]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * coroutine queues and locks | |
3 | * | |
4 | * Copyright (c) 2011 Kevin Wolf <[email protected]> | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | * | |
24 | * The lock-free mutex implementation is based on OSv | |
25 | * (core/lfmutex.cc, include/lockfree/mutex.hh). | |
26 | * Copyright (C) 2013 Cloudius Systems, Ltd. | |
27 | */ | |
28 | ||
29 | #include "qemu/osdep.h" | |
30 | #include "qemu-common.h" | |
31 | #include "qemu/coroutine.h" | |
32 | #include "qemu/coroutine_int.h" | |
33 | #include "qemu/processor.h" | |
34 | #include "qemu/queue.h" | |
35 | #include "block/aio.h" | |
36 | #include "trace.h" | |
37 | ||
38 | void qemu_co_queue_init(CoQueue *queue) | |
39 | { | |
40 | QSIMPLEQ_INIT(&queue->entries); | |
41 | } | |
42 | ||
43 | void coroutine_fn qemu_co_queue_wait_impl(CoQueue *queue, QemuLockable *lock) | |
44 | { | |
45 | Coroutine *self = qemu_coroutine_self(); | |
46 | QSIMPLEQ_INSERT_TAIL(&queue->entries, self, co_queue_next); | |
47 | ||
48 | if (lock) { | |
49 | qemu_lockable_unlock(lock); | |
50 | } | |
51 | ||
52 | /* There is no race condition here. Other threads will call | |
53 | * aio_co_schedule on our AioContext, which can reenter this | |
54 | * coroutine but only after this yield and after the main loop | |
55 | * has gone through the next iteration. | |
56 | */ | |
57 | qemu_coroutine_yield(); | |
58 | assert(qemu_in_coroutine()); | |
59 | ||
60 | /* TODO: OSv implements wait morphing here, where the wakeup | |
61 | * primitive automatically places the woken coroutine on the | |
62 | * mutex's queue. This avoids the thundering herd effect. | |
63 | * This could be implemented for CoMutexes, but not really for | |
64 | * other cases of QemuLockable. | |
65 | */ | |
66 | if (lock) { | |
67 | qemu_lockable_lock(lock); | |
68 | } | |
69 | } | |
70 | ||
71 | static bool qemu_co_queue_do_restart(CoQueue *queue, bool single) | |
72 | { | |
73 | Coroutine *next; | |
74 | ||
75 | if (QSIMPLEQ_EMPTY(&queue->entries)) { | |
76 | return false; | |
77 | } | |
78 | ||
79 | while ((next = QSIMPLEQ_FIRST(&queue->entries)) != NULL) { | |
80 | QSIMPLEQ_REMOVE_HEAD(&queue->entries, co_queue_next); | |
81 | aio_co_wake(next); | |
82 | if (single) { | |
83 | break; | |
84 | } | |
85 | } | |
86 | return true; | |
87 | } | |
88 | ||
89 | bool coroutine_fn qemu_co_queue_next(CoQueue *queue) | |
90 | { | |
91 | assert(qemu_in_coroutine()); | |
92 | return qemu_co_queue_do_restart(queue, true); | |
93 | } | |
94 | ||
95 | void coroutine_fn qemu_co_queue_restart_all(CoQueue *queue) | |
96 | { | |
97 | assert(qemu_in_coroutine()); | |
98 | qemu_co_queue_do_restart(queue, false); | |
99 | } | |
100 | ||
101 | bool qemu_co_enter_next_impl(CoQueue *queue, QemuLockable *lock) | |
102 | { | |
103 | Coroutine *next; | |
104 | ||
105 | next = QSIMPLEQ_FIRST(&queue->entries); | |
106 | if (!next) { | |
107 | return false; | |
108 | } | |
109 | ||
110 | QSIMPLEQ_REMOVE_HEAD(&queue->entries, co_queue_next); | |
111 | if (lock) { | |
112 | qemu_lockable_unlock(lock); | |
113 | } | |
114 | aio_co_wake(next); | |
115 | if (lock) { | |
116 | qemu_lockable_lock(lock); | |
117 | } | |
118 | return true; | |
119 | } | |
120 | ||
121 | bool qemu_co_queue_empty(CoQueue *queue) | |
122 | { | |
123 | return QSIMPLEQ_FIRST(&queue->entries) == NULL; | |
124 | } | |
125 | ||
126 | /* The wait records are handled with a multiple-producer, single-consumer | |
127 | * lock-free queue. There cannot be two concurrent pop_waiter() calls | |
