]>
Commit | Line | Data |
---|---|---|
1 | #include "cpu.h" | |
2 | #include "exec/gdbstub.h" | |
3 | #include "helper.h" | |
4 | #include "qemu/host-utils.h" | |
5 | #include "sysemu/arch_init.h" | |
6 | #include "sysemu/sysemu.h" | |
7 | #include "qemu/bitops.h" | |
8 | #include "qemu/crc32c.h" | |
9 | #include <zlib.h> /* For crc32 */ | |
10 | ||
11 | #ifndef CONFIG_USER_ONLY | |
12 | static inline int get_phys_addr(CPUARMState *env, uint32_t address, | |
13 | int access_type, int is_user, | |
14 | hwaddr *phys_ptr, int *prot, | |
15 | target_ulong *page_size); | |
16 | ||
17 | /* Definitions for the PMCCNTR and PMCR registers */ | |
18 | #define PMCRD 0x8 | |
19 | #define PMCRC 0x4 | |
20 | #define PMCRE 0x1 | |
21 | #endif | |
22 | ||
23 | static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) | |
24 | { | |
25 | int nregs; | |
26 | ||
27 | /* VFP data registers are always little-endian. */ | |
28 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
29 | if (reg < nregs) { | |
30 | stfq_le_p(buf, env->vfp.regs[reg]); | |
31 | return 8; | |
32 | } | |
33 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
34 | /* Aliases for Q regs. */ | |
35 | nregs += 16; | |
36 | if (reg < nregs) { | |
37 | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | |
38 | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | |
39 | return 16; | |
40 | } | |
41 | } | |
42 | switch (reg - nregs) { | |
43 | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | |
44 | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | |
45 | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | |
46 | } | |
47 | return 0; | |
48 | } | |
49 | ||
50 | static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
51 | { | |
52 | int nregs; | |
53 | ||
54 | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | |
55 | if (reg < nregs) { | |
56 | env->vfp.regs[reg] = ldfq_le_p(buf); | |
57 | return 8; | |
58 | } | |
59 | if (arm_feature(env, ARM_FEATURE_NEON)) { | |
60 | nregs += 16; | |
61 | if (reg < nregs) { | |
62 | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | |
63 | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | |
64 | return 16; | |
65 | } | |
66 | } | |
67 | switch (reg - nregs) { | |
68 | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | |
69 | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | |
70 | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; | |
71 | } | |
72 | return 0; | |
73 | } | |
74 | ||
75 | static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) | |
76 | { | |
77 | switch (reg) { | |
78 | case 0 ... 31: | |
79 | /* 128 bit FP register */ | |
80 | stfq_le_p(buf, env->vfp.regs[reg * 2]); | |
81 | stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); | |
82 | return 16; | |
83 | case 32: | |
84 | /* FPSR */ | |
85 | stl_p(buf, vfp_get_fpsr(env)); | |
86 | return 4; | |
87 | case 33: | |
88 | /* FPCR */ | |
89 | stl_p(buf, vfp_get_fpcr(env)); | |
90 | return 4; | |
91 | default: | |
92 | return 0; | |
93 | } | |
94 | } | |
95 | ||
96 | static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) | |
97 | { | |
98 | switch (reg) { | |
99 | case 0 ... 31: | |
100 | /* 128 bit FP register */ | |
101 | env->vfp.regs[reg * 2] = ldfq_le_p(buf); | |
102 | env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); | |
103 | return 16; | |
104 | case 32: | |
105 | /* FPSR */ | |
106 | vfp_set_fpsr(env, ldl_p(buf)); | |
107 | return 4; | |
108 | case 33: | |
109 | /* FPCR */ | |
110 | vfp_set_fpcr(env, ldl_p(buf)); | |
111 | return 4; | |
112 | default: | |
113 | return 0; | |
114 | } | |
115 | } | |
116 | ||
117 | static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
118 | { | |
119 | if (cpreg_field_is_64bit(ri)) { | |
120 | return CPREG_FIELD64(env, ri); | |
121 | } else { | |
122 | return CPREG_FIELD32(env, ri); | |
123 | } | |
124 | } | |
125 | ||
126 | static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
127 | uint64_t value) | |
128 | { | |
129 | if (cpreg_field_is_64bit(ri)) { | |
130 | CPREG_FIELD64(env, ri) = value; | |
131 | } else { | |
132 | CPREG_FIELD32(env, ri) = value; | |
133 | } | |
134 | } | |
135 | ||
136 | static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) | |
137 | { | |
138 | /* Raw read of a coprocessor register (as needed for migration, etc). */ | |
139 | if (ri->type & ARM_CP_CONST) { | |
140 | return ri->resetvalue; | |
141 | } else if (ri->raw_readfn) { | |
142 | return ri->raw_readfn(env, ri); | |
143 | } else if (ri->readfn) { | |
144 | return ri->readfn(env, ri); | |
145 | } else { | |
146 | return raw_read(env, ri); | |
147 | } | |
148 | } | |
149 | ||
150 | static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, | |
151 | uint64_t v) | |
152 | { | |
153 | /* Raw write of a coprocessor register (as needed for migration, etc). | |
154 | * Note that constant registers are treated as write-ignored; the | |
155 | * caller should check for success by whether a readback gives the | |
156 | * value written. | |
157 | */ | |
158 | if (ri->type & ARM_CP_CONST) { | |
159 | return; | |
160 | } else if (ri->raw_writefn) { | |
161 | ri->raw_writefn(env, ri, v); | |
162 | } else if (ri->writefn) { | |
163 | ri->writefn(env, ri, v); | |
164 | } else { | |
165 | raw_write(env, ri, v); | |
166 | } | |
167 | } | |
168 | ||
169 | bool write_cpustate_to_list(ARMCPU *cpu) | |
170 | { | |
171 | /* Write the coprocessor state from cpu->env to the (index,value) list. */ | |
172 | int i; | |
173 | bool ok = true; | |
174 | ||
175 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
176 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
177 | const ARMCPRegInfo *ri; | |
178 | ||
179 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); | |
180 | if (!ri) { | |
181 | ok = false; | |
182 | continue; | |
183 | } | |
184 | if (ri->type & ARM_CP_NO_MIGRATE) { | |
185 | continue; | |
186 | } | |
187 | cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); | |
188 | } | |
189 | return ok; | |
190 | } | |
191 | ||
192 | bool write_list_to_cpustate(ARMCPU *cpu) | |
193 | { | |
194 | int i; | |
195 | bool ok = true; | |
196 | ||
197 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
198 | uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); | |
199 | uint64_t v = cpu->cpreg_values[i]; | |
200 | const ARMCPRegInfo *ri; | |
201 | ||
202 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); | |
203 | if (!ri) { | |
204 | ok = false; | |
205 | continue; | |
206 | } | |
207 | if (ri->type & ARM_CP_NO_MIGRATE) { | |
208 | continue; | |
209 | } | |
210 | /* Write value and confirm it reads back as written | |
211 | * (to catch read-only registers and partially read-only | |
212 | * registers where the incoming migration value doesn't match) | |
213 | */ | |
214 | write_raw_cp_reg(&cpu->env, ri, v); | |
215 | if (read_raw_cp_reg(&cpu->env, ri) != v) { | |
216 | ok = false; | |
217 | } | |
218 | } | |
219 | return ok; | |
220 | } | |
221 | ||
222 | static void add_cpreg_to_list(gpointer key, gpointer opaque) | |
223 | { | |
224 | ARMCPU *cpu = opaque; | |
225 | uint64_t regidx; | |
226 | const ARMCPRegInfo *ri; | |
227 | ||
228 | regidx = *(uint32_t *)key; | |
229 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); | |
230 | ||
231 | if (!(ri->type & ARM_CP_NO_MIGRATE)) { | |
232 | cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); | |
233 | /* The value array need not be initialized at this point */ | |
234 | cpu->cpreg_array_len++; | |
235 | } | |
236 | } | |
237 | ||
238 | static void count_cpreg(gpointer key, gpointer opaque) | |
239 | { | |
240 | ARMCPU *cpu = opaque; | |
241 | uint64_t regidx; | |
242 | const ARMCPRegInfo *ri; | |
243 | ||
244 | regidx = *(uint32_t *)key; | |
245 | ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); | |
246 | ||
247 | if (!(ri->type & ARM_CP_NO_MIGRATE)) { | |
248 | cpu->cpreg_array_len++; | |
249 | } | |
250 | } | |
251 | ||
252 | static gint cpreg_key_compare(gconstpointer a, gconstpointer b) | |
253 | { | |
254 | uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); | |
255 | uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); | |
256 | ||
257 | if (aidx > bidx) { | |
258 | return 1; | |
259 | } | |
260 | if (aidx < bidx) { | |
261 | return -1; | |
262 | } | |
263 | return 0; | |
264 | } | |
265 | ||
266 | static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata) | |
267 | { | |
268 | GList **plist = udata; | |
269 | ||
270 | *plist = g_list_prepend(*plist, key); | |
271 | } | |
272 | ||
273 | void init_cpreg_list(ARMCPU *cpu) | |
274 | { | |
275 | /* Initialise the cpreg_tuples[] array based on the cp_regs hash. | |
276 | * Note that we require cpreg_tuples[] to be sorted by key ID. | |
277 | */ | |
278 | GList *keys = NULL; | |
279 | int arraylen; | |
280 | ||
281 | g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys); | |
282 | ||
283 | keys = g_list_sort(keys, cpreg_key_compare); | |
284 | ||
285 | cpu->cpreg_array_len = 0; | |
286 | ||
287 | g_list_foreach(keys, count_cpreg, cpu); | |
288 | ||
289 | arraylen = cpu->cpreg_array_len; | |
290 | cpu->cpreg_indexes = g_new(uint64_t, arraylen); | |
291 | cpu->cpreg_values = g_new(uint64_t, arraylen); | |
292 | cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); | |
293 | cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); | |
294 | cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; | |
295 | cpu->cpreg_array_len = 0; | |
296 | ||
297 | g_list_foreach(keys, add_cpreg_to_list, cpu); | |
298 | ||
299 | assert(cpu->cpreg_array_len == arraylen); | |
300 | ||
301 | g_list_free(keys); | |
302 | } | |
303 | ||
304 | static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
305 | { | |
306 | env->cp15.c3 = value; | |
307 | tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */ | |
308 | } | |
309 | ||
310 | static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
311 | { | |
312 | if (env->cp15.c13_fcse != value) { | |
313 | /* Unlike real hardware the qemu TLB uses virtual addresses, | |
314 | * not modified virtual addresses, so this causes a TLB flush. | |
315 | */ | |
316 | tlb_flush(env, 1); | |
317 | env->cp15.c13_fcse = value; | |
318 | } | |
319 | } | |
320 | ||
321 | static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
322 | uint64_t value) | |
323 | { | |
324 | if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) { | |
325 | /* For VMSA (when not using the LPAE long descriptor page table | |
326 | * format) this register includes the ASID, so do a TLB flush. | |
327 | * For PMSA it is purely a process ID and no action is needed. | |
328 | */ | |
329 | tlb_flush(env, 1); | |
330 | } | |
331 | env->cp15.c13_context = value; | |
332 | } | |
333 | ||
334 | static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
335 | uint64_t value) | |
336 | { | |
337 | /* Invalidate all (TLBIALL) */ | |
338 | tlb_flush(env, 1); | |
339 | } | |
340 | ||
341 | static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
342 | uint64_t value) | |
343 | { | |
344 | /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ | |
345 | tlb_flush_page(env, value & TARGET_PAGE_MASK); | |
346 | } | |
347 | ||
348 | static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
349 | uint64_t value) | |
350 | { | |
351 | /* Invalidate by ASID (TLBIASID) */ | |
352 | tlb_flush(env, value == 0); | |
353 | } | |
354 | ||
355 | static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
356 | uint64_t value) | |
357 | { | |
358 | /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ | |
359 | tlb_flush_page(env, value & TARGET_PAGE_MASK); | |
360 | } | |
361 | ||
362 | static const ARMCPRegInfo cp_reginfo[] = { | |
363 | /* DBGDIDR: just RAZ. In particular this means the "debug architecture | |
364 | * version" bits will read as a reserved value, which should cause | |
365 | * Linux to not try to use the debug hardware. | |
366 | */ | |
367 | { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, | |
368 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
369 | /* MMU Domain access control / MPU write buffer control */ | |
370 | { .name = "DACR", .cp = 15, | |
371 | .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
372 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3), | |
373 | .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, }, | |
374 | { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0, | |
375 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), | |
376 | .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, | |
377 | { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1, | |
378 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_context), | |
379 | .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, | |
380 | /* ??? This covers not just the impdef TLB lockdown registers but also | |
381 | * some v7VMSA registers relating to TEX remap, so it is overly broad. | |
382 | */ | |
383 | { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY, | |
384 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, | |
385 | /* MMU TLB control. Note that the wildcarding means we cover not just | |
386 | * the unified TLB ops but also the dside/iside/inner-shareable variants. | |
387 | */ | |
388 | { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, | |
389 | .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, | |
390 | .type = ARM_CP_NO_MIGRATE }, | |
391 | { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, | |
392 | .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, | |
393 | .type = ARM_CP_NO_MIGRATE }, | |
394 | { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, | |
395 | .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, | |
396 | .type = ARM_CP_NO_MIGRATE }, | |
397 | { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, | |
398 | .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, | |
399 | .type = ARM_CP_NO_MIGRATE }, | |
400 | /* Cache maintenance ops; some of this space may be overridden later. */ | |
401 | { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
402 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
403 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, | |
404 | REGINFO_SENTINEL | |
405 | }; | |
406 | ||
407 | static const ARMCPRegInfo not_v6_cp_reginfo[] = { | |
408 | /* Not all pre-v6 cores implemented this WFI, so this is slightly | |
409 | * over-broad. | |
410 | */ | |
411 | { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, | |
412 | .access = PL1_W, .type = ARM_CP_WFI }, | |
413 | REGINFO_SENTINEL | |
414 | }; | |
415 | ||
416 | static const ARMCPRegInfo not_v7_cp_reginfo[] = { | |
417 | /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which | |
418 | * is UNPREDICTABLE; we choose to NOP as most implementations do). | |
419 | */ | |
420 | { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
421 | .access = PL1_W, .type = ARM_CP_WFI }, | |
422 | /* L1 cache lockdown. Not architectural in v6 and earlier but in practice | |
423 | * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and | |
424 | * OMAPCP will override this space. | |
425 | */ | |
426 | { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, | |
427 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), | |
428 | .resetvalue = 0 }, | |
429 | { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, | |
430 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), | |
431 | .resetvalue = 0 }, | |
432 | /* v6 doesn't have the cache ID registers but Linux reads them anyway */ | |
433 | { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, | |
434 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, | |
435 | .resetvalue = 0 }, | |
436 | REGINFO_SENTINEL | |
437 | }; | |
438 | ||
439 | static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
440 | uint64_t value) | |
441 | { | |
442 | if (env->cp15.c1_coproc != value) { | |
443 | env->cp15.c1_coproc = value; | |
444 | /* ??? Is this safe when called from within a TB? */ | |
445 | tb_flush(env); | |
446 | } | |
447 | } | |
448 | ||
449 | static const ARMCPRegInfo v6_cp_reginfo[] = { | |
450 | /* prefetch by MVA in v6, NOP in v7 */ | |
451 | { .name = "MVA_prefetch", | |
452 | .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, | |
453 | .access = PL1_W, .type = ARM_CP_NOP }, | |
454 | { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, | |
455 | .access = PL0_W, .type = ARM_CP_NOP }, | |
456 | { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, | |
457 | .access = PL0_W, .type = ARM_CP_NOP }, | |
458 | { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, | |
459 | .access = PL0_W, .type = ARM_CP_NOP }, | |
460 | { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, | |
461 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn), | |
462 | .resetvalue = 0, }, | |
463 | /* Watchpoint Fault Address Register : should actually only be present | |
464 | * for 1136, 1176, 11MPCore. | |
465 | */ | |
466 | { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, | |
467 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, | |
468 | { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, | |
469 | .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, | |
470 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc), | |
471 | .resetvalue = 0, .writefn = cpacr_write }, | |
472 | REGINFO_SENTINEL | |
473 | }; | |
474 | ||
475 | static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
476 | { | |
477 | /* Perfomance monitor registers user accessibility is controlled | |
478 | * by PMUSERENR. | |
479 | */ | |
480 | if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { | |
481 | return CP_ACCESS_TRAP; | |
482 | } | |
483 | return CP_ACCESS_OK; | |
484 | } | |
485 | ||
486 | #ifndef CONFIG_USER_ONLY | |
487 | static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
488 | uint64_t value) | |
489 | { | |
490 | /* Don't computer the number of ticks in user mode */ | |
491 | uint32_t temp_ticks; | |
492 | ||
493 | temp_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) * | |
494 | get_ticks_per_sec() / 1000000; | |
495 | ||
496 | if (env->cp15.c9_pmcr & PMCRE) { | |
497 | /* If the counter is enabled */ | |
498 | if (env->cp15.c9_pmcr & PMCRD) { | |
499 | /* Increment once every 64 processor clock cycles */ | |
500 | env->cp15.c15_ccnt = (temp_ticks/64) - env->cp15.c15_ccnt; | |
501 | } else { | |
502 | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | |
503 | } | |
504 | } | |
505 | ||
506 | if (value & PMCRC) { | |
507 | /* The counter has been reset */ | |
508 | env->cp15.c15_ccnt = 0; | |
509 | } | |
510 | ||
511 | /* only the DP, X, D and E bits are writable */ | |
512 | env->cp15.c9_pmcr &= ~0x39; | |
513 | env->cp15.c9_pmcr |= (value & 0x39); | |
514 | ||
515 | if (env->cp15.c9_pmcr & PMCRE) { | |
516 | if (env->cp15.c9_pmcr & PMCRD) { | |
517 | /* Increment once every 64 processor clock cycles */ | |
518 | temp_ticks /= 64; | |
519 | } | |
520 | env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; | |
521 | } | |
522 | } | |
523 | ||
524 | static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
525 | { | |
526 | uint32_t total_ticks; | |
527 | ||
528 | if (!(env->cp15.c9_pmcr & PMCRE)) { | |
529 | /* Counter is disabled, do not change value */ | |
530 | return env->cp15.c15_ccnt; | |
531 | } | |
532 | ||
533 | total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) * | |
534 | get_ticks_per_sec() / 1000000; | |
535 | ||
536 | if (env->cp15.c9_pmcr & PMCRD) { | |
537 | /* Increment once every 64 processor clock cycles */ | |
538 | total_ticks /= 64; | |
539 | } | |
540 | return total_ticks - env->cp15.c15_ccnt; | |
541 | } | |
542 | ||
543 | static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
544 | uint64_t value) | |
545 | { | |
546 | uint32_t total_ticks; | |
547 | ||
548 | if (!(env->cp15.c9_pmcr & PMCRE)) { | |
549 | /* Counter is disabled, set the absolute value */ | |
550 | env->cp15.c15_ccnt = value; | |
551 | return; | |
552 | } | |
553 | ||
554 | total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) * | |
555 | get_ticks_per_sec() / 1000000; | |
556 | ||
557 | if (env->cp15.c9_pmcr & PMCRD) { | |
558 | /* Increment once every 64 processor clock cycles */ | |
559 | total_ticks /= 64; | |
560 | } | |
561 | env->cp15.c15_ccnt = total_ticks - value; | |
562 | } | |
563 | #endif | |
564 | ||
565 | static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
566 | uint64_t value) | |
567 | { | |
568 | value &= (1 << 31); | |
569 | env->cp15.c9_pmcnten |= value; | |
570 | } | |
571 | ||
572 | static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
573 | uint64_t value) | |
574 | { | |
575 | value &= (1 << 31); | |
576 | env->cp15.c9_pmcnten &= ~value; | |
577 | } | |
578 | ||
579 | static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
580 | uint64_t value) | |
581 | { | |
582 | env->cp15.c9_pmovsr &= ~value; | |
583 | } | |
584 | ||
585 | static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
586 | uint64_t value) | |
587 | { | |
588 | env->cp15.c9_pmxevtyper = value & 0xff; | |
589 | } | |
590 | ||
591 | static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
592 | uint64_t value) | |
593 | { | |
594 | env->cp15.c9_pmuserenr = value & 1; | |
595 | } | |
596 | ||
597 | static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
598 | uint64_t value) | |
599 | { | |
600 | /* We have no event counters so only the C bit can be changed */ | |
601 | value &= (1 << 31); | |
602 | env->cp15.c9_pminten |= value; | |
603 | } | |
604 | ||
605 | static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
606 | uint64_t value) | |
607 | { | |
608 | value &= (1 << 31); | |
609 | env->cp15.c9_pminten &= ~value; | |
610 | } | |
611 | ||
612 | static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
613 | uint64_t value) | |
614 | { | |
615 | /* Note that even though the AArch64 view of this register has bits | |
616 | * [10:0] all RES0 we can only mask the bottom 5, to comply with the | |
617 | * architectural requirements for bits which are RES0 only in some | |
618 | * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 | |
619 | * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) | |
620 | */ | |
621 | env->cp15.c12_vbar = value & ~0x1Ful; | |
622 | } | |
623 | ||
624 | static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
625 | { | |
626 | ARMCPU *cpu = arm_env_get_cpu(env); | |
627 | return cpu->ccsidr[env->cp15.c0_cssel]; | |
628 | } | |
629 | ||
630 | static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
631 | uint64_t value) | |
632 | { | |
633 | env->cp15.c0_cssel = value & 0xf; | |
634 | } | |
635 | ||
636 | static const ARMCPRegInfo v7_cp_reginfo[] = { | |
637 | /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped | |
638 | * debug components | |
639 | */ | |
640 | { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
641 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
642 | { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, | |
643 | .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
644 | /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ | |
645 | { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, | |
646 | .access = PL1_W, .type = ARM_CP_NOP }, | |
647 | /* Performance monitors are implementation defined in v7, | |
648 | * but with an ARM recommended set of registers, which we | |
649 | * follow (although we don't actually implement any counters) | |
