]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * QEMU System Emulator | |
3 | * | |
4 | * Copyright (c) 2003-2008 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
25 | /* Needed early for CONFIG_BSD etc. */ | |
26 | #include "qemu/osdep.h" | |
27 | #include "qemu-common.h" | |
28 | #include "cpu.h" | |
29 | #include "monitor/monitor.h" | |
30 | #include "qapi/qmp/qerror.h" | |
31 | #include "qemu/error-report.h" | |
32 | #include "sysemu/sysemu.h" | |
33 | #include "sysemu/block-backend.h" | |
34 | #include "exec/gdbstub.h" | |
35 | #include "sysemu/dma.h" | |
36 | #include "sysemu/kvm.h" | |
37 | #include "qmp-commands.h" | |
38 | #include "exec/exec-all.h" | |
39 | ||
40 | #include "qemu/thread.h" | |
41 | #include "sysemu/cpus.h" | |
42 | #include "sysemu/qtest.h" | |
43 | #include "qemu/main-loop.h" | |
44 | #include "qemu/bitmap.h" | |
45 | #include "qemu/seqlock.h" | |
46 | #include "qapi-event.h" | |
47 | #include "hw/nmi.h" | |
48 | #include "sysemu/replay.h" | |
49 | ||
50 | #ifndef _WIN32 | |
51 | #include "qemu/compatfd.h" | |
52 | #endif | |
53 | ||
54 | #ifdef CONFIG_LINUX | |
55 | ||
56 | #include <sys/prctl.h> | |
57 | ||
58 | #ifndef PR_MCE_KILL | |
59 | #define PR_MCE_KILL 33 | |
60 | #endif | |
61 | ||
62 | #ifndef PR_MCE_KILL_SET | |
63 | #define PR_MCE_KILL_SET 1 | |
64 | #endif | |
65 | ||
66 | #ifndef PR_MCE_KILL_EARLY | |
67 | #define PR_MCE_KILL_EARLY 1 | |
68 | #endif | |
69 | ||
70 | #endif /* CONFIG_LINUX */ | |
71 | ||
72 | int64_t max_delay; | |
73 | int64_t max_advance; | |
74 | ||
75 | /* vcpu throttling controls */ | |
76 | static QEMUTimer *throttle_timer; | |
77 | static unsigned int throttle_percentage; | |
78 | ||
79 | #define CPU_THROTTLE_PCT_MIN 1 | |
80 | #define CPU_THROTTLE_PCT_MAX 99 | |
81 | #define CPU_THROTTLE_TIMESLICE_NS 10000000 | |
82 | ||
83 | bool cpu_is_stopped(CPUState *cpu) | |
84 | { | |
85 | return cpu->stopped || !runstate_is_running(); | |
86 | } | |
87 | ||
88 | static bool cpu_thread_is_idle(CPUState *cpu) | |
89 | { | |
90 | if (cpu->stop || cpu->queued_work_first) { | |
91 | return false; | |
92 | } | |
93 | if (cpu_is_stopped(cpu)) { | |
94 | return true; | |
95 | } | |
96 | if (!cpu->halted || cpu_has_work(cpu) || | |
97 | kvm_halt_in_kernel()) { | |
98 | return false; | |
99 | } | |
100 | return true; | |
101 | } | |
102 | ||
103 | static bool all_cpu_threads_idle(void) | |
104 | { | |
105 | CPUState *cpu; | |
106 | ||
107 | CPU_FOREACH(cpu) { | |
108 | if (!cpu_thread_is_idle(cpu)) { | |
109 | return false; | |
110 | } | |
111 | } | |
112 | return true; | |
113 | } | |
114 | ||
115 | /***********************************************************/ | |
116 | /* guest cycle counter */ | |
117 | ||
118 | /* Protected by TimersState seqlock */ | |
119 | ||
120 | static bool icount_sleep = true; | |
121 | static int64_t vm_clock_warp_start = -1; | |
122 | /* Conversion factor from emulated instructions to virtual clock ticks. */ | |
123 | static int icount_time_shift; | |
124 | /* Arbitrarily pick 1MIPS as the minimum allowable speed. */ | |
125 | #define MAX_ICOUNT_SHIFT 10 | |
126 | ||
127 | static QEMUTimer *icount_rt_timer; | |
128 | static QEMUTimer *icount_vm_timer; | |
129 | static QEMUTimer *icount_warp_timer; | |
130 | ||
131 | typedef struct TimersState { | |
132 | /* Protected by BQL. */ | |
133 | int64_t cpu_ticks_prev; | |
134 | int64_t cpu_ticks_offset; | |
135 | ||
136 | /* cpu_clock_offset can be read out of BQL, so protect it with | |
137 | * this lock. | |
138 | */ | |
139 | QemuSeqLock vm_clock_seqlock; | |
140 | int64_t cpu_clock_offset; | |
141 | int32_t cpu_ticks_enabled; | |
142 | int64_t dummy; | |
143 | ||
144 | /* Compensate for varying guest execution speed. */ | |
145 | int64_t qemu_icount_bias; | |
146 | /* Only written by TCG thread */ | |
147 | int64_t qemu_icount; | |
148 | } TimersState; | |
149 | ||
150 | static TimersState timers_state; | |
151 | ||
152 | int64_t cpu_get_icount_raw(void) | |
153 | { | |
154 | int64_t icount; | |
155 | CPUState *cpu = current_cpu; | |
156 | ||
157 | icount = timers_state.qemu_icount; | |
158 | if (cpu) { | |
159 | if (!cpu->can_do_io) { | |
160 | fprintf(stderr, "Bad icount read\n"); | |
161 | exit(1); | |
162 | } | |
163 | icount -= (cpu->icount_decr.u16.low + cpu->icount_extra); | |
164 | } | |
165 | return icount; | |
166 | } | |
167 | ||
168 | /* Return the virtual CPU time, based on the instruction counter. */ | |
169 | static int64_t cpu_get_icount_locked(void) | |
170 | { | |
171 | int64_t icount = cpu_get_icount_raw(); | |
172 | return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount); | |
173 | } | |
174 | ||
175 | int64_t cpu_get_icount(void) | |
176 | { | |
177 | int64_t icount; | |
178 | unsigned start; | |
179 | ||
180 | do { | |
181 | start = seqlock_read_begin(&timers_state.vm_clock_seqlock); | |
182 | icount = cpu_get_icount_locked(); | |
183 | } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); | |
184 | ||
185 | return icount; | |
186 | } | |
187 | ||
188 | int64_t cpu_icount_to_ns(int64_t icount) | |
189 | { | |
190 | return icount << icount_time_shift; | |
191 | } | |
192 | ||
193 | /* return the time elapsed in VM between vm_start and vm_stop. Unless | |
194 | * icount is active, cpu_get_ticks() uses units of the host CPU cycle | |
195 | * counter. | |
196 | * | |
197 | * Caller must hold the BQL | |
198 | */ | |
199 | int64_t cpu_get_ticks(void) | |
200 | { | |
201 | int64_t ticks; | |
202 | ||
203 | if (use_icount) { | |
204 | return cpu_get_icount(); | |
205 | } | |
206 | ||
207 | ticks = timers_state.cpu_ticks_offset; | |
208 | if (timers_state.cpu_ticks_enabled) { | |
209 | ticks += cpu_get_host_ticks(); | |
210 | } | |
211 | ||
212 | if (timers_state.cpu_ticks_prev > ticks) { | |
213 | /* Note: non increasing ticks may happen if the host uses | |
214 | software suspend */ | |
215 | timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks; | |
216 | ticks = timers_state.cpu_ticks_prev; | |
217 | } | |
218 | ||
219 | timers_state.cpu_ticks_prev = ticks; | |
220 | return ticks; | |
221 | } | |
222 | ||
223 | static int64_t cpu_get_clock_locked(void) | |
224 | { | |
225 | int64_t time; | |
226 | ||
227 | time = timers_state.cpu_clock_offset; | |
228 | if (timers_state.cpu_ticks_enabled) { | |
229 | time += get_clock(); | |
230 | } | |
231 | ||
232 | return time; | |
233 | } | |
234 | ||
235 | /* Return the monotonic time elapsed in VM, i.e., | |
236 | * the time between vm_start and vm_stop | |
237 | */ | |
238 | int64_t cpu_get_clock(void) | |
239 | { | |
240 | int64_t ti; | |
241 | unsigned start; | |
242 | ||
243 | do { | |
