_pc(env->mem_io_pc); | |
2977 | if (!tb) { | |
2978 | cpu_abort(env, "check_watchpoint: could not find TB for " | |
2979 | "pc=%p", (void *)env->mem_io_pc); | |
2980 | } | |
2981 | cpu_restore_state(tb, env, env->mem_io_pc); | |
2982 | tb_phys_invalidate(tb, -1); | |
2983 | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | |
2984 | env->exception_index = EXCP_DEBUG; | |
2985 | cpu_loop_exit(env); | |
2986 | } else { | |
2987 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | |
2988 | tb_gen_code(env, pc, cs_base, cpu_flags, 1); | |
2989 | cpu_resume_from_signal(env, NULL); | |
2990 | } | |
2991 | } | |
2992 | } else { | |
2993 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
2994 | } | |
2995 | } | |
2996 | } | |
2997 | ||
2998 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, | |
2999 | so these check for a hit then pass through to the normal out-of-line | |
3000 | phys routines. */ | |
3001 | static uint64_t watch_mem_read(void *opaque, hwaddr addr, | |
3002 | unsigned size) | |
3003 | { | |
3004 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ); | |
3005 | switch (size) { | |
3006 | case 1: return ldub_phys(addr); | |
3007 | case 2: return lduw_phys(addr); | |
3008 | case 4: return ldl_phys(addr); | |
3009 | default: abort(); | |
3010 | } | |
3011 | } | |
3012 | ||
3013 | static void watch_mem_write(void *opaque, hwaddr addr, | |
3014 | uint64_t val, unsigned size) | |
3015 | { | |
3016 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE); | |
3017 | switch (size) { | |
3018 | case 1: | |
3019 | stb_phys(addr, val); | |
3020 | break; | |
3021 | case 2: | |
3022 | stw_phys(addr, val); | |
3023 | break; | |
3024 | case 4: | |
3025 | stl_phys(addr, val); | |
3026 | break; | |
3027 | default: abort(); | |
3028 | } | |
3029 | } | |
3030 | ||
3031 | static const MemoryRegionOps watch_mem_ops = { | |
3032 | .read = watch_mem_read, | |
3033 | .write = watch_mem_write, | |
3034 | .endianness = DEVICE_NATIVE_ENDIAN, | |
3035 | }; | |
3036 | ||
3037 | static uint64_t subpage_read(void *opaque, hwaddr addr, | |
3038 | unsigned len) | |
3039 | { | |
3040 | subpage_t *mmio = opaque; | |
3041 | unsigned int idx = SUBPAGE_IDX(addr); | |
3042 | MemoryRegionSection *section; | |
3043 | #if defined(DEBUG_SUBPAGE) | |
3044 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, | |
3045 | mmio, len, addr, idx); | |
3046 | #endif | |
3047 | ||
3048 | section = &phys_sections[mmio->sub_section[idx]]; | |
3049 | addr += mmio->base; | |
3050 | addr -= section->offset_within_address_space; | |
3051 | addr += section->offset_within_region; | |
3052 | return io_mem_read(section->mr, addr, len); | |
3053 | } | |
3054 | ||
3055 | static void subpage_write(void *opaque, hwaddr addr, | |
3056 | uint64_t value, unsigned len) | |
3057 | { | |
3058 | subpage_t *mmio = opaque; | |
3059 | unsigned int idx = SUBPAGE_IDX(addr); | |
3060 | MemoryRegionSection *section; | |
3061 | #if defined(DEBUG_SUBPAGE) | |
3062 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx | |
3063 | " idx %d value %"PRIx64"\n", | |
3064 | __func__, mmio, len, addr, idx, value); | |
3065 | #endif | |
3066 | ||
3067 | section = &phys_sections[mmio->sub_section[idx]]; | |
3068 | addr += mmio->base; | |
3069 | addr -= section->offset_within_address_space; | |
3070 | addr += section->offset_within_region; | |
3071 | io_mem_write(section->mr, addr, value, len); | |
3072 | } | |
3073 | ||
3074 | static const MemoryRegionOps subpage_ops = { | |
3075 | .read = subpage_read, | |
3076 | .write = subpage_write, | |
3077 | .endianness = DEVICE_NATIVE_ENDIAN, | |
3078 | }; | |
3079 | ||
3080 | static uint64_t subpage_ram_read(void *opaque, hwaddr addr, | |
3081 | unsigned size) | |
3082 | { | |
3083 | ram_addr_t raddr = addr; | |
3084 | void *ptr = qemu_get_ram_ptr(raddr); | |
3085 | switch (size) { | |
3086 | case 1: return ldub_p(ptr); | |
3087 | case 2: return lduw_p(ptr); | |
3088 | case 4: return ldl_p(ptr); | |
3089 | default: abort(); | |
3090 | } | |
3091 | } | |
3092 | ||
3093 | static void subpage_ram_write(void *opaque, hwaddr addr, | |
3094 | uint64_t value, unsigned size) | |
3095 | { | |
3096 | ram_addr_t raddr = addr; | |
3097 | void *ptr = qemu_get_ram_ptr(raddr); | |
3098 | switch (size) { | |
3099 | case 1: return stb_p(ptr, value); | |
3100 | case 2: return stw_p(ptr, value); | |
3101 | case 4: return stl_p(ptr, value); | |
3102 | default: abort(); | |
3103 | } | |
3104 | } | |
3105 | ||
3106 | static const MemoryRegionOps subpage_ram_ops = { | |
3107 | .read = subpage_ram_read, | |
3108 | .write = subpage_ram_write, | |
3109 | .endianness = DEVICE_NATIVE_ENDIAN, | |
3110 | }; | |
3111 | ||
3112 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | |
3113 | uint16_t section) | |
3114 | { | |
3115 | int idx, eidx; | |
3116 | ||
3117 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | |
3118 | return -1; | |
3119 | idx = SUBPAGE_IDX(start); | |
3120 | eidx = SUBPAGE_IDX(end); | |
3121 | #if defined(DEBUG_SUBPAGE) | |
3122 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__, | |
3123 | mmio, start, end, idx, eidx, memory); | |
3124 | #endif | |
3125 | if (memory_region_is_ram(phys_sections[section].mr)) { | |
3126 | MemoryRegionSection new_section = phys_sections[section]; | |
3127 | new_section.mr = &io_mem_subpage_ram; | |
3128 | section = phys_section_add(&new_section); | |
3129 | } | |
3130 | for (; idx <= eidx; idx++) { | |
3131 | mmio->sub_section[idx] = section; | |
