]> Git Repo - qemu.git/blame_incremental - include/qom/cpu.h
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[qemu.git] / include / qom / cpu.h
... / ...
CommitLineData
1/*
2 * QEMU CPU model
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20#ifndef QEMU_CPU_H
21#define QEMU_CPU_H
22
23#include "hw/qdev-core.h"
24#include "disas/bfd.h"
25#include "exec/hwaddr.h"
26#include "exec/memattrs.h"
27#include "qemu/bitmap.h"
28#include "qemu/queue.h"
29#include "qemu/thread.h"
30
31typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
32 void *opaque);
33
34/**
35 * vaddr:
36 * Type wide enough to contain any #target_ulong virtual address.
37 */
38typedef uint64_t vaddr;
39#define VADDR_PRId PRId64
40#define VADDR_PRIu PRIu64
41#define VADDR_PRIo PRIo64
42#define VADDR_PRIx PRIx64
43#define VADDR_PRIX PRIX64
44#define VADDR_MAX UINT64_MAX
45
46/**
47 * SECTION:cpu
48 * @section_id: QEMU-cpu
49 * @title: CPU Class
50 * @short_description: Base class for all CPUs
51 */
52
53#define TYPE_CPU "cpu"
54
55/* Since this macro is used a lot in hot code paths and in conjunction with
56 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
57 * an unchecked cast.
58 */
59#define CPU(obj) ((CPUState *)(obj))
60
61#define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU)
62#define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU)
63
64typedef enum MMUAccessType {
65 MMU_DATA_LOAD = 0,
66 MMU_DATA_STORE = 1,
67 MMU_INST_FETCH = 2
68} MMUAccessType;
69
70typedef struct CPUWatchpoint CPUWatchpoint;
71
72typedef void (*CPUUnassignedAccess)(CPUState *cpu, hwaddr addr,
73 bool is_write, bool is_exec, int opaque,
74 unsigned size);
75
76struct TranslationBlock;
77
78/**
79 * CPUClass:
80 * @class_by_name: Callback to map -cpu command line model name to an
81 * instantiatable CPU type.
82 * @parse_features: Callback to parse command line arguments.
83 * @reset: Callback to reset the #CPUState to its initial state.
84 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
85 * @has_work: Callback for checking if there is work to do.
86 * @do_interrupt: Callback for interrupt handling.
87 * @do_unassigned_access: Callback for unassigned access handling.
88 * @do_unaligned_access: Callback for unaligned access handling, if
89 * the target defines #ALIGNED_ONLY.
90 * @virtio_is_big_endian: Callback to return %true if a CPU which supports
91 * runtime configurable endianness is currently big-endian. Non-configurable
92 * CPUs can use the default implementation of this method. This method should
93 * not be used by any callers other than the pre-1.0 virtio devices.
94 * @memory_rw_debug: Callback for GDB memory access.
95 * @dump_state: Callback for dumping state.
96 * @dump_statistics: Callback for dumping statistics.
97 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
98 * @get_paging_enabled: Callback for inquiring whether paging is enabled.
99 * @get_memory_mapping: Callback for obtaining the memory mappings.
100 * @set_pc: Callback for setting the Program Counter register.
101 * @synchronize_from_tb: Callback for synchronizing state from a TCG
102 * #TranslationBlock.
103 * @handle_mmu_fault: Callback for handling an MMU fault.
104 * @get_phys_page_debug: Callback for obtaining a physical address.
105 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
106 * associated memory transaction attributes to use for the access.
107 * CPUs which use memory transaction attributes should implement this
108 * instead of get_phys_page_debug.
109 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
110 * a memory access with the specified memory transaction attributes.
111 * @gdb_read_register: Callback for letting GDB read a register.
112 * @gdb_write_register: Callback for letting GDB write a register.
113 * @debug_check_watchpoint: Callback: return true if the architectural
114 * watchpoint whose address has matched should really fire.
115 * @debug_excp_handler: Callback for handling debug exceptions.
116 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
117 * 64-bit VM coredump.
118 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
119 * note to a 32-bit VM coredump.
120 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
121 * 32-bit VM coredump.