244 | start = seqlock_read_begin(&timers_state.vm_clock_seqlock); | |
245 | ti = cpu_get_clock_locked(); | |
246 | } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); | |
247 | ||
248 | return ti; | |
249 | } | |
250 | ||
251 | /* enable cpu_get_ticks() | |
252 | * Caller must hold BQL which serves as mutex for vm_clock_seqlock. | |
253 | */ | |
254 | void cpu_enable_ticks(void) | |
255 | { | |
256 | /* Here, the really thing protected by seqlock is cpu_clock_offset. */ | |
257 | seqlock_write_begin(&timers_state.vm_clock_seqlock); | |
258 | if (!timers_state.cpu_ticks_enabled) { | |
259 | timers_state.cpu_ticks_offset -= cpu_get_host_ticks(); | |
260 | timers_state.cpu_clock_offset -= get_clock(); | |
261 | timers_state.cpu_ticks_enabled = 1; | |
262 | } | |
263 | seqlock_write_end(&timers_state.vm_clock_seqlock); | |
264 | } | |
265 | ||
266 | /* disable cpu_get_ticks() : the clock is stopped. You must not call | |
267 | * cpu_get_ticks() after that. | |
268 | * Caller must hold BQL which serves as mutex for vm_clock_seqlock. | |
269 | */ | |
270 | void cpu_disable_ticks(void) | |
271 | { | |
272 | /* Here, the really thing protected by seqlock is cpu_clock_offset. */ | |
273 | seqlock_write_begin(&timers_state.vm_clock_seqlock); | |
274 | if (timers_state.cpu_ticks_enabled) { | |
275 | timers_state.cpu_ticks_offset += cpu_get_host_ticks(); | |
276 | timers_state.cpu_clock_offset = cpu_get_clock_locked(); | |
277 | timers_state.cpu_ticks_enabled = 0; | |
278 | } | |
279 | seqlock_write_end(&timers_state.vm_clock_seqlock); | |
280 | } | |
281 | ||
282 | /* Correlation between real and virtual time is always going to be | |
283 | fairly approximate, so ignore small variation. | |
284 | When the guest is idle real and virtual time will be aligned in | |
285 | the IO wait loop. */ | |
286 | #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10) | |
287 | ||
288 | static void icount_adjust(void) | |
289 | { | |
290 | int64_t cur_time; | |
291 | int64_t cur_icount; | |
292 | int64_t delta; | |
293 | ||
294 | /* Protected by TimersState mutex. */ | |
295 | static int64_t last_delta; | |
296 | ||
297 | /* If the VM is not running, then do nothing. */ | |
298 | if (!runstate_is_running()) { | |
299 | return; | |
300 | } | |
301 | ||
302 | seqlock_write_begin(&timers_state.vm_clock_seqlock); | |
303 | cur_time = cpu_get_clock_locked(); | |
304 | cur_icount = cpu_get_icount_locked(); | |
305 | ||
306 | delta = cur_icount - cur_time; | |
307 | /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */ | |
308 | if (delta > 0 | |
309 | && last_delta + ICOUNT_WOBBLE < delta * 2 | |
310 | && icount_time_shift > 0) { | |
311 | /* The guest is getting too far ahead. Slow time down. */ | |
312 | icount_time_shift--; | |
313 | } | |
314 | if (delta < 0 | |
315 | && last_delta - ICOUNT_WOBBLE > delta * 2 | |
316 | && icount_time_shift < MAX_ICOUNT_SHIFT) { | |
317 | /* The guest is getting too far behind. Speed time up. */ | |
318 | icount_time_shift++; | |
319 | } | |
320 | last_delta = delta; | |
321 | timers_state.qemu_icount_bias = cur_icount | |
322 | - (timers_state.qemu_icount << icount_time_shift); | |
323 | seqlock_write_end(&timers_state.vm_clock_seqlock); | |
324 | } | |
325 | ||
326 | static void icount_adjust_rt(void *opaque) | |
327 | { | |
328 | timer_mod(icount_rt_timer, | |
329 | qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000); | |
330 | icount_adjust(); | |
331 | } | |
332 | ||
333 | static void icount_adjust_vm(void *opaque) | |
334 | { | |
335 | timer_mod(icount_vm_timer, | |
336 | qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | |
337 | NANOSECONDS_PER_SECOND / 10); | |
338 | icount_adjust(); | |
339 | } | |
340 | ||
341 | static int64_t qemu_icount_round(int64_t count) | |
342 | { | |
343 | return (count + (1 << icount_time_shift) - 1) >> icount_time_shift; | |
344 | } | |
345 | ||
346 | static void icount_warp_rt(void) | |
347 | { | |
348 | unsigned seq; | |
349 | int64_t warp_start; | |
350 | ||
351 | /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start | |
352 | * changes from -1 to another value, so the race here is okay. | |
353 | */ | |
354 | do { | |
355 | seq = seqlock_read_begin(&timers_state.vm_clock_seqlock); | |
356 | warp_start = vm_clock_warp_start; | |
357 | } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq)); | |
358 | ||
359 | if (warp_start == -1) { | |
360 | return; | |
361 | } | |
362 | ||
363 | seqlock_write_begin(&timers_state.vm_clock_seqlock); | |
364 | if (runstate_is_running()) { | |
365 | int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT, | |
366 | cpu_get_clock_locked()); | |
367 | int64_t warp_delta; | |
368 | ||
369 | warp_delta = clock - vm_clock_warp_start; | |
370 | if (use_icount == 2) { | |
371 | /* | |
372 | * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too | |
373 | * far ahead of real time. | |
374 | */ | |
375 | int64_t cur_icount = cpu_get_icount_locked(); | |
376 | int64_t delta = clock - cur_icount; | |
377 | warp_delta = MIN(warp_delta, delta); | |
378 | } | |
379 | timers_state.qemu_icount_bias += warp_delta; | |
380 | } | |
381 | vm_clock_warp_start = -1; | |
382 | seqlock_write_end(&timers_state.vm_clock_seqlock); | |
383 | ||
384 | if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) { | |
385 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
386 | } | |
387 | } | |
388 | ||
389 | static void icount_timer_cb(void *opaque) | |
390 | { | |
391 | /* No need for a checkpoint because the timer already synchronizes | |
392 | * with CHECKPOINT_CLOCK_VIRTUAL_RT. | |
393 | */ | |
394 | icount_warp_rt(); | |
395 | } | |
396 | ||
397 | void qtest_clock_warp(int64_t dest) | |
398 | { | |
399 | int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | |
400 | AioContext *aio_context; | |
401 | assert(qtest_enabled()); | |
402 | aio_context = qemu_get_aio_context(); | |
403 | while (clock < dest) { | |
404 | int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
405 | int64_t warp = qemu_soonest_timeout(dest - clock, deadline); | |
406 | ||
407 | seqlock_write_begin(&timers_state.vm_clock_seqlock); | |
408 | timers_state.qemu_icount_bias += warp; | |
409 | seqlock_write_end(&timers_state.vm_clock_seqlock); | |
410 | ||
411 | qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL); | |
412 | timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]); | |
413 | clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | |
414 | } | |
415 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
416 | } | |
417 | ||
418 | void qemu_start_warp_timer(void) | |
419 | { | |
420 | int64_t clock; | |