3132 | } | |
3133 | ||
3134 | return 0; | |
3135 | } | |
3136 | ||
3137 | static subpage_t *subpage_init(hwaddr base) | |
3138 | { | |
3139 | subpage_t *mmio; | |
3140 | ||
3141 | mmio = g_malloc0(sizeof(subpage_t)); | |
3142 | ||
3143 | mmio->base = base; | |
3144 | memory_region_init_io(&mmio->iomem, &subpage_ops, mmio, | |
3145 | "subpage", TARGET_PAGE_SIZE); | |
3146 | mmio->iomem.subpage = true; | |
3147 | #if defined(DEBUG_SUBPAGE) | |
3148 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, | |
3149 | mmio, base, TARGET_PAGE_SIZE, subpage_memory); | |
3150 | #endif | |
3151 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned); | |
3152 | ||
3153 | return mmio; | |
3154 | } | |
3155 | ||
3156 | static uint16_t dummy_section(MemoryRegion *mr) | |
3157 | { | |
3158 | MemoryRegionSection section = { | |
3159 | .mr = mr, | |
3160 | .offset_within_address_space = 0, | |
3161 | .offset_within_region = 0, | |
3162 | .size = UINT64_MAX, | |
3163 | }; | |
3164 | ||
3165 | return phys_section_add(§ion); | |
3166 | } | |
3167 | ||
3168 | MemoryRegion *iotlb_to_region(hwaddr index) | |
3169 | { | |
3170 | return phys_sections[index & ~TARGET_PAGE_MASK].mr; | |
3171 | } | |
3172 | ||
3173 | static void io_mem_init(void) | |
3174 | { | |
3175 | memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX); | |
3176 | memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX); | |
3177 | memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL, | |
3178 | "unassigned", UINT64_MAX); | |
3179 | memory_region_init_io(&io_mem_notdirty, ¬dirty_mem_ops, NULL, | |
3180 | "notdirty", UINT64_MAX); | |
3181 | memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL, | |
3182 | "subpage-ram", UINT64_MAX); | |
3183 | memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL, | |
3184 | "watch", UINT64_MAX); | |
3185 | } | |
3186 | ||
3187 | static void mem_begin(MemoryListener *listener) | |
3188 | { | |
3189 | AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener); | |
3190 | ||
3191 | destroy_all_mappings(d); | |
3192 | d->phys_map.ptr = PHYS_MAP_NODE_NIL; | |
3193 | } | |
3194 | ||
3195 | static void core_begin(MemoryListener *listener) | |
3196 | { | |
3197 | phys_sections_clear(); | |
3198 | phys_section_unassigned = dummy_section(&io_mem_unassigned); | |
3199 | phys_section_notdirty = dummy_section(&io_mem_notdirty); | |
3200 | phys_section_rom = dummy_section(&io_mem_rom); | |
3201 | phys_section_watch = dummy_section(&io_mem_watch); | |
3202 | } | |
3203 | ||
3204 | static void tcg_commit(MemoryListener *listener) | |
3205 | { | |
3206 | CPUArchState *env; | |
3207 | ||
3208 | /* since each CPU stores ram addresses in its TLB cache, we must | |
3209 | reset the modified entries */ | |
3210 | /* XXX: slow ! */ | |
3211 | for(env = first_cpu; env != NULL; env = env->next_cpu) { | |
3212 | tlb_flush(env, 1); | |
3213 | } | |
3214 | } | |
3215 | ||
3216 | static void core_log_global_start(MemoryListener *listener) | |
3217 | { | |
3218 | cpu_physical_memory_set_dirty_tracking(1); | |
3219 | } | |
3220 | ||
3221 | static void core_log_global_stop(MemoryListener *listener) | |
3222 | { | |
3223 | cpu_physical_memory_set_dirty_tracking(0); | |
3224 | } | |
3225 | ||
3226 | static void io_region_add(MemoryListener *listener, | |
3227 | MemoryRegionSection *section) | |
3228 | { | |
3229 | MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1); | |
3230 | ||
3231 | mrio->mr = section->mr; | |
3232 | mrio->offset = section->offset_within_region; | |
3233 | iorange_init(&mrio->iorange, &memory_region_iorange_ops, | |
3234 | section->offset_within_address_space, section->size); | |
3235 | ioport_register(&mrio->iorange); | |
3236 | } | |
3237 | ||
3238 | static void io_region_del(MemoryListener *listener, | |
3239 | MemoryRegionSection *section) | |
3240 | { | |
3241 | isa_unassign_ioport(section->offset_within_address_space, section->size); | |
3242 | } | |
3243 | ||
3244 | static MemoryListener core_memory_listener = { | |
3245 | .begin = core_begin, | |
3246 | .log_global_start = core_log_global_start, | |
3247 | .log_global_stop = core_log_global_stop, | |
3248 | .priority = 1, | |
3249 | }; | |
3250 | ||
3251 | static MemoryListener io_memory_listener = { | |
3252 | .region_add = io_region_add, | |
3253 | .region_del = io_region_del, | |
3254 | .priority = 0, | |
3255 | }; | |
3256 | ||
3257 | static MemoryListener tcg_memory_listener = { | |
3258 | .commit = tcg_commit, | |
3259 | }; | |
3260 | ||
3261 | void address_space_init_dispatch(AddressSpace *as) | |
3262 | { | |
3263 | AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1); | |
3264 | ||
3265 | d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 }; | |
3266 | d->listener = (MemoryListener) { | |
3267 | .begin = mem_begin, | |
3268 | .region_add = mem_add, | |
3269 | .region_nop = mem_add, | |
3270 | .priority = 0, | |
3271 | }; | |
3272 | as->dispatch = d; | |
3273 | memory_listener_register(&d->listener, as); | |
3274 | } | |
3275 | ||
3276 | void address_space_destroy_dispatch(AddressSpace *as) | |
3277 | { | |
3278 | AddressSpaceDispatch *d = as->dispatch; | |
3279 | ||
3280 | memory_listener_unregister(&d->listener); | |
3281 | destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1); | |
3282 | g_free(d); | |
3283 | as->dispatch = NULL; | |
3284 | } | |
3285 | ||
3286 | static void memory_map_init(void) | |
3287 | { | |