650 | * | |
651 | * Performance registers fall into three categories: | |
652 | * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) | |
653 | * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) | |
654 | * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) | |
655 | * For the cases controlled by PMUSERENR we must set .access to PL0_RW | |
656 | * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. | |
657 | */ | |
658 | { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, | |
659 | .access = PL0_RW, .resetvalue = 0, | |
660 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), | |
661 | .writefn = pmcntenset_write, | |
662 | .accessfn = pmreg_access, | |
663 | .raw_writefn = raw_write }, | |
664 | { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, | |
665 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), | |
666 | .accessfn = pmreg_access, | |
667 | .writefn = pmcntenclr_write, | |
668 | .type = ARM_CP_NO_MIGRATE }, | |
669 | { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, | |
670 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), | |
671 | .accessfn = pmreg_access, | |
672 | .writefn = pmovsr_write, | |
673 | .raw_writefn = raw_write }, | |
674 | /* Unimplemented so WI. */ | |
675 | { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, | |
676 | .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, | |
677 | /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. | |
678 | * We choose to RAZ/WI. | |
679 | */ | |
680 | { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, | |
681 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, | |
682 | .accessfn = pmreg_access }, | |
683 | #ifndef CONFIG_USER_ONLY | |
684 | { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, | |
685 | .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, | |
686 | .readfn = pmccntr_read, .writefn = pmccntr_write, | |
687 | .accessfn = pmreg_access }, | |
688 | #endif | |
689 | { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, | |
690 | .access = PL0_RW, | |
691 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), | |
692 | .accessfn = pmreg_access, .writefn = pmxevtyper_write, | |
693 | .raw_writefn = raw_write }, | |
694 | /* Unimplemented, RAZ/WI. */ | |
695 | { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, | |
696 | .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, | |
697 | .accessfn = pmreg_access }, | |
698 | { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, | |
699 | .access = PL0_R | PL1_RW, | |
700 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), | |
701 | .resetvalue = 0, | |
702 | .writefn = pmuserenr_write, .raw_writefn = raw_write }, | |
703 | { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, | |
704 | .access = PL1_RW, | |
705 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
706 | .resetvalue = 0, | |
707 | .writefn = pmintenset_write, .raw_writefn = raw_write }, | |
708 | { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, | |
709 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, | |
710 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), | |
711 | .resetvalue = 0, .writefn = pmintenclr_write, }, | |
712 | { .name = "VBAR", .state = ARM_CP_STATE_BOTH, | |
713 | .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, | |
714 | .access = PL1_RW, .writefn = vbar_write, | |
715 | .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar), | |
716 | .resetvalue = 0 }, | |
717 | { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0, | |
718 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr), | |
719 | .resetvalue = 0, }, | |
720 | { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, | |
721 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, | |
722 | .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE }, | |
723 | { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, | |
724 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, | |
725 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel), | |
726 | .writefn = csselr_write, .resetvalue = 0 }, | |
727 | /* Auxiliary ID register: this actually has an IMPDEF value but for now | |
728 | * just RAZ for all cores: | |
729 | */ | |
730 | { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7, | |
731 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
732 | /* MAIR can just read-as-written because we don't implement caches | |
733 | * and so don't need to care about memory attributes. | |
734 | */ | |
735 | { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, | |
736 | .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, | |
737 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1), | |
738 | .resetvalue = 0 }, | |
739 | /* For non-long-descriptor page tables these are PRRR and NMRR; | |
740 | * regardless they still act as reads-as-written for QEMU. | |
741 | * The override is necessary because of the overly-broad TLB_LOCKDOWN | |
742 | * definition. | |
743 | */ | |
744 | { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE, | |
745 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, | |
746 | .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1), | |
747 | .resetfn = arm_cp_reset_ignore }, | |
748 | { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE, | |
749 | .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, | |
750 | .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1), | |
751 | .resetfn = arm_cp_reset_ignore }, | |
752 | REGINFO_SENTINEL | |
753 | }; | |
754 | ||
755 | static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
756 | uint64_t value) | |
757 | { | |
758 | value &= 1; | |
759 | env->teecr = value; | |
760 | } | |
761 | ||
762 | static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
763 | { | |
764 | if (arm_current_pl(env) == 0 && (env->teecr & 1)) { | |
765 | return CP_ACCESS_TRAP; | |
766 | } | |
767 | return CP_ACCESS_OK; | |
768 | } | |
769 | ||
770 | static const ARMCPRegInfo t2ee_cp_reginfo[] = { | |
771 | { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, | |
772 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), | |
773 | .resetvalue = 0, | |
774 | .writefn = teecr_write }, | |
775 | { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, | |
776 | .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), | |
777 | .accessfn = teehbr_access, .resetvalue = 0 }, | |
778 | REGINFO_SENTINEL | |
779 | }; | |
780 | ||
781 | static const ARMCPRegInfo v6k_cp_reginfo[] = { | |
782 | { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, | |
783 | .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, | |
784 | .access = PL0_RW, | |
785 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 }, | |
786 | { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, | |
787 | .access = PL0_RW, | |
788 | .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0), | |
789 | .resetfn = arm_cp_reset_ignore }, | |
790 | { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, | |
791 | .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, | |
792 | .access = PL0_R|PL1_W, | |
793 | .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 }, | |
794 | { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, | |
795 | .access = PL0_R|PL1_W, | |
796 | .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0), | |
797 | .resetfn = arm_cp_reset_ignore }, | |
798 | { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH, | |
799 | .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, | |
800 | .access = PL1_RW, | |
801 | .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 }, | |
802 | REGINFO_SENTINEL | |
803 | }; | |
804 | ||
805 | #ifndef CONFIG_USER_ONLY | |
806 | ||
807 | static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
808 | { | |
809 | /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */ | |
810 | if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) { | |
811 | return CP_ACCESS_TRAP; | |
812 | } | |
813 | return CP_ACCESS_OK; | |
814 | } | |
815 | ||
816 | static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx) | |
817 | { | |
818 | /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ | |
819 | if (arm_current_pl(env) == 0 && | |
820 | !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { | |
821 | return CP_ACCESS_TRAP; | |
822 | } | |
823 | return CP_ACCESS_OK; | |
824 | } | |
825 | ||
826 | static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx) | |
827 | { | |
828 | /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if | |
829 | * EL0[PV]TEN is zero. | |
830 | */ | |
831 | if (arm_current_pl(env) == 0 && | |
832 | !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { | |
833 | return CP_ACCESS_TRAP; | |
834 | } | |
835 | return CP_ACCESS_OK; | |
836 | } | |
837 | ||
838 | static CPAccessResult gt_pct_access(CPUARMState *env, | |
839 | const ARMCPRegInfo *ri) | |
840 | { | |
841 | return gt_counter_access(env, GTIMER_PHYS); | |
842 | } | |
843 | ||
844 | static CPAccessResult gt_vct_access(CPUARMState *env, | |
845 | const ARMCPRegInfo *ri) | |
846 | { | |
847 | return gt_counter_access(env, GTIMER_VIRT); | |
848 | } | |
849 | ||
850 | static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
851 | { | |
852 | return gt_timer_access(env, GTIMER_PHYS); | |
853 | } | |
854 | ||
855 | static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
856 | { | |
857 | return gt_timer_access(env, GTIMER_VIRT); | |
858 | } | |
859 | ||
860 | static uint64_t gt_get_countervalue(CPUARMState *env) | |
861 | { | |
862 | return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; | |
863 | } | |
864 | ||
865 | static void gt_recalc_timer(ARMCPU *cpu, int timeridx) | |
866 | { | |
867 | ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; | |
868 | ||
869 | if (gt->ctl & 1) { | |
870 | /* Timer enabled: calculate and set current ISTATUS, irq, and | |
871 | * reset timer to when ISTATUS next has to change | |
872 | */ | |
873 | uint64_t count = gt_get_countervalue(&cpu->env); | |
874 | /* Note that this must be unsigned 64 bit arithmetic: */ | |
875 | int istatus = count >= gt->cval; | |
876 | uint64_t nexttick; | |
877 | ||
878 | gt->ctl = deposit32(gt->ctl, 2, 1, istatus); | |
879 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
880 | (istatus && !(gt->ctl & 2))); | |
881 | if (istatus) { | |
882 | /* Next transition is when count rolls back over to zero */ | |
883 | nexttick = UINT64_MAX; | |
884 | } else { | |
885 | /* Next transition is when we hit cval */ | |
886 | nexttick = gt->cval; | |
887 | } | |
888 | /* Note that the desired next expiry time might be beyond the | |
889 | * signed-64-bit range of a QEMUTimer -- in this case we just | |
890 | * set the timer for as far in the future as possible. When the | |
891 | * timer expires we will reset the timer for any remaining period. | |
892 | */ | |
893 | if (nexttick > INT64_MAX / GTIMER_SCALE) { | |
894 | nexttick = INT64_MAX / GTIMER_SCALE; | |
895 | } | |
896 | timer_mod(cpu->gt_timer[timeridx], nexttick); | |
897 | } else { | |
898 | /* Timer disabled: ISTATUS and timer output always clear */ | |
899 | gt->ctl &= ~4; | |
900 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); | |
901 | timer_del(cpu->gt_timer[timeridx]); | |
902 | } | |
903 | } | |
904 | ||
905 | static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
906 | { | |
907 | ARMCPU *cpu = arm_env_get_cpu(env); | |
908 | int timeridx = ri->opc1 & 1; | |
909 | ||
910 | timer_del(cpu->gt_timer[timeridx]); | |
911 | } | |
912 | ||
913 | static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
914 | { | |
915 | return gt_get_countervalue(env); | |
916 | } | |
917 | ||
918 | static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
919 | uint64_t value) | |
920 | { | |
921 | int timeridx = ri->opc1 & 1; | |
922 | ||
923 | env->cp15.c14_timer[timeridx].cval = value; | |
924 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
925 | } | |
926 | ||
927 | static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
928 | { | |
929 | int timeridx = ri->crm & 1; | |
930 | ||
931 | return (uint32_t)(env->cp15.c14_timer[timeridx].cval - | |
932 | gt_get_countervalue(env)); | |
933 | } | |
934 | ||
935 | static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
936 | uint64_t value) | |
937 | { | |
938 | int timeridx = ri->crm & 1; | |
939 | ||
940 | env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) + | |
941 | + sextract64(value, 0, 32); | |
942 | gt_recalc_timer(arm_env_get_cpu(env), timeridx); | |
943 | } | |
944 | ||
945 | static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
946 | uint64_t value) | |
947 | { | |
948 | ARMCPU *cpu = arm_env_get_cpu(env); | |
949 | int timeridx = ri->crm & 1; | |
950 | uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; | |
951 | ||
952 | env->cp15.c14_timer[timeridx].ctl = value & 3; | |
953 | if ((oldval ^ value) & 1) { | |
954 | /* Enable toggled */ | |
955 | gt_recalc_timer(cpu, timeridx); | |
956 | } else if ((oldval & value) & 2) { | |
957 | /* IMASK toggled: don't need to recalculate, | |
958 | * just set the interrupt line based on ISTATUS | |
959 | */ | |
960 | qemu_set_irq(cpu->gt_timer_outputs[timeridx], | |
961 | (oldval & 4) && (value & 2)); | |
962 | } | |
963 | } | |
964 | ||
965 | void arm_gt_ptimer_cb(void *opaque) | |
966 | { | |
967 | ARMCPU *cpu = opaque; | |
968 | ||
969 | gt_recalc_timer(cpu, GTIMER_PHYS); | |
970 | } | |
971 | ||
972 | void arm_gt_vtimer_cb(void *opaque) | |
973 | { | |
974 | ARMCPU *cpu = opaque; | |
975 | ||
976 | gt_recalc_timer(cpu, GTIMER_VIRT); | |
977 | } | |
978 | ||
979 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { | |
980 | /* Note that CNTFRQ is purely reads-as-written for the benefit | |
981 | * of software; writing it doesn't actually change the timer frequency. | |
982 | * Our reset value matches the fixed frequency we implement the timer at. | |
983 | */ | |
984 | { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, | |
985 | .type = ARM_CP_NO_MIGRATE, | |
986 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
987 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), | |
988 | .resetfn = arm_cp_reset_ignore, | |
989 | }, | |
990 | { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, | |
991 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, | |
992 | .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, | |
993 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), | |
994 | .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, | |
995 | }, | |
996 | /* overall control: mostly access permissions */ | |
997 | { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, | |
998 | .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, | |
999 | .access = PL1_RW, | |
1000 | .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), | |
1001 | .resetvalue = 0, | |
1002 | }, | |
1003 | /* per-timer control */ | |
1004 | { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, | |
1005 | .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R, | |
1006 | .accessfn = gt_ptimer_access, | |
1007 | .fieldoffset = offsetoflow32(CPUARMState, | |
1008 | cp15.c14_timer[GTIMER_PHYS].ctl), | |
1009 | .resetfn = arm_cp_reset_ignore, | |
1010 | .writefn = gt_ctl_write, .raw_writefn = raw_write, | |
1011 | }, | |
1012 | { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1013 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, | |
1014 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1015 | .accessfn = gt_ptimer_access, | |
1016 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), | |
1017 | .resetvalue = 0, | |
1018 | .writefn = gt_ctl_write, .raw_writefn = raw_write, | |
1019 | }, | |
1020 | { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, | |
1021 | .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R, | |
1022 | .accessfn = gt_vtimer_access, | |
1023 | .fieldoffset = offsetoflow32(CPUARMState, | |
1024 | cp15.c14_timer[GTIMER_VIRT].ctl), | |
1025 | .resetfn = arm_cp_reset_ignore, | |
1026 | .writefn = gt_ctl_write, .raw_writefn = raw_write, | |
1027 | }, | |
1028 | { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, | |
1029 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, | |
1030 | .type = ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1031 | .accessfn = gt_vtimer_access, | |
1032 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), | |
1033 | .resetvalue = 0, | |
1034 | .writefn = gt_ctl_write, .raw_writefn = raw_write, | |
1035 | }, | |
1036 | /* TimerValue views: a 32 bit downcounting view of the underlying state */ | |
1037 | { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1038 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1039 | .accessfn = gt_ptimer_access, | |
1040 | .readfn = gt_tval_read, .writefn = gt_tval_write, | |
1041 | }, | |
1042 | { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1043 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, | |
1044 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1045 | .readfn = gt_tval_read, .writefn = gt_tval_write, | |
1046 | }, | |
1047 | { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, | |
1048 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1049 | .accessfn = gt_vtimer_access, | |
1050 | .readfn = gt_tval_read, .writefn = gt_tval_write, | |
1051 | }, | |
1052 | { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1053 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, | |
1054 | .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, | |
1055 | .readfn = gt_tval_read, .writefn = gt_tval_write, | |
1056 | }, | |
1057 | /* The counter itself */ | |
1058 | { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, | |
1059 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
1060 | .accessfn = gt_pct_access, | |
1061 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, | |
1062 | }, | |
1063 | { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, | |
1064 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, | |
1065 | .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
1066 | .accessfn = gt_pct_access, | |
1067 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, | |
1068 | }, | |
1069 | { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, | |
1070 | .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
1071 | .accessfn = gt_vct_access, | |
1072 | .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, | |
1073 | }, | |
1074 | { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, | |
1075 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, | |
1076 | .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, | |
1077 | .accessfn = gt_vct_access, | |
1078 | .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, | |
1079 | }, | |
1080 | /* Comparison value, indicating when the timer goes off */ | |
1081 | { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, | |
1082 | .access = PL1_RW | PL0_R, | |
1083 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE, | |
1084 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
1085 | .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore, | |
1086 | .writefn = gt_cval_write, .raw_writefn = raw_write, | |
1087 | }, | |
1088 | { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1089 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, | |
1090 | .access = PL1_RW | PL0_R, | |
1091 | .type = ARM_CP_IO, | |
1092 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), | |
1093 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
1094 | .writefn = gt_cval_write, .raw_writefn = raw_write, | |
1095 | }, | |
1096 | { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, | |
1097 | .access = PL1_RW | PL0_R, | |
1098 | .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE, | |
1099 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
1100 | .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore, | |
1101 | .writefn = gt_cval_write, .raw_writefn = raw_write, | |
1102 | }, | |
1103 | { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, | |
1104 | .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, | |
1105 | .access = PL1_RW | PL0_R, | |
1106 | .type = ARM_CP_IO, | |
1107 | .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), | |
1108 | .resetvalue = 0, .accessfn = gt_vtimer_access, | |
1109 | .writefn = gt_cval_write, .raw_writefn = raw_write, | |
1110 | }, | |
1111 | REGINFO_SENTINEL | |
1112 | }; | |
1113 | ||
1114 | #else | |
1115 | /* In user-mode none of the generic timer registers are accessible, | |
1116 | * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, | |
1117 | * so instead just don't register any of them. | |
1118 | */ | |
1119 | static const ARMCPRegInfo generic_timer_cp_reginfo[] = { | |
1120 | REGINFO_SENTINEL | |
1121 | }; | |
1122 | ||
1123 | #endif | |
1124 | ||
1125 | static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
1126 | { | |
1127 | if (arm_feature(env, ARM_FEATURE_LPAE)) { | |
1128 | env->cp15.c7_par = value; | |
1129 | } else if (arm_feature(env, ARM_FEATURE_V7)) { | |
1130 | env->cp15.c7_par = value & 0xfffff6ff; | |
1131 | } else { | |
1132 | env->cp15.c7_par = value & 0xfffff1ff; | |
1133 | } | |
1134 | } | |
1135 | ||
1136 | #ifndef CONFIG_USER_ONLY | |
1137 | /* get_phys_addr() isn't present for user-mode-only targets */ | |
1138 | ||
1139 | /* Return true if extended addresses are enabled, ie this is an | |
1140 | * LPAE implementation and we are using the long-descriptor translation | |
1141 | * table format because the TTBCR EAE bit is set. | |
1142 | */ | |
1143 | static inline bool extended_addresses_enabled(CPUARMState *env) | |
1144 | { | |
1145 | return arm_feature(env, ARM_FEATURE_LPAE) | |
1146 | && (env->cp15.c2_control & (1U << 31)); | |
1147 | } | |
1148 | ||
1149 | static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
1150 | { | |
1151 | if (ri->opc2 & 4) { | |
1152 | /* Other states are only available with TrustZone; in | |
1153 | * a non-TZ implementation these registers don't exist | |
1154 | * at all, which is an Uncategorized trap. This underdecoding | |
1155 | * is safe because the reginfo is NO_MIGRATE. | |
1156 | */ | |
1157 | return CP_ACCESS_TRAP_UNCATEGORIZED; | |
1158 | } | |
1159 | return CP_ACCESS_OK; | |
1160 | } | |
1161 | ||
1162 | static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) | |
1163 | { | |
1164 | hwaddr phys_addr; | |
1165 | target_ulong page_size; | |
1166 | int prot; | |
1167 | int ret, is_user = ri->opc2 & 2; | |
1168 | int access_type = ri->opc2 & 1; | |
1169 | ||
1170 | ret = get_phys_addr(env, value, access_type, is_user, | |
1171 | &phys_addr, &prot, &page_size); | |
1172 | if (extended_addresses_enabled(env)) { | |
1173 | /* ret is a DFSR/IFSR value for the long descriptor | |
1174 | * translation table format, but with WnR always clear. | |
1175 | * Convert it to a 64-bit PAR. | |
1176 | */ | |
1177 | uint64_t par64 = (1 << 11); /* LPAE bit always set */ | |
1178 | if (ret == 0) { | |
1179 | par64 |= phys_addr & ~0xfffULL; | |
1180 | /* We don't set the ATTR or SH fields in the PAR. */ | |
1181 | } else { | |
1182 | par64 |= 1; /* F */ | |
1183 | par64 |= (ret & 0x3f) << 1; /* FS */ | |
1184 | /* Note that S2WLK and FSTAGE are always zero, because we don't | |
1185 | * implement virtualization and therefore there can't be a stage 2 | |
1186 | * fault. | |
1187 | */ | |
1188 | } | |
1189 | env->cp15.c7_par = par64; | |
1190 | env->cp15.c7_par_hi = par64 >> 32; | |