421 | int64_t deadline; | |
422 | ||
423 | if (!use_icount) { | |
424 | return; | |
425 | } | |
426 | ||
427 | /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers | |
428 | * do not fire, so computing the deadline does not make sense. | |
429 | */ | |
430 | if (!runstate_is_running()) { | |
431 | return; | |
432 | } | |
433 | ||
434 | /* warp clock deterministically in record/replay mode */ | |
435 | if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) { | |
436 | return; | |
437 | } | |
438 | ||
439 | if (!all_cpu_threads_idle()) { | |
440 | return; | |
441 | } | |
442 | ||
443 | if (qtest_enabled()) { | |
444 | /* When testing, qtest commands advance icount. */ | |
445 | return; | |
446 | } | |
447 | ||
448 | /* We want to use the earliest deadline from ALL vm_clocks */ | |
449 | clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); | |
450 | deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
451 | if (deadline < 0) { | |
452 | static bool notified; | |
453 | if (!icount_sleep && !notified) { | |
454 | error_report("WARNING: icount sleep disabled and no active timers"); | |
455 | notified = true; | |
456 | } | |
457 | return; | |
458 | } | |
459 | ||
460 | if (deadline > 0) { | |
461 | /* | |
462 | * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to | |
463 | * sleep. Otherwise, the CPU might be waiting for a future timer | |
464 | * interrupt to wake it up, but the interrupt never comes because | |
465 | * the vCPU isn't running any insns and thus doesn't advance the | |
466 | * QEMU_CLOCK_VIRTUAL. | |
467 | */ | |
468 | if (!icount_sleep) { | |
469 | /* | |
470 | * We never let VCPUs sleep in no sleep icount mode. | |
471 | * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance | |
472 | * to the next QEMU_CLOCK_VIRTUAL event and notify it. | |
473 | * It is useful when we want a deterministic execution time, | |
474 | * isolated from host latencies. | |
475 | */ | |
476 | seqlock_write_begin(&timers_state.vm_clock_seqlock); | |
477 | timers_state.qemu_icount_bias += deadline; | |
478 | seqlock_write_end(&timers_state.vm_clock_seqlock); | |
479 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
480 | } else { | |
481 | /* | |
482 | * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some | |
483 | * "real" time, (related to the time left until the next event) has | |
484 | * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this. | |
485 | * This avoids that the warps are visible externally; for example, | |
486 | * you will not be sending network packets continuously instead of | |
487 | * every 100ms. | |
488 | */ | |
489 | seqlock_write_begin(&timers_state.vm_clock_seqlock); | |
490 | if (vm_clock_warp_start == -1 || vm_clock_warp_start > clock) { | |
491 | vm_clock_warp_start = clock; | |
492 | } | |
493 | seqlock_write_end(&timers_state.vm_clock_seqlock); | |
494 | timer_mod_anticipate(icount_warp_timer, clock + deadline); | |
495 | } | |
496 | } else if (deadline == 0) { | |
497 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
498 | } | |
499 | } | |
500 | ||
501 | static void qemu_account_warp_timer(void) | |
502 | { | |
503 | if (!use_icount || !icount_sleep) { | |
504 | return; | |
505 | } | |
506 | ||
507 | /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers | |
508 | * do not fire, so computing the deadline does not make sense. | |
509 | */ | |
510 | if (!runstate_is_running()) { | |
511 | return; | |
512 | } | |
513 | ||
514 | /* warp clock deterministically in record/replay mode */ | |
515 | if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) { | |
516 | return; | |
517 | } | |
518 | ||
519 | timer_del(icount_warp_timer); | |
520 | icount_warp_rt(); | |
521 | } | |
522 | ||
523 | static bool icount_state_needed(void *opaque) | |
524 | { | |
525 | return use_icount; | |
526 | } | |
527 | ||
528 | /* | |
529 | * This is a subsection for icount migration. | |
530 | */ | |
531 | static const VMStateDescription icount_vmstate_timers = { | |
532 | .name = "timer/icount", | |
533 | .version_id = 1, | |
534 | .minimum_version_id = 1, | |
535 | .needed = icount_state_needed, | |
536 | .fields = (VMStateField[]) { | |
537 | VMSTATE_INT64(qemu_icount_bias, TimersState), | |
538 | VMSTATE_INT64(qemu_icount, TimersState), | |
539 | VMSTATE_END_OF_LIST() | |
540 | } | |
541 | }; | |
542 | ||
543 | static const VMStateDescription vmstate_timers = { | |
544 | .name = "timer", | |
545 | .version_id = 2, | |
546 | .minimum_version_id = 1, | |
547 | .fields = (VMStateField[]) { | |
548 | VMSTATE_INT64(cpu_ticks_offset, TimersState), | |
549 | VMSTATE_INT64(dummy, TimersState), | |
550 | VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2), | |
551 | VMSTATE_END_OF_LIST() | |
552 | }, | |
553 | .subsections = (const VMStateDescription*[]) { | |
554 | &icount_vmstate_timers, | |
555 | NULL | |
556 | } | |
557 | }; | |
558 | ||
559 | static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque) | |
560 | { | |
561 | double pct; | |
562 | double throttle_ratio; | |
563 | long sleeptime_ns; | |
564 | ||
565 | if (!cpu_throttle_get_percentage()) { | |
566 | return; | |
567 | } | |
568 | ||
569 | pct = (double)cpu_throttle_get_percentage()/100; | |
570 | throttle_ratio = pct / (1 - pct); | |
571 | sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS); | |
572 | ||
573 | qemu_mutex_unlock_iothread(); | |
574 | atomic_set(&cpu->throttle_thread_scheduled, 0); | |
575 | g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */ | |
576 | qemu_mutex_lock_iothread(); | |
577 | } | |
578 | ||
579 | static void cpu_throttle_timer_tick(void *opaque) | |
580 | { | |
581 | CPUState *cpu; | |
582 | double pct; | |
583 | ||
584 | /* Stop the timer if needed */ | |
585 | if (!cpu_throttle_get_percentage()) { | |
586 | return; | |
587 | } | |
588 | CPU_FOREACH(cpu) { | |
589 | if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) { | |
590 | async_run_on_cpu(cpu, cpu_throttle_thread, | |
591 | RUN_ON_CPU_NULL); | |
592 | } | |
593 | } | |
594 | ||
595 | pct = (double)cpu_throttle_get_percentage()/100; | |
596 | timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) + | |
597 | CPU_THROTTLE_TIMESLICE_NS / (1-pct)); | |
598 | } | |
599 | ||
600 | void cpu_throttle_set(int new_throttle_pct) | |
601 | { | |
602 | /* Ensure throttle percentage is within valid range */ | |
603 | new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX); | |
604 | new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN); | |
605 | ||
606 | atomic_set(&throttle_percentage, new_throttle_pct); | |
607 | ||
608 | timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) + | |