3288 | system_memory = g_malloc(sizeof(*system_memory)); | |
3289 | memory_region_init(system_memory, "system", INT64_MAX); | |
3290 | address_space_init(&address_space_memory, system_memory); | |
3291 | address_space_memory.name = "memory"; | |
3292 | ||
3293 | system_io = g_malloc(sizeof(*system_io)); | |
3294 | memory_region_init(system_io, "io", 65536); | |
3295 | address_space_init(&address_space_io, system_io); | |
3296 | address_space_io.name = "I/O"; | |
3297 | ||
3298 | memory_listener_register(&core_memory_listener, &address_space_memory); | |
3299 | memory_listener_register(&io_memory_listener, &address_space_io); | |
3300 | memory_listener_register(&tcg_memory_listener, &address_space_memory); | |
3301 | ||
3302 | dma_context_init(&dma_context_memory, &address_space_memory, | |
3303 | NULL, NULL, NULL); | |
3304 | } | |
3305 | ||
3306 | MemoryRegion *get_system_memory(void) | |
3307 | { | |
3308 | return system_memory; | |
3309 | } | |
3310 | ||
3311 | MemoryRegion *get_system_io(void) | |
3312 | { | |
3313 | return system_io; | |
3314 | } | |
3315 | ||
3316 | #endif /* !defined(CONFIG_USER_ONLY) */ | |
3317 | ||
3318 | /* physical memory access (slow version, mainly for debug) */ | |
3319 | #if defined(CONFIG_USER_ONLY) | |
3320 | int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr, | |
3321 | uint8_t *buf, int len, int is_write) | |
3322 | { | |
3323 | int l, flags; | |
3324 | target_ulong page; | |
3325 | void * p; | |
3326 | ||
3327 | while (len > 0) { | |
3328 | page = addr & TARGET_PAGE_MASK; | |
3329 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3330 | if (l > len) | |
3331 | l = len; | |
3332 | flags = page_get_flags(page); | |
3333 | if (!(flags & PAGE_VALID)) | |
3334 | return -1; | |
3335 | if (is_write) { | |
3336 | if (!(flags & PAGE_WRITE)) | |
3337 | return -1; | |
3338 | /* XXX: this code should not depend on lock_user */ | |
3339 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) | |
3340 | return -1; | |
3341 | memcpy(p, buf, l); | |
3342 | unlock_user(p, addr, l); | |
3343 | } else { | |
3344 | if (!(flags & PAGE_READ)) | |
3345 | return -1; | |
3346 | /* XXX: this code should not depend on lock_user */ | |
3347 | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) | |
3348 | return -1; | |
3349 | memcpy(buf, p, l); | |
3350 | unlock_user(p, addr, 0); | |
3351 | } | |
3352 | len -= l; | |
3353 | buf += l; | |
3354 | addr += l; | |
3355 | } | |
3356 | return 0; | |
3357 | } | |
3358 | ||
3359 | #else | |
3360 | ||
3361 | static void invalidate_and_set_dirty(hwaddr addr, | |
3362 | hwaddr length) | |
3363 | { | |
3364 | if (!cpu_physical_memory_is_dirty(addr)) { | |
3365 | /* invalidate code */ | |
3366 | tb_invalidate_phys_page_range(addr, addr + length, 0); | |
3367 | /* set dirty bit */ | |
3368 | cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG)); | |
3369 | } | |
3370 | xen_modified_memory(addr, length); | |
3371 | } | |
3372 | ||
3373 | void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf, | |
3374 | int len, bool is_write) | |
3375 | { | |
3376 | AddressSpaceDispatch *d = as->dispatch; | |
3377 | int l; | |
3378 | uint8_t *ptr; | |
3379 | uint32_t val; | |
3380 | hwaddr page; | |
3381 | MemoryRegionSection *section; | |
3382 | ||
3383 | while (len > 0) { | |
3384 | page = addr & TARGET_PAGE_MASK; | |
3385 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3386 | if (l > len) | |
3387 | l = len; | |
3388 | section = phys_page_find(d, page >> TARGET_PAGE_BITS); | |
3389 | ||
3390 | if (is_write) { | |
3391 | if (!memory_region_is_ram(section->mr)) { | |
3392 | hwaddr addr1; | |
3393 | addr1 = memory_region_section_addr(section, addr); | |
3394 | /* XXX: could force cpu_single_env to NULL to avoid | |
3395 | potential bugs */ | |
3396 | if (l >= 4 && ((addr1 & 3) == 0)) { | |
3397 | /* 32 bit write access */ | |
3398 | val = ldl_p(buf); | |
3399 | io_mem_write(section->mr, addr1, val, 4); | |
3400 | l = 4; | |
3401 | } else if (l >= 2 && ((addr1 & 1) == 0)) { | |
3402 | /* 16 bit write access */ | |
3403 | val = lduw_p(buf); | |
3404 | io_mem_write(section->mr, addr1, val, 2); | |
3405 | l = 2; | |
3406 | } else { | |
3407 | /* 8 bit write access */ | |
3408 | val = ldub_p(buf); | |
3409 | io_mem_write(section->mr, addr1, val, 1); | |
3410 | l = 1; | |
3411 | } | |
3412 | } else if (!section->readonly) { | |
3413 | ram_addr_t addr1; | |
3414 | addr1 = memory_region_get_ram_addr(section->mr) | |
3415 | + memory_region_section_addr(section, addr); | |
3416 | /* RAM case */ | |
3417 | ptr = qemu_get_ram_ptr(addr1); | |
3418 | memcpy(ptr, buf, l); | |
3419 | invalidate_and_set_dirty(addr1, l); | |
3420 | qemu_put_ram_ptr(ptr); | |
3421 | } | |
3422 | } else { | |
3423 | if (!(memory_region_is_ram(section->mr) || | |
3424 | memory_region_is_romd(section->mr))) { | |
3425 | hwaddr addr1; | |
3426 | /* I/O case */ | |
3427 | addr1 = memory_region_section_addr(section, addr); | |
3428 | if (l >= 4 && ((addr1 & 3) == 0)) { | |
3429 | /* 32 bit read access */ | |
3430 | val = io_mem_read(section->mr, addr1, 4); | |
3431 | stl_p(buf, val); | |
3432 | l = 4; | |
3433 | } else if (l >= 2 && ((addr1 & 1) == 0)) { | |
3434 | /* 16 bit read access */ | |
3435 | val = io_mem_read(section->mr, addr1, 2); | |
3436 | stw_p(buf, val); | |
3437 | l = 2; | |
3438 | } else { | |
3439 | /* 8 bit read access */ | |
3440 | val = io_mem_read(section->mr, addr1, 1); | |
3441 | stb_p(buf, val); | |
3442 | l = 1; | |