1191 | } else { | |
1192 | /* ret is a DFSR/IFSR value for the short descriptor | |
1193 | * translation table format (with WnR always clear). | |
1194 | * Convert it to a 32-bit PAR. | |
1195 | */ | |
1196 | if (ret == 0) { | |
1197 | /* We do not set any attribute bits in the PAR */ | |
1198 | if (page_size == (1 << 24) | |
1199 | && arm_feature(env, ARM_FEATURE_V7)) { | |
1200 | env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1; | |
1201 | } else { | |
1202 | env->cp15.c7_par = phys_addr & 0xfffff000; | |
1203 | } | |
1204 | } else { | |
1205 | env->cp15.c7_par = ((ret & (1 << 10)) >> 5) | | |
1206 | ((ret & (1 << 12)) >> 6) | | |
1207 | ((ret & 0xf) << 1) | 1; | |
1208 | } | |
1209 | env->cp15.c7_par_hi = 0; | |
1210 | } | |
1211 | } | |
1212 | #endif | |
1213 | ||
1214 | static const ARMCPRegInfo vapa_cp_reginfo[] = { | |
1215 | { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1216 | .access = PL1_RW, .resetvalue = 0, | |
1217 | .fieldoffset = offsetof(CPUARMState, cp15.c7_par), | |
1218 | .writefn = par_write }, | |
1219 | #ifndef CONFIG_USER_ONLY | |
1220 | { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, | |
1221 | .access = PL1_W, .accessfn = ats_access, | |
1222 | .writefn = ats_write, .type = ARM_CP_NO_MIGRATE }, | |
1223 | #endif | |
1224 | REGINFO_SENTINEL | |
1225 | }; | |
1226 | ||
1227 | /* Return basic MPU access permission bits. */ | |
1228 | static uint32_t simple_mpu_ap_bits(uint32_t val) | |
1229 | { | |
1230 | uint32_t ret; | |
1231 | uint32_t mask; | |
1232 | int i; | |
1233 | ret = 0; | |
1234 | mask = 3; | |
1235 | for (i = 0; i < 16; i += 2) { | |
1236 | ret |= (val >> i) & mask; | |
1237 | mask <<= 2; | |
1238 | } | |
1239 | return ret; | |
1240 | } | |
1241 | ||
1242 | /* Pad basic MPU access permission bits to extended format. */ | |
1243 | static uint32_t extended_mpu_ap_bits(uint32_t val) | |
1244 | { | |
1245 | uint32_t ret; | |
1246 | uint32_t mask; | |
1247 | int i; | |
1248 | ret = 0; | |
1249 | mask = 3; | |
1250 | for (i = 0; i < 16; i += 2) { | |
1251 | ret |= (val & mask) << i; | |
1252 | mask <<= 2; | |
1253 | } | |
1254 | return ret; | |
1255 | } | |
1256 | ||
1257 | static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1258 | uint64_t value) | |
1259 | { | |
1260 | env->cp15.c5_data = extended_mpu_ap_bits(value); | |
1261 | } | |
1262 | ||
1263 | static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1264 | { | |
1265 | return simple_mpu_ap_bits(env->cp15.c5_data); | |
1266 | } | |
1267 | ||
1268 | static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1269 | uint64_t value) | |
1270 | { | |
1271 | env->cp15.c5_insn = extended_mpu_ap_bits(value); | |
1272 | } | |
1273 | ||
1274 | static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1275 | { | |
1276 | return simple_mpu_ap_bits(env->cp15.c5_insn); | |
1277 | } | |
1278 | ||
1279 | static const ARMCPRegInfo pmsav5_cp_reginfo[] = { | |
1280 | { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1281 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, | |
1282 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, | |
1283 | .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, | |
1284 | { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1285 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, | |
1286 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, | |
1287 | .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, | |
1288 | { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1289 | .access = PL1_RW, | |
1290 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |
1291 | { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, | |
1292 | .access = PL1_RW, | |
1293 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, | |
1294 | { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1295 | .access = PL1_RW, | |
1296 | .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, | |
1297 | { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1298 | .access = PL1_RW, | |
1299 | .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, | |
1300 | /* Protection region base and size registers */ | |
1301 | { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, | |
1302 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1303 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, | |
1304 | { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, | |
1305 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1306 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, | |
1307 | { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, | |
1308 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1309 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, | |
1310 | { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, | |
1311 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1312 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, | |
1313 | { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, | |
1314 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1315 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, | |
1316 | { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, | |
1317 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1318 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, | |
1319 | { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, | |
1320 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1321 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, | |
1322 | { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, | |
1323 | .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, | |
1324 | .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, | |
1325 | REGINFO_SENTINEL | |
1326 | }; | |
1327 | ||
1328 | static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1329 | uint64_t value) | |
1330 | { | |
1331 | int maskshift = extract32(value, 0, 3); | |
1332 | ||
1333 | if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) { | |
1334 | value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); | |
1335 | } else { | |
1336 | value &= 7; | |
1337 | } | |
1338 | /* Note that we always calculate c2_mask and c2_base_mask, but | |
1339 | * they are only used for short-descriptor tables (ie if EAE is 0); | |
1340 | * for long-descriptor tables the TTBCR fields are used differently | |
1341 | * and the c2_mask and c2_base_mask values are meaningless. | |
1342 | */ | |
1343 | env->cp15.c2_control = value; | |
1344 | env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift); | |
1345 | env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift); | |
1346 | } | |
1347 | ||
1348 | static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1349 | uint64_t value) | |
1350 | { | |
1351 | if (arm_feature(env, ARM_FEATURE_LPAE)) { | |
1352 | /* With LPAE the TTBCR could result in a change of ASID | |
1353 | * via the TTBCR.A1 bit, so do a TLB flush. | |
1354 | */ | |
1355 | tlb_flush(env, 1); | |
1356 | } | |
1357 | vmsa_ttbcr_raw_write(env, ri, value); | |
1358 | } | |
1359 | ||
1360 | static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1361 | { | |
1362 | env->cp15.c2_base_mask = 0xffffc000u; | |
1363 | env->cp15.c2_control = 0; | |
1364 | env->cp15.c2_mask = 0; | |
1365 | } | |
1366 | ||
1367 | static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1368 | uint64_t value) | |
1369 | { | |
1370 | /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ | |
1371 | tlb_flush(env, 1); | |
1372 | env->cp15.c2_control = value; | |
1373 | } | |
1374 | ||
1375 | static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1376 | uint64_t value) | |
1377 | { | |
1378 | /* 64 bit accesses to the TTBRs can change the ASID and so we | |
1379 | * must flush the TLB. | |
1380 | */ | |
1381 | if (cpreg_field_is_64bit(ri)) { | |
1382 | tlb_flush(env, 1); | |
1383 | } | |
1384 | raw_write(env, ri, value); | |
1385 | } | |
1386 | ||
1387 | static const ARMCPRegInfo vmsa_cp_reginfo[] = { | |
1388 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1389 | .access = PL1_RW, | |
1390 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |
1391 | { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1392 | .access = PL1_RW, | |
1393 | .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, | |
1394 | { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, | |
1395 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1396 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1), | |
1397 | .writefn = vmsa_ttbr_write, .resetvalue = 0 }, | |
1398 | { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, | |
1399 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, | |
1400 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1), | |
1401 | .writefn = vmsa_ttbr_write, .resetvalue = 0 }, | |
1402 | { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, | |
1403 | .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1404 | .access = PL1_RW, .writefn = vmsa_tcr_el1_write, | |
1405 | .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, | |
1406 | .fieldoffset = offsetof(CPUARMState, cp15.c2_control) }, | |
1407 | { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, | |
1408 | .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write, | |
1409 | .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write, | |
1410 | .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) }, | |
1411 | { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1412 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data), | |
1413 | .resetvalue = 0, }, | |
1414 | REGINFO_SENTINEL | |
1415 | }; | |
1416 | ||
1417 | static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1418 | uint64_t value) | |
1419 | { | |
1420 | env->cp15.c15_ticonfig = value & 0xe7; | |
1421 | /* The OS_TYPE bit in this register changes the reported CPUID! */ | |
1422 | env->cp15.c0_cpuid = (value & (1 << 5)) ? | |
1423 | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | |
1424 | } | |
1425 | ||
1426 | static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1427 | uint64_t value) | |
1428 | { | |
1429 | env->cp15.c15_threadid = value & 0xffff; | |
1430 | } | |
1431 | ||
1432 | static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1433 | uint64_t value) | |
1434 | { | |
1435 | /* Wait-for-interrupt (deprecated) */ | |
1436 | cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); | |
1437 | } | |
1438 | ||
1439 | static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1440 | uint64_t value) | |
1441 | { | |
1442 | /* On OMAP there are registers indicating the max/min index of dcache lines | |
1443 | * containing a dirty line; cache flush operations have to reset these. | |
1444 | */ | |
1445 | env->cp15.c15_i_max = 0x000; | |
1446 | env->cp15.c15_i_min = 0xff0; | |
1447 | } | |
1448 | ||
1449 | static const ARMCPRegInfo omap_cp_reginfo[] = { | |
1450 | { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, | |
1451 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, | |
1452 | .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, | |
1453 | { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, | |
1454 | .access = PL1_RW, .type = ARM_CP_NOP }, | |
1455 | { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, | |
1456 | .access = PL1_RW, | |
1457 | .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, | |
1458 | .writefn = omap_ticonfig_write }, | |
1459 | { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, | |
1460 | .access = PL1_RW, | |
1461 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, | |
1462 | { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, | |
1463 | .access = PL1_RW, .resetvalue = 0xff0, | |
1464 | .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, | |
1465 | { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, | |
1466 | .access = PL1_RW, | |
1467 | .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, | |
1468 | .writefn = omap_threadid_write }, | |
1469 | { .name = "TI925T_STATUS", .cp = 15, .crn = 15, | |
1470 | .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
1471 | .type = ARM_CP_NO_MIGRATE, | |
1472 | .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, | |
1473 | /* TODO: Peripheral port remap register: | |
1474 | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller | |
1475 | * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), | |
1476 | * when MMU is off. | |
1477 | */ | |
1478 | { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, | |
1479 | .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, | |
1480 | .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE, | |
1481 | .writefn = omap_cachemaint_write }, | |
1482 | { .name = "C9", .cp = 15, .crn = 9, | |
1483 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, | |
1484 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, | |
1485 | REGINFO_SENTINEL | |
1486 | }; | |
1487 | ||
1488 | static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1489 | uint64_t value) | |
1490 | { | |
1491 | value &= 0x3fff; | |
1492 | if (env->cp15.c15_cpar != value) { | |
1493 | /* Changes cp0 to cp13 behavior, so needs a TB flush. */ | |
1494 | tb_flush(env); | |
1495 | env->cp15.c15_cpar = value; | |
1496 | } | |
1497 | } | |
1498 | ||
1499 | static const ARMCPRegInfo xscale_cp_reginfo[] = { | |
1500 | { .name = "XSCALE_CPAR", | |
1501 | .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, | |
1502 | .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, | |
1503 | .writefn = xscale_cpar_write, }, | |
1504 | { .name = "XSCALE_AUXCR", | |
1505 | .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, | |
1506 | .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), | |
1507 | .resetvalue = 0, }, | |
1508 | REGINFO_SENTINEL | |
1509 | }; | |
1510 | ||
1511 | static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { | |
1512 | /* RAZ/WI the whole crn=15 space, when we don't have a more specific | |
1513 | * implementation of this implementation-defined space. | |
1514 | * Ideally this should eventually disappear in favour of actually | |
1515 | * implementing the correct behaviour for all cores. | |
1516 | */ | |
1517 | { .name = "C15_IMPDEF", .cp = 15, .crn = 15, | |
1518 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
1519 | .access = PL1_RW, | |
1520 | .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE, | |
1521 | .resetvalue = 0 }, | |
1522 | REGINFO_SENTINEL | |
1523 | }; | |
1524 | ||
1525 | static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { | |
1526 | /* Cache status: RAZ because we have no cache so it's always clean */ | |
1527 | { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, | |
1528 | .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, | |
1529 | .resetvalue = 0 }, | |
1530 | REGINFO_SENTINEL | |
1531 | }; | |
1532 | ||
1533 | static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { | |
1534 | /* We never have a a block transfer operation in progress */ | |
1535 | { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, | |
1536 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, | |
1537 | .resetvalue = 0 }, | |
1538 | /* The cache ops themselves: these all NOP for QEMU */ | |
1539 | { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, | |
1540 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1541 | { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, | |
1542 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1543 | { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, | |
1544 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1545 | { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, | |
1546 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1547 | { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, | |
1548 | .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1549 | { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, | |
1550 | .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, | |
1551 | REGINFO_SENTINEL | |
1552 | }; | |
1553 | ||
1554 | static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { | |
1555 | /* The cache test-and-clean instructions always return (1 << 30) | |
1556 | * to indicate that there are no dirty cache lines. | |
1557 | */ | |
1558 | { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, | |
1559 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, | |
1560 | .resetvalue = (1 << 30) }, | |
1561 | { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, | |
1562 | .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, | |
1563 | .resetvalue = (1 << 30) }, | |
1564 | REGINFO_SENTINEL | |
1565 | }; | |
1566 | ||
1567 | static const ARMCPRegInfo strongarm_cp_reginfo[] = { | |
1568 | /* Ignore ReadBuffer accesses */ | |
1569 | { .name = "C9_READBUFFER", .cp = 15, .crn = 9, | |
1570 | .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, | |
1571 | .access = PL1_RW, .resetvalue = 0, | |
1572 | .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE }, | |
1573 | REGINFO_SENTINEL | |
1574 | }; | |
1575 | ||
1576 | static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1577 | { | |
1578 | CPUState *cs = CPU(arm_env_get_cpu(env)); | |
1579 | uint32_t mpidr = cs->cpu_index; | |
1580 | /* We don't support setting cluster ID ([8..11]) (known as Aff1 | |
1581 | * in later ARM ARM versions), or any of the higher affinity level fields, | |
1582 | * so these bits always RAZ. | |
1583 | */ | |
1584 | if (arm_feature(env, ARM_FEATURE_V7MP)) { | |
1585 | mpidr |= (1U << 31); | |
1586 | /* Cores which are uniprocessor (non-coherent) | |
1587 | * but still implement the MP extensions set | |
1588 | * bit 30. (For instance, A9UP.) However we do | |
1589 | * not currently model any of those cores. | |
1590 | */ | |
1591 | } | |
1592 | return mpidr; | |
1593 | } | |
1594 | ||
1595 | static const ARMCPRegInfo mpidr_cp_reginfo[] = { | |
1596 | { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, | |
1597 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, | |
1598 | .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE }, | |
1599 | REGINFO_SENTINEL | |
1600 | }; | |
1601 | ||
1602 | static uint64_t par64_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1603 | { | |
1604 | return ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par; | |
1605 | } | |
1606 | ||
1607 | static void par64_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1608 | uint64_t value) | |
1609 | { | |
1610 | env->cp15.c7_par_hi = value >> 32; | |
1611 | env->cp15.c7_par = value; | |
1612 | } | |
1613 | ||
1614 | static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri) | |
1615 | { | |
1616 | env->cp15.c7_par_hi = 0; | |
1617 | env->cp15.c7_par = 0; | |
1618 | } | |
1619 | ||
1620 | static const ARMCPRegInfo lpae_cp_reginfo[] = { | |
1621 | /* NOP AMAIR0/1: the override is because these clash with the rather | |
1622 | * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo. | |
1623 | */ | |
1624 | { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, | |
1625 | .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, | |
1626 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, | |
1627 | .resetvalue = 0 }, | |
1628 | /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ | |
1629 | { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, | |
1630 | .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, | |
1631 | .resetvalue = 0 }, | |
1632 | /* 64 bit access versions of the (dummy) debug registers */ | |
1633 | { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, | |
1634 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
1635 | { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, | |
1636 | .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, | |
1637 | { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, | |
1638 | .access = PL1_RW, .type = ARM_CP_64BIT, | |
1639 | .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset }, | |
1640 | { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, | |
1641 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE, | |
1642 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1), | |
1643 | .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore }, | |
1644 | { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, | |
1645 | .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE, | |
1646 | .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1), | |
1647 | .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore }, | |
1648 | REGINFO_SENTINEL | |
1649 | }; | |
1650 | ||
1651 | static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1652 | { | |
1653 | return vfp_get_fpcr(env); | |
1654 | } | |
1655 | ||
1656 | static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1657 | uint64_t value) | |
1658 | { | |
1659 | vfp_set_fpcr(env, value); | |
1660 | } | |
1661 | ||
1662 | static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) | |
1663 | { | |
1664 | return vfp_get_fpsr(env); | |
1665 | } | |
1666 | ||
1667 | static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1668 | uint64_t value) | |
1669 | { | |
1670 | vfp_set_fpsr(env, value); | |
1671 | } | |
1672 | ||
1673 | static CPAccessResult aa64_cacheop_access(CPUARMState *env, | |
1674 | const ARMCPRegInfo *ri) | |
1675 | { | |
1676 | /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless | |
1677 | * SCTLR_EL1.UCI is set. | |
1678 | */ | |
1679 | if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) { | |
1680 | return CP_ACCESS_TRAP; | |
1681 | } | |
1682 | return CP_ACCESS_OK; | |
1683 | } | |
1684 | ||
1685 | static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1686 | uint64_t value) | |
1687 | { | |
1688 | /* Invalidate by VA (AArch64 version) */ | |
1689 | uint64_t pageaddr = value << 12; | |
1690 | tlb_flush_page(env, pageaddr); | |
1691 | } | |
1692 | ||
1693 | static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1694 | uint64_t value) | |
1695 | { | |
1696 | /* Invalidate by VA, all ASIDs (AArch64 version) */ | |
1697 | uint64_t pageaddr = value << 12; | |
1698 | tlb_flush_page(env, pageaddr); | |
1699 | } | |
1700 | ||
1701 | static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1702 | uint64_t value) | |
1703 | { | |
1704 | /* Invalidate by ASID (AArch64 version) */ | |
1705 | int asid = extract64(value, 48, 16); | |
1706 | tlb_flush(env, asid == 0); | |
1707 | } | |
1708 | ||
1709 | static const ARMCPRegInfo v8_cp_reginfo[] = { | |
1710 | /* Minimal set of EL0-visible registers. This will need to be expanded | |
1711 | * significantly for system emulation of AArch64 CPUs. | |
1712 | */ | |
1713 | { .name = "NZCV", .state = ARM_CP_STATE_AA64, | |
1714 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, | |
1715 | .access = PL0_RW, .type = ARM_CP_NZCV }, | |
1716 | { .name = "FPCR", .state = ARM_CP_STATE_AA64, | |
1717 | .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, | |
1718 | .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, | |
1719 | { .name = "FPSR", .state = ARM_CP_STATE_AA64, | |
1720 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, | |
1721 | .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, | |
1722 | /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use. | |
1723 | * For system mode the DZP bit here will need to be computed, not constant. | |
1724 | */ | |
1725 | { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, | |
1726 | .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, | |
1727 | .access = PL0_R, .type = ARM_CP_CONST, | |
