]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * emulator main execution loop | |
3 | * | |
4 | * Copyright (c) 2003-2005 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | #include "config.h" | |
20 | #include "cpu.h" | |
21 | #include "trace.h" | |
22 | #include "disas/disas.h" | |
23 | #include "tcg.h" | |
24 | #include "qemu/atomic.h" | |
25 | #include "sysemu/qtest.h" | |
26 | #include "qemu/timer.h" | |
27 | ||
28 | /* -icount align implementation. */ | |
29 | ||
30 | typedef struct SyncClocks { | |
31 | int64_t diff_clk; | |
32 | int64_t last_cpu_icount; | |
33 | int64_t realtime_clock; | |
34 | } SyncClocks; | |
35 | ||
36 | #if !defined(CONFIG_USER_ONLY) | |
37 | /* Allow the guest to have a max 3ms advance. | |
38 | * The difference between the 2 clocks could therefore | |
39 | * oscillate around 0. | |
40 | */ | |
41 | #define VM_CLOCK_ADVANCE 3000000 | |
42 | #define THRESHOLD_REDUCE 1.5 | |
43 | #define MAX_DELAY_PRINT_RATE 2000000000LL | |
44 | #define MAX_NB_PRINTS 100 | |
45 | ||
46 | static void align_clocks(SyncClocks *sc, const CPUState *cpu) | |
47 | { | |
48 | int64_t cpu_icount; | |
49 | ||
50 | if (!icount_align_option) { | |
51 | return; | |
52 | } | |
53 | ||
54 | cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; | |
55 | sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount); | |
56 | sc->last_cpu_icount = cpu_icount; | |
57 | ||
58 | if (sc->diff_clk > VM_CLOCK_ADVANCE) { | |
59 | #ifndef _WIN32 | |
60 | struct timespec sleep_delay, rem_delay; | |
61 | sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; | |
62 | sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; | |
63 | if (nanosleep(&sleep_delay, &rem_delay) < 0) { | |
64 | sc->diff_clk -= (sleep_delay.tv_sec - rem_delay.tv_sec) * 1000000000LL; | |
65 | sc->diff_clk -= sleep_delay.tv_nsec - rem_delay.tv_nsec; | |
66 | } else { | |
67 | sc->diff_clk = 0; | |
68 | } | |
69 | #else | |
70 | Sleep(sc->diff_clk / SCALE_MS); | |
71 | sc->diff_clk = 0; | |
72 | #endif | |
73 | } | |
74 | } | |
75 | ||
76 | static void print_delay(const SyncClocks *sc) | |
77 | { | |
78 | static float threshold_delay; | |
79 | static int64_t last_realtime_clock; | |
80 | static int nb_prints; | |
81 | ||
82 | if (icount_align_option && | |
83 | sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && | |
84 | nb_prints < MAX_NB_PRINTS) { | |
85 | if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || | |
86 | (-sc->diff_clk / (float)1000000000LL < | |
87 | (threshold_delay - THRESHOLD_REDUCE))) { | |
88 | threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; | |
89 | printf("Warning: The guest is now late by %.1f to %.1f seconds\n", | |
90 | threshold_delay - 1, | |
91 | threshold_delay); | |
92 | nb_prints++; | |
93 | last_realtime_clock = sc->realtime_clock; | |
94 | } | |
95 | } | |
96 | } | |
97 | ||
98 | static void init_delay_params(SyncClocks *sc, | |
99 | const CPUState *cpu) | |
100 | { | |
101 | if (!icount_align_option) { | |
102 | return; | |
103 | } | |
104 | sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | |
105 | sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - | |
106 | sc->realtime_clock + | |
107 | cpu_get_clock_offset(); | |
108 | sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; | |
109 | if (sc->diff_clk < max_delay) { | |
110 | max_delay = sc->diff_clk; | |
111 | } | |
112 | if (sc->diff_clk > max_advance) { | |
113 | max_advance = sc->diff_clk; | |
114 | } | |
115 | ||
116 | /* Print every 2s max if the guest is late. We limit the number | |
117 | of printed messages to NB_PRINT_MAX(currently 100) */ | |
118 | print_delay(sc); | |
119 | } | |
120 | #else | |
121 | static void align_clocks(SyncClocks *sc, const CPUState *cpu) | |
122 | { | |
123 | } | |
124 | ||
125 | static void init_delay_params(SyncClocks *sc, const CPUState *cpu) | |
126 | { | |
127 | } | |
128 | #endif /* CONFIG USER ONLY */ | |