3443 | } | |
3444 | } else { | |
3445 | /* RAM case */ | |
3446 | ptr = qemu_get_ram_ptr(section->mr->ram_addr | |
3447 | + memory_region_section_addr(section, | |
3448 | addr)); | |
3449 | memcpy(buf, ptr, l); | |
3450 | qemu_put_ram_ptr(ptr); | |
3451 | } | |
3452 | } | |
3453 | len -= l; | |
3454 | buf += l; | |
3455 | addr += l; | |
3456 | } | |
3457 | } | |
3458 | ||
3459 | void address_space_write(AddressSpace *as, hwaddr addr, | |
3460 | const uint8_t *buf, int len) | |
3461 | { | |
3462 | address_space_rw(as, addr, (uint8_t *)buf, len, true); | |
3463 | } | |
3464 | ||
3465 | /** | |
3466 | * address_space_read: read from an address space. | |
3467 | * | |
3468 | * @as: #AddressSpace to be accessed | |
3469 | * @addr: address within that address space | |
3470 | * @buf: buffer with the data transferred | |
3471 | */ | |
3472 | void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len) | |
3473 | { | |
3474 | address_space_rw(as, addr, buf, len, false); | |
3475 | } | |
3476 | ||
3477 | ||
3478 | void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, | |
3479 | int len, int is_write) | |
3480 | { | |
3481 | return address_space_rw(&address_space_memory, addr, buf, len, is_write); | |
3482 | } | |
3483 | ||
3484 | /* used for ROM loading : can write in RAM and ROM */ | |
3485 | void cpu_physical_memory_write_rom(hwaddr addr, | |
3486 | const uint8_t *buf, int len) | |
3487 | { | |
3488 | AddressSpaceDispatch *d = address_space_memory.dispatch; | |
3489 | int l; | |
3490 | uint8_t *ptr; | |
3491 | hwaddr page; | |
3492 | MemoryRegionSection *section; | |
3493 | ||
3494 | while (len > 0) { | |
3495 | page = addr & TARGET_PAGE_MASK; | |
3496 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3497 | if (l > len) | |
3498 | l = len; | |
3499 | section = phys_page_find(d, page >> TARGET_PAGE_BITS); | |
3500 | ||
3501 | if (!(memory_region_is_ram(section->mr) || | |
3502 | memory_region_is_romd(section->mr))) { | |
3503 | /* do nothing */ | |
3504 | } else { | |
3505 | unsigned long addr1; | |
3506 | addr1 = memory_region_get_ram_addr(section->mr) | |
3507 | + memory_region_section_addr(section, addr); | |
3508 | /* ROM/RAM case */ | |
3509 | ptr = qemu_get_ram_ptr(addr1); | |
3510 | memcpy(ptr, buf, l); | |
3511 | invalidate_and_set_dirty(addr1, l); | |
3512 | qemu_put_ram_ptr(ptr); | |
3513 | } | |
3514 | len -= l; | |
3515 | buf += l; | |
3516 | addr += l; | |
3517 | } | |
3518 | } | |
3519 | ||
3520 | typedef struct { | |
3521 | void *buffer; | |
3522 | hwaddr addr; | |
3523 | hwaddr len; | |
3524 | } BounceBuffer; | |
3525 | ||
3526 | static BounceBuffer bounce; | |
3527 | ||
3528 | typedef struct MapClient { | |
3529 | void *opaque; | |
3530 | void (*callback)(void *opaque); | |
3531 | QLIST_ENTRY(MapClient) link; | |
3532 | } MapClient; | |
3533 | ||
3534 | static QLIST_HEAD(map_client_list, MapClient) map_client_list | |
3535 | = QLIST_HEAD_INITIALIZER(map_client_list); | |
3536 | ||
3537 | void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)) | |
3538 | { | |
3539 | MapClient *client = g_malloc(sizeof(*client)); | |
3540 | ||
3541 | client->opaque = opaque; | |
3542 | client->callback = callback; | |
3543 | QLIST_INSERT_HEAD(&map_client_list, client, link); | |
3544 | return client; | |
3545 | } | |
3546 | ||
3547 | static void cpu_unregister_map_client(void *_client) | |
3548 | { | |
3549 | MapClient *client = (MapClient *)_client; | |
3550 | ||
3551 | QLIST_REMOVE(client, link); | |
3552 | g_free(client); | |
3553 | } | |
3554 | ||
3555 | static void cpu_notify_map_clients(void) | |
3556 | { | |
3557 | MapClient *client; | |
3558 | ||
3559 | while (!QLIST_EMPTY(&map_client_list)) { | |
3560 | client = QLIST_FIRST(&map_client_list); | |
3561 | client->callback(client->opaque); | |
3562 | cpu_unregister_map_client(client); | |
3563 | } | |
3564 | } | |
3565 | ||
3566 | /* Map a physical memory region into a host virtual address. | |
3567 | * May map a subset of the requested range, given by and returned in *plen. | |
3568 | * May return NULL if resources needed to perform the mapping are exhausted. | |
3569 | * Use only for reads OR writes - not for read-modify-write operations. | |
3570 | * Use cpu_register_map_client() to know when retrying the map operation is | |
3571 | * likely to succeed. | |
3572 | */ | |
3573 | void *address_space_map(AddressSpace *as, | |
3574 | hwaddr addr, | |
3575 | hwaddr *plen, | |
3576 | bool is_write) | |
3577 | { | |
3578 | AddressSpaceDispatch *d = as->dispatch; | |
3579 | hwaddr len = *plen; | |
3580 | hwaddr todo = 0; | |
3581 | int l; | |
3582 | hwaddr page; | |
3583 | MemoryRegionSection *section; | |
3584 | ram_addr_t raddr = RAM_ADDR_MAX; | |
3585 | ram_addr_t rlen; | |
3586 | void *ret; | |
3587 | ||
3588 | while (len > 0) { | |
3589 | page = addr & TARGET_PAGE_MASK; | |
3590 | l = (page + TARGET_PAGE_SIZE) - addr; | |
3591 | if (l > len) | |
3592 | l = len; | |
3593 | section = phys_page_find(d, page >> TARGET_PAGE_BITS); | |
3594 | ||
3595 | if (!(memory_region_is_ram(section->mr) && !section->readonly)) { | |
3596 | if (todo || bounce.buffer) { | |
3597 | break; | |
3598 | } | |
3599 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); | |
3600 | bounce.addr = addr; | |
3601 | bounce.len = l; | |
3602 | if (!is_write) { | |
3603 | address_space_read(as, addr, bounce.buffer, l); | |
3604 | } | |
3605 | ||
3606 | *plen = l; | |
3607 | return bounce.buffer; | |