609 | CPU_THROTTLE_TIMESLICE_NS); | |
610 | } | |
611 | ||
612 | void cpu_throttle_stop(void) | |
613 | { | |
614 | atomic_set(&throttle_percentage, 0); | |
615 | } | |
616 | ||
617 | bool cpu_throttle_active(void) | |
618 | { | |
619 | return (cpu_throttle_get_percentage() != 0); | |
620 | } | |
621 | ||
622 | int cpu_throttle_get_percentage(void) | |
623 | { | |
624 | return atomic_read(&throttle_percentage); | |
625 | } | |
626 | ||
627 | void cpu_ticks_init(void) | |
628 | { | |
629 | seqlock_init(&timers_state.vm_clock_seqlock); | |
630 | vmstate_register(NULL, 0, &vmstate_timers, &timers_state); | |
631 | throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT, | |
632 | cpu_throttle_timer_tick, NULL); | |
633 | } | |
634 | ||
635 | void configure_icount(QemuOpts *opts, Error **errp) | |
636 | { | |
637 | const char *option; | |
638 | char *rem_str = NULL; | |
639 | ||
640 | option = qemu_opt_get(opts, "shift"); | |
641 | if (!option) { | |
642 | if (qemu_opt_get(opts, "align") != NULL) { | |
643 | error_setg(errp, "Please specify shift option when using align"); | |
644 | } | |
645 | return; | |
646 | } | |
647 | ||
648 | icount_sleep = qemu_opt_get_bool(opts, "sleep", true); | |
649 | if (icount_sleep) { | |
650 | icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT, | |
651 | icount_timer_cb, NULL); | |
652 | } | |
653 | ||
654 | icount_align_option = qemu_opt_get_bool(opts, "align", false); | |
655 | ||
656 | if (icount_align_option && !icount_sleep) { | |
657 | error_setg(errp, "align=on and sleep=off are incompatible"); | |
658 | } | |
659 | if (strcmp(option, "auto") != 0) { | |
660 | errno = 0; | |
661 | icount_time_shift = strtol(option, &rem_str, 0); | |
662 | if (errno != 0 || *rem_str != '\0' || !strlen(option)) { | |
663 | error_setg(errp, "icount: Invalid shift value"); | |
664 | } | |
665 | use_icount = 1; | |
666 | return; | |
667 | } else if (icount_align_option) { | |
668 | error_setg(errp, "shift=auto and align=on are incompatible"); | |
669 | } else if (!icount_sleep) { | |
670 | error_setg(errp, "shift=auto and sleep=off are incompatible"); | |
671 | } | |
672 | ||
673 | use_icount = 2; | |
674 | ||
675 | /* 125MIPS seems a reasonable initial guess at the guest speed. | |
676 | It will be corrected fairly quickly anyway. */ | |
677 | icount_time_shift = 3; | |
678 | ||
679 | /* Have both realtime and virtual time triggers for speed adjustment. | |
680 | The realtime trigger catches emulated time passing too slowly, | |
681 | the virtual time trigger catches emulated time passing too fast. | |
682 | Realtime triggers occur even when idle, so use them less frequently | |
683 | than VM triggers. */ | |
684 | icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT, | |
685 | icount_adjust_rt, NULL); | |
686 | timer_mod(icount_rt_timer, | |
687 | qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000); | |
688 | icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, | |
689 | icount_adjust_vm, NULL); | |
690 | timer_mod(icount_vm_timer, | |
691 | qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | |
692 | NANOSECONDS_PER_SECOND / 10); | |
693 | } | |
694 | ||
695 | /***********************************************************/ | |
696 | void hw_error(const char *fmt, ...) | |
697 | { | |
698 | va_list ap; | |
699 | CPUState *cpu; | |
700 | ||
701 | va_start(ap, fmt); | |
702 | fprintf(stderr, "qemu: hardware error: "); | |
703 | vfprintf(stderr, fmt, ap); | |
704 | fprintf(stderr, "\n"); | |
705 | CPU_FOREACH(cpu) { | |
706 | fprintf(stderr, "CPU #%d:\n", cpu->cpu_index); | |
707 | cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU); | |
708 | } | |
709 | va_end(ap); | |
710 | abort(); | |
711 | } | |
712 | ||
713 | void cpu_synchronize_all_states(void) | |
714 | { | |
715 | CPUState *cpu; | |
716 | ||
717 | CPU_FOREACH(cpu) { | |
718 | cpu_synchronize_state(cpu); | |
719 | } | |
720 | } | |
721 | ||
722 | void cpu_synchronize_all_post_reset(void) | |
723 | { | |
724 | CPUState *cpu; | |
725 | ||
726 | CPU_FOREACH(cpu) { | |
727 | cpu_synchronize_post_reset(cpu); | |
728 | } | |
729 | } | |
730 | ||
731 | void cpu_synchronize_all_post_init(void) | |
732 | { | |
733 | CPUState *cpu; | |
734 | ||
735 | CPU_FOREACH(cpu) { | |
736 | cpu_synchronize_post_init(cpu); | |
737 | } | |
738 | } | |
739 | ||
740 | static int do_vm_stop(RunState state) | |
741 | { | |
742 | int ret = 0; | |
743 | ||
744 | if (runstate_is_running()) { | |
745 | cpu_disable_ticks(); | |
746 | pause_all_vcpus(); | |
747 | runstate_set(state); | |
748 | vm_state_notify(0, state); | |
749 | qapi_event_send_stop(&error_abort); | |
750 | } | |
751 | ||
752 | bdrv_drain_all(); | |
753 | replay_disable_events(); | |
754 | ret = bdrv_flush_all(); | |
755 | ||
756 | return ret; | |
757 | } | |
758 | ||
759 | static bool cpu_can_run(CPUState *cpu) | |
760 | { | |
761 | if (cpu->stop) { | |
762 | return false; | |
763 | } | |
764 | if (cpu_is_stopped(cpu)) { | |
765 | return false; | |
766 | } | |
767 | return true; | |
768 | } | |
769 | ||
770 | static void cpu_handle_guest_debug(CPUState *cpu) | |
771 | { | |
772 | gdb_set_stop_cpu(cpu); | |
773 | qemu_system_debug_request(); | |
774 | cpu->stopped = true; | |
775 | } | |
776 | ||
777 | #ifdef CONFIG_LINUX | |
778 | static void sigbus_reraise(void) | |
779 | { | |
780 | sigset_t set; | |
781 | struct sigaction action; | |
782 | ||
783 | memset(&action, 0, sizeof(action)); | |
784 | action.sa_handler = SIG_DFL; | |
785 | if (!sigaction(SIGBUS, &action, NULL)) { | |
786 | raise(SIGBUS); | |
787 | sigemptyset(&set); | |
788 | sigaddset(&set, SIGBUS); | |
789 | pthread_sigmask(SIG_UNBLOCK, &set, NULL); | |
790 | } | |
791 | perror("Failed to re-raise SIGBUS!\n"); | |
792 | abort(); | |
793 | } | |
794 | ||
795 | static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo, | |
796 | void *ctx) | |
797 | { | |
798 | if (kvm_on_sigbus(siginfo->ssi_code, | |
799 | (void *)(intptr_t)siginfo->ssi_addr)) { | |
800 | sigbus_reraise(); | |
801 | } | |
802 | } | |
803 | ||
804 | static void qemu_init_sigbus(void) | |
805 | { | |
806 | struct sigaction action; | |
807 | ||
808 | memset(&action, 0, sizeof(action)); | |
809 | action.sa_flags = SA_SIGINFO; | |
810 | action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler; | |
811 | sigaction(SIGBUS, &action, NULL); | |
812 | ||
813 | prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0); | |
814 | } | |
815 | ||
816 | static void qemu_kvm_eat_signals(CPUState *cpu) | |
817 | { | |
818 | struct timespec ts = { 0, 0 }; | |
819 | siginfo_t siginfo; | |
820 | sigset_t waitset; | |
821 | sigset_t chkset; | |
