]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * General purpose implementation of a simple periodic countdown timer. | |
3 | * | |
4 | * Copyright (c) 2007 CodeSourcery. | |
5 | * | |
6 | * This code is licensed under the GNU LGPL. | |
7 | */ | |
8 | #include "qemu/osdep.h" | |
9 | #include "hw/hw.h" | |
10 | #include "qemu/timer.h" | |
11 | #include "hw/ptimer.h" | |
12 | #include "qemu/host-utils.h" | |
13 | #include "sysemu/replay.h" | |
14 | #include "sysemu/qtest.h" | |
15 | #include "block/aio.h" | |
16 | #include "sysemu/cpus.h" | |
17 | ||
18 | #define DELTA_ADJUST 1 | |
19 | #define DELTA_NO_ADJUST -1 | |
20 | ||
21 | struct ptimer_state | |
22 | { | |
23 | uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */ | |
24 | uint64_t limit; | |
25 | uint64_t delta; | |
26 | uint32_t period_frac; | |
27 | int64_t period; | |
28 | int64_t last_event; | |
29 | int64_t next_event; | |
30 | uint8_t policy_mask; | |
31 | QEMUBH *bh; | |
32 | QEMUTimer *timer; | |
33 | }; | |
34 | ||
35 | /* Use a bottom-half routine to avoid reentrancy issues. */ | |
36 | static void ptimer_trigger(ptimer_state *s) | |
37 | { | |
38 | if (s->bh) { | |
39 | replay_bh_schedule_event(s->bh); | |
40 | } | |
41 | } | |
42 | ||
43 | static void ptimer_reload(ptimer_state *s, int delta_adjust) | |
44 | { | |
45 | uint32_t period_frac = s->period_frac; | |
46 | uint64_t period = s->period; | |
47 | uint64_t delta = s->delta; | |
48 | bool suppress_trigger = false; | |
49 | ||
50 | /* | |
51 | * Note that if delta_adjust is 0 then we must be here because of | |
52 | * a count register write or timer start, not because of timer expiry. | |
53 | * In that case the policy might require us to suppress the timer trigger | |
54 | * that we would otherwise generate for a zero delta. | |
55 | */ | |
56 | if (delta_adjust == 0 && | |
57 | (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) { | |
58 | suppress_trigger = true; | |
59 | } | |
60 | if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER) | |
61 | && !suppress_trigger) { | |
62 | ptimer_trigger(s); | |
63 | } | |
64 | ||
65 | if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) { | |
66 | delta = s->delta = s->limit; | |
67 | } | |
68 | ||
69 | if (s->period == 0) { | |
70 | if (!qtest_enabled()) { | |
71 | fprintf(stderr, "Timer with period zero, disabling\n"); | |
72 | } | |
73 | timer_del(s->timer); | |
74 | s->enabled = 0; | |
75 | return; | |
76 | } | |
77 | ||
78 | if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) { | |
79 | if (delta_adjust != DELTA_NO_ADJUST) { | |
80 | delta += delta_adjust; | |
81 | } | |
82 | } | |
83 | ||
84 | if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) { | |
85 | if (s->enabled == 1 && s->limit == 0) { | |
86 | delta = 1; | |
87 | } | |
88 | } | |
89 | ||
90 | if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { | |
91 | if (delta_adjust != DELTA_NO_ADJUST) { | |
92 | delta = 1; | |
93 | } | |
94 | } | |
95 | ||
96 | if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) { | |
97 | if (s->enabled == 1 && s->limit != 0) { | |
98 | delta = 1; | |
99 | } | |
100 | } | |
101 | ||
102 | if (delta == 0) { | |
103 | if (!qtest_enabled()) { | |
104 | fprintf(stderr, "Timer with delta zero, disabling\n"); | |
105 | } | |
106 | timer_del(s->timer); | |
107 | s->enabled = 0; | |
108 | return; | |
109 | } | |
110 | ||
111 | /* | |
112 | * Artificially limit timeout rate to something | |
113 | * achievable under QEMU. Otherwise, QEMU spends all | |
114 | * its time generating timer interrupts, and there | |
115 | * is no forward progress. | |
116 | * About ten microseconds is the fastest that really works | |
117 | * on the current generation of host machines. | |
118 | */ | |
119 | ||
120 | if (s->enabled == 1 && (delta * period < 10000) && !use_icount) { | |
121 | period = 10000 / delta; | |
122 | period_frac = 0; | |
123 | } | |
124 | ||
125 | s->last_event = s->next_event; | |
126 | s->next_event = s->last_event + delta * period; | |
127 | if (period_frac) { | |
128 | s->next_event += ((int64_t)period_frac * delta) >> 32; | |
129 | } | |
130 | timer_mod(s->timer, s->next_event); | |
131 | } | |