129 | ||
130 | void cpu_loop_exit(CPUState *cpu) | |
131 | { | |
132 | cpu->current_tb = NULL; | |
133 | siglongjmp(cpu->jmp_env, 1); | |
134 | } | |
135 | ||
136 | /* exit the current TB from a signal handler. The host registers are | |
137 | restored in a state compatible with the CPU emulator | |
138 | */ | |
139 | #if defined(CONFIG_SOFTMMU) | |
140 | void cpu_resume_from_signal(CPUState *cpu, void *puc) | |
141 | { | |
142 | /* XXX: restore cpu registers saved in host registers */ | |
143 | ||
144 | cpu->exception_index = -1; | |
145 | siglongjmp(cpu->jmp_env, 1); | |
146 | } | |
147 | #endif | |
148 | ||
149 | /* Execute a TB, and fix up the CPU state afterwards if necessary */ | |
150 | static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, uint8_t *tb_ptr) | |
151 | { | |
152 | CPUArchState *env = cpu->env_ptr; | |
153 | uintptr_t next_tb; | |
154 | ||
155 | #if defined(DEBUG_DISAS) | |
156 | if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { | |
157 | #if defined(TARGET_I386) | |
158 | log_cpu_state(cpu, CPU_DUMP_CCOP); | |
159 | #elif defined(TARGET_M68K) | |
160 | /* ??? Should not modify env state for dumping. */ | |
161 | cpu_m68k_flush_flags(env, env->cc_op); | |
162 | env->cc_op = CC_OP_FLAGS; | |
163 | env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4); | |
164 | log_cpu_state(cpu, 0); | |
165 | #else | |
166 | log_cpu_state(cpu, 0); | |
167 | #endif | |
168 | } | |
169 | #endif /* DEBUG_DISAS */ | |
170 | ||
171 | next_tb = tcg_qemu_tb_exec(env, tb_ptr); | |
172 | trace_exec_tb_exit((void *) (next_tb & ~TB_EXIT_MASK), | |
173 | next_tb & TB_EXIT_MASK); | |
174 | ||
175 | if ((next_tb & TB_EXIT_MASK) > TB_EXIT_IDX1) { | |
176 | /* We didn't start executing this TB (eg because the instruction | |
177 | * counter hit zero); we must restore the guest PC to the address | |
178 | * of the start of the TB. | |
179 | */ | |
180 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
181 | TranslationBlock *tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK); | |
182 | if (cc->synchronize_from_tb) { | |
183 | cc->synchronize_from_tb(cpu, tb); | |
184 | } else { | |
185 | assert(cc->set_pc); | |
186 | cc->set_pc(cpu, tb->pc); | |
187 | } | |
188 | } | |
189 | if ((next_tb & TB_EXIT_MASK) == TB_EXIT_REQUESTED) { | |
190 | /* We were asked to stop executing TBs (probably a pending | |
191 | * interrupt. We've now stopped, so clear the flag. | |
192 | */ | |
193 | cpu->tcg_exit_req = 0; | |
194 | } | |
195 | return next_tb; | |
196 | } | |
197 | ||
198 | /* Execute the code without caching the generated code. An interpreter | |
199 | could be used if available. */ | |
200 | static void cpu_exec_nocache(CPUArchState *env, int max_cycles, | |
201 | TranslationBlock *orig_tb) | |
202 | { | |
203 | CPUState *cpu = ENV_GET_CPU(env); | |
204 | TranslationBlock *tb; | |
205 | ||
206 | /* Should never happen. | |
207 | We only end up here when an existing TB is too long. */ | |
208 | if (max_cycles > CF_COUNT_MASK) | |
209 | max_cycles = CF_COUNT_MASK; | |
210 | ||
211 | tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags, | |
212 | max_cycles); | |
213 | cpu->current_tb = tb; | |
214 | /* execute the generated code */ | |
215 | trace_exec_tb_nocache(tb, tb->pc); | |
216 | cpu_tb_exec(cpu, tb->tc_ptr); | |
217 | cpu->current_tb = NULL; | |
218 | tb_phys_invalidate(tb, -1); | |
219 | tb_free(tb); | |
220 | } | |
221 | ||
222 | static TranslationBlock *tb_find_slow(CPUArchState *env, | |
223 | target_ulong pc, | |
224 | target_ulong cs_base, | |
225 | uint64_t flags) | |
226 | { | |
227 | CPUState *cpu = ENV_GET_CPU(env); | |
228 | TranslationBlock *tb, **ptb1; | |
229 | unsigned int h; | |
230 | tb_page_addr_t phys_pc, phys_page1; | |
231 | target_ulong virt_page2; | |
232 | ||
233 | tcg_ctx.tb_ctx.tb_invalidated_flag = 0; | |
234 | ||
235 | /* find translated block using physical mappings */ | |