128 | * because pop_waiter() can only be called while mutex->handoff is zero. | |
129 | * This can happen in three cases: | |
130 | * - in qemu_co_mutex_unlock, before the hand-off protocol has started. | |
131 | * In this case, qemu_co_mutex_lock will see mutex->handoff == 0 and | |
132 | * not take part in the handoff. | |
133 | * - in qemu_co_mutex_lock, if it steals the hand-off responsibility from | |
134 | * qemu_co_mutex_unlock. In this case, qemu_co_mutex_unlock will fail | |
135 | * the cmpxchg (it will see either 0 or the next sequence value) and | |
136 | * exit. The next hand-off cannot begin until qemu_co_mutex_lock has | |
137 | * woken up someone. | |
138 | * - in qemu_co_mutex_unlock, if it takes the hand-off token itself. | |
139 | * In this case another iteration starts with mutex->handoff == 0; | |
140 | * a concurrent qemu_co_mutex_lock will fail the cmpxchg, and | |
141 | * qemu_co_mutex_unlock will go back to case (1). | |
142 | * | |
143 | * The following functions manage this queue. | |
144 | */ | |
145 | typedef struct CoWaitRecord { | |
146 | Coroutine *co; | |
147 | QSLIST_ENTRY(CoWaitRecord) next; | |
148 | } CoWaitRecord; | |
149 | ||
150 | static void push_waiter(CoMutex *mutex, CoWaitRecord *w) | |
151 | { | |
152 | w->co = qemu_coroutine_self(); | |
153 | QSLIST_INSERT_HEAD_ATOMIC(&mutex->from_push, w, next); | |
154 | } | |
155 | ||
156 | static void move_waiters(CoMutex *mutex) | |
157 | { | |
158 | QSLIST_HEAD(, CoWaitRecord) reversed; | |
159 | QSLIST_MOVE_ATOMIC(&reversed, &mutex->from_push); | |
160 | while (!QSLIST_EMPTY(&reversed)) { | |
161 | CoWaitRecord *w = QSLIST_FIRST(&reversed); | |
162 | QSLIST_REMOVE_HEAD(&reversed, next); | |
163 | QSLIST_INSERT_HEAD(&mutex->to_pop, w, next); | |
164 | } | |
165 | } | |
166 | ||
167 | static CoWaitRecord *pop_waiter(CoMutex *mutex) | |
168 | { | |
169 | CoWaitRecord *w; | |
170 | ||
171 | if (QSLIST_EMPTY(&mutex->to_pop)) { | |
172 | move_waiters(mutex); | |
173 | if (QSLIST_EMPTY(&mutex->to_pop)) { | |
174 | return NULL; | |
175 | } | |
176 | } | |
177 | w = QSLIST_FIRST(&mutex->to_pop); | |
178 | QSLIST_REMOVE_HEAD(&mutex->to_pop, next); | |
179 | return w; | |
180 | } | |
181 | ||
182 | static bool has_waiters(CoMutex *mutex) | |
183 | { | |
184 | return QSLIST_EMPTY(&mutex->to_pop) || QSLIST_EMPTY(&mutex->from_push); | |
185 | } | |
186 | ||
187 | void qemu_co_mutex_init(CoMutex *mutex) | |
188 | { | |
189 | memset(mutex, 0, sizeof(*mutex)); | |
190 | } | |
191 | ||
192 | static void coroutine_fn qemu_co_mutex_wake(CoMutex *mutex, Coroutine *co) | |
193 | { | |
194 | /* Read co before co->ctx; pairs with smp_wmb() in | |
195 | * qemu_coroutine_enter(). | |
196 | */ | |
197 | smp_read_barrier_depends(); | |
198 | mutex->ctx = co->ctx; | |
199 | aio_co_wake(co); | |
200 | } | |
201 | ||
202 | static void coroutine_fn qemu_co_mutex_lock_slowpath(AioContext *ctx, | |
203 | CoMutex *mutex) | |
204 | { | |
205 | Coroutine *self = qemu_coroutine_self(); | |
206 | CoWaitRecord w; | |
207 | unsigned old_handoff; | |
208 | ||
209 | trace_qemu_co_mutex_lock_entry(mutex, self); | |
210 | w.co = self; | |
211 | push_waiter(mutex, &w); | |
212 | ||
213 | /* This is the "Responsibility Hand-Off" protocol; a lock() picks from | |
214 | * a concurrent unlock() the responsibility of waking somebody up. | |
215 | */ | |
216 | old_handoff = atomic_mb_read(&mutex->handoff); | |
217 | if (old_handoff && | |
218 | has_waiters(mutex) && | |