1728 | .resetvalue = 0x10 }, | |
1729 | { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, | |
1730 | .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, | |
1731 | .access = PL1_R, .type = ARM_CP_CURRENTEL }, | |
1732 | /* Cache ops: all NOPs since we don't emulate caches */ | |
1733 | { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, | |
1734 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, | |
1735 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1736 | { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, | |
1737 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, | |
1738 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1739 | { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, | |
1740 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, | |
1741 | .access = PL0_W, .type = ARM_CP_NOP, | |
1742 | .accessfn = aa64_cacheop_access }, | |
1743 | { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, | |
1744 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, | |
1745 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1746 | { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, | |
1747 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, | |
1748 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1749 | { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, | |
1750 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, | |
1751 | .access = PL0_W, .type = ARM_CP_NOP, | |
1752 | .accessfn = aa64_cacheop_access }, | |
1753 | { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, | |
1754 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, | |
1755 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1756 | { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, | |
1757 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, | |
1758 | .access = PL0_W, .type = ARM_CP_NOP, | |
1759 | .accessfn = aa64_cacheop_access }, | |
1760 | { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, | |
1761 | .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, | |
1762 | .access = PL0_W, .type = ARM_CP_NOP, | |
1763 | .accessfn = aa64_cacheop_access }, | |
1764 | { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, | |
1765 | .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, | |
1766 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1767 | /* TLBI operations */ | |
1768 | { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, | |
1769 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 0, | |
1770 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1771 | .writefn = tlbiall_write }, | |
1772 | { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, | |
1773 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 1, | |
1774 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1775 | .writefn = tlbi_aa64_va_write }, | |
1776 | { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, | |
1777 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 2, | |
1778 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1779 | .writefn = tlbi_aa64_asid_write }, | |
1780 | { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, | |
1781 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 3, | |
1782 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1783 | .writefn = tlbi_aa64_vaa_write }, | |
1784 | { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, | |
1785 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 5, | |
1786 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1787 | .writefn = tlbi_aa64_va_write }, | |
1788 | { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, | |
1789 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 7, | |
1790 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1791 | .writefn = tlbi_aa64_vaa_write }, | |
1792 | { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, | |
1793 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 0, | |
1794 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1795 | .writefn = tlbiall_write }, | |
1796 | { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, | |
1797 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 1, | |
1798 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1799 | .writefn = tlbi_aa64_va_write }, | |
1800 | { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, | |
1801 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 2, | |
1802 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1803 | .writefn = tlbi_aa64_asid_write }, | |
1804 | { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, | |
1805 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 3, | |
1806 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1807 | .writefn = tlbi_aa64_vaa_write }, | |
1808 | { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, | |
1809 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 5, | |
1810 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1811 | .writefn = tlbi_aa64_va_write }, | |
1812 | { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, | |
1813 | .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 7, | |
1814 | .access = PL1_W, .type = ARM_CP_NO_MIGRATE, | |
1815 | .writefn = tlbi_aa64_vaa_write }, | |
1816 | /* Dummy implementation of monitor debug system control register: | |
1817 | * we don't support debug. | |
1818 | */ | |
1819 | { .name = "MDSCR_EL1", .state = ARM_CP_STATE_AA64, | |
1820 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, | |
1821 | .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
1822 | /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */ | |
1823 | { .name = "OSLAR_EL1", .state = ARM_CP_STATE_AA64, | |
1824 | .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, | |
1825 | .access = PL1_W, .type = ARM_CP_NOP }, | |
1826 | REGINFO_SENTINEL | |
1827 | }; | |
1828 | ||
1829 | static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, | |
1830 | uint64_t value) | |
1831 | { | |
1832 | env->cp15.c1_sys = value; | |
1833 | /* ??? Lots of these bits are not implemented. */ | |
1834 | /* This may enable/disable the MMU, so do a TLB flush. */ | |
1835 | tlb_flush(env, 1); | |
1836 | } | |
1837 | ||
1838 | static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) | |
1839 | { | |
1840 | /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, | |
1841 | * but the AArch32 CTR has its own reginfo struct) | |
1842 | */ | |
1843 | if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) { | |
1844 | return CP_ACCESS_TRAP; | |
1845 | } | |
1846 | return CP_ACCESS_OK; | |
1847 | } | |
1848 | ||
1849 | static void define_aarch64_debug_regs(ARMCPU *cpu) | |
1850 | { | |
1851 | /* Define breakpoint and watchpoint registers. These do nothing | |
1852 | * but read as written, for now. | |
1853 | */ | |
1854 | int i; | |
1855 | ||
1856 | for (i = 0; i < 16; i++) { | |
1857 | ARMCPRegInfo dbgregs[] = { | |
1858 | { .name = "DBGBVR", .state = ARM_CP_STATE_AA64, | |
1859 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, | |
1860 | .access = PL1_RW, | |
1861 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]) }, | |
1862 | { .name = "DBGBCR", .state = ARM_CP_STATE_AA64, | |
1863 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, | |
1864 | .access = PL1_RW, | |
1865 | .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]) }, | |
1866 | { .name = "DBGWVR", .state = ARM_CP_STATE_AA64, | |
1867 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, | |
1868 | .access = PL1_RW, | |
1869 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]) }, | |
1870 | { .name = "DBGWCR", .state = ARM_CP_STATE_AA64, | |
1871 | .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, | |
1872 | .access = PL1_RW, | |
1873 | .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]) }, | |
1874 | REGINFO_SENTINEL | |
1875 | }; | |
1876 | define_arm_cp_regs(cpu, dbgregs); | |
1877 | } | |
1878 | } | |
1879 | ||
1880 | void register_cp_regs_for_features(ARMCPU *cpu) | |
1881 | { | |
1882 | /* Register all the coprocessor registers based on feature bits */ | |
1883 | CPUARMState *env = &cpu->env; | |
1884 | if (arm_feature(env, ARM_FEATURE_M)) { | |
1885 | /* M profile has no coprocessor registers */ | |
1886 | return; | |
1887 | } | |
1888 | ||
1889 | define_arm_cp_regs(cpu, cp_reginfo); | |
1890 | if (arm_feature(env, ARM_FEATURE_V6)) { | |
1891 | /* The ID registers all have impdef reset values */ | |
1892 | ARMCPRegInfo v6_idregs[] = { | |
1893 | { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1, | |
1894 | .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, | |
1895 | .resetvalue = cpu->id_pfr0 }, | |
1896 | { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1, | |
1897 | .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, | |
1898 | .resetvalue = cpu->id_pfr1 }, | |
1899 | { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1, | |
1900 | .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, | |
1901 | .resetvalue = cpu->id_dfr0 }, | |
1902 | { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1, | |
1903 | .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, | |
1904 | .resetvalue = cpu->id_afr0 }, | |
1905 | { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1, | |
1906 | .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, | |
1907 | .resetvalue = cpu->id_mmfr0 }, | |
1908 | { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1, | |
1909 | .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, | |
1910 | .resetvalue = cpu->id_mmfr1 }, | |
1911 | { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1, | |
1912 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
1913 | .resetvalue = cpu->id_mmfr2 }, | |
1914 | { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1, | |
1915 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
1916 | .resetvalue = cpu->id_mmfr3 }, | |
1917 | { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2, | |
1918 | .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, | |
1919 | .resetvalue = cpu->id_isar0 }, | |
1920 | { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2, | |
1921 | .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, | |
1922 | .resetvalue = cpu->id_isar1 }, | |
1923 | { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2, | |
1924 | .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, | |
1925 | .resetvalue = cpu->id_isar2 }, | |
1926 | { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2, | |
1927 | .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, | |
1928 | .resetvalue = cpu->id_isar3 }, | |
1929 | { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2, | |
1930 | .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, | |
1931 | .resetvalue = cpu->id_isar4 }, | |
1932 | { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2, | |
1933 | .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, | |
1934 | .resetvalue = cpu->id_isar5 }, | |
1935 | /* 6..7 are as yet unallocated and must RAZ */ | |
1936 | { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, | |
1937 | .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, | |
1938 | .resetvalue = 0 }, | |
1939 | { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, | |
1940 | .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, | |
1941 | .resetvalue = 0 }, | |
1942 | REGINFO_SENTINEL | |
1943 | }; | |
1944 | define_arm_cp_regs(cpu, v6_idregs); | |
1945 | define_arm_cp_regs(cpu, v6_cp_reginfo); | |
1946 | } else { | |
1947 | define_arm_cp_regs(cpu, not_v6_cp_reginfo); | |
1948 | } | |
1949 | if (arm_feature(env, ARM_FEATURE_V6K)) { | |
1950 | define_arm_cp_regs(cpu, v6k_cp_reginfo); | |
1951 | } | |
1952 | if (arm_feature(env, ARM_FEATURE_V7)) { | |
1953 | /* v7 performance monitor control register: same implementor | |
1954 | * field as main ID register, and we implement only the cycle | |
1955 | * count register. | |
1956 | */ | |
1957 | #ifndef CONFIG_USER_ONLY | |
1958 | ARMCPRegInfo pmcr = { | |
1959 | .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, | |
1960 | .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000, | |
1961 | .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), | |
1962 | .accessfn = pmreg_access, .writefn = pmcr_write, | |
1963 | .raw_writefn = raw_write, | |
1964 | }; | |
1965 | define_one_arm_cp_reg(cpu, &pmcr); | |
1966 | #endif | |
1967 | ARMCPRegInfo clidr = { | |
1968 | .name = "CLIDR", .state = ARM_CP_STATE_BOTH, | |
1969 | .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, | |
1970 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr | |
1971 | }; | |
1972 | define_one_arm_cp_reg(cpu, &clidr); | |
1973 | define_arm_cp_regs(cpu, v7_cp_reginfo); | |
1974 | } else { | |
1975 | define_arm_cp_regs(cpu, not_v7_cp_reginfo); | |
1976 | } | |
1977 | if (arm_feature(env, ARM_FEATURE_V8)) { | |
1978 | /* AArch64 ID registers, which all have impdef reset values */ | |
1979 | ARMCPRegInfo v8_idregs[] = { | |
1980 | { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, | |
1981 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, | |
1982 | .access = PL1_R, .type = ARM_CP_CONST, | |
1983 | .resetvalue = cpu->id_aa64pfr0 }, | |
1984 | { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, | |
1985 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, | |
1986 | .access = PL1_R, .type = ARM_CP_CONST, | |
1987 | .resetvalue = cpu->id_aa64pfr1}, | |
1988 | { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, | |
1989 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, | |
1990 | .access = PL1_R, .type = ARM_CP_CONST, | |
1991 | .resetvalue = cpu->id_aa64dfr0 }, | |
1992 | { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, | |
1993 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, | |
1994 | .access = PL1_R, .type = ARM_CP_CONST, | |
1995 | .resetvalue = cpu->id_aa64dfr1 }, | |
1996 | { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, | |
1997 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, | |
1998 | .access = PL1_R, .type = ARM_CP_CONST, | |
1999 | .resetvalue = cpu->id_aa64afr0 }, | |
2000 | { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, | |
2001 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, | |
2002 | .access = PL1_R, .type = ARM_CP_CONST, | |
2003 | .resetvalue = cpu->id_aa64afr1 }, | |
2004 | { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, | |
2005 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, | |
2006 | .access = PL1_R, .type = ARM_CP_CONST, | |
2007 | .resetvalue = cpu->id_aa64isar0 }, | |
2008 | { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, | |
2009 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, | |
2010 | .access = PL1_R, .type = ARM_CP_CONST, | |
2011 | .resetvalue = cpu->id_aa64isar1 }, | |
2012 | { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, | |
2013 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, | |
2014 | .access = PL1_R, .type = ARM_CP_CONST, | |
2015 | .resetvalue = cpu->id_aa64mmfr0 }, | |
2016 | { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, | |
2017 | .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, | |
2018 | .access = PL1_R, .type = ARM_CP_CONST, | |
2019 | .resetvalue = cpu->id_aa64mmfr1 }, | |
2020 | REGINFO_SENTINEL | |
2021 | }; | |
2022 | define_arm_cp_regs(cpu, v8_idregs); | |
2023 | define_arm_cp_regs(cpu, v8_cp_reginfo); | |
2024 | define_aarch64_debug_regs(cpu); | |
2025 | } | |
2026 | if (arm_feature(env, ARM_FEATURE_MPU)) { | |
2027 | /* These are the MPU registers prior to PMSAv6. Any new | |
2028 | * PMSA core later than the ARM946 will require that we | |
2029 | * implement the PMSAv6 or PMSAv7 registers, which are | |
2030 | * completely different. | |
2031 | */ | |
2032 | assert(!arm_feature(env, ARM_FEATURE_V6)); | |
2033 | define_arm_cp_regs(cpu, pmsav5_cp_reginfo); | |
2034 | } else { | |
2035 | define_arm_cp_regs(cpu, vmsa_cp_reginfo); | |
2036 | } | |
2037 | if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { | |
2038 | define_arm_cp_regs(cpu, t2ee_cp_reginfo); | |
2039 | } | |
2040 | if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { | |
2041 | define_arm_cp_regs(cpu, generic_timer_cp_reginfo); | |
2042 | } | |
2043 | if (arm_feature(env, ARM_FEATURE_VAPA)) { | |
2044 | define_arm_cp_regs(cpu, vapa_cp_reginfo); | |
2045 | } | |
2046 | if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { | |
2047 | define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); | |
2048 | } | |
2049 | if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { | |
2050 | define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); | |
2051 | } | |
2052 | if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { | |
2053 | define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); | |
2054 | } | |
2055 | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { | |
2056 | define_arm_cp_regs(cpu, omap_cp_reginfo); | |
2057 | } | |
2058 | if (arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
2059 | define_arm_cp_regs(cpu, strongarm_cp_reginfo); | |
2060 | } | |
2061 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
2062 | define_arm_cp_regs(cpu, xscale_cp_reginfo); | |
2063 | } | |
2064 | if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { | |
2065 | define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); | |
2066 | } | |
2067 | if (arm_feature(env, ARM_FEATURE_LPAE)) { | |
2068 | define_arm_cp_regs(cpu, lpae_cp_reginfo); | |
2069 | } | |
2070 | /* Slightly awkwardly, the OMAP and StrongARM cores need all of | |
2071 | * cp15 crn=0 to be writes-ignored, whereas for other cores they should | |
2072 | * be read-only (ie write causes UNDEF exception). | |
2073 | */ | |
2074 | { | |
2075 | ARMCPRegInfo id_cp_reginfo[] = { | |
2076 | /* Note that the MIDR isn't a simple constant register because | |
2077 | * of the TI925 behaviour where writes to another register can | |
2078 | * cause the MIDR value to change. | |
2079 | * | |
2080 | * Unimplemented registers in the c15 0 0 0 space default to | |
2081 | * MIDR. Define MIDR first as this entire space, then CTR, TCMTR | |
2082 | * and friends override accordingly. | |
2083 | */ | |
2084 | { .name = "MIDR", | |
2085 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, | |
2086 | .access = PL1_R, .resetvalue = cpu->midr, | |
2087 | .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, | |
2088 | .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), | |
2089 | .type = ARM_CP_OVERRIDE }, | |
2090 | { .name = "MIDR_EL1", .state = ARM_CP_STATE_AA64, | |
2091 | .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 0, .crm = 0, | |
2092 | .access = PL1_R, .resetvalue = cpu->midr, .type = ARM_CP_CONST }, | |
2093 | { .name = "CTR", | |
2094 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, | |
2095 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
2096 | { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, | |
2097 | .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, | |
2098 | .access = PL0_R, .accessfn = ctr_el0_access, | |
2099 | .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, | |
2100 | { .name = "TCMTR", | |
2101 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, | |
2102 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2103 | { .name = "TLBTR", | |
2104 | .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, | |
2105 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2106 | /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ | |
2107 | { .name = "DUMMY", | |
2108 | .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, | |
2109 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2110 | { .name = "DUMMY", | |
2111 | .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, | |
2112 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2113 | { .name = "DUMMY", | |
2114 | .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, | |
2115 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2116 | { .name = "DUMMY", | |
2117 | .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, | |
2118 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2119 | { .name = "DUMMY", | |
2120 | .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, | |
2121 | .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, | |
2122 | REGINFO_SENTINEL | |
2123 | }; | |
2124 | ARMCPRegInfo crn0_wi_reginfo = { | |
2125 | .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, | |
2126 | .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, | |
2127 | .type = ARM_CP_NOP | ARM_CP_OVERRIDE | |
2128 | }; | |
2129 | if (arm_feature(env, ARM_FEATURE_OMAPCP) || | |
2130 | arm_feature(env, ARM_FEATURE_STRONGARM)) { | |
2131 | ARMCPRegInfo *r; | |
2132 | /* Register the blanket "writes ignored" value first to cover the | |
2133 | * whole space. Then update the specific ID registers to allow write | |
2134 | * access, so that they ignore writes rather than causing them to | |
2135 | * UNDEF. | |
2136 | */ | |
2137 | define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); | |
2138 | for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { | |
2139 | r->access = PL1_RW; | |
2140 | } | |
2141 | } | |
2142 | define_arm_cp_regs(cpu, id_cp_reginfo); | |
2143 | } | |
2144 | ||
2145 | if (arm_feature(env, ARM_FEATURE_MPIDR)) { | |
2146 | define_arm_cp_regs(cpu, mpidr_cp_reginfo); | |
2147 | } | |
2148 | ||
2149 | if (arm_feature(env, ARM_FEATURE_AUXCR)) { | |
2150 | ARMCPRegInfo auxcr = { | |
2151 | .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, | |
2152 | .access = PL1_RW, .type = ARM_CP_CONST, | |
2153 | .resetvalue = cpu->reset_auxcr | |
2154 | }; | |
2155 | define_one_arm_cp_reg(cpu, &auxcr); | |
2156 | } | |
2157 | ||
2158 | if (arm_feature(env, ARM_FEATURE_CBAR)) { | |
2159 | ARMCPRegInfo cbar = { | |
2160 | .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, | |
2161 | .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, | |
2162 | .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address) | |
2163 | }; | |
2164 | define_one_arm_cp_reg(cpu, &cbar); | |
2165 | } | |
2166 | ||
2167 | /* Generic registers whose values depend on the implementation */ | |
2168 | { | |
2169 | ARMCPRegInfo sctlr = { | |
2170 | .name = "SCTLR", .state = ARM_CP_STATE_BOTH, | |
2171 | .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, | |
2172 | .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys), | |
2173 | .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, | |
2174 | .raw_writefn = raw_write, | |
2175 | }; | |
2176 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
2177 | /* Normally we would always end the TB on an SCTLR write, but Linux | |
2178 | * arch/arm/mach-pxa/sleep.S expects two instructions following | |
2179 | * an MMU enable to execute from cache. Imitate this behaviour. | |
2180 | */ | |
2181 | sctlr.type |= ARM_CP_SUPPRESS_TB_END; | |
2182 | } | |
2183 | define_one_arm_cp_reg(cpu, &sctlr); | |
2184 | } | |
2185 | } | |
2186 | ||
2187 | ARMCPU *cpu_arm_init(const char *cpu_model) | |
2188 | { | |
2189 | ARMCPU *cpu; | |
2190 | ObjectClass *oc; | |
2191 | ||
2192 | oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model); | |
2193 | if (!oc) { | |
2194 | return NULL; | |
2195 | } | |
2196 | cpu = ARM_CPU(object_new(object_class_get_name(oc))); | |
2197 | ||
2198 | /* TODO this should be set centrally, once possible */ | |
2199 | object_property_set_bool(OBJECT(cpu), true, "realized", NULL); | |