122 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
123 * note to a 32-bit VM coredump.
124 * @vmsd: State description for migration.
125 * @gdb_num_core_regs: Number of core registers accessible to GDB.
126 * @gdb_core_xml_file: File name for core registers GDB XML description.
127 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
128 * before the insn which triggers a watchpoint rather than after it.
129 * @gdb_arch_name: Optional callback that returns the architecture name known
130 * to GDB. The caller must free the returned string with g_free.
131 * @cpu_exec_enter: Callback for cpu_exec preparation.
132 * @cpu_exec_exit: Callback for cpu_exec cleanup.
133 * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
134 * @disas_set_info: Setup architecture specific components of disassembly info
135 * @adjust_watchpoint_address: Perform a target-specific adjustment to an
136 * address before attempting to match it against watchpoints.
137 *
138 * Represents a CPU family or model.
139 */
140typedef struct CPUClass {
141 /*< private >*/
142 DeviceClass parent_class;
143 /*< public >*/
144
145 ObjectClass *(*class_by_name)(const char *cpu_model);
146 void (*parse_features)(const char *typename, char *str, Error **errp);
147
148 void (*reset)(CPUState *cpu);
149 int reset_dump_flags;
150 bool (*has_work)(CPUState *cpu);
151 void (*do_interrupt)(CPUState *cpu);
152 CPUUnassignedAccess do_unassigned_access;
153 void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
154 MMUAccessType access_type,
155 int mmu_idx, uintptr_t retaddr);
156 bool (*virtio_is_big_endian)(CPUState *cpu);
157 int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
158 uint8_t *buf, int len, bool is_write);
159 void (*dump_state)(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
160 int flags);
161 GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
162 void (*dump_statistics)(CPUState *cpu, FILE *f,
163 fprintf_function cpu_fprintf, int flags);
164 int64_t (*get_arch_id)(CPUState *cpu);
165 bool (*get_paging_enabled)(const CPUState *cpu);
166 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
167 Error **errp);
168 void (*set_pc)(CPUState *cpu, vaddr value);
169 void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
170 int (*handle_mmu_fault)(CPUState *cpu, vaddr address, int rw,
171 int mmu_index);
172 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
173 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
174 MemTxAttrs *attrs);
175 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
176 int (*gdb_read_register)(CPUState *cpu, uint8_t *buf, int reg);
177 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
178 bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
179 void (*debug_excp_handler)(CPUState *cpu);
180
181 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
182 int cpuid, void *opaque);
183 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
184 void *opaque);
185 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
186 int cpuid, void *opaque);
187 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
188 void *opaque);
189
190 const struct VMStateDescription *vmsd;
191 int gdb_num_core_regs;
192 const char *gdb_core_xml_file;
193 gchar * (*gdb_arch_name)(CPUState *cpu);
194 bool gdb_stop_before_watchpoint;
195
196 void (*cpu_exec_enter)(CPUState *cpu);
197 void (*cpu_exec_exit)(CPUState *cpu);
198 bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
199
200 void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
201 vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
202} CPUClass;
203
204#ifdef HOST_WORDS_BIGENDIAN
205typedef struct icount_decr_u16 {
206 uint16_t high;
207 uint16_t low;
208} icount_decr_u16;
209#else
210typedef struct icount_decr_u16 {
211 uint16_t low;
212 uint16_t high;
213} icount_decr_u16;
214#endif
215
216typedef struct CPUBreakpoint {
217 vaddr pc;
218 int flags; /* BP_* */
219 QTAILQ_ENTRY(CPUBreakpoint) entry;
220} CPUBreakpoint;
221
222struct CPUWatchpoint {
223 vaddr vaddr;
224 vaddr len;
225 vaddr hitaddr;
226 MemTxAttrs hitattrs;
227 int flags; /* BP_* */
228 QTAILQ_ENTRY(CPUWatchpoint) entry;
229};
230
231struct KVMState;
232struct kvm_run;
233
234struct hax_vcpu_state;
235
236#define TB_JMP_CACHE_BITS 12
237#define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
238
239/* work queue */
240
241/* The union type allows passing of 64 bit target pointers on 32 bit
242 * hosts in a single parameter
243 */
244typedef union {
245 int host_int;
246 unsigned long host_ulong;
247 void *host_ptr;
248 vaddr target_ptr;
249} run_on_cpu_data;
250
251#define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)})
252#define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)})
253#define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
254#define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)})
255#define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL)
256
257typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
258
259struct qemu_work_item;
260
261#define CPU_UNSET_NUMA_NODE_ID -1
262
263/**
264 * CPUState:
265 * @cpu_index: CPU index (informative).