3608 | } | |
3609 | if (!todo) { | |
3610 | raddr = memory_region_get_ram_addr(section->mr) | |
3611 | + memory_region_section_addr(section, addr); | |
3612 | } | |
3613 | ||
3614 | len -= l; | |
3615 | addr += l; | |
3616 | todo += l; | |
3617 | } | |
3618 | rlen = todo; | |
3619 | ret = qemu_ram_ptr_length(raddr, &rlen); | |
3620 | *plen = rlen; | |
3621 | return ret; | |
3622 | } | |
3623 | ||
3624 | /* Unmaps a memory region previously mapped by address_space_map(). | |
3625 | * Will also mark the memory as dirty if is_write == 1. access_len gives | |
3626 | * the amount of memory that was actually read or written by the caller. | |
3627 | */ | |
3628 | void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, | |
3629 | int is_write, hwaddr access_len) | |
3630 | { | |
3631 | if (buffer != bounce.buffer) { | |
3632 | if (is_write) { | |
3633 | ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer); | |
3634 | while (access_len) { | |
3635 | unsigned l; | |
3636 | l = TARGET_PAGE_SIZE; | |
3637 | if (l > access_len) | |
3638 | l = access_len; | |
3639 | invalidate_and_set_dirty(addr1, l); | |
3640 | addr1 += l; | |
3641 | access_len -= l; | |
3642 | } | |
3643 | } | |
3644 | if (xen_enabled()) { | |
3645 | xen_invalidate_map_cache_entry(buffer); | |
3646 | } | |
3647 | return; | |
3648 | } | |
3649 | if (is_write) { | |
3650 | address_space_write(as, bounce.addr, bounce.buffer, access_len); | |
3651 | } | |
3652 | qemu_vfree(bounce.buffer); | |
3653 | bounce.buffer = NULL; | |
3654 | cpu_notify_map_clients(); | |
3655 | } | |
3656 | ||
3657 | void *cpu_physical_memory_map(hwaddr addr, | |
3658 | hwaddr *plen, | |
3659 | int is_write) | |
3660 | { | |
3661 | return address_space_map(&address_space_memory, addr, plen, is_write); | |
3662 | } | |
3663 | ||
3664 | void cpu_physical_memory_unmap(void *buffer, hwaddr len, | |
3665 | int is_write, hwaddr access_len) | |
3666 | { | |
3667 | return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); | |
3668 | } | |
3669 | ||
3670 | /* warning: addr must be aligned */ | |
3671 | static inline uint32_t ldl_phys_internal(hwaddr addr, | |
3672 | enum device_endian endian) | |
3673 | { | |
3674 | uint8_t *ptr; | |
3675 | uint32_t val; | |
3676 | MemoryRegionSection *section; | |
3677 | ||
3678 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
3679 | ||
3680 | if (!(memory_region_is_ram(section->mr) || | |
3681 | memory_region_is_romd(section->mr))) { | |
3682 | /* I/O case */ | |
3683 | addr = memory_region_section_addr(section, addr); | |
3684 | val = io_mem_read(section->mr, addr, 4); | |
3685 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3686 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3687 | val = bswap32(val); | |
3688 | } | |
3689 | #else | |
3690 | if (endian == DEVICE_BIG_ENDIAN) { | |
3691 | val = bswap32(val); | |
3692 | } | |
3693 | #endif | |
3694 | } else { | |
3695 | /* RAM case */ | |
3696 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr) | |
3697 | & TARGET_PAGE_MASK) | |
3698 | + memory_region_section_addr(section, addr)); | |
3699 | switch (endian) { | |
3700 | case DEVICE_LITTLE_ENDIAN: | |
3701 | val = ldl_le_p(ptr); | |
3702 | break; | |
3703 | case DEVICE_BIG_ENDIAN: | |
3704 | val = ldl_be_p(ptr); | |
3705 | break; | |
3706 | default: | |
3707 | val = ldl_p(ptr); | |
3708 | break; | |
3709 | } | |
3710 | } | |
3711 | return val; | |
3712 | } | |
3713 | ||
3714 | uint32_t ldl_phys(hwaddr addr) | |
3715 | { | |
3716 | return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN); | |
3717 | } | |
3718 | ||
3719 | uint32_t ldl_le_phys(hwaddr addr) | |
3720 | { | |
3721 | return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN); | |
3722 | } | |
3723 | ||
3724 | uint32_t ldl_be_phys(hwaddr addr) | |
3725 | { | |
3726 | return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN); | |
3727 | } | |
3728 | ||
3729 | /* warning: addr must be aligned */ | |
3730 | static inline uint64_t ldq_phys_internal(hwaddr addr, | |
3731 | enum device_endian endian) | |
3732 | { | |
3733 | uint8_t *ptr; | |
3734 | uint64_t val; | |
3735 | MemoryRegionSection *section; | |
3736 | ||
3737 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
3738 | ||
3739 | if (!(memory_region_is_ram(section->mr) || | |
3740 | memory_region_is_romd(section->mr))) { | |
3741 | /* I/O case */ | |
3742 | addr = memory_region_section_addr(section, addr); | |
3743 | ||
3744 | /* XXX This is broken when device endian != cpu endian. | |
3745 | Fix and add "endian" variable check */ | |
3746 | #ifdef TARGET_WORDS_BIGENDIAN | |
3747 | val = io_mem_read(section->mr, addr, 4) << 32; | |
3748 | val |= io_mem_read(section->mr, addr + 4, 4); | |
3749 | #else | |
3750 | val = io_mem_read(section->mr, addr, 4); | |
3751 | val |= io_mem_read(section->mr, addr + 4, 4) << 32; | |
3752 | #endif | |
3753 | } else { | |
3754 | /* RAM case */ | |
3755 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr) | |
3756 | & TARGET_PAGE_MASK) | |
3757 | + memory_region_section_addr(section, addr)); | |
3758 | switch (endian) { | |
3759 | case DEVICE_LITTLE_ENDIAN: | |
3760 | val = ldq_le_p(ptr); | |
3761 | break; | |
3762 | case DEVICE_BIG_ENDIAN: | |
3763 | val = ldq_be_p(ptr); | |
3764 | break; | |
3765 | default: | |
3766 | val = ldq_p(ptr); | |
3767 | break; | |
3768 | } | |
3769 | } | |
3770 | return val; | |
3771 | } | |
3772 | ||
3773 | uint64_t ldq_phys(hwaddr addr) | |
3774 | { | |