822 | int r; | |
823 | ||
824 | sigemptyset(&waitset); | |
825 | sigaddset(&waitset, SIG_IPI); | |
826 | sigaddset(&waitset, SIGBUS); | |
827 | ||
828 | do { | |
829 | r = sigtimedwait(&waitset, &siginfo, &ts); | |
830 | if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { | |
831 | perror("sigtimedwait"); | |
832 | exit(1); | |
833 | } | |
834 | ||
835 | switch (r) { | |
836 | case SIGBUS: | |
837 | if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) { | |
838 | sigbus_reraise(); | |
839 | } | |
840 | break; | |
841 | default: | |
842 | break; | |
843 | } | |
844 | ||
845 | r = sigpending(&chkset); | |
846 | if (r == -1) { | |
847 | perror("sigpending"); | |
848 | exit(1); | |
849 | } | |
850 | } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS)); | |
851 | } | |
852 | ||
853 | #else /* !CONFIG_LINUX */ | |
854 | ||
855 | static void qemu_init_sigbus(void) | |
856 | { | |
857 | } | |
858 | ||
859 | static void qemu_kvm_eat_signals(CPUState *cpu) | |
860 | { | |
861 | } | |
862 | #endif /* !CONFIG_LINUX */ | |
863 | ||
864 | #ifndef _WIN32 | |
865 | static void dummy_signal(int sig) | |
866 | { | |
867 | } | |
868 | ||
869 | static void qemu_kvm_init_cpu_signals(CPUState *cpu) | |
870 | { | |
871 | int r; | |
872 | sigset_t set; | |
873 | struct sigaction sigact; | |
874 | ||
875 | memset(&sigact, 0, sizeof(sigact)); | |
876 | sigact.sa_handler = dummy_signal; | |
877 | sigaction(SIG_IPI, &sigact, NULL); | |
878 | ||
879 | pthread_sigmask(SIG_BLOCK, NULL, &set); | |
880 | sigdelset(&set, SIG_IPI); | |
881 | sigdelset(&set, SIGBUS); | |
882 | r = kvm_set_signal_mask(cpu, &set); | |
883 | if (r) { | |
884 | fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); | |
885 | exit(1); | |
886 | } | |
887 | } | |
888 | ||
889 | #else /* _WIN32 */ | |
890 | static void qemu_kvm_init_cpu_signals(CPUState *cpu) | |
891 | { | |
892 | abort(); | |
893 | } | |
894 | #endif /* _WIN32 */ | |
895 | ||
896 | static QemuMutex qemu_global_mutex; | |
897 | static QemuCond qemu_io_proceeded_cond; | |
898 | static unsigned iothread_requesting_mutex; | |
899 | ||
900 | static QemuThread io_thread; | |
901 | ||
902 | /* cpu creation */ | |
903 | static QemuCond qemu_cpu_cond; | |
904 | /* system init */ | |
905 | static QemuCond qemu_pause_cond; | |
906 | ||
907 | void qemu_init_cpu_loop(void) | |
908 | { | |
909 | qemu_init_sigbus(); | |
910 | qemu_cond_init(&qemu_cpu_cond); | |
911 | qemu_cond_init(&qemu_pause_cond); | |
912 | qemu_cond_init(&qemu_io_proceeded_cond); | |
913 | qemu_mutex_init(&qemu_global_mutex); | |
914 | ||
915 | qemu_thread_get_self(&io_thread); | |
916 | } | |
917 | ||
918 | void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data) | |
919 | { | |
920 | do_run_on_cpu(cpu, func, data, &qemu_global_mutex); | |
921 | } | |
922 | ||
923 | static void qemu_kvm_destroy_vcpu(CPUState *cpu) | |
924 | { | |
925 | if (kvm_destroy_vcpu(cpu) < 0) { | |
926 | error_report("kvm_destroy_vcpu failed"); | |
927 | exit(EXIT_FAILURE); | |
928 | } | |
929 | } | |
930 | ||
931 | static void qemu_tcg_destroy_vcpu(CPUState *cpu) | |
932 | { | |
933 | } | |
934 | ||
935 | static void qemu_wait_io_event_common(CPUState *cpu) | |
936 | { | |
937 | if (cpu->stop) { | |
938 | cpu->stop = false; | |
939 | cpu->stopped = true; | |
940 | qemu_cond_broadcast(&qemu_pause_cond); | |
941 | } | |
942 | process_queued_cpu_work(cpu); | |
943 | cpu->thread_kicked = false; | |
944 | } | |
945 | ||
946 | static void qemu_tcg_wait_io_event(CPUState *cpu) | |
947 | { | |
948 | while (all_cpu_threads_idle()) { | |
949 | qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); | |
950 | } | |
951 | ||
952 | while (iothread_requesting_mutex) { | |
953 | qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex); | |
954 | } | |
955 | ||
956 | CPU_FOREACH(cpu) { | |
957 | qemu_wait_io_event_common(cpu); | |
958 | } | |
959 | } | |
960 | ||
961 | static void qemu_kvm_wait_io_event(CPUState *cpu) | |
962 | { | |
963 | while (cpu_thread_is_idle(cpu)) { | |
964 | qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); | |
965 | } | |
966 | ||
967 | qemu_kvm_eat_signals(cpu); | |
968 | qemu_wait_io_event_common(cpu); | |
969 | } | |
970 | ||
971 | static void *qemu_kvm_cpu_thread_fn(void *arg) | |
972 | { | |
973 | CPUState *cpu = arg; | |
974 | int r; | |
975 | ||
976 | rcu_register_thread(); | |
977 | ||
978 | qemu_mutex_lock_iothread(); | |
979 | qemu_thread_get_self(cpu->thread); | |
980 | cpu->thread_id = qemu_get_thread_id(); | |
981 | cpu->can_do_io = 1; | |
982 | current_cpu = cpu; | |
983 | ||
984 | r = kvm_init_vcpu(cpu); | |
985 | if (r < 0) { | |
986 | fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r)); | |
987 | exit(1); | |
988 | } | |
989 | ||
990 | qemu_kvm_init_cpu_signals(cpu); | |
991 | ||
992 | /* signal CPU creation */ | |
993 | cpu->created = true; | |
994 | qemu_cond_signal(&qemu_cpu_cond); | |
995 | ||
996 | do { | |
997 | if (cpu_can_run(cpu)) { | |
998 | r = kvm_cpu_exec(cpu); | |
999 | if (r == EXCP_DEBUG) { | |
1000 | cpu_handle_guest_debug(cpu); | |
1001 | } | |
1002 | } | |
1003 | qemu_kvm_wait_io_event(cpu); | |
1004 | } while (!cpu->unplug || cpu_can_run(cpu)); | |
1005 | ||
1006 | qemu_kvm_destroy_vcpu(cpu); | |
1007 | cpu->created = false; | |
1008 | qemu_cond_signal(&qemu_cpu_cond); | |
1009 | qemu_mutex_unlock_iothread(); | |
1010 | return NULL; | |
1011 | } | |
1012 | ||
1013 | static void *qemu_dummy_cpu_thread_fn(void *arg) | |
1014 | { | |
1015 | #ifdef _WIN32 | |
1016 | fprintf(stderr, "qtest is not supported under Windows\n"); | |
1017 | exit(1); | |
1018 | #else | |
1019 | CPUState *cpu = arg; | |
1020 | sigset_t waitset; | |
1021 | int r; | |
1022 | ||
1023 | rcu_register_thread(); | |
1024 | ||
1025 | qemu_mutex_lock_iothread(); | |
1026 | qemu_thread_get_self(cpu->thread); | |
1027 | cpu->thread_id = qemu_get_thread_id(); | |
1028 | cpu->can_do_io = 1; | |
1029 | ||
1030 | sigemptyset(&waitset); | |
1031 | sigaddset(&waitset, SIG_IPI); | |
1032 | ||
1033 | /* signal CPU creation */ | |
1034 | cpu->created = true; | |
1035 | qemu_cond_signal(&qemu_cpu_cond); | |
1036 | ||
1037 | current_cpu = cpu; | |
1038 | while (1) { | |
1039 | current_cpu = NULL; | |
1040 | qemu_mutex_unlock_iothread(); | |
1041 | do { | |
1042 | int sig; | |
1043 | r = sigwait(&waitset, &sig); | |
1044 | } while (r == -1 && (errno == EAGAIN || errno == EINTR)); | |
1045 | if (r == -1) { | |
1046 | perror("sigwait"); | |
1047 | exit(1); | |
1048 | } | |
1049 | qemu_mutex_lock_iothread(); | |
1050 | current_cpu = cpu; | |
1051 | qemu_wait_io_event_common(cpu); | |
1052 | } | |
1053 | ||
1054 | return NULL; | |