266 * @nr_cores: Number of cores within this CPU package.
267 * @nr_threads: Number of threads within this CPU.
268 * @host_tid: Host thread ID.
269 * @running: #true if CPU is currently running (lockless).
270 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
271 * valid under cpu_list_lock.
272 * @created: Indicates whether the CPU thread has been successfully created.
273 * @interrupt_request: Indicates a pending interrupt request.
274 * @halted: Nonzero if the CPU is in suspended state.
275 * @stop: Indicates a pending stop request.
276 * @stopped: Indicates the CPU has been artificially stopped.
277 * @unplug: Indicates a pending CPU unplug request.
278 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
279 * @singlestep_enabled: Flags for single-stepping.
280 * @icount_extra: Instructions until next timer event.
281 * @icount_decr: Low 16 bits: number of cycles left, only used in icount mode.
282 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs for this
283 * CPU and return to its top level loop (even in non-icount mode).
284 * This allows a single read-compare-cbranch-write sequence to test
285 * for both decrementer underflow and exceptions.
286 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
287 * requires that IO only be performed on the last instruction of a TB
288 * so that interrupts take effect immediately.
289 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
290 * AddressSpaces this CPU has)
291 * @num_ases: number of CPUAddressSpaces in @cpu_ases
292 * @as: Pointer to the first AddressSpace, for the convenience of targets which
293 * only have a single AddressSpace
294 * @env_ptr: Pointer to subclass-specific CPUArchState field.
295 * @gdb_regs: Additional GDB registers.
296 * @gdb_num_regs: Number of total registers accessible to GDB.
297 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
298 * @next_cpu: Next CPU sharing TB cache.
299 * @opaque: User data.
300 * @mem_io_pc: Host Program Counter at which the memory was accessed.
301 * @mem_io_vaddr: Target virtual address at which the memory was accessed.
302 * @kvm_fd: vCPU file descriptor for KVM.
303 * @work_mutex: Lock to prevent multiple access to queued_work_*.
304 * @queued_work_first: First asynchronous work pending.
305 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
306 *
307 * State of one CPU core or thread.
308 */
309struct CPUState {
310 /*< private >*/
311 DeviceState parent_obj;
312 /*< public >*/
313
314 int nr_cores;
315 int nr_threads;
316
317 struct QemuThread *thread;
318#ifdef _WIN32
319 HANDLE hThread;
320#endif
321 int thread_id;
322 uint32_t host_tid;
323 bool running, has_waiter;
324 struct QemuCond *halt_cond;
325 bool thread_kicked;
326 bool created;
327 bool stop;
328 bool stopped;
329 bool unplug;
330 bool crash_occurred;
331 bool exit_request;
332 /* updates protected by BQL */
333 uint32_t interrupt_request;
334 int singlestep_enabled;
335 int64_t icount_budget;
336 int64_t icount_extra;
337 sigjmp_buf jmp_env;
338
339 QemuMutex work_mutex;
340 struct qemu_work_item *queued_work_first, *queued_work_last;
341
342 CPUAddressSpace *cpu_ases;
343 int num_ases;
344 AddressSpace *as;
345 MemoryRegion *memory;
346
347 void *env_ptr; /* CPUArchState */
348
349 /* Accessed in parallel; all accesses must be atomic */
350 struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
351
352 struct GDBRegisterState *gdb_regs;
353 int gdb_num_regs;
354 int gdb_num_g_regs;
355 QTAILQ_ENTRY(CPUState) node;
356
357 /* ice debug support */
358 QTAILQ_HEAD(breakpoints_head, CPUBreakpoint) breakpoints;
359
360 QTAILQ_HEAD(watchpoints_head, CPUWatchpoint) watchpoints;
361 CPUWatchpoint *watchpoint_hit;
362
363 void *opaque;
364
365 /* In order to avoid passing too many arguments to the MMIO helpers,
366 * we store some rarely used information in the CPU context.