3775 | return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN); | |
3776 | } | |
3777 | ||
3778 | uint64_t ldq_le_phys(hwaddr addr) | |
3779 | { | |
3780 | return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN); | |
3781 | } | |
3782 | ||
3783 | uint64_t ldq_be_phys(hwaddr addr) | |
3784 | { | |
3785 | return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN); | |
3786 | } | |
3787 | ||
3788 | /* XXX: optimize */ | |
3789 | uint32_t ldub_phys(hwaddr addr) | |
3790 | { | |
3791 | uint8_t val; | |
3792 | cpu_physical_memory_read(addr, &val, 1); | |
3793 | return val; | |
3794 | } | |
3795 | ||
3796 | /* warning: addr must be aligned */ | |
3797 | static inline uint32_t lduw_phys_internal(hwaddr addr, | |
3798 | enum device_endian endian) | |
3799 | { | |
3800 | uint8_t *ptr; | |
3801 | uint64_t val; | |
3802 | MemoryRegionSection *section; | |
3803 | ||
3804 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
3805 | ||
3806 | if (!(memory_region_is_ram(section->mr) || | |
3807 | memory_region_is_romd(section->mr))) { | |
3808 | /* I/O case */ | |
3809 | addr = memory_region_section_addr(section, addr); | |
3810 | val = io_mem_read(section->mr, addr, 2); | |
3811 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3812 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3813 | val = bswap16(val); | |
3814 | } | |
3815 | #else | |
3816 | if (endian == DEVICE_BIG_ENDIAN) { | |
3817 | val = bswap16(val); | |
3818 | } | |
3819 | #endif | |
3820 | } else { | |
3821 | /* RAM case */ | |
3822 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr) | |
3823 | & TARGET_PAGE_MASK) | |
3824 | + memory_region_section_addr(section, addr)); | |
3825 | switch (endian) { | |
3826 | case DEVICE_LITTLE_ENDIAN: | |
3827 | val = lduw_le_p(ptr); | |
3828 | break; | |
3829 | case DEVICE_BIG_ENDIAN: | |
3830 | val = lduw_be_p(ptr); | |
3831 | break; | |
3832 | default: | |
3833 | val = lduw_p(ptr); | |
3834 | break; | |
3835 | } | |
3836 | } | |
3837 | return val; | |
3838 | } | |
3839 | ||
3840 | uint32_t lduw_phys(hwaddr addr) | |
3841 | { | |
3842 | return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN); | |
3843 | } | |
3844 | ||
3845 | uint32_t lduw_le_phys(hwaddr addr) | |
3846 | { | |
3847 | return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN); | |
3848 | } | |
3849 | ||
3850 | uint32_t lduw_be_phys(hwaddr addr) | |
3851 | { | |
3852 | return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN); | |
3853 | } | |
3854 | ||
3855 | /* warning: addr must be aligned. The ram page is not masked as dirty | |
3856 | and the code inside is not invalidated. It is useful if the dirty | |
3857 | bits are used to track modified PTEs */ | |
3858 | void stl_phys_notdirty(hwaddr addr, uint32_t val) | |
3859 | { | |
3860 | uint8_t *ptr; | |
3861 | MemoryRegionSection *section; | |
3862 | ||
3863 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
3864 | ||
3865 | if (!memory_region_is_ram(section->mr) || section->readonly) { | |
3866 | addr = memory_region_section_addr(section, addr); | |
3867 | if (memory_region_is_ram(section->mr)) { | |
3868 | section = &phys_sections[phys_section_rom]; | |
3869 | } | |
3870 | io_mem_write(section->mr, addr, val, 4); | |
3871 | } else { | |
3872 | unsigned long addr1 = (memory_region_get_ram_addr(section->mr) | |
3873 | & TARGET_PAGE_MASK) | |
3874 | + memory_region_section_addr(section, addr); | |
3875 | ptr = qemu_get_ram_ptr(addr1); | |
3876 | stl_p(ptr, val); | |
3877 | ||
3878 | if (unlikely(in_migration)) { | |
3879 | if (!cpu_physical_memory_is_dirty(addr1)) { | |
3880 | /* invalidate code */ | |
3881 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | |
3882 | /* set dirty bit */ | |
3883 | cpu_physical_memory_set_dirty_flags( | |
3884 | addr1, (0xff & ~CODE_DIRTY_FLAG)); | |
3885 | } | |
3886 | } | |
3887 | } | |
3888 | } | |
3889 | ||
3890 | void stq_phys_notdirty(hwaddr addr, uint64_t val) | |
3891 | { | |
3892 | uint8_t *ptr; | |
3893 | MemoryRegionSection *section; | |
3894 | ||
3895 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
3896 | ||
3897 | if (!memory_region_is_ram(section->mr) || section->readonly) { | |
3898 | addr = memory_region_section_addr(section, addr); | |
3899 | if (memory_region_is_ram(section->mr)) { | |
3900 | section = &phys_sections[phys_section_rom]; | |
3901 | } | |
3902 | #ifdef TARGET_WORDS_BIGENDIAN | |
3903 | io_mem_write(section->mr, addr, val >> 32, 4); | |
3904 | io_mem_write(section->mr, addr + 4, (uint32_t)val, 4); | |
3905 | #else | |
3906 | io_mem_write(section->mr, addr, (uint32_t)val, 4); | |
3907 | io_mem_write(section->mr, addr + 4, val >> 32, 4); | |
3908 | #endif | |
3909 | } else { | |
3910 | ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr) | |
3911 | & TARGET_PAGE_MASK) | |
3912 | + memory_region_section_addr(section, addr)); | |
3913 | stq_p(ptr, val); | |
3914 | } | |
3915 | } | |
3916 | ||
3917 | /* warning: addr must be aligned */ | |
3918 | static inline void stl_phys_internal(hwaddr addr, uint32_t val, | |
3919 | enum device_endian endian) | |
3920 | { | |
3921 | uint8_t *ptr; | |
3922 | MemoryRegionSection *section; | |
3923 | ||
3924 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
3925 | ||
3926 | if (!memory_region_is_ram(section->mr) || section->readonly) { | |
3927 | addr = memory_region_section_addr(section, addr); | |
3928 | if (memory_region_is_ram(section->mr)) { | |
3929 | section = &phys_sections[phys_section_rom]; | |