132 | ||
133 | static void ptimer_tick(void *opaque) | |
134 | { | |
135 | ptimer_state *s = (ptimer_state *)opaque; | |
136 | bool trigger = true; | |
137 | ||
138 | if (s->enabled == 2) { | |
139 | s->delta = 0; | |
140 | s->enabled = 0; | |
141 | } else { | |
142 | int delta_adjust = DELTA_ADJUST; | |
143 | ||
144 | if (s->delta == 0 || s->limit == 0) { | |
145 | /* If a "continuous trigger" policy is not used and limit == 0, | |
146 | we should error out. delta == 0 means that this tick is | |
147 | caused by a "no immediate reload" policy, so it shouldn't | |
148 | be adjusted. */ | |
149 | delta_adjust = DELTA_NO_ADJUST; | |
150 | } | |
151 | ||
152 | if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { | |
153 | /* Avoid re-trigger on deferred reload if "no immediate trigger" | |
154 | policy isn't used. */ | |
155 | trigger = (delta_adjust == DELTA_ADJUST); | |
156 | } | |
157 | ||
158 | s->delta = s->limit; | |
159 | ||
160 | ptimer_reload(s, delta_adjust); | |
161 | } | |
162 | ||
163 | if (trigger) { | |
164 | ptimer_trigger(s); | |
165 | } | |
166 | } | |
167 | ||
168 | uint64_t ptimer_get_count(ptimer_state *s) | |
169 | { | |
170 | uint64_t counter; | |
171 | ||
172 | if (s->enabled && s->delta != 0) { | |
173 | int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | |
174 | int64_t next = s->next_event; | |
175 | int64_t last = s->last_event; | |
176 | bool expired = (now - next >= 0); | |
177 | bool oneshot = (s->enabled == 2); | |
178 | ||
179 | /* Figure out the current counter value. */ | |
180 | if (expired) { | |
181 | /* Prevent timer underflowing if it should already have | |
182 | triggered. */ | |
183 | counter = 0; | |
184 | } else { | |
185 | uint64_t rem; | |
186 | uint64_t div; | |
187 | int clz1, clz2; | |
188 | int shift; | |
189 | uint32_t period_frac = s->period_frac; | |
190 | uint64_t period = s->period; | |
191 | ||
192 | if (!oneshot && (s->delta * period < 10000) && !use_icount) { | |
193 | period = 10000 / s->delta; | |
194 | period_frac = 0; | |
195 | } | |
196 | ||
197 | /* We need to divide time by period, where time is stored in | |
198 | rem (64-bit integer) and period is stored in period/period_frac | |
199 | (64.32 fixed point). | |
200 | ||
201 | Doing full precision division is hard, so scale values and | |
202 | do a 64-bit division. The result should be rounded down, | |
203 | so that the rounding error never causes the timer to go | |
204 | backwards. | |
205 | */ | |
206 | ||
207 | rem = next - now; | |
208 | div = period; | |
209 | ||
210 | clz1 = clz64(rem); | |
211 | clz2 = clz64(div); | |
212 | shift = clz1 < clz2 ? clz1 : clz2; | |
213 | ||
214 | rem <<= shift; | |
215 | div <<= shift; | |
216 | if (shift >= 32) { | |
217 | div |= ((uint64_t)period_frac << (shift - 32)); | |
218 | } else { | |
219 | if (shift != 0) | |
220 | div |= (period_frac >> (32 - shift)); | |
221 | /* Look at remaining bits of period_frac and round div up if | |
222 | necessary. */ | |
223 | if ((uint32_t)(period_frac << shift)) | |
224 | div += 1; | |
225 | } | |
226 | counter = rem / div; | |
227 | ||
228 | if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) { | |
229 | /* Before wrapping around, timer should stay with counter = 0 | |
230 | for a one period. */ | |
231 | if (!oneshot && s->delta == s->limit) { | |
232 | if (now == last) { | |
233 | /* Counter == delta here, check whether it was | |
234 | adjusted and if it was, then right now it is | |
235 | that "one period". */ | |
236 | if (counter == s->limit + DELTA_ADJUST) { | |
237 | return 0; | |
238 | } | |
239 | } else if (counter == s->limit) { | |
240 | /* Since the counter is rounded down and now != last, | |
241 | the counter == limit means that delta was adjusted | |
242 | by +1 and right now it is that adjusted period. */ | |
243 | return 0; | |
244 | } | |
245 | } | |
246 | } | |
247 | } | |
248 | ||
249 | if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) { | |
250 | /* If now == last then delta == limit, i.e. the counter already | |
251 | represents the correct value. It would be rounded down a 1ns | |
252 | later. */ | |
253 | if (now != last) { | |
254 | counter += 1; | |