367 */
368 uintptr_t mem_io_pc;
369 vaddr mem_io_vaddr;
370
371 int kvm_fd;
372 bool kvm_vcpu_dirty;
373 struct KVMState *kvm_state;
374 struct kvm_run *kvm_run;
375
376 /*
377 * Used for events with 'vcpu' and *without* the 'disabled' properties.
378 * Dynamically allocated based on bitmap requried to hold up to
379 * trace_get_vcpu_event_count() entries.
380 */
381 unsigned long *trace_dstate;
382
383 /* TODO Move common fields from CPUArchState here. */
384 int cpu_index; /* used by alpha TCG */
385 uint32_t halted; /* used by alpha, cris, ppc TCG */
386 uint32_t can_do_io;
387 int32_t exception_index; /* used by m68k TCG */
388
389 /* Used to keep track of an outstanding cpu throttle thread for migration
390 * autoconverge
391 */
392 bool throttle_thread_scheduled;
393
394 /* Note that this is accessed at the start of every TB via a negative
395 offset from AREG0. Leave this field at the end so as to make the
396 (absolute value) offset as small as possible. This reduces code
397 size, especially for hosts without large memory offsets. */
398 union {
399 uint32_t u32;
400 icount_decr_u16 u16;
401 } icount_decr;
402
403 bool hax_vcpu_dirty;
404 struct hax_vcpu_state *hax_vcpu;
405
406 /* The pending_tlb_flush flag is set and cleared atomically to
407 * avoid potential races. The aim of the flag is to avoid
408 * unnecessary flushes.
409 */
410 uint16_t pending_tlb_flush;
411};
412
413QTAILQ_HEAD(CPUTailQ, CPUState);
414extern struct CPUTailQ cpus;
415#define CPU_NEXT(cpu) QTAILQ_NEXT(cpu, node)
416#define CPU_FOREACH(cpu) QTAILQ_FOREACH(cpu, &cpus, node)
417#define CPU_FOREACH_SAFE(cpu, next_cpu) \
418 QTAILQ_FOREACH_SAFE(cpu, &cpus, node, next_cpu)
419#define CPU_FOREACH_REVERSE(cpu) \
420 QTAILQ_FOREACH_REVERSE(cpu, &cpus, CPUTailQ, node)
421#define first_cpu QTAILQ_FIRST(&cpus)
422
423extern __thread CPUState *current_cpu;
424
425static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
426{
427 unsigned int i;
428
429 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
430 atomic_set(&cpu->tb_jmp_cache[i], NULL);
431 }
432}
433
434/**
435 * qemu_tcg_mttcg_enabled:
436 * Check whether we are running MultiThread TCG or not.
437 *
438 * Returns: %true if we are in MTTCG mode %false otherwise.
439 */
440extern bool mttcg_enabled;
441#define qemu_tcg_mttcg_enabled() (mttcg_enabled)
442
443/**
444 * cpu_paging_enabled:
445 * @cpu: The CPU whose state is to be inspected.
446 *
447 * Returns: %true if paging is enabled, %false otherwise.
448 */
449bool cpu_paging_enabled(const CPUState *cpu);
450
451/**
452 * cpu_get_memory_mapping:
453 * @cpu: The CPU whose memory mappings are to be obtained.
454 * @list: Where to write the memory mappings to.
455 * @errp: Pointer for reporting an #Error.