219 | atomic_cmpxchg(&mutex->handoff, old_handoff, 0) == old_handoff) { | |
220 | /* There can be no concurrent pops, because there can be only | |
221 | * one active handoff at a time. | |
222 | */ | |
223 | CoWaitRecord *to_wake = pop_waiter(mutex); | |
224 | Coroutine *co = to_wake->co; | |
225 | if (co == self) { | |
226 | /* We got the lock ourselves! */ | |
227 | assert(to_wake == &w); | |
228 | mutex->ctx = ctx; | |
229 | return; | |
230 | } | |
231 | ||
232 | qemu_co_mutex_wake(mutex, co); | |
233 | } | |
234 | ||
235 | qemu_coroutine_yield(); | |
236 | trace_qemu_co_mutex_lock_return(mutex, self); | |
237 | } | |
238 | ||
239 | void coroutine_fn qemu_co_mutex_lock(CoMutex *mutex) | |
240 | { | |
241 | AioContext *ctx = qemu_get_current_aio_context(); | |
242 | Coroutine *self = qemu_coroutine_self(); | |
243 | int waiters, i; | |
244 | ||
245 | /* Running a very small critical section on pthread_mutex_t and CoMutex | |
246 | * shows that pthread_mutex_t is much faster because it doesn't actually | |
247 | * go to sleep. What happens is that the critical section is shorter | |
248 | * than the latency of entering the kernel and thus FUTEX_WAIT always | |
249 | * fails. With CoMutex there is no such latency but you still want to | |
250 | * avoid wait and wakeup. So introduce it artificially. | |
251 | */ | |
252 | i = 0; | |
253 | retry_fast_path: | |
254 | waiters = atomic_cmpxchg(&mutex->locked, 0, 1); | |
255 | if (waiters != 0) { | |
256 | while (waiters == 1 && ++i < 1000) { | |
257 | if (atomic_read(&mutex->ctx) == ctx) { | |
258 | break; | |
259 | } | |
260 | if (atomic_read(&mutex->locked) == 0) { | |
261 | goto retry_fast_path; | |
262 | } | |
263 | cpu_relax(); | |
264 | } | |
265 | waiters = atomic_fetch_inc(&mutex->locked); | |
266 | } | |
267 | ||
268 | if (waiters == 0) { | |
269 | /* Uncontended. */ | |
270 | trace_qemu_co_mutex_lock_uncontended(mutex, self); | |
271 | mutex->ctx = ctx; | |
272 | } else { | |
273 | qemu_co_mutex_lock_slowpath(ctx, mutex); | |
274 | } | |
275 | mutex->holder = self; | |
276 | self->locks_held++; | |
277 | } | |
278 | ||
279 | void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex) | |
280 | { | |
281 | Coroutine *self = qemu_coroutine_self(); | |
282 | ||
283 | trace_qemu_co_mutex_unlock_entry(mutex, self); | |
284 | ||
285 | assert(mutex->locked); | |
286 | assert(mutex->holder == self); | |
287 | assert(qemu_in_coroutine()); | |
288 | ||
289 | mutex->ctx = NULL; | |
290 | mutex->holder = NULL; | |
291 | self->locks_held--; | |
292 | if (atomic_fetch_dec(&mutex->locked) == 1) { | |
293 | /* No waiting qemu_co_mutex_lock(). Pfew, that was easy! */ | |
294 | return; | |
295 | } | |
296 | ||
297 | for (;;) { | |
298 | CoWaitRecord *to_wake = pop_waiter(mutex); | |
299 | unsigned our_handoff; | |
300 | ||
301 | if (to_wake) { | |
302 | qemu_co_mutex_wake(mutex, to_wake->co); | |
303 | break; | |
304 | } | |
305 | ||
306 | /* Some concurrent lock() is in progress (we know this because | |
307 | * mutex->locked was >1) but it hasn't yet put itself on the wait | |
308 | * queue. Pick a sequence number for the handoff protocol (not 0). | |
309 | */ | |
310 | if (++mutex->sequence == 0) { | |
311 | mutex->sequence = 1; | |
312 | } | |
313 | ||
314 | our_handoff = mutex->sequence; | |
315 | atomic_mb_set(&mutex->handoff, our_handoff); | |
316 | if (!has_waiters(mutex)) { | |
317 | /* The concurrent lock has not added itself yet, so it | |
318 | * will be able to pick our handoff. | |
319 | */ | |
320 | break; | |
321 | } | |
322 | ||