236 | phys_pc = get_page_addr_code(env, pc); | |
237 | phys_page1 = phys_pc & TARGET_PAGE_MASK; | |
238 | h = tb_phys_hash_func(phys_pc); | |
239 | ptb1 = &tcg_ctx.tb_ctx.tb_phys_hash[h]; | |
240 | for(;;) { | |
241 | tb = *ptb1; | |
242 | if (!tb) | |
243 | goto not_found; | |
244 | if (tb->pc == pc && | |
245 | tb->page_addr[0] == phys_page1 && | |
246 | tb->cs_base == cs_base && | |
247 | tb->flags == flags) { | |
248 | /* check next page if needed */ | |
249 | if (tb->page_addr[1] != -1) { | |
250 | tb_page_addr_t phys_page2; | |
251 | ||
252 | virt_page2 = (pc & TARGET_PAGE_MASK) + | |
253 | TARGET_PAGE_SIZE; | |
254 | phys_page2 = get_page_addr_code(env, virt_page2); | |
255 | if (tb->page_addr[1] == phys_page2) | |
256 | goto found; | |
257 | } else { | |
258 | goto found; | |
259 | } | |
260 | } | |
261 | ptb1 = &tb->phys_hash_next; | |
262 | } | |
263 | not_found: | |
264 | /* if no translated code available, then translate it now */ | |
265 | tb = tb_gen_code(cpu, pc, cs_base, flags, 0); | |
266 | ||
267 | found: | |
268 | /* Move the last found TB to the head of the list */ | |
269 | if (likely(*ptb1)) { | |
270 | *ptb1 = tb->phys_hash_next; | |
271 | tb->phys_hash_next = tcg_ctx.tb_ctx.tb_phys_hash[h]; | |
272 | tcg_ctx.tb_ctx.tb_phys_hash[h] = tb; | |
273 | } | |
274 | /* we add the TB in the virtual pc hash table */ | |
275 | cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; | |
276 | return tb; | |
277 | } | |
278 | ||
279 | static inline TranslationBlock *tb_find_fast(CPUArchState *env) | |
280 | { | |
281 | CPUState *cpu = ENV_GET_CPU(env); | |
282 | TranslationBlock *tb; | |
283 | target_ulong cs_base, pc; | |
284 | int flags; | |
285 | ||
286 | /* we record a subset of the CPU state. It will | |
287 | always be the same before a given translated block | |
288 | is executed. */ | |
289 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); | |
290 | tb = cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; | |
291 | if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base || | |
292 | tb->flags != flags)) { | |
293 | tb = tb_find_slow(env, pc, cs_base, flags); | |
294 | } | |
295 | return tb; | |
296 | } | |
297 | ||
298 | static void cpu_handle_debug_exception(CPUArchState *env) | |
299 | { | |
300 | CPUState *cpu = ENV_GET_CPU(env); | |
301 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
302 | CPUWatchpoint *wp; | |
303 | ||
304 | if (!cpu->watchpoint_hit) { | |
305 | QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { | |
306 | wp->flags &= ~BP_WATCHPOINT_HIT; | |
307 | } | |
308 | } | |
309 | ||
310 | cc->debug_excp_handler(cpu); | |
311 | } | |
312 | ||
313 | /* main execution loop */ | |
314 | ||
315 | volatile sig_atomic_t exit_request; | |
316 | ||
317 | int cpu_exec(CPUArchState *env) | |
318 | { | |
319 | CPUState *cpu = ENV_GET_CPU(env); | |
320 | #if !(defined(CONFIG_USER_ONLY) && \ | |
321 | (defined(TARGET_M68K) || defined(TARGET_PPC) || defined(TARGET_S390X))) | |
322 | CPUClass *cc = CPU_GET_CLASS(cpu); | |
323 | #endif | |
324 | #ifdef TARGET_I386 | |
325 | X86CPU *x86_cpu = X86_CPU(cpu); | |
326 | #endif | |
327 | int ret, interrupt_request; | |
328 | TranslationBlock *tb; | |
329 | uint8_t *tc_ptr; | |
330 | uintptr_t next_tb; | |
331 | SyncClocks sc; | |
332 | ||
333 | /* This must be volatile so it is not trashed by longjmp() */ | |
334 | volatile bool have_tb_lock = false; | |
335 | ||
336 | if (cpu->halted) { | |
337 | if (!cpu_has_work(cpu)) { | |
338 | return EXCP_HALTED; | |
339 | } | |
340 | ||
341 | cpu->halted = 0; | |
342 | } | |
343 | ||
344 | current_cpu = cpu; | |
345 | ||
346 | /* As long as current_cpu is null, up to the assignment just above, | |
347 | * requests by other threads to exit the execution loop are expected to | |
348 | * be issued using the exit_request global. We must make sure that our | |