456 */
457void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
458 Error **errp);
459
460/**
461 * cpu_write_elf64_note:
462 * @f: pointer to a function that writes memory to a file
463 * @cpu: The CPU whose memory is to be dumped
464 * @cpuid: ID number of the CPU
465 * @opaque: pointer to the CPUState struct
466 */
467int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
468 int cpuid, void *opaque);
469
470/**
471 * cpu_write_elf64_qemunote:
472 * @f: pointer to a function that writes memory to a file
473 * @cpu: The CPU whose memory is to be dumped
474 * @cpuid: ID number of the CPU
475 * @opaque: pointer to the CPUState struct
476 */
477int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
478 void *opaque);
479
480/**
481 * cpu_write_elf32_note:
482 * @f: pointer to a function that writes memory to a file
483 * @cpu: The CPU whose memory is to be dumped
484 * @cpuid: ID number of the CPU
485 * @opaque: pointer to the CPUState struct
486 */
487int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
488 int cpuid, void *opaque);
489
490/**
491 * cpu_write_elf32_qemunote:
492 * @f: pointer to a function that writes memory to a file
493 * @cpu: The CPU whose memory is to be dumped
494 * @cpuid: ID number of the CPU
495 * @opaque: pointer to the CPUState struct
496 */
497int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
498 void *opaque);
499
500/**
501 * cpu_get_crash_info:
502 * @cpu: The CPU to get crash information for
503 *
504 * Gets the previously saved crash information.
505 * Caller is responsible for freeing the data.
506 */
507GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
508
509/**
510 * CPUDumpFlags:
511 * @CPU_DUMP_CODE:
512 * @CPU_DUMP_FPU: dump FPU register state, not just integer
513 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
514 */
515enum CPUDumpFlags {
516 CPU_DUMP_CODE = 0x00010000,
517 CPU_DUMP_FPU = 0x00020000,
518 CPU_DUMP_CCOP = 0x00040000,
519};
520
521/**
522 * cpu_dump_state:
523 * @cpu: The CPU whose state is to be dumped.
524 * @f: File to dump to.
525 * @cpu_fprintf: Function to dump with.
526 * @flags: Flags what to dump.
527 *
528 * Dumps CPU state.
529 */
530void cpu_dump_state(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
531 int flags);
532
533/**
534 * cpu_dump_statistics:
535 * @cpu: The CPU whose state is to be dumped.
536 * @f: File to dump to.
537 * @cpu_fprintf: Function to dump with.
538 * @flags: Flags what to dump.
539 *
540 * Dumps CPU statistics.
541 */
542void cpu_dump_statistics(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
543 int flags);
544
545#ifndef CONFIG_USER_ONLY
546/**
547 * cpu_get_phys_page_attrs_debug:
548 * @cpu: The CPU to obtain the physical page address for.
549 * @addr: The virtual address.
550 * @attrs: Updated on return with the memory transaction attributes to use
551 * for this access.
552 *
553 * Obtains the physical page corresponding to a virtual one, together
554 * with the corresponding memory transaction attributes to use for the access.
555 * Use it only for debugging because no protection checks are done.
556 *
557 * Returns: Corresponding physical page address or -1 if no page found.
558 */
559static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
560 MemTxAttrs *attrs)
561{
562 CPUClass *cc = CPU_GET_CLASS(cpu);
563
564 if (cc->get_phys_page_attrs_debug) {
565 return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
566 }
567 /* Fallback for CPUs which don't implement the _attrs_ hook */
568 *attrs = MEMTXATTRS_UNSPECIFIED;
569 return cc->get_phys_page_debug(cpu, addr);
570}
571
572/**
573 * cpu_get_phys_page_debug:
574 * @cpu: The CPU to obtain the physical page address for.
575 * @addr: The virtual address.
576 *
577 * Obtains the physical page corresponding to a virtual one.
578 * Use it only for debugging because no protection checks are done.
579 *
580 * Returns: Corresponding physical page address or -1 if no page found.
581 */
582static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
583{
584 MemTxAttrs attrs = {};
585
586 return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
587}
588
589/** cpu_asidx_from_attrs:
590 * @cpu: CPU
591 * @attrs: memory transaction attributes
592 *
593 * Returns the address space index specifying the CPU AddressSpace
594 * to use for a memory access with the given transaction attributes.
595 */
596static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
597{
598 CPUClass *cc = CPU_GET_CLASS(cpu);
599
600 if (cc->asidx_from_attrs) {
601 return cc->asidx_from_attrs(cpu, attrs);
602 }
603 return 0;
604}
605#endif
606
607/**
608 * cpu_list_add:
609 * @cpu: The CPU to be added to the list of CPUs.