2200 | ||
2201 | return cpu; | |
2202 | } | |
2203 | ||
2204 | void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) | |
2205 | { | |
2206 | CPUState *cs = CPU(cpu); | |
2207 | CPUARMState *env = &cpu->env; | |
2208 | ||
2209 | if (arm_feature(env, ARM_FEATURE_AARCH64)) { | |
2210 | gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, | |
2211 | aarch64_fpu_gdb_set_reg, | |
2212 | 34, "aarch64-fpu.xml", 0); | |
2213 | } else if (arm_feature(env, ARM_FEATURE_NEON)) { | |
2214 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, | |
2215 | 51, "arm-neon.xml", 0); | |
2216 | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | |
2217 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, | |
2218 | 35, "arm-vfp3.xml", 0); | |
2219 | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | |
2220 | gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, | |
2221 | 19, "arm-vfp.xml", 0); | |
2222 | } | |
2223 | } | |
2224 | ||
2225 | /* Sort alphabetically by type name, except for "any". */ | |
2226 | static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) | |
2227 | { | |
2228 | ObjectClass *class_a = (ObjectClass *)a; | |
2229 | ObjectClass *class_b = (ObjectClass *)b; | |
2230 | const char *name_a, *name_b; | |
2231 | ||
2232 | name_a = object_class_get_name(class_a); | |
2233 | name_b = object_class_get_name(class_b); | |
2234 | if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { | |
2235 | return 1; | |
2236 | } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { | |
2237 | return -1; | |
2238 | } else { | |
2239 | return strcmp(name_a, name_b); | |
2240 | } | |
2241 | } | |
2242 | ||
2243 | static void arm_cpu_list_entry(gpointer data, gpointer user_data) | |
2244 | { | |
2245 | ObjectClass *oc = data; | |
2246 | CPUListState *s = user_data; | |
2247 | const char *typename; | |
2248 | char *name; | |
2249 | ||
2250 | typename = object_class_get_name(oc); | |
2251 | name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
2252 | (*s->cpu_fprintf)(s->file, " %s\n", | |
2253 | name); | |
2254 | g_free(name); | |
2255 | } | |
2256 | ||
2257 | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | |
2258 | { | |
2259 | CPUListState s = { | |
2260 | .file = f, | |
2261 | .cpu_fprintf = cpu_fprintf, | |
2262 | }; | |
2263 | GSList *list; | |
2264 | ||
2265 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
2266 | list = g_slist_sort(list, arm_cpu_list_compare); | |
2267 | (*cpu_fprintf)(f, "Available CPUs:\n"); | |
2268 | g_slist_foreach(list, arm_cpu_list_entry, &s); | |
2269 | g_slist_free(list); | |
2270 | #ifdef CONFIG_KVM | |
2271 | /* The 'host' CPU type is dynamically registered only if KVM is | |
2272 | * enabled, so we have to special-case it here: | |
2273 | */ | |
2274 | (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); | |
2275 | #endif | |
2276 | } | |
2277 | ||
2278 | static void arm_cpu_add_definition(gpointer data, gpointer user_data) | |
2279 | { | |
2280 | ObjectClass *oc = data; | |
2281 | CpuDefinitionInfoList **cpu_list = user_data; | |
2282 | CpuDefinitionInfoList *entry; | |
2283 | CpuDefinitionInfo *info; | |
2284 | const char *typename; | |
2285 | ||
2286 | typename = object_class_get_name(oc); | |
2287 | info = g_malloc0(sizeof(*info)); | |
2288 | info->name = g_strndup(typename, | |
2289 | strlen(typename) - strlen("-" TYPE_ARM_CPU)); | |
2290 | ||
2291 | entry = g_malloc0(sizeof(*entry)); | |
2292 | entry->value = info; | |
2293 | entry->next = *cpu_list; | |
2294 | *cpu_list = entry; | |
2295 | } | |
2296 | ||
2297 | CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) | |
2298 | { | |
2299 | CpuDefinitionInfoList *cpu_list = NULL; | |
2300 | GSList *list; | |
2301 | ||
2302 | list = object_class_get_list(TYPE_ARM_CPU, false); | |
2303 | g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); | |
2304 | g_slist_free(list); | |
2305 | ||
2306 | return cpu_list; | |
2307 | } | |
2308 | ||
2309 | static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, | |
2310 | void *opaque, int state, | |
2311 | int crm, int opc1, int opc2) | |
2312 | { | |
2313 | /* Private utility function for define_one_arm_cp_reg_with_opaque(): | |
2314 | * add a single reginfo struct to the hash table. | |
2315 | */ | |
2316 | uint32_t *key = g_new(uint32_t, 1); | |
2317 | ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); | |
2318 | int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; | |
2319 | if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) { | |
2320 | /* The AArch32 view of a shared register sees the lower 32 bits | |
2321 | * of a 64 bit backing field. It is not migratable as the AArch64 | |
2322 | * view handles that. AArch64 also handles reset. | |
2323 | * We assume it is a cp15 register. | |
2324 | */ | |
2325 | r2->cp = 15; | |
2326 | r2->type |= ARM_CP_NO_MIGRATE; | |
2327 | r2->resetfn = arm_cp_reset_ignore; | |
2328 | #ifdef HOST_WORDS_BIGENDIAN | |
2329 | if (r2->fieldoffset) { | |
2330 | r2->fieldoffset += sizeof(uint32_t); | |
2331 | } | |
2332 | #endif | |
2333 | } | |
2334 | if (state == ARM_CP_STATE_AA64) { | |
2335 | /* To allow abbreviation of ARMCPRegInfo | |
2336 | * definitions, we treat cp == 0 as equivalent to | |
2337 | * the value for "standard guest-visible sysreg". | |
2338 | */ | |
2339 | if (r->cp == 0) { | |
2340 | r2->cp = CP_REG_ARM64_SYSREG_CP; | |
2341 | } | |
2342 | *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, | |
2343 | r2->opc0, opc1, opc2); | |
2344 | } else { | |
2345 | *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2); | |
2346 | } | |
2347 | if (opaque) { | |
2348 | r2->opaque = opaque; | |
2349 | } | |
2350 | /* reginfo passed to helpers is correct for the actual access, | |
2351 | * and is never ARM_CP_STATE_BOTH: | |
2352 | */ | |
2353 | r2->state = state; | |
2354 | /* Make sure reginfo passed to helpers for wildcarded regs | |
2355 | * has the correct crm/opc1/opc2 for this reg, not CP_ANY: | |
2356 | */ | |
2357 | r2->crm = crm; | |
2358 | r2->opc1 = opc1; | |
2359 | r2->opc2 = opc2; | |
2360 | /* By convention, for wildcarded registers only the first | |
2361 | * entry is used for migration; the others are marked as | |
2362 | * NO_MIGRATE so we don't try to transfer the register | |
2363 | * multiple times. Special registers (ie NOP/WFI) are | |
2364 | * never migratable. | |
2365 | */ | |
2366 | if ((r->type & ARM_CP_SPECIAL) || | |
2367 | ((r->crm == CP_ANY) && crm != 0) || | |
2368 | ((r->opc1 == CP_ANY) && opc1 != 0) || | |
2369 | ((r->opc2 == CP_ANY) && opc2 != 0)) { | |
2370 | r2->type |= ARM_CP_NO_MIGRATE; | |
2371 | } | |
2372 | ||
2373 | /* Overriding of an existing definition must be explicitly | |
2374 | * requested. | |
2375 | */ | |
2376 | if (!(r->type & ARM_CP_OVERRIDE)) { | |
2377 | ARMCPRegInfo *oldreg; | |
2378 | oldreg = g_hash_table_lookup(cpu->cp_regs, key); | |
2379 | if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { | |
2380 | fprintf(stderr, "Register redefined: cp=%d %d bit " | |
2381 | "crn=%d crm=%d opc1=%d opc2=%d, " | |
2382 | "was %s, now %s\n", r2->cp, 32 + 32 * is64, | |
2383 | r2->crn, r2->crm, r2->opc1, r2->opc2, | |
2384 | oldreg->name, r2->name); | |
2385 | g_assert_not_reached(); | |
2386 | } | |
2387 | } | |
2388 | g_hash_table_insert(cpu->cp_regs, key, r2); | |
2389 | } | |
2390 | ||
2391 | ||
2392 | void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, | |
2393 | const ARMCPRegInfo *r, void *opaque) | |
2394 | { | |
2395 | /* Define implementations of coprocessor registers. | |
2396 | * We store these in a hashtable because typically | |
2397 | * there are less than 150 registers in a space which | |
2398 | * is 16*16*16*8*8 = 262144 in size. | |
2399 | * Wildcarding is supported for the crm, opc1 and opc2 fields. | |
2400 | * If a register is defined twice then the second definition is | |
2401 | * used, so this can be used to define some generic registers and | |
2402 | * then override them with implementation specific variations. | |
2403 | * At least one of the original and the second definition should | |
2404 | * include ARM_CP_OVERRIDE in its type bits -- this is just a guard | |
2405 | * against accidental use. | |
2406 | * | |
2407 | * The state field defines whether the register is to be | |
2408 | * visible in the AArch32 or AArch64 execution state. If the | |
2409 | * state is set to ARM_CP_STATE_BOTH then we synthesise a | |
2410 | * reginfo structure for the AArch32 view, which sees the lower | |
2411 | * 32 bits of the 64 bit register. | |
2412 | * | |
2413 | * Only registers visible in AArch64 may set r->opc0; opc0 cannot | |
2414 | * be wildcarded. AArch64 registers are always considered to be 64 | |
2415 | * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of | |
2416 | * the register, if any. | |
2417 | */ | |
2418 | int crm, opc1, opc2, state; | |
2419 | int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; | |
2420 | int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; | |
2421 | int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; | |
2422 | int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; | |
2423 | int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; | |
2424 | int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; | |
2425 | /* 64 bit registers have only CRm and Opc1 fields */ | |
2426 | assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); | |
2427 | /* op0 only exists in the AArch64 encodings */ | |
2428 | assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); | |
2429 | /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ | |
2430 | assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); | |
2431 | /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 | |
2432 | * encodes a minimum access level for the register. We roll this | |
2433 | * runtime check into our general permission check code, so check | |
2434 | * here that the reginfo's specified permissions are strict enough | |
2435 | * to encompass the generic architectural permission check. | |
2436 | */ | |
2437 | if (r->state != ARM_CP_STATE_AA32) { | |
2438 | int mask = 0; | |
2439 | switch (r->opc1) { | |
2440 | case 0: case 1: case 2: | |
2441 | /* min_EL EL1 */ | |
2442 | mask = PL1_RW; | |
2443 | break; | |
2444 | case 3: | |
2445 | /* min_EL EL0 */ | |
2446 | mask = PL0_RW; | |
2447 | break; | |
2448 | case 4: | |
2449 | /* min_EL EL2 */ | |
2450 | mask = PL2_RW; | |
2451 | break; | |
2452 | case 5: | |
2453 | /* unallocated encoding, so not possible */ | |
2454 | assert(false); | |
2455 | break; | |
2456 | case 6: | |
2457 | /* min_EL EL3 */ | |
2458 | mask = PL3_RW; | |
2459 | break; | |
2460 | case 7: | |
2461 | /* min_EL EL1, secure mode only (we don't check the latter) */ | |
2462 | mask = PL1_RW; | |
2463 | break; | |
2464 | default: | |
2465 | /* broken reginfo with out-of-range opc1 */ | |
2466 | assert(false); | |
2467 | break; | |
2468 | } | |
2469 | /* assert our permissions are not too lax (stricter is fine) */ | |
2470 | assert((r->access & ~mask) == 0); | |
2471 | } | |
2472 | ||
2473 | /* Check that the register definition has enough info to handle | |
2474 | * reads and writes if they are permitted. | |
2475 | */ | |
2476 | if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { | |
2477 | if (r->access & PL3_R) { | |
2478 | assert(r->fieldoffset || r->readfn); | |
2479 | } | |
2480 | if (r->access & PL3_W) { | |
2481 | assert(r->fieldoffset || r->writefn); | |
2482 | } | |
2483 | } | |
2484 | /* Bad type field probably means missing sentinel at end of reg list */ | |
2485 | assert(cptype_valid(r->type)); | |
2486 | for (crm = crmmin; crm <= crmmax; crm++) { | |
2487 | for (opc1 = opc1min; opc1 <= opc1max; opc1++) { | |
2488 | for (opc2 = opc2min; opc2 <= opc2max; opc2++) { | |
2489 | for (state = ARM_CP_STATE_AA32; | |
2490 | state <= ARM_CP_STATE_AA64; state++) { | |
2491 | if (r->state != state && r->state != ARM_CP_STATE_BOTH) { | |
2492 | continue; | |
2493 | } | |
2494 | add_cpreg_to_hashtable(cpu, r, opaque, state, | |
2495 | crm, opc1, opc2); | |
2496 | } | |
2497 | } | |
2498 | } | |
2499 | } | |
2500 | } | |
2501 | ||
2502 | void define_arm_cp_regs_with_opaque(ARMCPU *cpu, | |
2503 | const ARMCPRegInfo *regs, void *opaque) | |
2504 | { | |
2505 | /* Define a whole list of registers */ | |
2506 | const ARMCPRegInfo *r; | |
2507 | for (r = regs; r->type != ARM_CP_SENTINEL; r++) { | |
2508 | define_one_arm_cp_reg_with_opaque(cpu, r, opaque); | |
2509 | } | |
2510 | } | |
2511 | ||
2512 | const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) | |
2513 | { | |
2514 | return g_hash_table_lookup(cpregs, &encoded_cp); | |
2515 | } | |
2516 | ||
2517 | void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, | |
2518 | uint64_t value) | |
2519 | { | |
2520 | /* Helper coprocessor write function for write-ignore registers */ | |
2521 | } | |
2522 | ||
2523 | uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) | |
2524 | { | |
2525 | /* Helper coprocessor write function for read-as-zero registers */ | |
2526 | return 0; | |
2527 | } | |
2528 | ||
2529 | void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) | |
2530 | { | |
2531 | /* Helper coprocessor reset function for do-nothing-on-reset registers */ | |
2532 | } | |
2533 | ||
2534 | static int bad_mode_switch(CPUARMState *env, int mode) | |
2535 | { | |
2536 | /* Return true if it is not valid for us to switch to | |
2537 | * this CPU mode (ie all the UNPREDICTABLE cases in | |
2538 | * the ARM ARM CPSRWriteByInstr pseudocode). | |
2539 | */ | |
2540 | switch (mode) { | |
2541 | case ARM_CPU_MODE_USR: | |
2542 | case ARM_CPU_MODE_SYS: | |
2543 | case ARM_CPU_MODE_SVC: | |
2544 | case ARM_CPU_MODE_ABT: | |
2545 | case ARM_CPU_MODE_UND: | |
2546 | case ARM_CPU_MODE_IRQ: | |
2547 | case ARM_CPU_MODE_FIQ: | |
2548 | return 0; | |
2549 | default: | |
2550 | return 1; | |
2551 | } | |
2552 | } | |
2553 | ||
2554 | uint32_t cpsr_read(CPUARMState *env) | |
2555 | { | |
2556 | int ZF; | |
2557 | ZF = (env->ZF == 0); | |
2558 | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | |
2559 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) | |
2560 | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | |
2561 | | ((env->condexec_bits & 0xfc) << 8) | |
2562 | | (env->GE << 16) | (env->daif & CPSR_AIF); | |
2563 | } | |
2564 | ||
2565 | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | |
2566 | { | |
2567 | if (mask & CPSR_NZCV) { | |
2568 | env->ZF = (~val) & CPSR_Z; | |
2569 | env->NF = val; | |
2570 | env->CF = (val >> 29) & 1; | |
2571 | env->VF = (val << 3) & 0x80000000; | |
2572 | } | |
2573 | if (mask & CPSR_Q) | |
2574 | env->QF = ((val & CPSR_Q) != 0); | |
2575 | if (mask & CPSR_T) | |
2576 | env->thumb = ((val & CPSR_T) != 0); | |
2577 | if (mask & CPSR_IT_0_1) { | |
2578 | env->condexec_bits &= ~3; | |
2579 | env->condexec_bits |= (val >> 25) & 3; | |
2580 | } | |
2581 | if (mask & CPSR_IT_2_7) { | |
2582 | env->condexec_bits &= 3; | |
2583 | env->condexec_bits |= (val >> 8) & 0xfc; | |
2584 | } | |
2585 | if (mask & CPSR_GE) { | |
2586 | env->GE = (val >> 16) & 0xf; | |
2587 | } | |
2588 | ||
2589 | env->daif &= ~(CPSR_AIF & mask); | |
2590 | env->daif |= val & CPSR_AIF & mask; | |
2591 | ||
2592 | if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { | |
2593 | if (bad_mode_switch(env, val & CPSR_M)) { | |
2594 | /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. | |
2595 | * We choose to ignore the attempt and leave the CPSR M field | |
2596 | * untouched. | |
2597 | */ | |
2598 | mask &= ~CPSR_M; | |
2599 | } else { | |
2600 | switch_mode(env, val & CPSR_M); | |
2601 | } | |
2602 | } | |
2603 | mask &= ~CACHED_CPSR_BITS; | |
2604 | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | |
2605 | } | |
2606 | ||
2607 | /* Sign/zero extend */ | |
2608 | uint32_t HELPER(sxtb16)(uint32_t x) | |
2609 | { | |
2610 | uint32_t res; | |
2611 | res = (uint16_t)(int8_t)x; | |
2612 | res |= (uint32_t)(int8_t)(x >> 16) << 16; | |
2613 | return res; | |
2614 | } | |
2615 | ||
2616 | uint32_t HELPER(uxtb16)(uint32_t x) | |
2617 | { | |
2618 | uint32_t res; | |
2619 | res = (uint16_t)(uint8_t)x; | |
2620 | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | |
2621 | return res; | |
2622 | } | |
2623 | ||
2624 | uint32_t HELPER(clz)(uint32_t x) | |
2625 | { | |
2626 | return clz32(x); | |
2627 | } | |
2628 | ||
2629 | int32_t HELPER(sdiv)(int32_t num, int32_t den) | |
2630 | { | |
2631 | if (den == 0) | |
2632 | return 0; | |
2633 | if (num == INT_MIN && den == -1) | |
2634 | return INT_MIN; | |
2635 | return num / den; | |
2636 | } | |
2637 | ||
2638 | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | |
2639 | { | |
2640 | if (den == 0) | |
2641 | return 0; | |
2642 | return num / den; | |
2643 | } | |
2644 | ||
2645 | uint32_t HELPER(rbit)(uint32_t x) | |
2646 | { | |
2647 | x = ((x & 0xff000000) >> 24) | |
2648 | | ((x & 0x00ff0000) >> 8) | |
2649 | | ((x & 0x0000ff00) << 8) | |
2650 | | ((x & 0x000000ff) << 24); | |
2651 | x = ((x & 0xf0f0f0f0) >> 4) | |
2652 | | ((x & 0x0f0f0f0f) << 4); | |
2653 | x = ((x & 0x88888888) >> 3) | |
2654 | | ((x & 0x44444444) >> 1) | |
2655 | | ((x & 0x22222222) << 1) | |
2656 | | ((x & 0x11111111) << 3); | |
2657 | return x; | |
2658 | } | |
2659 | ||
2660 | #if defined(CONFIG_USER_ONLY) | |
2661 | ||
2662 | void arm_cpu_do_interrupt(CPUState *cs) | |
2663 | { | |
2664 | ARMCPU *cpu = ARM_CPU(cs); | |
2665 | CPUARMState *env = &cpu->env; | |
2666 | ||
2667 | env->exception_index = -1; | |
2668 | } | |
2669 | ||
2670 | int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw, | |
2671 | int mmu_idx) | |
2672 | { | |
2673 | if (rw == 2) { | |
2674 | env->exception_index = EXCP_PREFETCH_ABORT; | |
2675 | env->cp15.c6_insn = address; | |
2676 | } else { | |
2677 | env->exception_index = EXCP_DATA_ABORT; | |
2678 | env->cp15.c6_data = address; | |
2679 | } | |
2680 | return 1; | |
2681 | } | |
2682 | ||
2683 | /* These should probably raise undefined insn exceptions. */ | |
2684 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) | |
2685 | { | |
2686 | cpu_abort(env, "v7m_mrs %d\n", reg); | |
2687 | } | |
2688 | ||
2689 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) | |
2690 | { | |
2691 | cpu_abort(env, "v7m_mrs %d\n", reg); | |
2692 | return 0; | |
2693 | } | |
2694 | ||
2695 | void switch_mode(CPUARMState *env, int mode) | |
2696 | { | |
2697 | if (mode != ARM_CPU_MODE_USR) | |
2698 | cpu_abort(env, "Tried to switch out of user mode\n"); | |
2699 | } | |
2700 | ||
2701 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) | |
2702 | { | |
2703 | cpu_abort(env, "banked r13 write\n"); | |
2704 | } | |
2705 | ||
2706 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) | |
2707 | { | |
2708 | cpu_abort(env, "banked r13 read\n"); | |
2709 | return 0; | |
2710 | } | |
2711 | ||
2712 | #else | |
2713 | ||
2714 | /* Map CPU modes onto saved register banks. */ | |
2715 | int bank_number(int mode) | |
2716 | { | |
2717 | switch (mode) { | |
2718 | case ARM_CPU_MODE_USR: | |
2719 | case ARM_CPU_MODE_SYS: | |
2720 | return 0; | |
2721 | case ARM_CPU_MODE_SVC: | |
2722 | return 1; | |
2723 | case ARM_CPU_MODE_ABT: | |
2724 | return 2; | |
2725 | case ARM_CPU_MODE_UND: | |
2726 | return 3; | |
2727 | case ARM_CPU_MODE_IRQ: | |
2728 | return 4; | |
2729 | case ARM_CPU_MODE_FIQ: | |
2730 | return 5; | |
2731 | } | |
2732 | hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode); | |
2733 | } | |
2734 | ||
2735 | void switch_mode(CPUARMState *env, int mode) | |
2736 | { | |
2737 | int old_mode; | |
2738 | int i; | |
2739 | ||
2740 | old_mode = env->uncached_cpsr & CPSR_M; | |
2741 | if (mode == old_mode) | |
2742 | return; | |
2743 | ||
2744 | if (old_mode == ARM_CPU_MODE_FIQ) { | |
2745 | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
2746 | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); | |
2747 | } else if (mode == ARM_CPU_MODE_FIQ) { | |
2748 | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
2749 | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); | |
2750 | } | |
2751 | ||
2752 | i = bank_number(old_mode); | |
2753 | env->banked_r13[i] = env->regs[13]; | |
2754 | env->banked_r14[i] = env->regs[14]; | |
2755 | env->banked_spsr[i] = env->spsr; | |
2756 | ||
2757 | i = bank_number(mode); | |
2758 | env->regs[13] = env->banked_r13[i]; | |
2759 | env->regs[14] = env->banked_r14[i]; | |
2760 | env->spsr = env->banked_spsr[i]; | |
2761 | } | |
2762 | ||
2763 | static void v7m_push(CPUARMState *env, uint32_t val) | |
2764 | { | |
2765 | CPUState *cs = CPU(arm_env_get_cpu(env)); | |
2766 | ||
2767 | env->regs[13] -= 4; | |
2768 | stl_phys(cs->as, env->regs[13], val); | |
2769 | } | |
2770 | ||
2771 | static uint32_t v7m_pop(CPUARMState *env) | |
2772 | { | |
2773 | CPUState *cs = CPU(arm_env_get_cpu(env)); | |
2774 | uint32_t val; | |
2775 | ||
2776 | val = ldl_phys(cs->as, env->regs[13]); | |
2777 | env->regs[13] += 4; | |
2778 | return val; | |
2779 | } | |
2780 | ||
2781 | /* Switch to V7M main or process stack pointer. */ | |
2782 | static void switch_v7m_sp(CPUARMState *env, int process) | |
2783 | { | |
2784 | uint32_t tmp; | |
2785 | if (env->v7m.current_sp != process) { | |
2786 | tmp = env->v7m.other_sp; | |
2787 | env->v7m.other_sp = env->regs[13]; | |
2788 | env->regs[13] = tmp; | |
2789 | env->v7m.current_sp = process; | |
2790 | } | |
2791 | } | |
2792 | ||
2793 | static void do_v7m_exception_exit(CPUARMState *env) | |
2794 | { | |
2795 | uint32_t type; | |
2796 | uint32_t xpsr; | |
2797 | ||
2798 | type = env->regs[15]; | |
2799 | if (env->v7m.exception != 0) | |
2800 | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); | |
2801 | ||
2802 | /* Switch to the target stack. */ | |
2803 | switch_v7m_sp(env, (type & 4) != 0); | |
2804 | /* Pop registers. */ | |
2805 | env->regs[0] = v7m_pop(env); | |
2806 | env->regs[1] = v7m_pop(env); | |
2807 | env->regs[2] = v7m_pop(env); | |
2808 | env->regs[3] = v7m_pop(env); | |
2809 | env->regs[12] = v7m_pop(env); | |
2810 | env->regs[14] = v7m_pop(env); | |
2811 | env->regs[15] = v7m_pop(env); | |
2812 | xpsr = v7m_pop(env); | |
2813 | xpsr_write(env, xpsr, 0xfffffdff); | |
2814 | /* Undo stack alignment. */ | |
2815 | if (xpsr & 0x200) | |
2816 | env->regs[13] |= 4; | |
2817 | /* ??? The exception return type specifies Thread/Handler mode. However | |
2818 | this is also implied by the xPSR value. Not sure what to do | |
2819 | if there is a mismatch. */ | |
2820 | /* ??? Likewise for mismatches between the CONTROL register and the stack | |
2821 | pointer. */ | |
2822 | } | |
2823 | ||
2824 | /* Exception names for debug logging; note that not all of these | |
2825 | * precisely correspond to architectural exceptions. | |
2826 | */ | |
2827 | static const char * const excnames[] = { | |
2828 | [EXCP_UDEF] = "Undefined Instruction", | |
2829 | [EXCP_SWI] = "SVC", | |
2830 | [EXCP_PREFETCH_ABORT] = "Prefetch Abort", | |
2831 | [EXCP_DATA_ABORT] = "Data Abort", | |
2832 | [EXCP_IRQ] = "IRQ", | |
2833 | [EXCP_FIQ] = "FIQ", | |
2834 | [EXCP_BKPT] = "Breakpoint", | |
2835 | [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", | |
2836 | [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", | |
2837 | [EXCP_STREX] = "QEMU intercept of STREX", | |
2838 | }; | |
2839 | ||
2840 | static inline void arm_log_exception(int idx) | |
2841 | { | |