323 | /* Try to do the handoff protocol ourselves; if somebody else has | |
324 | * already taken it, however, we're done and they're responsible. | |
325 | */ | |
326 | if (atomic_cmpxchg(&mutex->handoff, our_handoff, 0) != our_handoff) { | |
327 | break; | |
328 | } | |
329 | } | |
330 | ||
331 | trace_qemu_co_mutex_unlock_return(mutex, self); | |
332 | } | |
333 | ||
334 | void qemu_co_rwlock_init(CoRwlock *lock) | |
335 | { | |
336 | memset(lock, 0, sizeof(*lock)); | |
337 | qemu_co_queue_init(&lock->queue); | |
338 | qemu_co_mutex_init(&lock->mutex); | |
339 | } | |
340 | ||
341 | void qemu_co_rwlock_rdlock(CoRwlock *lock) | |
342 | { | |
343 | Coroutine *self = qemu_coroutine_self(); | |
344 | ||
345 | qemu_co_mutex_lock(&lock->mutex); | |
346 | /* For fairness, wait if a writer is in line. */ | |
347 | while (lock->pending_writer) { | |
348 | qemu_co_queue_wait(&lock->queue, &lock->mutex); | |
349 | } | |
350 | lock->reader++; | |
351 | qemu_co_mutex_unlock(&lock->mutex); | |
352 | ||
353 | /* The rest of the read-side critical section is run without the mutex. */ | |
354 | self->locks_held++; | |
355 | } | |
356 | ||
357 | void qemu_co_rwlock_unlock(CoRwlock *lock) | |
358 | { | |
359 | Coroutine *self = qemu_coroutine_self(); | |
360 | ||
361 | assert(qemu_in_coroutine()); | |
362 | if (!lock->reader) { | |
363 | /* The critical section started in qemu_co_rwlock_wrlock. */ | |
364 | qemu_co_queue_restart_all(&lock->queue); | |
365 | } else { | |
366 | self->locks_held--; | |
367 | ||
368 | qemu_co_mutex_lock(&lock->mutex); | |
369 | lock->reader--; | |
370 | assert(lock->reader >= 0); | |
371 | /* Wakeup only one waiting writer */ | |
372 | if (!lock->reader) { | |
373 | qemu_co_queue_next(&lock->queue); | |
374 | } | |
375 | } | |
376 | qemu_co_mutex_unlock(&lock->mutex); | |
377 | } | |
378 | ||
379 | void qemu_co_rwlock_downgrade(CoRwlock *lock) | |
380 | { | |
381 | Coroutine *self = qemu_coroutine_self(); | |
382 | ||
383 | /* lock->mutex critical section started in qemu_co_rwlock_wrlock or | |
384 | * qemu_co_rwlock_upgrade. | |
385 | */ | |
386 | assert(lock->reader == 0); | |
387 | lock->reader++; | |
388 | qemu_co_mutex_unlock(&lock->mutex); | |
389 | ||
390 | /* The rest of the read-side critical section is run without the mutex. */ | |
391 | self->locks_held++; | |
392 | } | |
393 | ||
394 | void qemu_co_rwlock_wrlock(CoRwlock *lock) | |
395 | { | |
396 | qemu_co_mutex_lock(&lock->mutex); | |
397 | lock->pending_writer++; | |
398 | while (lock->reader) { | |
399 | qemu_co_queue_wait(&lock->queue, &lock->mutex); | |
400 | } | |
401 | lock->pending_writer--; | |
402 | ||
403 | /* The rest of the write-side critical section is run with | |
404 | * the mutex taken, so that lock->reader remains zero. | |
405 | * There is no need to update self->locks_held. | |
406 | */ | |
407 | } | |
408 | ||
409 | void qemu_co_rwlock_upgrade(CoRwlock *lock) | |
410 | { | |
411 | Coroutine *self = qemu_coroutine_self(); | |
412 | ||
413 | qemu_co_mutex_lock(&lock->mutex); | |
414 | assert(lock->reader > 0); | |
415 | lock->reader--; | |
416 | lock->pending_writer++; | |
417 | while (lock->reader) { | |
418 | qemu_co_queue_wait(&lock->queue, &lock->mutex); | |
419 | } | |
420 | lock->pending_writer--; | |
421 | ||
422 | /* The rest of the write-side critical section is run with | |
423 | * the mutex taken, similar to qemu_co_rwlock_wrlock. Do | |
424 | * not account for the lock twice in self->locks_held. | |
425 | */ | |
426 | self->locks_held--; | |
427 | } |