610 */
611void cpu_list_add(CPUState *cpu);
612
613/**
614 * cpu_list_remove:
615 * @cpu: The CPU to be removed from the list of CPUs.
616 */
617void cpu_list_remove(CPUState *cpu);
618
619/**
620 * cpu_reset:
621 * @cpu: The CPU whose state is to be reset.
622 */
623void cpu_reset(CPUState *cpu);
624
625/**
626 * cpu_class_by_name:
627 * @typename: The CPU base type.
628 * @cpu_model: The model string without any parameters.
629 *
630 * Looks up a CPU #ObjectClass matching name @cpu_model.
631 *
632 * Returns: A #CPUClass or %NULL if not matching class is found.
633 */
634ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
635
636/**
637 * cpu_generic_init:
638 * @typename: The CPU base type.
639 * @cpu_model: The model string including optional parameters.
640 *
641 * Instantiates a CPU, processes optional parameters and realizes the CPU.
642 *
643 * Returns: A #CPUState or %NULL if an error occurred.
644 */
645CPUState *cpu_generic_init(const char *typename, const char *cpu_model);
646
647/**
648 * cpu_has_work:
649 * @cpu: The vCPU to check.
650 *
651 * Checks whether the CPU has work to do.
652 *
653 * Returns: %true if the CPU has work, %false otherwise.
654 */
655static inline bool cpu_has_work(CPUState *cpu)
656{
657 CPUClass *cc = CPU_GET_CLASS(cpu);
658
659 g_assert(cc->has_work);
660 return cc->has_work(cpu);
661}
662
663/**
664 * qemu_cpu_is_self:
665 * @cpu: The vCPU to check against.
666 *
667 * Checks whether the caller is executing on the vCPU thread.
668 *
669 * Returns: %true if called from @cpu's thread, %false otherwise.
670 */
671bool qemu_cpu_is_self(CPUState *cpu);
672
673/**
674 * qemu_cpu_kick:
675 * @cpu: The vCPU to kick.
676 *
677 * Kicks @cpu's thread.
678 */
679void qemu_cpu_kick(CPUState *cpu);
680
681/**
682 * cpu_is_stopped:
683 * @cpu: The CPU to check.
684 *
685 * Checks whether the CPU is stopped.
686 *
687 * Returns: %true if run state is not running or if artificially stopped;
688 * %false otherwise.
689 */
690bool cpu_is_stopped(CPUState *cpu);
691
692/**
693 * do_run_on_cpu:
694 * @cpu: The vCPU to run on.
695 * @func: The function to be executed.
696 * @data: Data to pass to the function.
697 * @mutex: Mutex to release while waiting for @func to run.
698 *
699 * Used internally in the implementation of run_on_cpu.
700 */
701void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
702 QemuMutex *mutex);
703
704/**
705 * run_on_cpu:
706 * @cpu: The vCPU to run on.
707 * @func: The function to be executed.
708 * @data: Data to pass to the function.
709 *
710 * Schedules the function @func for execution on the vCPU @cpu.
711 */
712void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
713
714/**
715 * async_run_on_cpu:
716 * @cpu: The vCPU to run on.
717 * @func: The function to be executed.
718 * @data: Data to pass to the function.
719 *
720 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
721 */
722void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
723
724/**
725 * async_safe_run_on_cpu:
726 * @cpu: The vCPU to run on.
727 * @func: The function to be executed.
728 * @data: Data to pass to the function.
729 *
730 * Schedules the function @func for execution on the vCPU @cpu asynchronously,
731 * while all other vCPUs are sleeping.
732 *
733 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
734 * BQL.
735 */
736void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
737
738/**
739 * qemu_get_cpu:
740 * @index: The CPUState@cpu_index value of the CPU to obtain.
741 *
742 * Gets a CPU matching @index.
743 *
744 * Returns: The CPU or %NULL if there is no matching CPU.
745 */
746CPUState *qemu_get_cpu(int index);
747
748/**
749 * cpu_exists:
750 * @id: Guest-exposed CPU ID to lookup.
751 *
752 * Search for CPU with specified ID.