1055 | #endif | |
1056 | } | |
1057 | ||
1058 | static int64_t tcg_get_icount_limit(void) | |
1059 | { | |
1060 | int64_t deadline; | |
1061 | ||
1062 | if (replay_mode != REPLAY_MODE_PLAY) { | |
1063 | deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
1064 | ||
1065 | /* Maintain prior (possibly buggy) behaviour where if no deadline | |
1066 | * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than | |
1067 | * INT32_MAX nanoseconds ahead, we still use INT32_MAX | |
1068 | * nanoseconds. | |
1069 | */ | |
1070 | if ((deadline < 0) || (deadline > INT32_MAX)) { | |
1071 | deadline = INT32_MAX; | |
1072 | } | |
1073 | ||
1074 | return qemu_icount_round(deadline); | |
1075 | } else { | |
1076 | return replay_get_instructions(); | |
1077 | } | |
1078 | } | |
1079 | ||
1080 | static void handle_icount_deadline(void) | |
1081 | { | |
1082 | if (use_icount) { | |
1083 | int64_t deadline = | |
1084 | qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | |
1085 | ||
1086 | if (deadline == 0) { | |
1087 | qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | |
1088 | } | |
1089 | } | |
1090 | } | |
1091 | ||
1092 | static int tcg_cpu_exec(CPUState *cpu) | |
1093 | { | |
1094 | int ret; | |
1095 | #ifdef CONFIG_PROFILER | |
1096 | int64_t ti; | |
1097 | #endif | |
1098 | ||
1099 | #ifdef CONFIG_PROFILER | |
1100 | ti = profile_getclock(); | |
1101 | #endif | |
1102 | if (use_icount) { | |
1103 | int64_t count; | |
1104 | int decr; | |
1105 | timers_state.qemu_icount -= (cpu->icount_decr.u16.low | |
1106 | + cpu->icount_extra); | |
1107 | cpu->icount_decr.u16.low = 0; | |
1108 | cpu->icount_extra = 0; | |
1109 | count = tcg_get_icount_limit(); | |
1110 | timers_state.qemu_icount += count; | |
1111 | decr = (count > 0xffff) ? 0xffff : count; | |
1112 | count -= decr; | |
1113 | cpu->icount_decr.u16.low = decr; | |
1114 | cpu->icount_extra = count; | |
1115 | } | |
1116 | cpu_exec_start(cpu); | |
1117 | ret = cpu_exec(cpu); | |
1118 | cpu_exec_end(cpu); | |
1119 | #ifdef CONFIG_PROFILER | |
1120 | tcg_time += profile_getclock() - ti; | |
1121 | #endif | |
1122 | if (use_icount) { | |
1123 | /* Fold pending instructions back into the | |
1124 | instruction counter, and clear the interrupt flag. */ | |
1125 | timers_state.qemu_icount -= (cpu->icount_decr.u16.low | |
1126 | + cpu->icount_extra); | |
1127 | cpu->icount_decr.u32 = 0; | |
1128 | cpu->icount_extra = 0; | |
1129 | replay_account_executed_instructions(); | |
1130 | } | |
1131 | return ret; | |
1132 | } | |
1133 | ||
1134 | /* Destroy any remaining vCPUs which have been unplugged and have | |
1135 | * finished running | |
1136 | */ | |
1137 | static void deal_with_unplugged_cpus(void) | |
1138 | { | |
1139 | CPUState *cpu; | |
1140 | ||
1141 | CPU_FOREACH(cpu) { | |
1142 | if (cpu->unplug && !cpu_can_run(cpu)) { | |
1143 | qemu_tcg_destroy_vcpu(cpu); | |
1144 | cpu->created = false; | |
1145 | qemu_cond_signal(&qemu_cpu_cond); | |
1146 | break; | |
1147 | } | |
1148 | } | |
1149 | } | |
1150 | ||
1151 | static void *qemu_tcg_cpu_thread_fn(void *arg) | |
1152 | { | |
1153 | CPUState *cpu = arg; | |
1154 | ||
1155 | rcu_register_thread(); | |
1156 | ||
1157 | qemu_mutex_lock_iothread(); | |
1158 | qemu_thread_get_self(cpu->thread); | |
1159 | ||
1160 | CPU_FOREACH(cpu) { | |
1161 | cpu->thread_id = qemu_get_thread_id(); | |
1162 | cpu->created = true; | |
1163 | cpu->can_do_io = 1; | |
1164 | } | |
1165 | qemu_cond_signal(&qemu_cpu_cond); | |
1166 | ||
1167 | /* wait for initial kick-off after machine start */ | |
1168 | while (first_cpu->stopped) { | |
1169 | qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex); | |
1170 | ||
1171 | /* process any pending work */ | |
1172 | CPU_FOREACH(cpu) { | |
1173 | qemu_wait_io_event_common(cpu); | |
1174 | } | |
1175 | } | |
1176 | ||
1177 | /* process any pending work */ | |
1178 | atomic_mb_set(&exit_request, 1); | |
1179 | ||
1180 | cpu = first_cpu; | |
1181 | ||
1182 | while (1) { | |
1183 | /* Account partial waits to QEMU_CLOCK_VIRTUAL. */ | |
1184 | qemu_account_warp_timer(); | |
1185 | ||
1186 | if (!cpu) { | |
1187 | cpu = first_cpu; | |
1188 | } | |
1189 | ||
1190 | for (; cpu != NULL && !exit_request; cpu = CPU_NEXT(cpu)) { | |
1191 | ||
1192 | qemu_clock_enable(QEMU_CLOCK_VIRTUAL, | |
1193 | (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0); | |
1194 | ||
1195 | if (cpu_can_run(cpu)) { | |
1196 | int r; | |
1197 | r = tcg_cpu_exec(cpu); | |
1198 | if (r == EXCP_DEBUG) { | |
1199 | cpu_handle_guest_debug(cpu); | |
1200 | break; | |
1201 | } | |
1202 | } else if (cpu->stop || cpu->stopped) { | |
1203 | if (cpu->unplug) { | |
1204 | cpu = CPU_NEXT(cpu); | |
1205 | } | |
1206 | break; | |
1207 | } | |
1208 | ||
1209 | } /* for cpu.. */ | |
1210 | ||
1211 | /* Pairs with smp_wmb in qemu_cpu_kick. */ | |
1212 | atomic_mb_set(&exit_request, 0); | |
1213 | ||
1214 | handle_icount_deadline(); | |
1215 | ||
1216 | qemu_tcg_wait_io_event(QTAILQ_FIRST(&cpus)); | |
1217 | deal_with_unplugged_cpus(); | |
1218 | } | |
1219 | ||
1220 | return NULL; | |
1221 | } | |
1222 | ||
1223 | static void qemu_cpu_kick_thread(CPUState *cpu) | |
1224 | { | |
1225 | #ifndef _WIN32 | |
1226 | int err; | |
1227 | ||
1228 | if (cpu->thread_kicked) { | |
1229 | return; | |
1230 | } | |
1231 | cpu->thread_kicked = true; | |
1232 | err = pthread_kill(cpu->thread->thread, SIG_IPI); | |
1233 | if (err) { | |
1234 | fprintf(stderr, "qemu:%s: %s", __func__, strerror(err)); | |
1235 | exit(1); | |
1236 | } | |
1237 | #else /* _WIN32 */ | |
1238 | abort(); | |
1239 | #endif | |
1240 | } | |
1241 | ||
1242 | static void qemu_cpu_kick_no_halt(void) | |
1243 | { | |
1244 | CPUState *cpu; | |
1245 | /* Ensure whatever caused the exit has reached the CPU threads before | |
1246 | * writing exit_request. | |
1247 | */ | |
1248 | atomic_mb_set(&exit_request, 1); | |
1249 | cpu = atomic_mb_read(&tcg_current_cpu); | |
1250 | if (cpu) { | |
1251 | cpu_exit(cpu); | |
1252 | } | |
1253 | } | |
1254 | ||
1255 | void qemu_cpu_kick(CPUState *cpu) | |
1256 | { | |
1257 | qemu_cond_broadcast(cpu->halt_cond); | |
1258 | if (tcg_enabled()) { | |
1259 | qemu_cpu_kick_no_halt(); | |
1260 | } else { | |
1261 | qemu_cpu_kick_thread(cpu); | |
1262 | } | |
1263 | } | |
1264 | ||
1265 | void qemu_cpu_kick_self(void) | |
1266 | { | |
1267 | assert(current_cpu); | |
1268 | qemu_cpu_kick_thread(current_cpu); | |
1269 | } | |
1270 | ||
1271 | bool qemu_cpu_is_self(CPUState *cpu) | |
1272 | { | |
1273 | return qemu_thread_is_self(cpu->thread); | |
1274 | } | |
1275 | ||
1276 | bool qemu_in_vcpu_thread(void) | |
1277 | { | |