349 | * evaluation of the global value is performed past the current_cpu | |
350 | * value transition point, which requires a memory barrier as well as | |
351 | * an instruction scheduling constraint on modern architectures. */ | |
352 | smp_mb(); | |
353 | ||
354 | if (unlikely(exit_request)) { | |
355 | cpu->exit_request = 1; | |
356 | } | |
357 | ||
358 | #if defined(TARGET_I386) | |
359 | /* put eflags in CPU temporary format */ | |
360 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
361 | env->df = 1 - (2 * ((env->eflags >> 10) & 1)); | |
362 | CC_OP = CC_OP_EFLAGS; | |
363 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
364 | #elif defined(TARGET_SPARC) | |
365 | #elif defined(TARGET_M68K) | |
366 | env->cc_op = CC_OP_FLAGS; | |
367 | env->cc_dest = env->sr & 0xf; | |
368 | env->cc_x = (env->sr >> 4) & 1; | |
369 | #elif defined(TARGET_ALPHA) | |
370 | #elif defined(TARGET_ARM) | |
371 | #elif defined(TARGET_UNICORE32) | |
372 | #elif defined(TARGET_PPC) | |
373 | env->reserve_addr = -1; | |
374 | #elif defined(TARGET_LM32) | |
375 | #elif defined(TARGET_MICROBLAZE) | |
376 | #elif defined(TARGET_MIPS) | |
377 | #elif defined(TARGET_MOXIE) | |
378 | #elif defined(TARGET_OPENRISC) | |
379 | #elif defined(TARGET_SH4) | |
380 | #elif defined(TARGET_CRIS) | |
381 | #elif defined(TARGET_S390X) | |
382 | #elif defined(TARGET_XTENSA) | |
383 | #elif defined(TARGET_TRICORE) | |
384 | /* XXXXX */ | |
385 | #else | |
386 | #error unsupported target CPU | |
387 | #endif | |
388 | cpu->exception_index = -1; | |
389 | ||
390 | /* Calculate difference between guest clock and host clock. | |
391 | * This delay includes the delay of the last cycle, so | |
392 | * what we have to do is sleep until it is 0. As for the | |
393 | * advance/delay we gain here, we try to fix it next time. | |
394 | */ | |
395 | init_delay_params(&sc, cpu); | |
396 | ||
397 | /* prepare setjmp context for exception handling */ | |
398 | for(;;) { | |
399 | if (sigsetjmp(cpu->jmp_env, 0) == 0) { | |
400 | /* if an exception is pending, we execute it here */ | |
401 | if (cpu->exception_index >= 0) { | |
402 | if (cpu->exception_index >= EXCP_INTERRUPT) { | |
403 | /* exit request from the cpu execution loop */ | |
404 | ret = cpu->exception_index; | |
405 | if (ret == EXCP_DEBUG) { | |
406 | cpu_handle_debug_exception(env); | |
407 | } | |
408 | break; | |
409 | } else { | |
410 | #if defined(CONFIG_USER_ONLY) | |
411 | /* if user mode only, we simulate a fake exception | |
412 | which will be handled outside the cpu execution | |
413 | loop */ | |
414 | #if defined(TARGET_I386) | |
415 | cc->do_interrupt(cpu); | |
416 | #endif | |
417 | ret = cpu->exception_index; | |
418 | break; | |
419 | #else | |
420 | cc->do_interrupt(cpu); | |
421 | cpu->exception_index = -1; | |
422 | #endif | |
423 | } | |
424 | } | |
425 | ||
426 | next_tb = 0; /* force lookup of first TB */ | |
427 | for(;;) { | |
428 | interrupt_request = cpu->interrupt_request; | |
429 | if (unlikely(interrupt_request)) { | |
430 | if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { | |
431 | /* Mask out external interrupts for this step. */ | |
432 | interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; | |
433 | } | |
434 | if (interrupt_request & CPU_INTERRUPT_DEBUG) { | |
435 | cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; | |
436 | cpu->exception_index = EXCP_DEBUG; | |
437 | cpu_loop_exit(cpu); | |
438 | } | |
439 | #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \ | |
440 | defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \ | |
441 | defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || \ | |
442 | defined(TARGET_UNICORE32) || defined(TARGET_TRICORE) | |
443 | if (interrupt_request & CPU_INTERRUPT_HALT) { | |
444 | cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; | |
445 | cpu->halted = 1; | |
446 | cpu->exception_index = EXCP_HLT; | |