2842 | if (qemu_loglevel_mask(CPU_LOG_INT)) { | |
2843 | const char *exc = NULL; | |
2844 | ||
2845 | if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { | |
2846 | exc = excnames[idx]; | |
2847 | } | |
2848 | if (!exc) { | |
2849 | exc = "unknown"; | |
2850 | } | |
2851 | qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); | |
2852 | } | |
2853 | } | |
2854 | ||
2855 | void arm_v7m_cpu_do_interrupt(CPUState *cs) | |
2856 | { | |
2857 | ARMCPU *cpu = ARM_CPU(cs); | |
2858 | CPUARMState *env = &cpu->env; | |
2859 | uint32_t xpsr = xpsr_read(env); | |
2860 | uint32_t lr; | |
2861 | uint32_t addr; | |
2862 | ||
2863 | arm_log_exception(env->exception_index); | |
2864 | ||
2865 | lr = 0xfffffff1; | |
2866 | if (env->v7m.current_sp) | |
2867 | lr |= 4; | |
2868 | if (env->v7m.exception == 0) | |
2869 | lr |= 8; | |
2870 | ||
2871 | /* For exceptions we just mark as pending on the NVIC, and let that | |
2872 | handle it. */ | |
2873 | /* TODO: Need to escalate if the current priority is higher than the | |
2874 | one we're raising. */ | |
2875 | switch (env->exception_index) { | |
2876 | case EXCP_UDEF: | |
2877 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); | |
2878 | return; | |
2879 | case EXCP_SWI: | |
2880 | /* The PC already points to the next instruction. */ | |
2881 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); | |
2882 | return; | |
2883 | case EXCP_PREFETCH_ABORT: | |
2884 | case EXCP_DATA_ABORT: | |
2885 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); | |
2886 | return; | |
2887 | case EXCP_BKPT: | |
2888 | if (semihosting_enabled) { | |
2889 | int nr; | |
2890 | nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; | |
2891 | if (nr == 0xab) { | |
2892 | env->regs[15] += 2; | |
2893 | env->regs[0] = do_arm_semihosting(env); | |
2894 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); | |
2895 | return; | |
2896 | } | |
2897 | } | |
2898 | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); | |
2899 | return; | |
2900 | case EXCP_IRQ: | |
2901 | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); | |
2902 | break; | |
2903 | case EXCP_EXCEPTION_EXIT: | |
2904 | do_v7m_exception_exit(env); | |
2905 | return; | |
2906 | default: | |
2907 | cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); | |
2908 | return; /* Never happens. Keep compiler happy. */ | |
2909 | } | |
2910 | ||
2911 | /* Align stack pointer. */ | |
2912 | /* ??? Should only do this if Configuration Control Register | |
2913 | STACKALIGN bit is set. */ | |
2914 | if (env->regs[13] & 4) { | |
2915 | env->regs[13] -= 4; | |
2916 | xpsr |= 0x200; | |
2917 | } | |
2918 | /* Switch to the handler mode. */ | |
2919 | v7m_push(env, xpsr); | |
2920 | v7m_push(env, env->regs[15]); | |
2921 | v7m_push(env, env->regs[14]); | |
2922 | v7m_push(env, env->regs[12]); | |
2923 | v7m_push(env, env->regs[3]); | |
2924 | v7m_push(env, env->regs[2]); | |
2925 | v7m_push(env, env->regs[1]); | |
2926 | v7m_push(env, env->regs[0]); | |
2927 | switch_v7m_sp(env, 0); | |
2928 | /* Clear IT bits */ | |
2929 | env->condexec_bits = 0; | |
2930 | env->regs[14] = lr; | |
2931 | addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); | |
2932 | env->regs[15] = addr & 0xfffffffe; | |
2933 | env->thumb = addr & 1; | |
2934 | } | |
2935 | ||
2936 | /* Handle a CPU exception. */ | |
2937 | void arm_cpu_do_interrupt(CPUState *cs) | |
2938 | { | |
2939 | ARMCPU *cpu = ARM_CPU(cs); | |
2940 | CPUARMState *env = &cpu->env; | |
2941 | uint32_t addr; | |
2942 | uint32_t mask; | |
2943 | int new_mode; | |
2944 | uint32_t offset; | |
2945 | ||
2946 | assert(!IS_M(env)); | |
2947 | ||
2948 | arm_log_exception(env->exception_index); | |
2949 | ||
2950 | /* TODO: Vectored interrupt controller. */ | |
2951 | switch (env->exception_index) { | |
2952 | case EXCP_UDEF: | |
2953 | new_mode = ARM_CPU_MODE_UND; | |
2954 | addr = 0x04; | |
2955 | mask = CPSR_I; | |
2956 | if (env->thumb) | |
2957 | offset = 2; | |
2958 | else | |
2959 | offset = 4; | |
2960 | break; | |
2961 | case EXCP_SWI: | |
2962 | if (semihosting_enabled) { | |
2963 | /* Check for semihosting interrupt. */ | |
2964 | if (env->thumb) { | |
2965 | mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) | |
2966 | & 0xff; | |
2967 | } else { | |
2968 | mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) | |
2969 | & 0xffffff; | |
2970 | } | |
2971 | /* Only intercept calls from privileged modes, to provide some | |
2972 | semblance of security. */ | |
2973 | if (((mask == 0x123456 && !env->thumb) | |
2974 | || (mask == 0xab && env->thumb)) | |
2975 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
2976 | env->regs[0] = do_arm_semihosting(env); | |
2977 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); | |
2978 | return; | |
2979 | } | |
2980 | } | |
2981 | new_mode = ARM_CPU_MODE_SVC; | |
2982 | addr = 0x08; | |
2983 | mask = CPSR_I; | |
2984 | /* The PC already points to the next instruction. */ | |
2985 | offset = 0; | |
2986 | break; | |
2987 | case EXCP_BKPT: | |
2988 | /* See if this is a semihosting syscall. */ | |
2989 | if (env->thumb && semihosting_enabled) { | |
2990 | mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; | |
2991 | if (mask == 0xab | |
2992 | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | |
2993 | env->regs[15] += 2; | |
2994 | env->regs[0] = do_arm_semihosting(env); | |
2995 | qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); | |
2996 | return; | |
2997 | } | |
2998 | } | |
2999 | env->cp15.c5_insn = 2; | |
3000 | /* Fall through to prefetch abort. */ | |
3001 | case EXCP_PREFETCH_ABORT: | |
3002 | qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", | |
3003 | env->cp15.c5_insn, env->cp15.c6_insn); | |
3004 | new_mode = ARM_CPU_MODE_ABT; | |
3005 | addr = 0x0c; | |
3006 | mask = CPSR_A | CPSR_I; | |
3007 | offset = 4; | |
3008 | break; | |
3009 | case EXCP_DATA_ABORT: | |
3010 | qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", | |
3011 | env->cp15.c5_data, env->cp15.c6_data); | |
3012 | new_mode = ARM_CPU_MODE_ABT; | |
3013 | addr = 0x10; | |
3014 | mask = CPSR_A | CPSR_I; | |
3015 | offset = 8; | |
3016 | break; | |
3017 | case EXCP_IRQ: | |
3018 | new_mode = ARM_CPU_MODE_IRQ; | |
3019 | addr = 0x18; | |
3020 | /* Disable IRQ and imprecise data aborts. */ | |
3021 | mask = CPSR_A | CPSR_I; | |
3022 | offset = 4; | |
3023 | break; | |
3024 | case EXCP_FIQ: | |
3025 | new_mode = ARM_CPU_MODE_FIQ; | |
3026 | addr = 0x1c; | |
3027 | /* Disable FIQ, IRQ and imprecise data aborts. */ | |
3028 | mask = CPSR_A | CPSR_I | CPSR_F; | |
3029 | offset = 4; | |
3030 | break; | |
3031 | default: | |
3032 | cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); | |
3033 | return; /* Never happens. Keep compiler happy. */ | |
3034 | } | |
3035 | /* High vectors. */ | |
3036 | if (env->cp15.c1_sys & SCTLR_V) { | |
3037 | /* when enabled, base address cannot be remapped. */ | |
3038 | addr += 0xffff0000; | |
3039 | } else { | |
3040 | /* ARM v7 architectures provide a vector base address register to remap | |
3041 | * the interrupt vector table. | |
3042 | * This register is only followed in non-monitor mode, and has a secure | |
3043 | * and un-secure copy. Since the cpu is always in a un-secure operation | |
3044 | * and is never in monitor mode this feature is always active. | |
3045 | * Note: only bits 31:5 are valid. | |
3046 | */ | |
3047 | addr += env->cp15.c12_vbar; | |
3048 | } | |
3049 | switch_mode (env, new_mode); | |
3050 | env->spsr = cpsr_read(env); | |
3051 | /* Clear IT bits. */ | |
3052 | env->condexec_bits = 0; | |
3053 | /* Switch to the new mode, and to the correct instruction set. */ | |
3054 | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; | |
3055 | env->daif |= mask; | |
3056 | /* this is a lie, as the was no c1_sys on V4T/V5, but who cares | |
3057 | * and we should just guard the thumb mode on V4 */ | |
3058 | if (arm_feature(env, ARM_FEATURE_V4T)) { | |
3059 | env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0; | |
3060 | } | |
3061 | env->regs[14] = env->regs[15] + offset; | |
3062 | env->regs[15] = addr; | |
3063 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
3064 | } | |
3065 | ||
3066 | /* Check section/page access permissions. | |
3067 | Returns the page protection flags, or zero if the access is not | |
3068 | permitted. */ | |
3069 | static inline int check_ap(CPUARMState *env, int ap, int domain_prot, | |
3070 | int access_type, int is_user) | |
3071 | { | |
3072 | int prot_ro; | |
3073 | ||
3074 | if (domain_prot == 3) { | |
3075 | return PAGE_READ | PAGE_WRITE; | |
3076 | } | |
3077 | ||
3078 | if (access_type == 1) | |
3079 | prot_ro = 0; | |
3080 | else | |
3081 | prot_ro = PAGE_READ; | |
3082 | ||
3083 | switch (ap) { | |
3084 | case 0: | |
3085 | if (arm_feature(env, ARM_FEATURE_V7)) { | |
3086 | return 0; | |
3087 | } | |
3088 | if (access_type == 1) | |
3089 | return 0; | |
3090 | switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) { | |
3091 | case SCTLR_S: | |
3092 | return is_user ? 0 : PAGE_READ; | |
3093 | case SCTLR_R: | |
3094 | return PAGE_READ; | |
3095 | default: | |
3096 | return 0; | |
3097 | } | |
3098 | case 1: | |
3099 | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | |
3100 | case 2: | |
3101 | if (is_user) | |
3102 | return prot_ro; | |
3103 | else | |
3104 | return PAGE_READ | PAGE_WRITE; | |
3105 | case 3: | |
3106 | return PAGE_READ | PAGE_WRITE; | |
3107 | case 4: /* Reserved. */ | |
3108 | return 0; | |
3109 | case 5: | |
3110 | return is_user ? 0 : prot_ro; | |
3111 | case 6: | |
3112 | return prot_ro; | |
3113 | case 7: | |
3114 | if (!arm_feature (env, ARM_FEATURE_V6K)) | |
3115 | return 0; | |
3116 | return prot_ro; | |
3117 | default: | |
3118 | abort(); | |
3119 | } | |
3120 | } | |
3121 | ||
3122 | static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address) | |
3123 | { | |
3124 | uint32_t table; | |
3125 | ||
3126 | if (address & env->cp15.c2_mask) | |
3127 | table = env->cp15.ttbr1_el1 & 0xffffc000; | |
3128 | else | |
3129 | table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask; | |
3130 | ||
3131 | table |= (address >> 18) & 0x3ffc; | |
3132 | return table; | |
3133 | } | |
3134 | ||
3135 | static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, | |
3136 | int is_user, hwaddr *phys_ptr, | |
3137 | int *prot, target_ulong *page_size) | |
3138 | { | |
3139 | CPUState *cs = CPU(arm_env_get_cpu(env)); | |
3140 | int code; | |
3141 | uint32_t table; | |
3142 | uint32_t desc; | |
3143 | int type; | |
3144 | int ap; | |
3145 | int domain; | |
3146 | int domain_prot; | |
3147 | hwaddr phys_addr; | |
3148 | ||
3149 | /* Pagetable walk. */ | |
3150 | /* Lookup l1 descriptor. */ | |
3151 | table = get_level1_table_address(env, address); | |
3152 | desc = ldl_phys(cs->as, table); | |
3153 | type = (desc & 3); | |
3154 | domain = (desc >> 5) & 0x0f; | |
3155 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; | |
3156 | if (type == 0) { | |
3157 | /* Section translation fault. */ | |
3158 | code = 5; | |
3159 | goto do_fault; | |
3160 | } | |
3161 | if (domain_prot == 0 || domain_prot == 2) { | |
3162 | if (type == 2) | |
3163 | code = 9; /* Section domain fault. */ | |
3164 | else | |
3165 | code = 11; /* Page domain fault. */ | |
3166 | goto do_fault; | |
3167 | } | |
3168 | if (type == 2) { | |
3169 | /* 1Mb section. */ | |
3170 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
3171 | ap = (desc >> 10) & 3; | |
3172 | code = 13; | |
3173 | *page_size = 1024 * 1024; | |
3174 | } else { | |
3175 | /* Lookup l2 entry. */ | |
3176 | if (type == 1) { | |
3177 | /* Coarse pagetable. */ | |
3178 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
3179 | } else { | |
3180 | /* Fine pagetable. */ | |
3181 | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | |
3182 | } | |
3183 | desc = ldl_phys(cs->as, table); | |
3184 | switch (desc & 3) { | |
3185 | case 0: /* Page translation fault. */ | |
3186 | code = 7; | |
3187 | goto do_fault; | |
3188 | case 1: /* 64k page. */ | |
3189 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
3190 | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | |
3191 | *page_size = 0x10000; | |
3192 | break; | |
3193 | case 2: /* 4k page. */ | |
3194 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
3195 | ap = (desc >> (4 + ((address >> 9) & 6))) & 3; | |
3196 | *page_size = 0x1000; | |
3197 | break; | |
3198 | case 3: /* 1k page. */ | |
3199 | if (type == 1) { | |
3200 | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | |
3201 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
3202 | } else { | |
3203 | /* Page translation fault. */ | |
3204 | code = 7; | |
3205 | goto do_fault; | |
3206 | } | |
3207 | } else { | |
3208 | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | |
3209 | } | |
3210 | ap = (desc >> 4) & 3; | |
3211 | *page_size = 0x400; | |
3212 | break; | |
3213 | default: | |
3214 | /* Never happens, but compiler isn't smart enough to tell. */ | |
3215 | abort(); | |
3216 | } | |
3217 | code = 15; | |
3218 | } | |
3219 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); | |
3220 | if (!*prot) { | |
3221 | /* Access permission fault. */ | |
3222 | goto do_fault; | |
3223 | } | |
3224 | *prot |= PAGE_EXEC; | |
3225 | *phys_ptr = phys_addr; | |
3226 | return 0; | |
3227 | do_fault: | |
3228 | return code | (domain << 4); | |
3229 | } | |
3230 | ||
3231 | static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, | |
3232 | int is_user, hwaddr *phys_ptr, | |
3233 | int *prot, target_ulong *page_size) | |
3234 | { | |
3235 | CPUState *cs = CPU(arm_env_get_cpu(env)); | |
3236 | int code; | |
3237 | uint32_t table; | |
3238 | uint32_t desc; | |
3239 | uint32_t xn; | |
3240 | uint32_t pxn = 0; | |
3241 | int type; | |
3242 | int ap; | |
3243 | int domain = 0; | |
3244 | int domain_prot; | |
3245 | hwaddr phys_addr; | |
3246 | ||
3247 | /* Pagetable walk. */ | |
3248 | /* Lookup l1 descriptor. */ | |
3249 | table = get_level1_table_address(env, address); | |
3250 | desc = ldl_phys(cs->as, table); | |
3251 | type = (desc & 3); | |
3252 | if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { | |
3253 | /* Section translation fault, or attempt to use the encoding | |
3254 | * which is Reserved on implementations without PXN. | |
3255 | */ | |
3256 | code = 5; | |
3257 | goto do_fault; | |
3258 | } | |
3259 | if ((type == 1) || !(desc & (1 << 18))) { | |
3260 | /* Page or Section. */ | |
3261 | domain = (desc >> 5) & 0x0f; | |
3262 | } | |
3263 | domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; | |
3264 | if (domain_prot == 0 || domain_prot == 2) { | |
3265 | if (type != 1) { | |
3266 | code = 9; /* Section domain fault. */ | |
3267 | } else { | |
3268 | code = 11; /* Page domain fault. */ | |
3269 | } | |
3270 | goto do_fault; | |
3271 | } | |
3272 | if (type != 1) { | |
3273 | if (desc & (1 << 18)) { | |
3274 | /* Supersection. */ | |
3275 | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | |
3276 | *page_size = 0x1000000; | |
3277 | } else { | |
3278 | /* Section. */ | |
3279 | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | |
3280 | *page_size = 0x100000; | |
3281 | } | |
3282 | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); | |
3283 | xn = desc & (1 << 4); | |
3284 | pxn = desc & 1; | |
3285 | code = 13; | |
3286 | } else { | |
3287 | if (arm_feature(env, ARM_FEATURE_PXN)) { | |
3288 | pxn = (desc >> 2) & 1; | |
3289 | } | |
3290 | /* Lookup l2 entry. */ | |
3291 | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | |
3292 | desc = ldl_phys(cs->as, table); | |
3293 | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); | |
3294 | switch (desc & 3) { | |
3295 | case 0: /* Page translation fault. */ | |
3296 | code = 7; | |
3297 | goto do_fault; | |
3298 | case 1: /* 64k page. */ | |
3299 | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | |
3300 | xn = desc & (1 << 15); | |
3301 | *page_size = 0x10000; | |
3302 | break; | |
3303 | case 2: case 3: /* 4k page. */ | |
3304 | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | |
3305 | xn = desc & 1; | |
3306 | *page_size = 0x1000; | |
3307 | break; | |
3308 | default: | |
3309 | /* Never happens, but compiler isn't smart enough to tell. */ | |
3310 | abort(); | |
3311 | } | |
3312 | code = 15; | |
3313 | } | |
3314 | if (domain_prot == 3) { | |
3315 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
3316 | } else { | |
3317 | if (pxn && !is_user) { | |
3318 | xn = 1; | |
3319 | } | |
3320 | if (xn && access_type == 2) | |
3321 | goto do_fault; | |
3322 | ||
3323 | /* The simplified model uses AP[0] as an access control bit. */ | |
3324 | if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) { | |
3325 | /* Access flag fault. */ | |
3326 | code = (code == 15) ? 6 : 3; | |
3327 | goto do_fault; | |
3328 | } | |
3329 | *prot = check_ap(env, ap, domain_prot, access_type, is_user); | |
3330 | if (!*prot) { | |
3331 | /* Access permission fault. */ | |
3332 | goto do_fault; | |
3333 | } | |
3334 | if (!xn) { | |
3335 | *prot |= PAGE_EXEC; | |
3336 | } | |
3337 | } | |
3338 | *phys_ptr = phys_addr; | |
3339 | return 0; | |
3340 | do_fault: | |
3341 | return code | (domain << 4); | |
3342 | } | |
3343 | ||
3344 | /* Fault type for long-descriptor MMU fault reporting; this corresponds | |
3345 | * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. | |
3346 | */ | |
3347 | typedef enum { | |
3348 | translation_fault = 1, | |
3349 | access_fault = 2, | |
3350 | permission_fault = 3, | |
3351 | } MMUFaultType; | |
3352 | ||
3353 | static int get_phys_addr_lpae(CPUARMState *env, uint32_t address, | |
3354 | int access_type, int is_user, | |
3355 | hwaddr *phys_ptr, int *prot, | |
3356 | target_ulong *page_size_ptr) | |
3357 | { | |
3358 | CPUState *cs = CPU(arm_env_get_cpu(env)); | |
3359 | /* Read an LPAE long-descriptor translation table. */ | |
3360 | MMUFaultType fault_type = translation_fault; | |
3361 | uint32_t level = 1; | |
3362 | uint32_t epd; | |
3363 | uint32_t tsz; | |
3364 | uint64_t ttbr; | |
3365 | int ttbr_select; | |
3366 | int n; | |
3367 | hwaddr descaddr; | |
3368 | uint32_t tableattrs; | |
3369 | target_ulong page_size; | |
3370 | uint32_t attrs; | |
3371 | ||
3372 | /* Determine whether this address is in the region controlled by | |
3373 | * TTBR0 or TTBR1 (or if it is in neither region and should fault). | |
3374 | * This is a Non-secure PL0/1 stage 1 translation, so controlled by | |
3375 | * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: | |
3376 | */ | |
3377 | uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3); | |
3378 | uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3); | |
3379 | if (t0sz && !extract32(address, 32 - t0sz, t0sz)) { | |
3380 | /* there is a ttbr0 region and we are in it (high bits all zero) */ | |
3381 | ttbr_select = 0; | |
3382 | } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) { | |
3383 | /* there is a ttbr1 region and we are in it (high bits all one) */ | |
3384 | ttbr_select = 1; | |
3385 | } else if (!t0sz) { | |
3386 | /* ttbr0 region is "everything not in the ttbr1 region" */ | |
3387 | ttbr_select = 0; | |
3388 | } else if (!t1sz) { | |
3389 | /* ttbr1 region is "everything not in the ttbr0 region" */ | |
3390 | ttbr_select = 1; | |
3391 | } else { | |
3392 | /* in the gap between the two regions, this is a Translation fault */ | |
3393 | fault_type = translation_fault; | |
3394 | goto do_fault; | |
3395 | } | |
3396 | ||
3397 | /* Note that QEMU ignores shareability and cacheability attributes, | |
3398 | * so we don't need to do anything with the SH, ORGN, IRGN fields | |
3399 | * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the | |
3400 | * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently | |
3401 | * implement any ASID-like capability so we can ignore it (instead | |
3402 | * we will always flush the TLB any time the ASID is changed). | |
3403 | */ | |
3404 | if (ttbr_select == 0) { | |
3405 | ttbr = env->cp15.ttbr0_el1; | |
3406 | epd = extract32(env->cp15.c2_control, 7, 1); | |
3407 | tsz = t0sz; | |
3408 | } else { | |
3409 | ttbr = env->cp15.ttbr1_el1; | |
3410 | epd = extract32(env->cp15.c2_control, 23, 1); | |
3411 | tsz = t1sz; | |
3412 | } | |
3413 | ||
3414 | if (epd) { | |
3415 | /* Translation table walk disabled => Translation fault on TLB miss */ | |
3416 | goto do_fault; | |
3417 | } | |
3418 | ||
3419 | /* If the region is small enough we will skip straight to a 2nd level | |
3420 | * lookup. This affects the number of bits of the address used in | |
3421 | * combination with the TTBR to find the first descriptor. ('n' here | |
3422 | * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are | |
3423 | * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero). | |
3424 | */ | |
3425 | if (tsz > 1) { | |
3426 | level = 2; | |
3427 | n = 14 - tsz; | |
3428 | } else { | |
3429 | n = 5 - tsz; | |
3430 | } | |
3431 | ||
3432 | /* Clear the vaddr bits which aren't part of the within-region address, | |
3433 | * so that we don't have to special case things when calculating the | |
3434 | * first descriptor address. | |
3435 | */ | |
3436 | address &= (0xffffffffU >> tsz); | |
3437 | ||
3438 | /* Now we can extract the actual base address from the TTBR */ | |
3439 | descaddr = extract64(ttbr, 0, 40); | |
3440 | descaddr &= ~((1ULL << n) - 1); | |
3441 | ||
3442 | tableattrs = 0; | |
3443 | for (;;) { | |
3444 | uint64_t descriptor; | |
3445 | ||
3446 | descaddr |= ((address >> (9 * (4 - level))) & 0xff8); | |
3447 | descriptor = ldq_phys(cs->as, descaddr); | |
3448 | if (!(descriptor & 1) || | |
3449 | (!(descriptor & 2) && (level == 3))) { | |
3450 | /* Invalid, or the Reserved level 3 encoding */ | |
3451 | goto do_fault; | |
3452 | } | |
3453 | descaddr = descriptor & 0xfffffff000ULL; | |
3454 | ||
3455 | if ((descriptor & 2) && (level < 3)) { | |
3456 | /* Table entry. The top five bits are attributes which may | |
3457 | * propagate down through lower levels of the table (and | |
3458 | * which are all arranged so that 0 means "no effect", so | |
3459 | * we can gather them up by ORing in the bits at each level). | |
3460 | */ | |
3461 | tableattrs |= extract64(descriptor, 59, 5); | |
3462 | level++; | |
3463 | continue; | |
3464 | } | |
3465 | /* Block entry at level 1 or 2, or page entry at level 3. | |
3466 | * These are basically the same thing, although the number | |
3467 | * of bits we pull in from the vaddr varies. | |
3468 | */ | |
3469 | page_size = (1 << (39 - (9 * level))); | |
3470 | descaddr |= (address & (page_size - 1)); | |
3471 | /* Extract attributes from the descriptor and merge with table attrs */ | |
3472 | attrs = extract64(descriptor, 2, 10) | |
3473 | | (extract64(descriptor, 52, 12) << 10); | |
3474 | attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ | |
3475 | attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ | |
3476 | /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 | |
3477 | * means "force PL1 access only", which means forcing AP[1] to 0. | |
3478 | */ | |
3479 | if (extract32(tableattrs, 2, 1)) { | |
3480 | attrs &= ~(1 << 4); | |
3481 | } | |
3482 | /* Since we're always in the Non-secure state, NSTable is ignored. */ | |
3483 | break; | |
3484 | } | |
3485 | /* Here descaddr is the final physical address, and attributes | |
3486 | * are all in attrs. | |
3487 | */ | |