1278 | return current_cpu && qemu_cpu_is_self(current_cpu); | |
1279 | } | |
1280 | ||
1281 | static __thread bool iothread_locked = false; | |
1282 | ||
1283 | bool qemu_mutex_iothread_locked(void) | |
1284 | { | |
1285 | return iothread_locked; | |
1286 | } | |
1287 | ||
1288 | void qemu_mutex_lock_iothread(void) | |
1289 | { | |
1290 | atomic_inc(&iothread_requesting_mutex); | |
1291 | /* In the simple case there is no need to bump the VCPU thread out of | |
1292 | * TCG code execution. | |
1293 | */ | |
1294 | if (!tcg_enabled() || qemu_in_vcpu_thread() || | |
1295 | !first_cpu || !first_cpu->created) { | |
1296 | qemu_mutex_lock(&qemu_global_mutex); | |
1297 | atomic_dec(&iothread_requesting_mutex); | |
1298 | } else { | |
1299 | if (qemu_mutex_trylock(&qemu_global_mutex)) { | |
1300 | qemu_cpu_kick_no_halt(); | |
1301 | qemu_mutex_lock(&qemu_global_mutex); | |
1302 | } | |
1303 | atomic_dec(&iothread_requesting_mutex); | |
1304 | qemu_cond_broadcast(&qemu_io_proceeded_cond); | |
1305 | } | |
1306 | iothread_locked = true; | |
1307 | } | |
1308 | ||
1309 | void qemu_mutex_unlock_iothread(void) | |
1310 | { | |
1311 | iothread_locked = false; | |
1312 | qemu_mutex_unlock(&qemu_global_mutex); | |
1313 | } | |
1314 | ||
1315 | static bool all_vcpus_paused(void) | |
1316 | { | |
1317 | CPUState *cpu; | |
1318 | ||
1319 | CPU_FOREACH(cpu) { | |
1320 | if (!cpu->stopped) { | |
1321 | return false; | |
1322 | } | |
1323 | } | |
1324 | ||
1325 | return true; | |
1326 | } | |
1327 | ||
1328 | void pause_all_vcpus(void) | |
1329 | { | |
1330 | CPUState *cpu; | |
1331 | ||
1332 | qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false); | |
1333 | CPU_FOREACH(cpu) { | |
1334 | cpu->stop = true; | |
1335 | qemu_cpu_kick(cpu); | |
1336 | } | |
1337 | ||
1338 | if (qemu_in_vcpu_thread()) { | |
1339 | cpu_stop_current(); | |
1340 | if (!kvm_enabled()) { | |
1341 | CPU_FOREACH(cpu) { | |
1342 | cpu->stop = false; | |
1343 | cpu->stopped = true; | |
1344 | } | |
1345 | return; | |
1346 | } | |
1347 | } | |
1348 | ||
1349 | while (!all_vcpus_paused()) { | |
1350 | qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex); | |
1351 | CPU_FOREACH(cpu) { | |
1352 | qemu_cpu_kick(cpu); | |
1353 | } | |
1354 | } | |
1355 | } | |
1356 | ||
1357 | void cpu_resume(CPUState *cpu) | |
1358 | { | |
1359 | cpu->stop = false; | |
1360 | cpu->stopped = false; | |
1361 | qemu_cpu_kick(cpu); | |
1362 | } | |
1363 | ||
1364 | void resume_all_vcpus(void) | |
1365 | { | |
1366 | CPUState *cpu; | |
1367 | ||
1368 | qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true); | |
1369 | CPU_FOREACH(cpu) { | |
1370 | cpu_resume(cpu); | |
1371 | } | |
1372 | } | |
1373 | ||
1374 | void cpu_remove(CPUState *cpu) | |
1375 | { | |
1376 | cpu->stop = true; | |
1377 | cpu->unplug = true; | |
1378 | qemu_cpu_kick(cpu); | |
1379 | } | |
1380 | ||
1381 | void cpu_remove_sync(CPUState *cpu) | |
1382 | { | |
1383 | cpu_remove(cpu); | |
1384 | while (cpu->created) { | |
1385 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | |
1386 | } | |
1387 | } | |
1388 | ||
1389 | /* For temporary buffers for forming a name */ | |
1390 | #define VCPU_THREAD_NAME_SIZE 16 | |
1391 | ||
1392 | static void qemu_tcg_init_vcpu(CPUState *cpu) | |
1393 | { | |
1394 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
1395 | static QemuCond *tcg_halt_cond; | |
1396 | static QemuThread *tcg_cpu_thread; | |
1397 | ||
1398 | /* share a single thread for all cpus with TCG */ | |
1399 | if (!tcg_cpu_thread) { | |
1400 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1401 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1402 | qemu_cond_init(cpu->halt_cond); | |
1403 | tcg_halt_cond = cpu->halt_cond; | |
1404 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG", | |
1405 | cpu->cpu_index); | |
1406 | qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn, | |
1407 | cpu, QEMU_THREAD_JOINABLE); | |
1408 | #ifdef _WIN32 | |
1409 | cpu->hThread = qemu_thread_get_handle(cpu->thread); | |
1410 | #endif | |
1411 | while (!cpu->created) { | |
1412 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | |
1413 | } | |
1414 | tcg_cpu_thread = cpu->thread; | |
1415 | } else { | |
1416 | cpu->thread = tcg_cpu_thread; | |
1417 | cpu->halt_cond = tcg_halt_cond; | |
1418 | } | |
1419 | } | |
1420 | ||
1421 | static void qemu_kvm_start_vcpu(CPUState *cpu) | |
1422 | { | |
1423 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
1424 | ||
1425 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1426 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1427 | qemu_cond_init(cpu->halt_cond); | |
1428 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM", | |
1429 | cpu->cpu_index); | |
1430 | qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn, | |
1431 | cpu, QEMU_THREAD_JOINABLE); | |
1432 | while (!cpu->created) { | |
1433 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | |
1434 | } | |
1435 | } | |
1436 | ||
1437 | static void qemu_dummy_start_vcpu(CPUState *cpu) | |
1438 | { | |
1439 | char thread_name[VCPU_THREAD_NAME_SIZE]; | |
1440 | ||
1441 | cpu->thread = g_malloc0(sizeof(QemuThread)); | |
1442 | cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | |
1443 | qemu_cond_init(cpu->halt_cond); | |
1444 | snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY", | |
1445 | cpu->cpu_index); | |
1446 | qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu, | |
1447 | QEMU_THREAD_JOINABLE); | |
1448 | while (!cpu->created) { | |
1449 | qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | |
1450 | } | |
1451 | } | |
1452 | ||
1453 | void qemu_init_vcpu(CPUState *cpu) | |
1454 | { | |
1455 | cpu->nr_cores = smp_cores; | |
1456 | cpu->nr_threads = smp_threads; | |
1457 | cpu->stopped = true; | |
1458 | ||
1459 | if (!cpu->as) { | |
1460 | /* If the target cpu hasn't set up any address spaces itself, | |
1461 | * give it the default one. | |
1462 | */ | |
1463 | AddressSpace *as = address_space_init_shareable(cpu->memory, | |
1464 | "cpu-memory"); | |
1465 | cpu->num_ases = 1; | |
1466 | cpu_address_space_init(cpu, as, 0); | |
1467 | } | |
1468 | ||
1469 | if (kvm_enabled()) { | |
1470 | qemu_kvm_start_vcpu(cpu); | |
1471 | } else if (tcg_enabled()) { | |
1472 | qemu_tcg_init_vcpu(cpu); | |
1473 | } else { | |
1474 | qemu_dummy_start_vcpu(cpu); | |
1475 | } | |
1476 | } | |
1477 | ||
1478 | void cpu_stop_current(void) | |
1479 | { | |
1480 | if (current_cpu) { | |
1481 | current_cpu->stop = false; | |
1482 | current_cpu->stopped = true; | |
1483 | cpu_exit(current_cpu); | |
1484 | qemu_cond_broadcast(&qemu_pause_cond); | |
1485 | } | |
1486 | } | |
1487 | ||