3930 | } | |
3931 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3932 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
3933 | val = bswap32(val); | |
3934 | } | |
3935 | #else | |
3936 | if (endian == DEVICE_BIG_ENDIAN) { | |
3937 | val = bswap32(val); | |
3938 | } | |
3939 | #endif | |
3940 | io_mem_write(section->mr, addr, val, 4); | |
3941 | } else { | |
3942 | unsigned long addr1; | |
3943 | addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
3944 | + memory_region_section_addr(section, addr); | |
3945 | /* RAM case */ | |
3946 | ptr = qemu_get_ram_ptr(addr1); | |
3947 | switch (endian) { | |
3948 | case DEVICE_LITTLE_ENDIAN: | |
3949 | stl_le_p(ptr, val); | |
3950 | break; | |
3951 | case DEVICE_BIG_ENDIAN: | |
3952 | stl_be_p(ptr, val); | |
3953 | break; | |
3954 | default: | |
3955 | stl_p(ptr, val); | |
3956 | break; | |
3957 | } | |
3958 | invalidate_and_set_dirty(addr1, 4); | |
3959 | } | |
3960 | } | |
3961 | ||
3962 | void stl_phys(hwaddr addr, uint32_t val) | |
3963 | { | |
3964 | stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN); | |
3965 | } | |
3966 | ||
3967 | void stl_le_phys(hwaddr addr, uint32_t val) | |
3968 | { | |
3969 | stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN); | |
3970 | } | |
3971 | ||
3972 | void stl_be_phys(hwaddr addr, uint32_t val) | |
3973 | { | |
3974 | stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN); | |
3975 | } | |
3976 | ||
3977 | /* XXX: optimize */ | |
3978 | void stb_phys(hwaddr addr, uint32_t val) | |
3979 | { | |
3980 | uint8_t v = val; | |
3981 | cpu_physical_memory_write(addr, &v, 1); | |
3982 | } | |
3983 | ||
3984 | /* warning: addr must be aligned */ | |
3985 | static inline void stw_phys_internal(hwaddr addr, uint32_t val, | |
3986 | enum device_endian endian) | |
3987 | { | |
3988 | uint8_t *ptr; | |
3989 | MemoryRegionSection *section; | |
3990 | ||
3991 | section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS); | |
3992 | ||
3993 | if (!memory_region_is_ram(section->mr) || section->readonly) { | |
3994 | addr = memory_region_section_addr(section, addr); | |
3995 | if (memory_region_is_ram(section->mr)) { | |
3996 | section = &phys_sections[phys_section_rom]; | |
3997 | } | |
3998 | #if defined(TARGET_WORDS_BIGENDIAN) | |
3999 | if (endian == DEVICE_LITTLE_ENDIAN) { | |
4000 | val = bswap16(val); | |
4001 | } | |
4002 | #else | |
4003 | if (endian == DEVICE_BIG_ENDIAN) { | |
4004 | val = bswap16(val); | |
4005 | } | |
4006 | #endif | |
4007 | io_mem_write(section->mr, addr, val, 2); | |
4008 | } else { | |
4009 | unsigned long addr1; | |
4010 | addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | |
4011 | + memory_region_section_addr(section, addr); | |
4012 | /* RAM case */ | |
4013 | ptr = qemu_get_ram_ptr(addr1); | |
4014 | switch (endian) { | |
4015 | case DEVICE_LITTLE_ENDIAN: | |
4016 | stw_le_p(ptr, val); | |
4017 | break; | |
4018 | case DEVICE_BIG_ENDIAN: | |
4019 | stw_be_p(ptr, val); | |
4020 | break; | |
4021 | default: | |
4022 | stw_p(ptr, val); | |
4023 | break; | |
4024 | } | |
4025 | invalidate_and_set_dirty(addr1, 2); | |
4026 | } | |
4027 | } | |
4028 | ||
4029 | void stw_phys(hwaddr addr, uint32_t val) | |
4030 | { | |
4031 | stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN); | |
4032 | } | |
4033 | ||
4034 | void stw_le_phys(hwaddr addr, uint32_t val) | |
4035 | { | |
4036 | stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN); | |
4037 | } | |
4038 | ||
4039 | void stw_be_phys(hwaddr addr, uint32_t val) | |
4040 | { | |
4041 | stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN); | |
4042 | } | |
4043 | ||
4044 | /* XXX: optimize */ | |
4045 | void stq_phys(hwaddr addr, uint64_t val) | |
4046 | { | |
4047 | val = tswap64(val); | |
4048 | cpu_physical_memory_write(addr, &val, 8); | |
4049 | } | |
4050 | ||
4051 | void stq_le_phys(hwaddr addr, uint64_t val) | |
4052 | { | |
4053 | val = cpu_to_le64(val); | |
4054 | cpu_physical_memory_write(addr, &val, 8); | |
4055 | } | |
4056 | ||
4057 | void stq_be_phys(hwaddr addr, uint64_t val) | |
4058 | { | |
4059 | val = cpu_to_be64(val); | |
4060 | cpu_physical_memory_write(addr, &val, 8); | |
4061 | } | |
4062 | ||
4063 | /* virtual memory access for debug (includes writing to ROM) */ | |
4064 | int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr, | |
4065 | uint8_t *buf, int len, int is_write) | |
4066 | { | |
4067 | int l; | |
4068 | hwaddr phys_addr; | |
4069 | target_ulong page; | |
4070 | ||
4071 | while (len > 0) { | |
4072 | page = addr & TARGET_PAGE_MASK; | |
4073 | phys_addr = cpu_get_phys_page_debug(env, page); | |
4074 | /* if no physical page mapped, return an error */ | |
4075 | if (phys_addr == -1) | |
4076 | return -1; | |
4077 | l = (page + TARGET_PAGE_SIZE) - addr; | |
4078 | if (l > len) | |
4079 | l = len; | |
4080 | phys_addr += (addr & ~TARGET_PAGE_MASK); | |
4081 | if (is_write) | |
4082 | cpu_physical_memory_write_rom(phys_addr, buf, l); | |
4083 | else | |
4084 | cpu_physical_memory_rw(phys_addr, buf, l, is_write); | |
4085 | len -= l; | |
4086 | buf += l; | |
4087 | addr += l; | |
4088 | } | |
4089 | return 0; | |
4090 | } | |
4091 | #endif | |
4092 | ||
4093 | /* in deterministic execution mode, instructions doing device I/Os | |
4094 | must be at the end of the TB */ | |
4095 | void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr) | |
4096 | { | |
4097 | TranslationBlock *tb; | |