255 | } | |
256 | } | |
257 | } else { | |
258 | counter = s->delta; | |
259 | } | |
260 | return counter; | |
261 | } | |
262 | ||
263 | void ptimer_set_count(ptimer_state *s, uint64_t count) | |
264 | { | |
265 | s->delta = count; | |
266 | if (s->enabled) { | |
267 | s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | |
268 | ptimer_reload(s, 0); | |
269 | } | |
270 | } | |
271 | ||
272 | void ptimer_run(ptimer_state *s, int oneshot) | |
273 | { | |
274 | bool was_disabled = !s->enabled; | |
275 | ||
276 | if (was_disabled && s->period == 0) { | |
277 | if (!qtest_enabled()) { | |
278 | fprintf(stderr, "Timer with period zero, disabling\n"); | |
279 | } | |
280 | return; | |
281 | } | |
282 | s->enabled = oneshot ? 2 : 1; | |
283 | if (was_disabled) { | |
284 | s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | |
285 | ptimer_reload(s, 0); | |
286 | } | |
287 | } | |
288 | ||
289 | /* Pause a timer. Note that this may cause it to "lose" time, even if it | |
290 | is immediately restarted. */ | |
291 | void ptimer_stop(ptimer_state *s) | |
292 | { | |
293 | if (!s->enabled) | |
294 | return; | |
295 | ||
296 | s->delta = ptimer_get_count(s); | |
297 | timer_del(s->timer); | |
298 | s->enabled = 0; | |
299 | } | |
300 | ||
301 | /* Set counter increment interval in nanoseconds. */ | |
302 | void ptimer_set_period(ptimer_state *s, int64_t period) | |
303 | { | |
304 | s->delta = ptimer_get_count(s); | |
305 | s->period = period; | |
306 | s->period_frac = 0; | |
307 | if (s->enabled) { | |
308 | s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | |
309 | ptimer_reload(s, 0); | |
310 | } | |
311 | } | |
312 | ||
313 | /* Set counter frequency in Hz. */ | |
314 | void ptimer_set_freq(ptimer_state *s, uint32_t freq) | |
315 | { | |
316 | s->delta = ptimer_get_count(s); | |
317 | s->period = 1000000000ll / freq; | |
318 | s->period_frac = (1000000000ll << 32) / freq; | |
319 | if (s->enabled) { | |
320 | s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | |
321 | ptimer_reload(s, 0); | |
322 | } | |
323 | } | |
324 | ||
325 | /* Set the initial countdown value. If reload is nonzero then also set | |
326 | count = limit. */ | |
327 | void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload) | |
328 | { | |
329 | s->limit = limit; | |
330 | if (reload) | |
331 | s->delta = limit; | |
332 | if (s->enabled && reload) { | |
333 | s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | |
334 | ptimer_reload(s, 0); | |
335 | } | |
336 | } | |
337 | ||
338 | uint64_t ptimer_get_limit(ptimer_state *s) | |
339 | { | |
340 | return s->limit; | |
341 | } | |
342 | ||
343 | const VMStateDescription vmstate_ptimer = { | |
344 | .name = "ptimer", | |
345 | .version_id = 1, | |
346 | .minimum_version_id = 1, | |
347 | .fields = (VMStateField[]) { | |
348 | VMSTATE_UINT8(enabled, ptimer_state), | |
349 | VMSTATE_UINT64(limit, ptimer_state), | |
350 | VMSTATE_UINT64(delta, ptimer_state), | |
351 | VMSTATE_UINT32(period_frac, ptimer_state), | |
352 | VMSTATE_INT64(period, ptimer_state), | |
353 | VMSTATE_INT64(last_event, ptimer_state), | |
354 | VMSTATE_INT64(next_event, ptimer_state), | |
355 | VMSTATE_TIMER_PTR(timer, ptimer_state), | |
356 | VMSTATE_END_OF_LIST() | |
357 | } | |
358 | }; | |
359 | ||
360 | ptimer_state *ptimer_init(QEMUBH *bh, uint8_t policy_mask) | |
361 | { | |
362 | ptimer_state *s; | |
363 | ||
364 | s = (ptimer_state *)g_malloc0(sizeof(ptimer_state)); | |
365 | s->bh = bh; | |
366 | s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s); | |
367 | s->policy_mask = policy_mask; | |
368 | ||
369 | /* | |
370 | * These two policies are incompatible -- trigger-on-decrement implies | |
371 | * a timer trigger when the count becomes 0, but no-immediate-trigger | |
372 | * implies a trigger when the count stops being 0. | |
373 | */ | |
374 | assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) && | |
375 | (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER))); | |
376 | return s; | |
377 | } | |
378 | ||
379 | void ptimer_free(ptimer_state *s) | |
380 | { | |
381 | qemu_bh_delete(s->bh); | |
382 | timer_free(s->timer); | |
383 | g_free(s); | |
384 | } |