3488 | fault_type = access_fault; | |
3489 | if ((attrs & (1 << 8)) == 0) { | |
3490 | /* Access flag */ | |
3491 | goto do_fault; | |
3492 | } | |
3493 | fault_type = permission_fault; | |
3494 | if (is_user && !(attrs & (1 << 4))) { | |
3495 | /* Unprivileged access not enabled */ | |
3496 | goto do_fault; | |
3497 | } | |
3498 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
3499 | if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) { | |
3500 | /* XN or PXN */ | |
3501 | if (access_type == 2) { | |
3502 | goto do_fault; | |
3503 | } | |
3504 | *prot &= ~PAGE_EXEC; | |
3505 | } | |
3506 | if (attrs & (1 << 5)) { | |
3507 | /* Write access forbidden */ | |
3508 | if (access_type == 1) { | |
3509 | goto do_fault; | |
3510 | } | |
3511 | *prot &= ~PAGE_WRITE; | |
3512 | } | |
3513 | ||
3514 | *phys_ptr = descaddr; | |
3515 | *page_size_ptr = page_size; | |
3516 | return 0; | |
3517 | ||
3518 | do_fault: | |
3519 | /* Long-descriptor format IFSR/DFSR value */ | |
3520 | return (1 << 9) | (fault_type << 2) | level; | |
3521 | } | |
3522 | ||
3523 | static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, | |
3524 | int access_type, int is_user, | |
3525 | hwaddr *phys_ptr, int *prot) | |
3526 | { | |
3527 | int n; | |
3528 | uint32_t mask; | |
3529 | uint32_t base; | |
3530 | ||
3531 | *phys_ptr = address; | |
3532 | for (n = 7; n >= 0; n--) { | |
3533 | base = env->cp15.c6_region[n]; | |
3534 | if ((base & 1) == 0) | |
3535 | continue; | |
3536 | mask = 1 << ((base >> 1) & 0x1f); | |
3537 | /* Keep this shift separate from the above to avoid an | |
3538 | (undefined) << 32. */ | |
3539 | mask = (mask << 1) - 1; | |
3540 | if (((base ^ address) & ~mask) == 0) | |
3541 | break; | |
3542 | } | |
3543 | if (n < 0) | |
3544 | return 2; | |
3545 | ||
3546 | if (access_type == 2) { | |
3547 | mask = env->cp15.c5_insn; | |
3548 | } else { | |
3549 | mask = env->cp15.c5_data; | |
3550 | } | |
3551 | mask = (mask >> (n * 4)) & 0xf; | |
3552 | switch (mask) { | |
3553 | case 0: | |
3554 | return 1; | |
3555 | case 1: | |
3556 | if (is_user) | |
3557 | return 1; | |
3558 | *prot = PAGE_READ | PAGE_WRITE; | |
3559 | break; | |
3560 | case 2: | |
3561 | *prot = PAGE_READ; | |
3562 | if (!is_user) | |
3563 | *prot |= PAGE_WRITE; | |
3564 | break; | |
3565 | case 3: | |
3566 | *prot = PAGE_READ | PAGE_WRITE; | |
3567 | break; | |
3568 | case 5: | |
3569 | if (is_user) | |
3570 | return 1; | |
3571 | *prot = PAGE_READ; | |
3572 | break; | |
3573 | case 6: | |
3574 | *prot = PAGE_READ; | |
3575 | break; | |
3576 | default: | |
3577 | /* Bad permission. */ | |
3578 | return 1; | |
3579 | } | |
3580 | *prot |= PAGE_EXEC; | |
3581 | return 0; | |
3582 | } | |
3583 | ||
3584 | /* get_phys_addr - get the physical address for this virtual address | |
3585 | * | |
3586 | * Find the physical address corresponding to the given virtual address, | |
3587 | * by doing a translation table walk on MMU based systems or using the | |
3588 | * MPU state on MPU based systems. | |
3589 | * | |
3590 | * Returns 0 if the translation was successful. Otherwise, phys_ptr, | |
3591 | * prot and page_size are not filled in, and the return value provides | |
3592 | * information on why the translation aborted, in the format of a | |
3593 | * DFSR/IFSR fault register, with the following caveats: | |
3594 | * * we honour the short vs long DFSR format differences. | |
3595 | * * the WnR bit is never set (the caller must do this). | |
3596 | * * for MPU based systems we don't bother to return a full FSR format | |
3597 | * value. | |
3598 | * | |
3599 | * @env: CPUARMState | |
3600 | * @address: virtual address to get physical address for | |
3601 | * @access_type: 0 for read, 1 for write, 2 for execute | |
3602 | * @is_user: 0 for privileged access, 1 for user | |
3603 | * @phys_ptr: set to the physical address corresponding to the virtual address | |
3604 | * @prot: set to the permissions for the page containing phys_ptr | |
3605 | * @page_size: set to the size of the page containing phys_ptr | |
3606 | */ | |
3607 | static inline int get_phys_addr(CPUARMState *env, uint32_t address, | |
3608 | int access_type, int is_user, | |
3609 | hwaddr *phys_ptr, int *prot, | |
3610 | target_ulong *page_size) | |
3611 | { | |
3612 | /* Fast Context Switch Extension. */ | |
3613 | if (address < 0x02000000) | |
3614 | address += env->cp15.c13_fcse; | |
3615 | ||
3616 | if ((env->cp15.c1_sys & SCTLR_M) == 0) { | |
3617 | /* MMU/MPU disabled. */ | |
3618 | *phys_ptr = address; | |
3619 | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
3620 | *page_size = TARGET_PAGE_SIZE; | |
3621 | return 0; | |
3622 | } else if (arm_feature(env, ARM_FEATURE_MPU)) { | |
3623 | *page_size = TARGET_PAGE_SIZE; | |
3624 | return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, | |
3625 | prot); | |
3626 | } else if (extended_addresses_enabled(env)) { | |
3627 | return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr, | |
3628 | prot, page_size); | |
3629 | } else if (env->cp15.c1_sys & SCTLR_XP) { | |
3630 | return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, | |
3631 | prot, page_size); | |
3632 | } else { | |
3633 | return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, | |
3634 | prot, page_size); | |
3635 | } | |
3636 | } | |
3637 | ||
3638 | int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, | |
3639 | int access_type, int mmu_idx) | |
3640 | { | |
3641 | hwaddr phys_addr; | |
3642 | target_ulong page_size; | |
3643 | int prot; | |
3644 | int ret, is_user; | |
3645 | ||
3646 | is_user = mmu_idx == MMU_USER_IDX; | |
3647 | ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot, | |
3648 | &page_size); | |
3649 | if (ret == 0) { | |
3650 | /* Map a single [sub]page. */ | |
3651 | phys_addr &= ~(hwaddr)0x3ff; | |
3652 | address &= ~(uint32_t)0x3ff; | |
3653 | tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size); | |
3654 | return 0; | |
3655 | } | |
3656 | ||
3657 | if (access_type == 2) { | |
3658 | env->cp15.c5_insn = ret; | |
3659 | env->cp15.c6_insn = address; | |
3660 | env->exception_index = EXCP_PREFETCH_ABORT; | |
3661 | } else { | |
3662 | env->cp15.c5_data = ret; | |
3663 | if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) | |
3664 | env->cp15.c5_data |= (1 << 11); | |
3665 | env->cp15.c6_data = address; | |
3666 | env->exception_index = EXCP_DATA_ABORT; | |
3667 | } | |
3668 | return 1; | |
3669 | } | |
3670 | ||
3671 | hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) | |
3672 | { | |
3673 | ARMCPU *cpu = ARM_CPU(cs); | |
3674 | hwaddr phys_addr; | |
3675 | target_ulong page_size; | |
3676 | int prot; | |
3677 | int ret; | |
3678 | ||
3679 | ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size); | |
3680 | ||
3681 | if (ret != 0) { | |
3682 | return -1; | |
3683 | } | |
3684 | ||
3685 | return phys_addr; | |
3686 | } | |
3687 | ||
3688 | void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) | |
3689 | { | |
3690 | if ((env->uncached_cpsr & CPSR_M) == mode) { | |
3691 | env->regs[13] = val; | |
3692 | } else { | |
3693 | env->banked_r13[bank_number(mode)] = val; | |
3694 | } | |
3695 | } | |
3696 | ||
3697 | uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) | |
3698 | { | |
3699 | if ((env->uncached_cpsr & CPSR_M) == mode) { | |
3700 | return env->regs[13]; | |
3701 | } else { | |
3702 | return env->banked_r13[bank_number(mode)]; | |
3703 | } | |
3704 | } | |
3705 | ||
3706 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) | |
3707 | { | |
3708 | switch (reg) { | |
3709 | case 0: /* APSR */ | |
3710 | return xpsr_read(env) & 0xf8000000; | |
3711 | case 1: /* IAPSR */ | |
3712 | return xpsr_read(env) & 0xf80001ff; | |
3713 | case 2: /* EAPSR */ | |
3714 | return xpsr_read(env) & 0xff00fc00; | |
3715 | case 3: /* xPSR */ | |
3716 | return xpsr_read(env) & 0xff00fdff; | |
3717 | case 5: /* IPSR */ | |
3718 | return xpsr_read(env) & 0x000001ff; | |
3719 | case 6: /* EPSR */ | |
3720 | return xpsr_read(env) & 0x0700fc00; | |
3721 | case 7: /* IEPSR */ | |
3722 | return xpsr_read(env) & 0x0700edff; | |
3723 | case 8: /* MSP */ | |
3724 | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | |
3725 | case 9: /* PSP */ | |
3726 | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | |
3727 | case 16: /* PRIMASK */ | |
3728 | return (env->daif & PSTATE_I) != 0; | |
3729 | case 17: /* BASEPRI */ | |
3730 | case 18: /* BASEPRI_MAX */ | |
3731 | return env->v7m.basepri; | |
3732 | case 19: /* FAULTMASK */ | |
3733 | return (env->daif & PSTATE_F) != 0; | |
3734 | case 20: /* CONTROL */ | |
3735 | return env->v7m.control; | |
3736 | default: | |
3737 | /* ??? For debugging only. */ | |
3738 | cpu_abort(env, "Unimplemented system register read (%d)\n", reg); | |
3739 | return 0; | |
3740 | } | |
3741 | } | |
3742 | ||
3743 | void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) | |
3744 | { | |
3745 | switch (reg) { | |
3746 | case 0: /* APSR */ | |
3747 | xpsr_write(env, val, 0xf8000000); | |
3748 | break; | |
3749 | case 1: /* IAPSR */ | |
3750 | xpsr_write(env, val, 0xf8000000); | |
3751 | break; | |
3752 | case 2: /* EAPSR */ | |
3753 | xpsr_write(env, val, 0xfe00fc00); | |
3754 | break; | |
3755 | case 3: /* xPSR */ | |
3756 | xpsr_write(env, val, 0xfe00fc00); | |
3757 | break; | |
3758 | case 5: /* IPSR */ | |
3759 | /* IPSR bits are readonly. */ | |
3760 | break; | |
3761 | case 6: /* EPSR */ | |
3762 | xpsr_write(env, val, 0x0600fc00); | |
3763 | break; | |
3764 | case 7: /* IEPSR */ | |
3765 | xpsr_write(env, val, 0x0600fc00); | |
3766 | break; | |
3767 | case 8: /* MSP */ | |
3768 | if (env->v7m.current_sp) | |
3769 | env->v7m.other_sp = val; | |
3770 | else | |
3771 | env->regs[13] = val; | |
3772 | break; | |
3773 | case 9: /* PSP */ | |
3774 | if (env->v7m.current_sp) | |
3775 | env->regs[13] = val; | |
3776 | else | |
3777 | env->v7m.other_sp = val; | |
3778 | break; | |
3779 | case 16: /* PRIMASK */ | |
3780 | if (val & 1) { | |
3781 | env->daif |= PSTATE_I; | |
3782 | } else { | |
3783 | env->daif &= ~PSTATE_I; | |
3784 | } | |
3785 | break; | |
3786 | case 17: /* BASEPRI */ | |
3787 | env->v7m.basepri = val & 0xff; | |
3788 | break; | |
3789 | case 18: /* BASEPRI_MAX */ | |
3790 | val &= 0xff; | |
3791 | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | |
3792 | env->v7m.basepri = val; | |
3793 | break; | |
3794 | case 19: /* FAULTMASK */ | |
3795 | if (val & 1) { | |
3796 | env->daif |= PSTATE_F; | |
3797 | } else { | |
3798 | env->daif &= ~PSTATE_F; | |
3799 | } | |
3800 | break; | |
3801 | case 20: /* CONTROL */ | |
3802 | env->v7m.control = val & 3; | |
3803 | switch_v7m_sp(env, (val & 2) != 0); | |
3804 | break; | |
3805 | default: | |
3806 | /* ??? For debugging only. */ | |
3807 | cpu_abort(env, "Unimplemented system register write (%d)\n", reg); | |
3808 | return; | |
3809 | } | |
3810 | } | |
3811 | ||
3812 | #endif | |
3813 | ||
3814 | /* Note that signed overflow is undefined in C. The following routines are | |
3815 | careful to use unsigned types where modulo arithmetic is required. | |
3816 | Failure to do so _will_ break on newer gcc. */ | |
3817 | ||
3818 | /* Signed saturating arithmetic. */ | |
3819 | ||
3820 | /* Perform 16-bit signed saturating addition. */ | |
3821 | static inline uint16_t add16_sat(uint16_t a, uint16_t b) | |
3822 | { | |
3823 | uint16_t res; | |
3824 | ||
3825 | res = a + b; | |
3826 | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | |
3827 | if (a & 0x8000) | |
3828 | res = 0x8000; | |
3829 | else | |
3830 | res = 0x7fff; | |
3831 | } | |
3832 | return res; | |
3833 | } | |
3834 | ||
3835 | /* Perform 8-bit signed saturating addition. */ | |
3836 | static inline uint8_t add8_sat(uint8_t a, uint8_t b) | |
3837 | { | |
3838 | uint8_t res; | |
3839 | ||
3840 | res = a + b; | |
3841 | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | |
3842 | if (a & 0x80) | |
3843 | res = 0x80; | |
3844 | else | |
3845 | res = 0x7f; | |
3846 | } | |
3847 | return res; | |
3848 | } | |
3849 | ||
3850 | /* Perform 16-bit signed saturating subtraction. */ | |
3851 | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) | |
3852 | { | |
3853 | uint16_t res; | |
3854 | ||
3855 | res = a - b; | |
3856 | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | |
3857 | if (a & 0x8000) | |
3858 | res = 0x8000; | |
3859 | else | |
3860 | res = 0x7fff; | |
3861 | } | |
3862 | return res; | |
3863 | } | |
3864 | ||
3865 | /* Perform 8-bit signed saturating subtraction. */ | |
3866 | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) | |
3867 | { | |
3868 | uint8_t res; | |
3869 | ||
3870 | res = a - b; | |
3871 | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | |
3872 | if (a & 0x80) | |
3873 | res = 0x80; | |
3874 | else | |
3875 | res = 0x7f; | |
3876 | } | |
3877 | return res; | |
3878 | } | |
3879 | ||
3880 | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | |
3881 | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | |
3882 | #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); | |
3883 | #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); | |
3884 | #define PFX q | |
3885 | ||
3886 | #include "op_addsub.h" | |
3887 | ||
3888 | /* Unsigned saturating arithmetic. */ | |
3889 | static inline uint16_t add16_usat(uint16_t a, uint16_t b) | |
3890 | { | |
3891 | uint16_t res; | |
3892 | res = a + b; | |
3893 | if (res < a) | |
3894 | res = 0xffff; | |
3895 | return res; | |
3896 | } | |
3897 | ||
3898 | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) | |
3899 | { | |
3900 | if (a > b) | |
3901 | return a - b; | |
3902 | else | |
3903 | return 0; | |
3904 | } | |
3905 | ||
3906 | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | |
3907 | { | |
3908 | uint8_t res; | |
3909 | res = a + b; | |
3910 | if (res < a) | |
3911 | res = 0xff; | |
3912 | return res; | |
3913 | } | |
3914 | ||
3915 | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | |
3916 | { | |
3917 | if (a > b) | |
3918 | return a - b; | |
3919 | else | |
3920 | return 0; | |
3921 | } | |
3922 | ||
3923 | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | |
3924 | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | |
3925 | #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); | |
3926 | #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); | |
3927 | #define PFX uq | |
3928 | ||
3929 | #include "op_addsub.h" | |
3930 | ||
3931 | /* Signed modulo arithmetic. */ | |
3932 | #define SARITH16(a, b, n, op) do { \ | |
3933 | int32_t sum; \ | |
3934 | sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ | |
3935 | RESULT(sum, n, 16); \ | |
3936 | if (sum >= 0) \ | |
3937 | ge |= 3 << (n * 2); \ | |
3938 | } while(0) | |
3939 | ||
3940 | #define SARITH8(a, b, n, op) do { \ | |
3941 | int32_t sum; \ | |
3942 | sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ | |
3943 | RESULT(sum, n, 8); \ | |
3944 | if (sum >= 0) \ | |
3945 | ge |= 1 << n; \ | |
3946 | } while(0) | |
3947 | ||
3948 | ||
3949 | #define ADD16(a, b, n) SARITH16(a, b, n, +) | |
3950 | #define SUB16(a, b, n) SARITH16(a, b, n, -) | |
3951 | #define ADD8(a, b, n) SARITH8(a, b, n, +) | |
3952 | #define SUB8(a, b, n) SARITH8(a, b, n, -) | |
3953 | #define PFX s | |
3954 | #define ARITH_GE | |
3955 | ||
3956 | #include "op_addsub.h" | |
3957 | ||
3958 | /* Unsigned modulo arithmetic. */ | |
3959 | #define ADD16(a, b, n) do { \ | |
3960 | uint32_t sum; \ | |
3961 | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | |
3962 | RESULT(sum, n, 16); \ | |
3963 | if ((sum >> 16) == 1) \ | |
3964 | ge |= 3 << (n * 2); \ | |
3965 | } while(0) | |
3966 | ||
3967 | #define ADD8(a, b, n) do { \ | |
3968 | uint32_t sum; \ | |
3969 | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | |
3970 | RESULT(sum, n, 8); \ | |
3971 | if ((sum >> 8) == 1) \ | |
3972 | ge |= 1 << n; \ | |
3973 | } while(0) | |
3974 | ||
3975 | #define SUB16(a, b, n) do { \ | |
3976 | uint32_t sum; \ | |
3977 | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | |
3978 | RESULT(sum, n, 16); \ | |
3979 | if ((sum >> 16) == 0) \ | |
3980 | ge |= 3 << (n * 2); \ | |
3981 | } while(0) | |
3982 | ||
3983 | #define SUB8(a, b, n) do { \ | |
3984 | uint32_t sum; \ | |
3985 | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | |
3986 | RESULT(sum, n, 8); \ | |
3987 | if ((sum >> 8) == 0) \ | |
3988 | ge |= 1 << n; \ | |
3989 | } while(0) | |
3990 | ||
3991 | #define PFX u | |
3992 | #define ARITH_GE | |
3993 | ||
3994 | #include "op_addsub.h" | |
3995 | ||
3996 | /* Halved signed arithmetic. */ | |
3997 | #define ADD16(a, b, n) \ | |
3998 | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | |
3999 | #define SUB16(a, b, n) \ | |
4000 | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | |
4001 | #define ADD8(a, b, n) \ | |
4002 | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | |
4003 | #define SUB8(a, b, n) \ | |
4004 | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | |
4005 | #define PFX sh | |
4006 | ||
4007 | #include "op_addsub.h" | |
4008 | ||
4009 | /* Halved unsigned arithmetic. */ | |
4010 | #define ADD16(a, b, n) \ | |
4011 | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
4012 | #define SUB16(a, b, n) \ | |
4013 | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | |
4014 | #define ADD8(a, b, n) \ | |
4015 | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
4016 | #define SUB8(a, b, n) \ | |
4017 | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | |
4018 | #define PFX uh | |
4019 | ||
4020 | #include "op_addsub.h" | |
4021 | ||
4022 | static inline uint8_t do_usad(uint8_t a, uint8_t b) | |
4023 | { | |
4024 | if (a > b) | |
4025 | return a - b; | |
4026 | else | |
4027 | return b - a; | |
4028 | } | |
4029 | ||
4030 | /* Unsigned sum of absolute byte differences. */ | |
4031 | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | |
4032 | { | |
4033 | uint32_t sum; | |
4034 | sum = do_usad(a, b); | |
4035 | sum += do_usad(a >> 8, b >> 8); | |
4036 | sum += do_usad(a >> 16, b >>16); | |
4037 | sum += do_usad(a >> 24, b >> 24); | |
4038 | return sum; | |
4039 | } | |
4040 | ||
4041 | /* For ARMv6 SEL instruction. */ | |
4042 | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | |
4043 | { | |
4044 | uint32_t mask; | |
4045 | ||
4046 | mask = 0; | |
4047 | if (flags & 1) | |
4048 | mask |= 0xff; | |
4049 | if (flags & 2) | |
4050 | mask |= 0xff00; | |
4051 | if (flags & 4) | |
4052 | mask |= 0xff0000; | |
4053 | if (flags & 8) | |
4054 | mask |= 0xff000000; | |
4055 | return (a & mask) | (b & ~mask); | |
4056 | } | |
4057 | ||
4058 | /* VFP support. We follow the convention used for VFP instructions: | |
4059 | Single precision routines have a "s" suffix, double precision a | |
4060 | "d" suffix. */ | |
4061 | ||
4062 | /* Convert host exception flags to vfp form. */ | |
4063 | static inline int vfp_exceptbits_from_host(int host_bits) | |
4064 | { | |
4065 | int target_bits = 0; | |
4066 | ||
4067 | if (host_bits & float_flag_invalid) | |
4068 | target_bits |= 1; | |
4069 | if (host_bits & float_flag_divbyzero) | |
4070 | target_bits |= 2; | |
4071 | if (host_bits & float_flag_overflow) | |
4072 | target_bits |= 4; | |
4073 | if (host_bits & (float_flag_underflow | float_flag_output_denormal)) | |
4074 | target_bits |= 8; | |
4075 | if (host_bits & float_flag_inexact) | |
4076 | target_bits |= 0x10; | |
4077 | if (host_bits & float_flag_input_denormal) | |
4078 | target_bits |= 0x80; | |
4079 | return target_bits; | |
4080 | } | |
4081 | ||
4082 | uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) | |
4083 | { | |
4084 | int i; | |
4085 | uint32_t fpscr; | |
4086 | ||
4087 | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | |
4088 | | (env->vfp.vec_len << 16) | |
4089 | | (env->vfp.vec_stride << 20); | |
4090 | i = get_float_exception_flags(&env->vfp.fp_status); | |
4091 | i |= get_float_exception_flags(&env->vfp.standard_fp_status); | |
4092 | fpscr |= vfp_exceptbits_from_host(i); | |
4093 | return fpscr; | |
4094 | } | |
4095 | ||
4096 | uint32_t vfp_get_fpscr(CPUARMState *env) | |
4097 | { | |
4098 | return HELPER(vfp_get_fpscr)(env); | |
4099 | } | |
4100 | ||
4101 | /* Convert vfp exception flags to target form. */ | |
4102 | static inline int vfp_exceptbits_to_host(int target_bits) | |
4103 | { | |
4104 | int host_bits = 0; | |
4105 | ||
4106 | if (target_bits & 1) | |
4107 | host_bits |= float_flag_invalid; | |
4108 | if (target_bits & 2) | |
4109 | host_bits |= float_flag_divbyzero; | |
4110 | if (target_bits & 4) | |
4111 | host_bits |= float_flag_overflow; | |
4112 | if (target_bits & 8) | |
4113 | host_bits |= float_flag_underflow; | |
4114 | if (target_bits & 0x10) | |
4115 | host_bits |= float_flag_inexact; | |
4116 | if (target_bits & 0x80) | |
4117 | host_bits |= float_flag_input_denormal; | |
4118 | return host_bits; | |
4119 | } | |
4120 | ||
4121 | void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) | |
4122 | { | |
4123 | int i; | |
4124 | uint32_t changed; | |
4125 | ||
4126 | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | |
4127 | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | |
4128 | env->vfp.vec_len = (val >> 16) & 7; | |
4129 | env->vfp.vec_stride = (val >> 20) & 3; | |
4130 | ||
4131 | changed ^= val; | |
4132 | if (changed & (3 << 22)) { | |
4133 | i = (val >> 22) & 3; | |
4134 | switch (i) { | |
4135 | case FPROUNDING_TIEEVEN: | |
4136 | i = float_round_nearest_even; | |
4137 | break; | |
4138 | case FPROUNDING_POSINF: | |
4139 | i = float_round_up; | |
4140 | break; | |
4141 | case FPROUNDING_NEGINF: | |
4142 | i = float_round_down; | |
4143 | break; | |
4144 | case FPROUNDING_ZERO: | |
4145 | i = float_round_to_zero; | |
4146 | break; | |
4147 | } | |
4148 | set_float_rounding_mode(i, &env->vfp.fp_status); | |
4149 | } | |
4150 | if (changed & (1 << 24)) { | |
4151 | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); | |
4152 | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); | |
4153 | } | |
4154 | if (changed & (1 << 25)) | |
4155 | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | |
4156 | ||
4157 | i = vfp_exceptbits_to_host(val); | |
4158 | set_float_exception_flags(i, &env->vfp.fp_status); | |
4159 | set_float_exception_flags(0, &env->vfp.standard_fp_status); | |
4160 | } | |
4161 | ||
4162 | void vfp_set_fpscr(CPUARMState *env, uint32_t val) | |
4163 | { | |
4164 | HELPER(vfp_set_fpscr)(env, val); | |
4165 | } | |
4166 | ||
4167 | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) | |
4168 | ||
4169 | #define VFP_BINOP(name) \ | |
4170 | float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ | |
4171 | { \ | |
4172 | float_status *fpst = fpstp; \ | |
4173 | return float32_ ## name(a, b, fpst); \ | |
4174 | } \ | |
4175 | float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ | |
4176 | { \ | |
4177 | float_status *fpst = fpstp; \ | |
4178 | return float64_ ## name(a, b, fpst); \ | |
4179 | } | |
4180 | VFP_BINOP(add) | |
4181 | VFP_BINOP(sub) | |
4182 | VFP_BINOP(mul) | |
4183 | VFP_BINOP(div) | |
4184 | VFP_BINOP(min) | |
4185 | VFP_BINOP(max) | |
4186 | VFP_BINOP(minnum) | |
4187 | VFP_BINOP(maxnum) | |
4188 | #undef VFP_BINOP | |
4189 | ||
4190 | float32 VFP_HELPER(neg, s)(float32 a) | |
4191 | { | |
4192 | return float32_chs(a); | |
4193 | } | |
4194 | ||
4195 | float64 VFP_HELPER(neg, d)(float64 a) | |
4196 | { | |
4197 | return float64_chs(a); | |
4198 | } | |