447 | cpu_loop_exit(cpu); | |
448 | } | |
449 | #endif | |
450 | #if defined(TARGET_I386) | |
451 | if (interrupt_request & CPU_INTERRUPT_INIT) { | |
452 | cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0); | |
453 | do_cpu_init(x86_cpu); | |
454 | cpu->exception_index = EXCP_HALTED; | |
455 | cpu_loop_exit(cpu); | |
456 | } | |
457 | #else | |
458 | if (interrupt_request & CPU_INTERRUPT_RESET) { | |
459 | cpu_reset(cpu); | |
460 | } | |
461 | #endif | |
462 | #if defined(TARGET_I386) | |
463 | #if !defined(CONFIG_USER_ONLY) | |
464 | if (interrupt_request & CPU_INTERRUPT_POLL) { | |
465 | cpu->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
466 | apic_poll_irq(x86_cpu->apic_state); | |
467 | } | |
468 | #endif | |
469 | if (interrupt_request & CPU_INTERRUPT_SIPI) { | |
470 | do_cpu_sipi(x86_cpu); | |
471 | } else if (env->hflags2 & HF2_GIF_MASK) { | |
472 | if ((interrupt_request & CPU_INTERRUPT_SMI) && | |
473 | !(env->hflags & HF_SMM_MASK)) { | |
474 | cpu_svm_check_intercept_param(env, SVM_EXIT_SMI, | |
475 | 0); | |
476 | cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
477 | do_smm_enter(x86_cpu); | |
478 | next_tb = 0; | |
479 | } else if ((interrupt_request & CPU_INTERRUPT_NMI) && | |
480 | !(env->hflags2 & HF2_NMI_MASK)) { | |
481 | cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
482 | env->hflags2 |= HF2_NMI_MASK; | |
483 | do_interrupt_x86_hardirq(env, EXCP02_NMI, 1); | |
484 | next_tb = 0; | |
485 | } else if (interrupt_request & CPU_INTERRUPT_MCE) { | |
486 | cpu->interrupt_request &= ~CPU_INTERRUPT_MCE; | |
487 | do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0); | |
488 | next_tb = 0; | |
489 | } else if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
490 | (((env->hflags2 & HF2_VINTR_MASK) && | |
491 | (env->hflags2 & HF2_HIF_MASK)) || | |
492 | (!(env->hflags2 & HF2_VINTR_MASK) && | |
493 | (env->eflags & IF_MASK && | |
494 | !(env->hflags & HF_INHIBIT_IRQ_MASK))))) { | |
495 | int intno; | |
496 | cpu_svm_check_intercept_param(env, SVM_EXIT_INTR, | |
497 | 0); | |
498 | cpu->interrupt_request &= ~(CPU_INTERRUPT_HARD | | |
499 | CPU_INTERRUPT_VIRQ); | |
500 | intno = cpu_get_pic_interrupt(env); | |
501 | qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno); | |
502 | do_interrupt_x86_hardirq(env, intno, 1); | |
503 | /* ensure that no TB jump will be modified as | |
504 | the program flow was changed */ | |
505 | next_tb = 0; | |
506 | #if !defined(CONFIG_USER_ONLY) | |
507 | } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) && | |
508 | (env->eflags & IF_MASK) && | |
509 | !(env->hflags & HF_INHIBIT_IRQ_MASK)) { | |
510 | int intno; | |
511 | /* FIXME: this should respect TPR */ | |
512 | cpu_svm_check_intercept_param(env, SVM_EXIT_VINTR, | |
513 | 0); | |
514 | intno = ldl_phys(cpu->as, | |
515 | env->vm_vmcb | |
516 | + offsetof(struct vmcb, | |
517 | control.int_vector)); | |
518 | qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno); | |
519 | do_interrupt_x86_hardirq(env, intno, 1); | |
520 | cpu->interrupt_request &= ~CPU_INTERRUPT_VIRQ; | |
521 | next_tb = 0; | |
522 | #endif | |
523 | } | |
524 | } | |
525 | #elif defined(TARGET_PPC) | |
526 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
527 | ppc_hw_interrupt(env); | |
528 | if (env->pending_interrupts == 0) { | |
529 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
530 | } | |
531 | next_tb = 0; | |
532 | } | |
533 | #elif defined(TARGET_LM32) | |
534 | if ((interrupt_request & CPU_INTERRUPT_HARD) | |
535 | && (env->ie & IE_IE)) { | |
536 | cpu->exception_index = EXCP_IRQ; | |
537 | cc->do_interrupt(cpu); | |
538 | next_tb = 0; | |
539 | } | |
540 | #elif defined(TARGET_MICROBLAZE) | |
541 | if ((interrupt_request & CPU_INTERRUPT_HARD) | |
542 | && (env->sregs[SR_MSR] & MSR_IE) | |
543 | && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP)) | |
544 | && !(env->iflags & (D_FLAG | IMM_FLAG))) { | |