753 *
754 * Returns: %true - CPU is found, %false - CPU isn't found.
755 */
756bool cpu_exists(int64_t id);
757
758/**
759 * cpu_throttle_set:
760 * @new_throttle_pct: Percent of sleep time. Valid range is 1 to 99.
761 *
762 * Throttles all vcpus by forcing them to sleep for the given percentage of
763 * time. A throttle_percentage of 25 corresponds to a 75% duty cycle roughly.
764 * (example: 10ms sleep for every 30ms awake).
765 *
766 * cpu_throttle_set can be called as needed to adjust new_throttle_pct.
767 * Once the throttling starts, it will remain in effect until cpu_throttle_stop
768 * is called.
769 */
770void cpu_throttle_set(int new_throttle_pct);
771
772/**
773 * cpu_throttle_stop:
774 *
775 * Stops the vcpu throttling started by cpu_throttle_set.
776 */
777void cpu_throttle_stop(void);
778
779/**
780 * cpu_throttle_active:
781 *
782 * Returns: %true if the vcpus are currently being throttled, %false otherwise.
783 */
784bool cpu_throttle_active(void);
785
786/**
787 * cpu_throttle_get_percentage:
788 *
789 * Returns the vcpu throttle percentage. See cpu_throttle_set for details.
790 *
791 * Returns: The throttle percentage in range 1 to 99.
792 */
793int cpu_throttle_get_percentage(void);
794
795#ifndef CONFIG_USER_ONLY
796
797typedef void (*CPUInterruptHandler)(CPUState *, int);
798
799extern CPUInterruptHandler cpu_interrupt_handler;
800
801/**
802 * cpu_interrupt:
803 * @cpu: The CPU to set an interrupt on.
804 * @mask: The interupts to set.
805 *
806 * Invokes the interrupt handler.
807 */
808static inline void cpu_interrupt(CPUState *cpu, int mask)
809{
810 cpu_interrupt_handler(cpu, mask);
811}
812
813#else /* USER_ONLY */
814
815void cpu_interrupt(CPUState *cpu, int mask);
816
817#endif /* USER_ONLY */
818
819#ifdef CONFIG_SOFTMMU
820static inline void cpu_unassigned_access(CPUState *cpu, hwaddr addr,
821 bool is_write, bool is_exec,
822 int opaque, unsigned size)
823{
824 CPUClass *cc = CPU_GET_CLASS(cpu);
825
826 if (cc->do_unassigned_access) {
827 cc->do_unassigned_access(cpu, addr, is_write, is_exec, opaque, size);
828 }
829}
830
831static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
832 MMUAccessType access_type,
833 int mmu_idx, uintptr_t retaddr)
834{
835 CPUClass *cc = CPU_GET_CLASS(cpu);
836
837 cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
838}
839#endif
840
841/**
842 * cpu_set_pc:
843 * @cpu: The CPU to set the program counter for.
844 * @addr: Program counter value.
845 *
846 * Sets the program counter for a CPU.
847 */
848static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
849{
850 CPUClass *cc = CPU_GET_CLASS(cpu);
851
852 cc->set_pc(cpu, addr);
853}
854
855/**
856 * cpu_reset_interrupt:
857 * @cpu: The CPU to clear the interrupt on.
858 * @mask: The interrupt mask to clear.
859 *
860 * Resets interrupts on the vCPU @cpu.
861 */
862void cpu_reset_interrupt(CPUState *cpu, int mask);
863
864/**
865 * cpu_exit:
866 * @cpu: The CPU to exit.
867 *
868 * Requests the CPU @cpu to exit execution.
869 */
870void cpu_exit(CPUState *cpu);
871
872/**
873 * cpu_resume:
874 * @cpu: The CPU to resume.
875 *
876 * Resumes CPU, i.e. puts CPU into runnable state.
877 */
878void cpu_resume(CPUState *cpu);
879
880/**
881 * cpu_remove:
882 * @cpu: The CPU to remove.
883 *
884 * Requests the CPU to be removed.
885 */
886void cpu_remove(CPUState *cpu);
887
888 /**
889 * cpu_remove_sync:
890 * @cpu: The CPU to remove.