4098 | uint32_t n, cflags; | |
4099 | target_ulong pc, cs_base; | |
4100 | uint64_t flags; | |
4101 | ||
4102 | tb = tb_find_pc(retaddr); | |
4103 | if (!tb) { | |
4104 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", | |
4105 | (void *)retaddr); | |
4106 | } | |
4107 | n = env->icount_decr.u16.low + tb->icount; | |
4108 | cpu_restore_state(tb, env, retaddr); | |
4109 | /* Calculate how many instructions had been executed before the fault | |
4110 | occurred. */ | |
4111 | n = n - env->icount_decr.u16.low; | |
4112 | /* Generate a new TB ending on the I/O insn. */ | |
4113 | n++; | |
4114 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
4115 | they were already the first instruction in the TB. If this is not | |
4116 | the first instruction in a TB then re-execute the preceding | |
4117 | branch. */ | |
4118 | #if defined(TARGET_MIPS) | |
4119 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
4120 | env->active_tc.PC -= 4; | |
4121 | env->icount_decr.u16.low++; | |
4122 | env->hflags &= ~MIPS_HFLAG_BMASK; | |
4123 | } | |
4124 | #elif defined(TARGET_SH4) | |
4125 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
4126 | && n > 1) { | |
4127 | env->pc -= 2; | |
4128 | env->icount_decr.u16.low++; | |
4129 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | |
4130 | } | |
4131 | #endif | |
4132 | /* This should never happen. */ | |
4133 | if (n > CF_COUNT_MASK) | |
4134 | cpu_abort(env, "TB too big during recompile"); | |
4135 | ||
4136 | cflags = n | CF_LAST_IO; | |
4137 | pc = tb->pc; | |
4138 | cs_base = tb->cs_base; | |
4139 | flags = tb->flags; | |
4140 | tb_phys_invalidate(tb, -1); | |
4141 | /* FIXME: In theory this could raise an exception. In practice | |
4142 | we have already translated the block once so it's probably ok. */ | |
4143 | tb_gen_code(env, pc, cs_base, flags, cflags); | |
4144 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not | |
4145 | the first in the TB) then we end up generating a whole new TB and | |
4146 | repeating the fault, which is horribly inefficient. | |
4147 | Better would be to execute just this insn uncached, or generate a | |
4148 | second new TB. */ | |
4149 | cpu_resume_from_signal(env, NULL); | |
4150 | } | |
4151 | ||
4152 | #if !defined(CONFIG_USER_ONLY) | |
4153 | ||
4154 | void dump_exec_info(FILE *f, fprintf_function cpu_fprintf) | |
4155 | { | |
4156 | int i, target_code_size, max_target_code_size; | |
4157 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
4158 | TranslationBlock *tb; | |
4159 | ||
4160 | target_code_size = 0; | |
4161 | max_target_code_size = 0; | |
4162 | cross_page = 0; | |
4163 | direct_jmp_count = 0; | |
4164 | direct_jmp2_count = 0; | |
4165 | for(i = 0; i < nb_tbs; i++) { | |
4166 | tb = &tbs[i]; | |
4167 | target_code_size += tb->size; | |
4168 | if (tb->size > max_target_code_size) | |
4169 | max_target_code_size = tb->size; | |
4170 | if (tb->page_addr[1] != -1) | |
4171 | cross_page++; | |
4172 | if (tb->tb_next_offset[0] != 0xffff) { | |
4173 | direct_jmp_count++; | |
4174 | if (tb->tb_next_offset[1] != 0xffff) { | |
4175 | direct_jmp2_count++; | |
4176 | } | |
4177 | } | |
4178 | } | |
4179 | /* XXX: avoid using doubles ? */ | |
4180 | cpu_fprintf(f, "Translation buffer state:\n"); | |
4181 | cpu_fprintf(f, "gen code size %td/%zd\n", | |
4182 | code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size); | |
4183 | cpu_fprintf(f, "TB count %d/%d\n", | |
4184 | nb_tbs, code_gen_max_blocks); | |
4185 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", | |
4186 | nb_tbs ? target_code_size / nb_tbs : 0, | |
4187 | max_target_code_size); | |
4188 | cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n", | |
4189 | nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0, | |
4190 | target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0); | |
4191 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", | |
4192 | cross_page, | |
4193 | nb_tbs ? (cross_page * 100) / nb_tbs : 0); | |
4194 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", | |
4195 | direct_jmp_count, | |
4196 | nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0, | |
4197 | direct_jmp2_count, | |
4198 | nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0); | |
4199 | cpu_fprintf(f, "\nStatistics:\n"); | |
4200 | cpu_fprintf(f, "TB flush count %d\n", tb_flush_count); | |
4201 | cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count); | |
4202 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); | |
4203 | tcg_dump_info(f, cpu_fprintf); | |
4204 | } | |
4205 | ||
4206 | /* | |
4207 | * A helper function for the _utterly broken_ virtio device model to find out if | |
4208 | * it's running on a big endian machine. Don't do this at home kids! | |
4209 | */ | |
4210 | bool virtio_is_big_endian(void); | |
4211 | bool virtio_is_big_endian(void) | |
4212 | { | |
4213 | #if defined(TARGET_WORDS_BIGENDIAN) | |
4214 | return true; | |
4215 | #else | |
4216 | return false; | |
4217 | #endif | |
4218 | } | |
4219 | ||
4220 | #endif | |
4221 | ||
4222 | #ifndef CONFIG_USER_ONLY | |
4223 | bool cpu_physical_memory_is_io(hwaddr phys_addr) | |
4224 | { | |
4225 | MemoryRegionSection *section; | |
4226 | ||
4227 | section = phys_page_find(address_space_memory.dispatch, | |
4228 | phys_addr >> TARGET_PAGE_BITS); | |
4229 | ||
4230 | return !(memory_region_is_ram(section->mr) || | |
4231 | memory_region_is_romd(section->mr)); | |
4232 | } | |
4233 | #endif |