1488 | int vm_stop(RunState state) | |
1489 | { | |
1490 | if (qemu_in_vcpu_thread()) { | |
1491 | qemu_system_vmstop_request_prepare(); | |
1492 | qemu_system_vmstop_request(state); | |
1493 | /* | |
1494 | * FIXME: should not return to device code in case | |
1495 | * vm_stop() has been requested. | |
1496 | */ | |
1497 | cpu_stop_current(); | |
1498 | return 0; | |
1499 | } | |
1500 | ||
1501 | return do_vm_stop(state); | |
1502 | } | |
1503 | ||
1504 | /* does a state transition even if the VM is already stopped, | |
1505 | current state is forgotten forever */ | |
1506 | int vm_stop_force_state(RunState state) | |
1507 | { | |
1508 | if (runstate_is_running()) { | |
1509 | return vm_stop(state); | |
1510 | } else { | |
1511 | runstate_set(state); | |
1512 | ||
1513 | bdrv_drain_all(); | |
1514 | /* Make sure to return an error if the flush in a previous vm_stop() | |
1515 | * failed. */ | |
1516 | return bdrv_flush_all(); | |
1517 | } | |
1518 | } | |
1519 | ||
1520 | void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg) | |
1521 | { | |
1522 | /* XXX: implement xxx_cpu_list for targets that still miss it */ | |
1523 | #if defined(cpu_list) | |
1524 | cpu_list(f, cpu_fprintf); | |
1525 | #endif | |
1526 | } | |
1527 | ||
1528 | CpuInfoList *qmp_query_cpus(Error **errp) | |
1529 | { | |
1530 | CpuInfoList *head = NULL, *cur_item = NULL; | |
1531 | CPUState *cpu; | |
1532 | ||
1533 | CPU_FOREACH(cpu) { | |
1534 | CpuInfoList *info; | |
1535 | #if defined(TARGET_I386) | |
1536 | X86CPU *x86_cpu = X86_CPU(cpu); | |
1537 | CPUX86State *env = &x86_cpu->env; | |
1538 | #elif defined(TARGET_PPC) | |
1539 | PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu); | |
1540 | CPUPPCState *env = &ppc_cpu->env; | |
1541 | #elif defined(TARGET_SPARC) | |
1542 | SPARCCPU *sparc_cpu = SPARC_CPU(cpu); | |
1543 | CPUSPARCState *env = &sparc_cpu->env; | |
1544 | #elif defined(TARGET_MIPS) | |
1545 | MIPSCPU *mips_cpu = MIPS_CPU(cpu); | |
1546 | CPUMIPSState *env = &mips_cpu->env; | |
1547 | #elif defined(TARGET_TRICORE) | |
1548 | TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu); | |
1549 | CPUTriCoreState *env = &tricore_cpu->env; | |
1550 | #endif | |
1551 | ||
1552 | cpu_synchronize_state(cpu); | |
1553 | ||
1554 | info = g_malloc0(sizeof(*info)); | |
1555 | info->value = g_malloc0(sizeof(*info->value)); | |
1556 | info->value->CPU = cpu->cpu_index; | |
1557 | info->value->current = (cpu == first_cpu); | |
1558 | info->value->halted = cpu->halted; | |
1559 | info->value->qom_path = object_get_canonical_path(OBJECT(cpu)); | |
1560 | info->value->thread_id = cpu->thread_id; | |
1561 | #if defined(TARGET_I386) | |
1562 | info->value->arch = CPU_INFO_ARCH_X86; | |
1563 | info->value->u.x86.pc = env->eip + env->segs[R_CS].base; | |
1564 | #elif defined(TARGET_PPC) | |
1565 | info->value->arch = CPU_INFO_ARCH_PPC; | |
1566 | info->value->u.ppc.nip = env->nip; | |
1567 | #elif defined(TARGET_SPARC) | |
1568 | info->value->arch = CPU_INFO_ARCH_SPARC; | |
1569 | info->value->u.q_sparc.pc = env->pc; | |
1570 | info->value->u.q_sparc.npc = env->npc; | |
1571 | #elif defined(TARGET_MIPS) | |
1572 | info->value->arch = CPU_INFO_ARCH_MIPS; | |
1573 | info->value->u.q_mips.PC = env->active_tc.PC; | |
1574 | #elif defined(TARGET_TRICORE) | |
1575 | info->value->arch = CPU_INFO_ARCH_TRICORE; | |
1576 | info->value->u.tricore.PC = env->PC; | |
1577 | #else | |
1578 | info->value->arch = CPU_INFO_ARCH_OTHER; | |
1579 | #endif | |
1580 | ||
1581 | /* XXX: waiting for the qapi to support GSList */ | |
1582 | if (!cur_item) { | |
1583 | head = cur_item = info; | |
1584 | } else { | |
1585 | cur_item->next = info; | |
1586 | cur_item = info; | |
1587 | } | |
1588 | } | |
1589 | ||
1590 | return head; | |
1591 | } | |
1592 | ||
1593 | void qmp_memsave(int64_t addr, int64_t size, const char *filename, | |
1594 | bool has_cpu, int64_t cpu_index, Error **errp) | |
1595 | { | |
1596 | FILE *f; | |
1597 | uint32_t l; | |
1598 | CPUState *cpu; | |
1599 | uint8_t buf[1024]; | |
1600 | int64_t orig_addr = addr, orig_size = size; | |
1601 | ||
1602 | if (!has_cpu) { | |
1603 | cpu_index = 0; | |
1604 | } | |
1605 | ||
1606 | cpu = qemu_get_cpu(cpu_index); | |
1607 | if (cpu == NULL) { | |
1608 | error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index", | |
1609 | "a CPU number"); | |
1610 | return; | |
1611 | } | |
1612 | ||
1613 | f = fopen(filename, "wb"); | |
1614 | if (!f) { | |
1615 | error_setg_file_open(errp, errno, filename); | |
1616 | return; | |
1617 | } | |
1618 | ||
1619 | while (size != 0) { | |
1620 | l = sizeof(buf); | |
1621 | if (l > size) | |
1622 | l = size; | |
1623 | if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) { | |
1624 | error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64 | |
1625 | " specified", orig_addr, orig_size); | |
1626 | goto exit; | |
1627 | } | |
1628 | if (fwrite(buf, 1, l, f) != l) { | |
1629 | error_setg(errp, QERR_IO_ERROR); | |
1630 | goto exit; | |
1631 | } | |
1632 | addr += l; | |
1633 | size -= l; | |
1634 | } | |
1635 | ||
1636 | exit: | |
1637 | fclose(f); | |
1638 | } | |
1639 | ||
1640 | void qmp_pmemsave(int64_t addr, int64_t size, const char *filename, | |
1641 | Error **errp) | |
1642 | { | |
1643 | FILE *f; | |
1644 | uint32_t l; | |
1645 | uint8_t buf[1024]; | |
1646 | ||
1647 | f = fopen(filename, "wb"); | |
1648 | if (!f) { | |
1649 | error_setg_file_open(errp, errno, filename); | |
1650 | return; | |
1651 | } | |
1652 | ||
1653 | while (size != 0) { | |
1654 | l = sizeof(buf); | |
1655 | if (l > size) | |
1656 | l = size; | |
1657 | cpu_physical_memory_read(addr, buf, l); | |
1658 | if (fwrite(buf, 1, l, f) != l) { | |
1659 | error_setg(errp, QERR_IO_ERROR); | |
1660 | goto exit; | |
1661 | } | |
1662 | addr += l; | |
1663 | size -= l; | |
1664 | } | |
1665 | ||
1666 | exit: | |
1667 | fclose(f); | |
1668 | } | |
1669 | ||
1670 | void qmp_inject_nmi(Error **errp) | |
1671 | { | |
1672 | nmi_monitor_handle(monitor_get_cpu_index(), errp); | |
1673 | } | |
1674 | ||
1675 | void dump_drift_info(FILE *f, fprintf_function cpu_fprintf) | |
1676 | { | |
1677 | if (!use_icount) { | |
1678 | return; | |
1679 | } | |
1680 | ||
1681 | cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n", | |
1682 | (cpu_get_clock() - cpu_get_icount())/SCALE_MS); | |
1683 | if (icount_align_option) { | |
1684 | cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS); | |
1685 | cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS); | |
1686 | } else { | |
1687 | cpu_fprintf(f, "Max guest delay NA\n"); | |
1688 | cpu_fprintf(f, "Max guest advance NA\n"); | |
1689 | } | |
1690 | } |