891 *
892 * Requests the CPU to be removed and waits till it is removed.
893 */
894void cpu_remove_sync(CPUState *cpu);
895
896/**
897 * process_queued_cpu_work() - process all items on CPU work queue
898 * @cpu: The CPU which work queue to process.
899 */
900void process_queued_cpu_work(CPUState *cpu);
901
902/**
903 * cpu_exec_start:
904 * @cpu: The CPU for the current thread.
905 *
906 * Record that a CPU has started execution and can be interrupted with
907 * cpu_exit.
908 */
909void cpu_exec_start(CPUState *cpu);
910
911/**
912 * cpu_exec_end:
913 * @cpu: The CPU for the current thread.
914 *
915 * Record that a CPU has stopped execution and exclusive sections
916 * can be executed without interrupting it.
917 */
918void cpu_exec_end(CPUState *cpu);
919
920/**
921 * start_exclusive:
922 *
923 * Wait for a concurrent exclusive section to end, and then start
924 * a section of work that is run while other CPUs are not running
925 * between cpu_exec_start and cpu_exec_end. CPUs that are running
926 * cpu_exec are exited immediately. CPUs that call cpu_exec_start
927 * during the exclusive section go to sleep until this CPU calls
928 * end_exclusive.
929 */
930void start_exclusive(void);
931
932/**
933 * end_exclusive:
934 *
935 * Concludes an exclusive execution section started by start_exclusive.
936 */
937void end_exclusive(void);
938
939/**
940 * qemu_init_vcpu:
941 * @cpu: The vCPU to initialize.
942 *
943 * Initializes a vCPU.
944 */
945void qemu_init_vcpu(CPUState *cpu);
946
947#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
948#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
949#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
950
951/**
952 * cpu_single_step:
953 * @cpu: CPU to the flags for.
954 * @enabled: Flags to enable.
955 *
956 * Enables or disables single-stepping for @cpu.
957 */
958void cpu_single_step(CPUState *cpu, int enabled);
959
960/* Breakpoint/watchpoint flags */
961#define BP_MEM_READ 0x01
962#define BP_MEM_WRITE 0x02
963#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
964#define BP_STOP_BEFORE_ACCESS 0x04
965/* 0x08 currently unused */
966#define BP_GDB 0x10
967#define BP_CPU 0x20
968#define BP_ANY (BP_GDB | BP_CPU)
969#define BP_WATCHPOINT_HIT_READ 0x40
970#define BP_WATCHPOINT_HIT_WRITE 0x80
971#define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
972
973int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
974 CPUBreakpoint **breakpoint);
975int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
976void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
977void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
978
979/* Return true if PC matches an installed breakpoint. */
980static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
981{
982 CPUBreakpoint *bp;
983
984 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
985 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
986 if (bp->pc == pc && (bp->flags & mask)) {
987 return true;
988 }
989 }
990 }
991 return false;
992}
993
994int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
995 int flags, CPUWatchpoint **watchpoint);
996int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
997 vaddr len, int flags);
998void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
999void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1000
1001/**
1002 * cpu_get_address_space:
1003 * @cpu: CPU to get address space from
1004 * @asidx: index identifying which address space to get
1005 *
1006 * Return the requested address space of this CPU. @asidx
1007 * specifies which address space to read.
1008 */
1009AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1010
1011void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1012 GCC_FMT_ATTR(2, 3);
1013void cpu_exec_initfn(CPUState *cpu);
1014void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1015void cpu_exec_unrealizefn(CPUState *cpu);
1016
1017#ifdef CONFIG_SOFTMMU
1018extern const struct VMStateDescription vmstate_cpu_common;
1019#else
1020#define vmstate_cpu_common vmstate_dummy
1021#endif
1022
1023#define VMSTATE_CPU() { \
1024 .name = "parent_obj", \
1025 .size = sizeof(CPUState), \
1026 .vmsd = &vmstate_cpu_common, \
1027 .flags = VMS_STRUCT, \
1028 .offset = 0, \
1029}
1030
1031#define UNASSIGNED_CPU_INDEX -1
1032
1033#endif
This page took 0.035384 seconds and 4 git commands to generate.