545 | cpu->exception_index = EXCP_IRQ; | |
546 | cc->do_interrupt(cpu); | |
547 | next_tb = 0; | |
548 | } | |
549 | #elif defined(TARGET_MIPS) | |
550 | if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
551 | cpu_mips_hw_interrupts_pending(env)) { | |
552 | /* Raise it */ | |
553 | cpu->exception_index = EXCP_EXT_INTERRUPT; | |
554 | env->error_code = 0; | |
555 | cc->do_interrupt(cpu); | |
556 | next_tb = 0; | |
557 | } | |
558 | #elif defined(TARGET_TRICORE) | |
559 | if ((interrupt_request & CPU_INTERRUPT_HARD)) { | |
560 | cc->do_interrupt(cpu); | |
561 | next_tb = 0; | |
562 | } | |
563 | ||
564 | #elif defined(TARGET_OPENRISC) | |
565 | { | |
566 | int idx = -1; | |
567 | if ((interrupt_request & CPU_INTERRUPT_HARD) | |
568 | && (env->sr & SR_IEE)) { | |
569 | idx = EXCP_INT; | |
570 | } | |
571 | if ((interrupt_request & CPU_INTERRUPT_TIMER) | |
572 | && (env->sr & SR_TEE)) { | |
573 | idx = EXCP_TICK; | |
574 | } | |
575 | if (idx >= 0) { | |
576 | cpu->exception_index = idx; | |
577 | cc->do_interrupt(cpu); | |
578 | next_tb = 0; | |
579 | } | |
580 | } | |
581 | #elif defined(TARGET_SPARC) | |
582 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
583 | if (cpu_interrupts_enabled(env) && | |
584 | env->interrupt_index > 0) { | |
585 | int pil = env->interrupt_index & 0xf; | |
586 | int type = env->interrupt_index & 0xf0; | |
587 | ||
588 | if (((type == TT_EXTINT) && | |
589 | cpu_pil_allowed(env, pil)) || | |
590 | type != TT_EXTINT) { | |
591 | cpu->exception_index = env->interrupt_index; | |
592 | cc->do_interrupt(cpu); | |
593 | next_tb = 0; | |
594 | } | |
595 | } | |
596 | } | |
597 | #elif defined(TARGET_ARM) | |
598 | if (interrupt_request & CPU_INTERRUPT_FIQ | |
599 | && !(env->daif & PSTATE_F)) { | |
600 | cpu->exception_index = EXCP_FIQ; | |
601 | cc->do_interrupt(cpu); | |
602 | next_tb = 0; | |
603 | } | |
604 | /* ARMv7-M interrupt return works by loading a magic value | |
605 | into the PC. On real hardware the load causes the | |
606 | return to occur. The qemu implementation performs the | |
607 | jump normally, then does the exception return when the | |
608 | CPU tries to execute code at the magic address. | |
609 | This will cause the magic PC value to be pushed to | |
610 | the stack if an interrupt occurred at the wrong time. | |
611 | We avoid this by disabling interrupts when | |
612 | pc contains a magic address. */ | |
613 | if (interrupt_request & CPU_INTERRUPT_HARD | |
614 | && !(env->daif & PSTATE_I) | |
615 | && (!IS_M(env) || env->regs[15] < 0xfffffff0)) { | |
616 | cpu->exception_index = EXCP_IRQ; | |
617 | cc->do_interrupt(cpu); | |
618 | next_tb = 0; | |
619 | } | |
620 | #elif defined(TARGET_UNICORE32) | |
621 | if (interrupt_request & CPU_INTERRUPT_HARD | |
622 | && !(env->uncached_asr & ASR_I)) { | |
623 | cpu->exception_index = UC32_EXCP_INTR; | |
624 | cc->do_interrupt(cpu); | |
625 | next_tb = 0; | |
626 | } | |
627 | #elif defined(TARGET_SH4) | |
628 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
629 | cc->do_interrupt(cpu); | |
630 | next_tb = 0; | |
631 | } | |
632 | #elif defined(TARGET_ALPHA) | |
633 | { | |
634 | int idx = -1; | |
635 | /* ??? This hard-codes the OSF/1 interrupt levels. */ | |
636 | switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) { | |
637 | case 0 ... 3: | |
638 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
639 | idx = EXCP_DEV_INTERRUPT; | |
640 | } | |
641 | /* FALLTHRU */ | |
642 | case 4: | |
643 | if (interrupt_request & CPU_INTERRUPT_TIMER) { | |
644 | idx = EXCP_CLK_INTERRUPT; | |
645 | } | |
646 | /* FALLTHRU */ | |
647 | case 5: | |
648 | if (interrupt_request & CPU_INTERRUPT_SMP) { | |
649 | idx = EXCP_SMP_INTERRUPT; | |
650 | } | |
651 | /* FALLTHRU */ | |
652 | case 6: | |
653 | if (interrupt_request & CPU_INTERRUPT_MCHK) { | |
654 | idx = EXCP_MCHK; | |
655 | } | |
656 | } | |