4199 | ||
4200 | float32 VFP_HELPER(abs, s)(float32 a) | |
4201 | { | |
4202 | return float32_abs(a); | |
4203 | } | |
4204 | ||
4205 | float64 VFP_HELPER(abs, d)(float64 a) | |
4206 | { | |
4207 | return float64_abs(a); | |
4208 | } | |
4209 | ||
4210 | float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) | |
4211 | { | |
4212 | return float32_sqrt(a, &env->vfp.fp_status); | |
4213 | } | |
4214 | ||
4215 | float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) | |
4216 | { | |
4217 | return float64_sqrt(a, &env->vfp.fp_status); | |
4218 | } | |
4219 | ||
4220 | /* XXX: check quiet/signaling case */ | |
4221 | #define DO_VFP_cmp(p, type) \ | |
4222 | void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ | |
4223 | { \ | |
4224 | uint32_t flags; \ | |
4225 | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | |
4226 | case 0: flags = 0x6; break; \ | |
4227 | case -1: flags = 0x8; break; \ | |
4228 | case 1: flags = 0x2; break; \ | |
4229 | default: case 2: flags = 0x3; break; \ | |
4230 | } \ | |
4231 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
4232 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
4233 | } \ | |
4234 | void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ | |
4235 | { \ | |
4236 | uint32_t flags; \ | |
4237 | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | |
4238 | case 0: flags = 0x6; break; \ | |
4239 | case -1: flags = 0x8; break; \ | |
4240 | case 1: flags = 0x2; break; \ | |
4241 | default: case 2: flags = 0x3; break; \ | |
4242 | } \ | |
4243 | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | |
4244 | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | |
4245 | } | |
4246 | DO_VFP_cmp(s, float32) | |
4247 | DO_VFP_cmp(d, float64) | |
4248 | #undef DO_VFP_cmp | |
4249 | ||
4250 | /* Integer to float and float to integer conversions */ | |
4251 | ||
4252 | #define CONV_ITOF(name, fsz, sign) \ | |
4253 | float##fsz HELPER(name)(uint32_t x, void *fpstp) \ | |
4254 | { \ | |
4255 | float_status *fpst = fpstp; \ | |
4256 | return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ | |
4257 | } | |
4258 | ||
4259 | #define CONV_FTOI(name, fsz, sign, round) \ | |
4260 | uint32_t HELPER(name)(float##fsz x, void *fpstp) \ | |
4261 | { \ | |
4262 | float_status *fpst = fpstp; \ | |
4263 | if (float##fsz##_is_any_nan(x)) { \ | |
4264 | float_raise(float_flag_invalid, fpst); \ | |
4265 | return 0; \ | |
4266 | } \ | |
4267 | return float##fsz##_to_##sign##int32##round(x, fpst); \ | |
4268 | } | |
4269 | ||
4270 | #define FLOAT_CONVS(name, p, fsz, sign) \ | |
4271 | CONV_ITOF(vfp_##name##to##p, fsz, sign) \ | |
4272 | CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ | |
4273 | CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) | |
4274 | ||
4275 | FLOAT_CONVS(si, s, 32, ) | |
4276 | FLOAT_CONVS(si, d, 64, ) | |
4277 | FLOAT_CONVS(ui, s, 32, u) | |
4278 | FLOAT_CONVS(ui, d, 64, u) | |
4279 | ||
4280 | #undef CONV_ITOF | |
4281 | #undef CONV_FTOI | |
4282 | #undef FLOAT_CONVS | |
4283 | ||
4284 | /* floating point conversion */ | |
4285 | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) | |
4286 | { | |
4287 | float64 r = float32_to_float64(x, &env->vfp.fp_status); | |
4288 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
4289 | * a quiet NaN by forcing the most significant frac bit to 1. | |
4290 | */ | |
4291 | return float64_maybe_silence_nan(r); | |
4292 | } | |
4293 | ||
4294 | float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) | |
4295 | { | |
4296 | float32 r = float64_to_float32(x, &env->vfp.fp_status); | |
4297 | /* ARM requires that S<->D conversion of any kind of NaN generates | |
4298 | * a quiet NaN by forcing the most significant frac bit to 1. | |
4299 | */ | |
4300 | return float32_maybe_silence_nan(r); | |
4301 | } | |
4302 | ||
4303 | /* VFP3 fixed point conversion. */ | |
4304 | #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
4305 | float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ | |
4306 | void *fpstp) \ | |
4307 | { \ | |
4308 | float_status *fpst = fpstp; \ | |
4309 | float##fsz tmp; \ | |
4310 | tmp = itype##_to_##float##fsz(x, fpst); \ | |
4311 | return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ | |
4312 | } | |
4313 | ||
4314 | /* Notice that we want only input-denormal exception flags from the | |
4315 | * scalbn operation: the other possible flags (overflow+inexact if | |
4316 | * we overflow to infinity, output-denormal) aren't correct for the | |
4317 | * complete scale-and-convert operation. | |
4318 | */ | |
4319 | #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ | |
4320 | uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ | |
4321 | uint32_t shift, \ | |
4322 | void *fpstp) \ | |
4323 | { \ | |
4324 | float_status *fpst = fpstp; \ | |
4325 | int old_exc_flags = get_float_exception_flags(fpst); \ | |
4326 | float##fsz tmp; \ | |
4327 | if (float##fsz##_is_any_nan(x)) { \ | |
4328 | float_raise(float_flag_invalid, fpst); \ | |
4329 | return 0; \ | |
4330 | } \ | |
4331 | tmp = float##fsz##_scalbn(x, shift, fpst); \ | |
4332 | old_exc_flags |= get_float_exception_flags(fpst) \ | |
4333 | & float_flag_input_denormal; \ | |
4334 | set_float_exception_flags(old_exc_flags, fpst); \ | |
4335 | return float##fsz##_to_##itype##round(tmp, fpst); \ | |
4336 | } | |
4337 | ||
4338 | #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ | |
4339 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
4340 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ | |
4341 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
4342 | ||
4343 | #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ | |
4344 | VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ | |
4345 | VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) | |
4346 | ||
4347 | VFP_CONV_FIX(sh, d, 64, 64, int16) | |
4348 | VFP_CONV_FIX(sl, d, 64, 64, int32) | |
4349 | VFP_CONV_FIX_A64(sq, d, 64, 64, int64) | |
4350 | VFP_CONV_FIX(uh, d, 64, 64, uint16) | |
4351 | VFP_CONV_FIX(ul, d, 64, 64, uint32) | |
4352 | VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) | |
4353 | VFP_CONV_FIX(sh, s, 32, 32, int16) | |
4354 | VFP_CONV_FIX(sl, s, 32, 32, int32) | |
4355 | VFP_CONV_FIX_A64(sq, s, 32, 64, int64) | |
4356 | VFP_CONV_FIX(uh, s, 32, 32, uint16) | |
4357 | VFP_CONV_FIX(ul, s, 32, 32, uint32) | |
4358 | VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) | |
4359 | #undef VFP_CONV_FIX | |
4360 | #undef VFP_CONV_FIX_FLOAT | |
4361 | #undef VFP_CONV_FLOAT_FIX_ROUND | |
4362 | ||
4363 | /* Set the current fp rounding mode and return the old one. | |
4364 | * The argument is a softfloat float_round_ value. | |
4365 | */ | |
4366 | uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) | |
4367 | { | |
4368 | float_status *fp_status = &env->vfp.fp_status; | |
4369 | ||
4370 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
4371 | set_float_rounding_mode(rmode, fp_status); | |
4372 | ||
4373 | return prev_rmode; | |
4374 | } | |
4375 | ||
4376 | /* Set the current fp rounding mode in the standard fp status and return | |
4377 | * the old one. This is for NEON instructions that need to change the | |
4378 | * rounding mode but wish to use the standard FPSCR values for everything | |
4379 | * else. Always set the rounding mode back to the correct value after | |
4380 | * modifying it. | |
4381 | * The argument is a softfloat float_round_ value. | |
4382 | */ | |
4383 | uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) | |
4384 | { | |
4385 | float_status *fp_status = &env->vfp.standard_fp_status; | |
4386 | ||
4387 | uint32_t prev_rmode = get_float_rounding_mode(fp_status); | |
4388 | set_float_rounding_mode(rmode, fp_status); | |
4389 | ||
4390 | return prev_rmode; | |
4391 | } | |
4392 | ||
4393 | /* Half precision conversions. */ | |
4394 | static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) | |
4395 | { | |
4396 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
4397 | float32 r = float16_to_float32(make_float16(a), ieee, s); | |
4398 | if (ieee) { | |
4399 | return float32_maybe_silence_nan(r); | |
4400 | } | |
4401 | return r; | |
4402 | } | |
4403 | ||
4404 | static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) | |
4405 | { | |
4406 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
4407 | float16 r = float32_to_float16(a, ieee, s); | |
4408 | if (ieee) { | |
4409 | r = float16_maybe_silence_nan(r); | |
4410 | } | |
4411 | return float16_val(r); | |
4412 | } | |
4413 | ||
4414 | float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) | |
4415 | { | |
4416 | return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); | |
4417 | } | |
4418 | ||
4419 | uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) | |
4420 | { | |
4421 | return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); | |
4422 | } | |
4423 | ||
4424 | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) | |
4425 | { | |
4426 | return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); | |
4427 | } | |
4428 | ||
4429 | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) | |
4430 | { | |
4431 | return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); | |
4432 | } | |
4433 | ||
4434 | float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) | |
4435 | { | |
4436 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
4437 | float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); | |
4438 | if (ieee) { | |
4439 | return float64_maybe_silence_nan(r); | |
4440 | } | |
4441 | return r; | |
4442 | } | |
4443 | ||
4444 | uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) | |
4445 | { | |
4446 | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | |
4447 | float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); | |
4448 | if (ieee) { | |
4449 | r = float16_maybe_silence_nan(r); | |
4450 | } | |
4451 | return float16_val(r); | |
4452 | } | |
4453 | ||
4454 | #define float32_two make_float32(0x40000000) | |
4455 | #define float32_three make_float32(0x40400000) | |
4456 | #define float32_one_point_five make_float32(0x3fc00000) | |
4457 | ||
4458 | float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) | |
4459 | { | |
4460 | float_status *s = &env->vfp.standard_fp_status; | |
4461 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
4462 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
4463 | if (!(float32_is_zero(a) || float32_is_zero(b))) { | |
4464 | float_raise(float_flag_input_denormal, s); | |
4465 | } | |
4466 | return float32_two; | |
4467 | } | |
4468 | return float32_sub(float32_two, float32_mul(a, b, s), s); | |
4469 | } | |
4470 | ||
4471 | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) | |
4472 | { | |
4473 | float_status *s = &env->vfp.standard_fp_status; | |
4474 | float32 product; | |
4475 | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | |
4476 | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | |
4477 | if (!(float32_is_zero(a) || float32_is_zero(b))) { | |
4478 | float_raise(float_flag_input_denormal, s); | |
4479 | } | |
4480 | return float32_one_point_five; | |
4481 | } | |
4482 | product = float32_mul(a, b, s); | |
4483 | return float32_div(float32_sub(float32_three, product, s), float32_two, s); | |
4484 | } | |
4485 | ||
4486 | /* NEON helpers. */ | |
4487 | ||
4488 | /* Constants 256 and 512 are used in some helpers; we avoid relying on | |
4489 | * int->float conversions at run-time. */ | |
4490 | #define float64_256 make_float64(0x4070000000000000LL) | |
4491 | #define float64_512 make_float64(0x4080000000000000LL) | |
4492 | ||
4493 | /* The algorithm that must be used to calculate the estimate | |
4494 | * is specified by the ARM ARM. | |
4495 | */ | |
4496 | static float64 recip_estimate(float64 a, CPUARMState *env) | |
4497 | { | |
4498 | /* These calculations mustn't set any fp exception flags, | |
4499 | * so we use a local copy of the fp_status. | |
4500 | */ | |
4501 | float_status dummy_status = env->vfp.standard_fp_status; | |
4502 | float_status *s = &dummy_status; | |
4503 | /* q = (int)(a * 512.0) */ | |
4504 | float64 q = float64_mul(float64_512, a, s); | |
4505 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
4506 | ||
4507 | /* r = 1.0 / (((double)q + 0.5) / 512.0) */ | |
4508 | q = int64_to_float64(q_int, s); | |
4509 | q = float64_add(q, float64_half, s); | |
4510 | q = float64_div(q, float64_512, s); | |
4511 | q = float64_div(float64_one, q, s); | |
4512 | ||
4513 | /* s = (int)(256.0 * r + 0.5) */ | |
4514 | q = float64_mul(q, float64_256, s); | |
4515 | q = float64_add(q, float64_half, s); | |
4516 | q_int = float64_to_int64_round_to_zero(q, s); | |
4517 | ||
4518 | /* return (double)s / 256.0 */ | |
4519 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
4520 | } | |
4521 | ||
4522 | float32 HELPER(recpe_f32)(float32 a, CPUARMState *env) | |
4523 | { | |
4524 | float_status *s = &env->vfp.standard_fp_status; | |
4525 | float64 f64; | |
4526 | uint32_t val32 = float32_val(a); | |
4527 | ||
4528 | int result_exp; | |
4529 | int a_exp = (val32 & 0x7f800000) >> 23; | |
4530 | int sign = val32 & 0x80000000; | |
4531 | ||
4532 | if (float32_is_any_nan(a)) { | |
4533 | if (float32_is_signaling_nan(a)) { | |
4534 | float_raise(float_flag_invalid, s); | |
4535 | } | |
4536 | return float32_default_nan; | |
4537 | } else if (float32_is_infinity(a)) { | |
4538 | return float32_set_sign(float32_zero, float32_is_neg(a)); | |
4539 | } else if (float32_is_zero_or_denormal(a)) { | |
4540 | if (!float32_is_zero(a)) { | |
4541 | float_raise(float_flag_input_denormal, s); | |
4542 | } | |
4543 | float_raise(float_flag_divbyzero, s); | |
4544 | return float32_set_sign(float32_infinity, float32_is_neg(a)); | |
4545 | } else if (a_exp >= 253) { | |
4546 | float_raise(float_flag_underflow, s); | |
4547 | return float32_set_sign(float32_zero, float32_is_neg(a)); | |
4548 | } | |
4549 | ||
4550 | f64 = make_float64((0x3feULL << 52) | |
4551 | | ((int64_t)(val32 & 0x7fffff) << 29)); | |
4552 | ||
4553 | result_exp = 253 - a_exp; | |
4554 | ||
4555 | f64 = recip_estimate(f64, env); | |
4556 | ||
4557 | val32 = sign | |
4558 | | ((result_exp & 0xff) << 23) | |
4559 | | ((float64_val(f64) >> 29) & 0x7fffff); | |
4560 | return make_float32(val32); | |
4561 | } | |
4562 | ||
4563 | /* The algorithm that must be used to calculate the estimate | |
4564 | * is specified by the ARM ARM. | |
4565 | */ | |
4566 | static float64 recip_sqrt_estimate(float64 a, CPUARMState *env) | |
4567 | { | |
4568 | /* These calculations mustn't set any fp exception flags, | |
4569 | * so we use a local copy of the fp_status. | |
4570 | */ | |
4571 | float_status dummy_status = env->vfp.standard_fp_status; | |
4572 | float_status *s = &dummy_status; | |
4573 | float64 q; | |
4574 | int64_t q_int; | |
4575 | ||
4576 | if (float64_lt(a, float64_half, s)) { | |
4577 | /* range 0.25 <= a < 0.5 */ | |
4578 | ||
4579 | /* a in units of 1/512 rounded down */ | |
4580 | /* q0 = (int)(a * 512.0); */ | |
4581 | q = float64_mul(float64_512, a, s); | |
4582 | q_int = float64_to_int64_round_to_zero(q, s); | |
4583 | ||
4584 | /* reciprocal root r */ | |
4585 | /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ | |
4586 | q = int64_to_float64(q_int, s); | |
4587 | q = float64_add(q, float64_half, s); | |
4588 | q = float64_div(q, float64_512, s); | |
4589 | q = float64_sqrt(q, s); | |
4590 | q = float64_div(float64_one, q, s); | |
4591 | } else { | |
4592 | /* range 0.5 <= a < 1.0 */ | |
4593 | ||
4594 | /* a in units of 1/256 rounded down */ | |
4595 | /* q1 = (int)(a * 256.0); */ | |
4596 | q = float64_mul(float64_256, a, s); | |
4597 | int64_t q_int = float64_to_int64_round_to_zero(q, s); | |
4598 | ||
4599 | /* reciprocal root r */ | |
4600 | /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ | |
4601 | q = int64_to_float64(q_int, s); | |
4602 | q = float64_add(q, float64_half, s); | |
4603 | q = float64_div(q, float64_256, s); | |
4604 | q = float64_sqrt(q, s); | |
4605 | q = float64_div(float64_one, q, s); | |
4606 | } | |
4607 | /* r in units of 1/256 rounded to nearest */ | |
4608 | /* s = (int)(256.0 * r + 0.5); */ | |
4609 | ||
4610 | q = float64_mul(q, float64_256,s ); | |
4611 | q = float64_add(q, float64_half, s); | |
4612 | q_int = float64_to_int64_round_to_zero(q, s); | |
4613 | ||
4614 | /* return (double)s / 256.0;*/ | |
4615 | return float64_div(int64_to_float64(q_int, s), float64_256, s); | |
4616 | } | |
4617 | ||
4618 | float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env) | |
4619 | { | |
4620 | float_status *s = &env->vfp.standard_fp_status; | |
4621 | int result_exp; | |
4622 | float64 f64; | |
4623 | uint32_t val; | |
4624 | uint64_t val64; | |
4625 | ||
4626 | val = float32_val(a); | |
4627 | ||
4628 | if (float32_is_any_nan(a)) { | |
4629 | if (float32_is_signaling_nan(a)) { | |
4630 | float_raise(float_flag_invalid, s); | |
4631 | } | |
4632 | return float32_default_nan; | |
4633 | } else if (float32_is_zero_or_denormal(a)) { | |
4634 | if (!float32_is_zero(a)) { | |
4635 | float_raise(float_flag_input_denormal, s); | |
4636 | } | |
4637 | float_raise(float_flag_divbyzero, s); | |
4638 | return float32_set_sign(float32_infinity, float32_is_neg(a)); | |
4639 | } else if (float32_is_neg(a)) { | |
4640 | float_raise(float_flag_invalid, s); | |
4641 | return float32_default_nan; | |
4642 | } else if (float32_is_infinity(a)) { | |
4643 | return float32_zero; | |
4644 | } | |
4645 | ||
4646 | /* Normalize to a double-precision value between 0.25 and 1.0, | |
4647 | * preserving the parity of the exponent. */ | |
4648 | if ((val & 0x800000) == 0) { | |
4649 | f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) | |
4650 | | (0x3feULL << 52) | |
4651 | | ((uint64_t)(val & 0x7fffff) << 29)); | |
4652 | } else { | |
4653 | f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) | |
4654 | | (0x3fdULL << 52) | |
4655 | | ((uint64_t)(val & 0x7fffff) << 29)); | |
4656 | } | |
4657 | ||
4658 | result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2; | |
4659 | ||
4660 | f64 = recip_sqrt_estimate(f64, env); | |
4661 | ||
4662 | val64 = float64_val(f64); | |
4663 | ||
4664 | val = ((result_exp & 0xff) << 23) | |
4665 | | ((val64 >> 29) & 0x7fffff); | |
4666 | return make_float32(val); | |
4667 | } | |
4668 | ||
4669 | uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env) | |
4670 | { | |
4671 | float64 f64; | |
4672 | ||
4673 | if ((a & 0x80000000) == 0) { | |
4674 | return 0xffffffff; | |
4675 | } | |
4676 | ||
4677 | f64 = make_float64((0x3feULL << 52) | |
4678 | | ((int64_t)(a & 0x7fffffff) << 21)); | |
4679 | ||
4680 | f64 = recip_estimate (f64, env); | |
4681 | ||
4682 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4683 | } | |
4684 | ||
4685 | uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env) | |
4686 | { | |
4687 | float64 f64; | |
4688 | ||
4689 | if ((a & 0xc0000000) == 0) { | |
4690 | return 0xffffffff; | |
4691 | } | |
4692 | ||
4693 | if (a & 0x80000000) { | |
4694 | f64 = make_float64((0x3feULL << 52) | |
4695 | | ((uint64_t)(a & 0x7fffffff) << 21)); | |
4696 | } else { /* bits 31-30 == '01' */ | |
4697 | f64 = make_float64((0x3fdULL << 52) | |
4698 | | ((uint64_t)(a & 0x3fffffff) << 22)); | |
4699 | } | |
4700 | ||
4701 | f64 = recip_sqrt_estimate(f64, env); | |
4702 | ||
4703 | return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); | |
4704 | } | |
4705 | ||
4706 | /* VFPv4 fused multiply-accumulate */ | |
4707 | float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) | |
4708 | { | |
4709 | float_status *fpst = fpstp; | |
4710 | return float32_muladd(a, b, c, 0, fpst); | |
4711 | } | |
4712 | ||
4713 | float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) | |
4714 | { | |
4715 | float_status *fpst = fpstp; | |
4716 | return float64_muladd(a, b, c, 0, fpst); | |
4717 | } | |
4718 | ||
4719 | /* ARMv8 round to integral */ | |
4720 | float32 HELPER(rints_exact)(float32 x, void *fp_status) | |
4721 | { | |
4722 | return float32_round_to_int(x, fp_status); | |
4723 | } | |
4724 | ||
4725 | float64 HELPER(rintd_exact)(float64 x, void *fp_status) | |
4726 | { | |
4727 | return float64_round_to_int(x, fp_status); | |
4728 | } | |
4729 | ||
4730 | float32 HELPER(rints)(float32 x, void *fp_status) | |
4731 | { | |
4732 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
4733 | float32 ret; | |
4734 | ||
4735 | ret = float32_round_to_int(x, fp_status); | |
4736 | ||
4737 | /* Suppress any inexact exceptions the conversion produced */ | |
4738 | if (!(old_flags & float_flag_inexact)) { | |
4739 | new_flags = get_float_exception_flags(fp_status); | |
4740 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
4741 | } | |
4742 | ||
4743 | return ret; | |
4744 | } | |
4745 | ||
4746 | float64 HELPER(rintd)(float64 x, void *fp_status) | |
4747 | { | |
4748 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
4749 | float64 ret; | |
4750 | ||
4751 | ret = float64_round_to_int(x, fp_status); | |
4752 | ||
4753 | new_flags = get_float_exception_flags(fp_status); | |
4754 | ||
4755 | /* Suppress any inexact exceptions the conversion produced */ | |
4756 | if (!(old_flags & float_flag_inexact)) { | |
4757 | new_flags = get_float_exception_flags(fp_status); | |
4758 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
4759 | } | |
4760 | ||
4761 | return ret; | |
4762 | } | |
4763 | ||
4764 | /* Convert ARM rounding mode to softfloat */ | |
4765 | int arm_rmode_to_sf(int rmode) | |
4766 | { | |
4767 | switch (rmode) { | |
4768 | case FPROUNDING_TIEAWAY: | |
4769 | rmode = float_round_ties_away; | |
4770 | break; | |
4771 | case FPROUNDING_ODD: | |
4772 | /* FIXME: add support for TIEAWAY and ODD */ | |
4773 | qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", | |
4774 | rmode); | |
4775 | case FPROUNDING_TIEEVEN: | |
4776 | default: | |
4777 | rmode = float_round_nearest_even; | |
4778 | break; | |
4779 | case FPROUNDING_POSINF: | |
4780 | rmode = float_round_up; | |
4781 | break; | |
4782 | case FPROUNDING_NEGINF: | |
4783 | rmode = float_round_down; | |
4784 | break; | |
4785 | case FPROUNDING_ZERO: | |
4786 | rmode = float_round_to_zero; | |
4787 | break; | |
4788 | } | |
4789 | return rmode; | |
4790 | } | |
4791 | ||
4792 | static void crc_init_buffer(uint8_t *buf, uint32_t val, uint32_t bytes) | |
4793 | { | |
4794 | memset(buf, 0, 4); | |
4795 | ||
4796 | if (bytes == 1) { | |
4797 | buf[0] = val & 0xff; | |
4798 | } else if (bytes == 2) { | |
4799 | buf[0] = val & 0xff; | |
4800 | buf[1] = (val >> 8) & 0xff; | |
4801 | } else { | |
4802 | buf[0] = val & 0xff; | |
4803 | buf[1] = (val >> 8) & 0xff; | |
4804 | buf[2] = (val >> 16) & 0xff; | |
4805 | buf[3] = (val >> 24) & 0xff; | |
4806 | } | |
4807 | } | |
4808 | ||
4809 | uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) | |
4810 | { | |
4811 | uint8_t buf[4]; | |
4812 | ||
4813 | crc_init_buffer(buf, val, bytes); | |
4814 | ||
4815 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
4816 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
4817 | } | |
4818 | ||
4819 | uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) | |
4820 | { | |
4821 | uint8_t buf[4]; | |
4822 | ||
4823 | crc_init_buffer(buf, val, bytes); | |
4824 | ||
4825 | /* Linux crc32c converts the output to one's complement. */ | |
4826 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
4827 | } |