657 | if (idx >= 0) { | |
658 | cpu->exception_index = idx; | |
659 | env->error_code = 0; | |
660 | cc->do_interrupt(cpu); | |
661 | next_tb = 0; | |
662 | } | |
663 | } | |
664 | #elif defined(TARGET_CRIS) | |
665 | if (interrupt_request & CPU_INTERRUPT_HARD | |
666 | && (env->pregs[PR_CCS] & I_FLAG) | |
667 | && !env->locked_irq) { | |
668 | cpu->exception_index = EXCP_IRQ; | |
669 | cc->do_interrupt(cpu); | |
670 | next_tb = 0; | |
671 | } | |
672 | if (interrupt_request & CPU_INTERRUPT_NMI) { | |
673 | unsigned int m_flag_archval; | |
674 | if (env->pregs[PR_VR] < 32) { | |
675 | m_flag_archval = M_FLAG_V10; | |
676 | } else { | |
677 | m_flag_archval = M_FLAG_V32; | |
678 | } | |
679 | if ((env->pregs[PR_CCS] & m_flag_archval)) { | |
680 | cpu->exception_index = EXCP_NMI; | |
681 | cc->do_interrupt(cpu); | |
682 | next_tb = 0; | |
683 | } | |
684 | } | |
685 | #elif defined(TARGET_M68K) | |
686 | if (interrupt_request & CPU_INTERRUPT_HARD | |
687 | && ((env->sr & SR_I) >> SR_I_SHIFT) | |
688 | < env->pending_level) { | |
689 | /* Real hardware gets the interrupt vector via an | |
690 | IACK cycle at this point. Current emulated | |
691 | hardware doesn't rely on this, so we | |
692 | provide/save the vector when the interrupt is | |
693 | first signalled. */ | |
694 | cpu->exception_index = env->pending_vector; | |
695 | do_interrupt_m68k_hardirq(env); | |
696 | next_tb = 0; | |
697 | } | |
698 | #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY) | |
699 | if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
700 | (env->psw.mask & PSW_MASK_EXT)) { | |
701 | cc->do_interrupt(cpu); | |
702 | next_tb = 0; | |
703 | } | |
704 | #elif defined(TARGET_XTENSA) | |
705 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
706 | cpu->exception_index = EXC_IRQ; | |
707 | cc->do_interrupt(cpu); | |
708 | next_tb = 0; | |
709 | } | |
710 | #endif | |
711 | /* Don't use the cached interrupt_request value, | |
712 | do_interrupt may have updated the EXITTB flag. */ | |
713 | if (cpu->interrupt_request & CPU_INTERRUPT_EXITTB) { | |
714 | cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; | |
715 | /* ensure that no TB jump will be modified as | |
716 | the program flow was changed */ | |
717 | next_tb = 0; | |
718 | } | |
719 | } | |
720 | if (unlikely(cpu->exit_request)) { | |
721 | cpu->exit_request = 0; | |
722 | cpu->exception_index = EXCP_INTERRUPT; | |
723 | cpu_loop_exit(cpu); | |
724 | } | |
725 | spin_lock(&tcg_ctx.tb_ctx.tb_lock); | |
726 | have_tb_lock = true; | |
727 | tb = tb_find_fast(env); | |
728 | /* Note: we do it here to avoid a gcc bug on Mac OS X when | |
729 | doing it in tb_find_slow */ | |
730 | if (tcg_ctx.tb_ctx.tb_invalidated_flag) { | |
731 | /* as some TB could have been invalidated because | |
732 | of memory exceptions while generating the code, we | |
733 | must recompute the hash index here */ | |
734 | next_tb = 0; | |
735 | tcg_ctx.tb_ctx.tb_invalidated_flag = 0; | |
736 | } | |
737 | if (qemu_loglevel_mask(CPU_LOG_EXEC)) { | |
738 | qemu_log("Trace %p [" TARGET_FMT_lx "] %s\n", | |
739 | tb->tc_ptr, tb->pc, lookup_symbol(tb->pc)); | |
740 | } | |
741 | /* see if we can patch the calling TB. When the TB | |
742 | spans two pages, we cannot safely do a direct | |
743 | jump. */ | |
744 | if (next_tb != 0 && tb->page_addr[1] == -1) { | |
745 | tb_add_jump((TranslationBlock *)(next_tb & ~TB_EXIT_MASK), | |
746 | next_tb & TB_EXIT_MASK, tb); | |
747 | } | |
748 | have_tb_lock = false; | |
749 | spin_unlock(&tcg_ctx.tb_ctx.tb_lock); | |
750 | ||
751 | /* cpu_interrupt might be called while translating the | |
752 | TB, but before it is linked into a potentially | |
753 | infinite loop and becomes env->current_tb. Avoid | |
754 | starting execution if there is a pending interrupt. */ | |
755 | cpu->current_tb = tb; | |
756 | barrier(); | |
757 | if (likely(!cpu->exit_request)) { | |
758 | trace_exec_tb(tb, tb->pc); | |
759 | tc_ptr = tb->tc_ptr; | |
760 | /* execute the generated code */ | |
761 | next_tb = cpu_tb_exec(cpu, tc_ptr); | |
762 | switch (next_tb & TB_EXIT_MASK) { | |
763 | case TB_EXIT_REQUESTED: | |
764 | /* Something asked us to stop executing | |
765 | * chained TBs; just continue round the main | |
766 | * loop. Whatever requested the exit will also | |
767 | * have set something else (eg exit_request or | |
768 | * interrupt_request) which we will handle | |
769 | * next time around the loop. | |
770 | */ | |
771 | tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK); | |
772 | next_tb = 0; | |
773 | break; | |
774 | case TB_EXIT_ICOUNT_EXPIRED: | |
775 | { | |
776 | /* Instruction counter expired. */ | |
777 | int insns_left; | |
778 | tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK); | |
779 | insns_left = cpu->icount_decr.u32; | |
780 | if (cpu->icount_extra && insns_left >= 0) { | |
781 | /* Refill decrementer and continue execution. */ | |
782 | cpu->icount_extra += insns_left; | |
783 | if (cpu->icount_extra > 0xffff) { | |
784 | insns_left = 0xffff; | |
785 | } else { | |
786 | insns_left = cpu->icount_extra; | |
787 | } | |
788 | cpu->icount_extra -= insns_left; | |
789 | cpu->icount_decr.u16.low = insns_left; | |
790 | } else { | |
791 | if (insns_left > 0) { | |
792 | /* Execute remaining instructions. */ | |
793 | cpu_exec_nocache(env, insns_left, tb); | |
794 | align_clocks(&sc, cpu); | |
795 | } | |
796 | cpu->exception_index = EXCP_INTERRUPT; | |
797 | next_tb = 0; | |
798 | cpu_loop_exit(cpu); | |
799 | } | |
800 | break; | |
801 | } | |
802 | default: | |
803 | break; | |
804 | } | |
805 | } | |
806 | cpu->current_tb = NULL; | |
807 | /* Try to align the host and virtual clocks | |
808 | if the guest is in advance */ | |
809 | align_clocks(&sc, cpu); | |
810 | /* reset soft MMU for next block (it can currently | |
811 | only be set by a memory fault) */ | |
812 | } /* for(;;) */ | |
813 | } else { | |
814 | /* Reload env after longjmp - the compiler may have smashed all | |
815 | * local variables as longjmp is marked 'noreturn'. */ | |
816 | cpu = current_cpu; | |
817 | env = cpu->env_ptr; | |
818 | #if !(defined(CONFIG_USER_ONLY) && \ | |
819 | (defined(TARGET_M68K) || defined(TARGET_PPC) || defined(TARGET_S390X))) | |
820 | cc = CPU_GET_CLASS(cpu); | |
821 | #endif | |
822 | #ifdef TARGET_I386 | |
823 | x86_cpu = X86_CPU(cpu); | |
824 | #endif | |
825 | if (have_tb_lock) { | |
826 | spin_unlock(&tcg_ctx.tb_ctx.tb_lock); | |
827 | have_tb_lock = false; | |
828 | } | |
829 | } | |
830 | } /* for(;;) */ | |
831 | ||
832 | ||
833 | #if defined(TARGET_I386) | |
834 | /* restore flags in standard format */ | |
835 | env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP) | |
836 | | (env->df & DF_MASK); | |
837 | #elif defined(TARGET_ARM) | |
838 | /* XXX: Save/restore host fpu exception state?. */ | |
839 | #elif defined(TARGET_UNICORE32) | |
840 | #elif defined(TARGET_SPARC) | |
841 | #elif defined(TARGET_PPC) | |
842 | #elif defined(TARGET_LM32) | |
843 | #elif defined(TARGET_M68K) | |
844 | cpu_m68k_flush_flags(env, env->cc_op); | |
845 | env->cc_op = CC_OP_FLAGS; | |
846 | env->sr = (env->sr & 0xffe0) | |
847 | | env->cc_dest | (env->cc_x << 4); | |
848 | #elif defined(TARGET_MICROBLAZE) | |
849 | #elif defined(TARGET_MIPS) | |
850 | #elif defined(TARGET_TRICORE) | |
851 | #elif defined(TARGET_MOXIE) | |
852 | #elif defined(TARGET_OPENRISC) | |
853 | #elif defined(TARGET_SH4) | |
854 | #elif defined(TARGET_ALPHA) | |
855 | #elif defined(TARGET_CRIS) | |
856 | #elif defined(TARGET_S390X) | |
857 | #elif defined(TARGET_XTENSA) | |
858 | /* XXXXX */ | |
859 | #else | |
860 | #error unsupported target CPU | |
861 | #endif | |
862 | ||
863 | /* fail safe : never use current_cpu outside cpu_exec() */ | |
864 | current_cpu = NULL; | |
865 | return ret; | |
866 | } |