]> Git Repo - qemu.git/blame_incremental - include/qom/cpu.h
cpus: move icount preparation out of tcg_exec_cpu
[qemu.git] / include / qom / cpu.h
... / ...
CommitLineData
1/*
2 * QEMU CPU model
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20#ifndef QEMU_CPU_H
21#define QEMU_CPU_H
22
23#include "hw/qdev-core.h"
24#include "disas/bfd.h"
25#include "exec/hwaddr.h"
26#include "exec/memattrs.h"
27#include "qemu/bitmap.h"
28#include "qemu/queue.h"
29#include "qemu/thread.h"
30
31typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
32 void *opaque);
33
34/**
35 * vaddr:
36 * Type wide enough to contain any #target_ulong virtual address.
37 */
38typedef uint64_t vaddr;
39#define VADDR_PRId PRId64
40#define VADDR_PRIu PRIu64
41#define VADDR_PRIo PRIo64
42#define VADDR_PRIx PRIx64
43#define VADDR_PRIX PRIX64
44#define VADDR_MAX UINT64_MAX
45
46/**
47 * SECTION:cpu
48 * @section_id: QEMU-cpu
49 * @title: CPU Class
50 * @short_description: Base class for all CPUs
51 */
52
53#define TYPE_CPU "cpu"
54
55/* Since this macro is used a lot in hot code paths and in conjunction with
56 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
57 * an unchecked cast.
58 */
59#define CPU(obj) ((CPUState *)(obj))
60
61#define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU)
62#define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU)
63
64typedef enum MMUAccessType {
65 MMU_DATA_LOAD = 0,
66 MMU_DATA_STORE = 1,
67 MMU_INST_FETCH = 2
68} MMUAccessType;
69
70typedef struct CPUWatchpoint CPUWatchpoint;
71
72typedef void (*CPUUnassignedAccess)(CPUState *cpu, hwaddr addr,
73 bool is_write, bool is_exec, int opaque,
74 unsigned size);
75
76struct TranslationBlock;
77
78/**
79 * CPUClass:
80 * @class_by_name: Callback to map -cpu command line model name to an
81 * instantiatable CPU type.
82 * @parse_features: Callback to parse command line arguments.
83 * @reset: Callback to reset the #CPUState to its initial state.
84 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
85 * @has_work: Callback for checking if there is work to do.
86 * @do_interrupt: Callback for interrupt handling.
87 * @do_unassigned_access: Callback for unassigned access handling.
88 * @do_unaligned_access: Callback for unaligned access handling, if
89 * the target defines #ALIGNED_ONLY.
90 * @virtio_is_big_endian: Callback to return %true if a CPU which supports
91 * runtime configurable endianness is currently big-endian. Non-configurable
92 * CPUs can use the default implementation of this method. This method should
93 * not be used by any callers other than the pre-1.0 virtio devices.
94 * @memory_rw_debug: Callback for GDB memory access.
95 * @dump_state: Callback for dumping state.
96 * @dump_statistics: Callback for dumping statistics.
97 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
98 * @get_paging_enabled: Callback for inquiring whether paging is enabled.
99 * @get_memory_mapping: Callback for obtaining the memory mappings.
100 * @set_pc: Callback for setting the Program Counter register.
101 * @synchronize_from_tb: Callback for synchronizing state from a TCG
102 * #TranslationBlock.
103 * @handle_mmu_fault: Callback for handling an MMU fault.
104 * @get_phys_page_debug: Callback for obtaining a physical address.
105 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
106 * associated memory transaction attributes to use for the access.
107 * CPUs which use memory transaction attributes should implement this
108 * instead of get_phys_page_debug.
109 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
110 * a memory access with the specified memory transaction attributes.
111 * @gdb_read_register: Callback for letting GDB read a register.
112 * @gdb_write_register: Callback for letting GDB write a register.
113 * @debug_check_watchpoint: Callback: return true if the architectural
114 * watchpoint whose address has matched should really fire.
115 * @debug_excp_handler: Callback for handling debug exceptions.
116 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
117 * 64-bit VM coredump.
118 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
119 * note to a 32-bit VM coredump.
120 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
121 * 32-bit VM coredump.
122 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
123 * note to a 32-bit VM coredump.
124 * @vmsd: State description for migration.
125 * @gdb_num_core_regs: Number of core registers accessible to GDB.
126 * @gdb_core_xml_file: File name for core registers GDB XML description.
127 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
128 * before the insn which triggers a watchpoint rather than after it.
129 * @gdb_arch_name: Optional callback that returns the architecture name known
130 * to GDB. The caller must free the returned string with g_free.
131 * @cpu_exec_enter: Callback for cpu_exec preparation.
132 * @cpu_exec_exit: Callback for cpu_exec cleanup.
133 * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
134 * @disas_set_info: Setup architecture specific components of disassembly info
135 * @adjust_watchpoint_address: Perform a target-specific adjustment to an
136 * address before attempting to match it against watchpoints.
137 *
138 * Represents a CPU family or model.
139 */
140typedef struct CPUClass {
141 /*< private >*/
142 DeviceClass parent_class;
143 /*< public >*/
144
145 ObjectClass *(*class_by_name)(const char *cpu_model);
146 void (*parse_features)(const char *typename, char *str, Error **errp);
147
148 void (*reset)(CPUState *cpu);
149 int reset_dump_flags;
150 bool (*has_work)(CPUState *cpu);
151 void (*do_interrupt)(CPUState *cpu);
152 CPUUnassignedAccess do_unassigned_access;
153 void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
154 MMUAccessType access_type,
155 int mmu_idx, uintptr_t retaddr);
156 bool (*virtio_is_big_endian)(CPUState *cpu);
157 int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
158 uint8_t *buf, int len, bool is_write);
159 void (*dump_state)(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
160 int flags);
161 GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
162 void (*dump_statistics)(CPUState *cpu, FILE *f,
163 fprintf_function cpu_fprintf, int flags);
164 int64_t (*get_arch_id)(CPUState *cpu);
165 bool (*get_paging_enabled)(const CPUState *cpu);
166 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
167 Error **errp);
168 void (*set_pc)(CPUState *cpu, vaddr value);
169 void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
170 int (*handle_mmu_fault)(CPUState *cpu, vaddr address, int rw,
171 int mmu_index);
172 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
173 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
174 MemTxAttrs *attrs);
175 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
176 int (*gdb_read_register)(CPUState *cpu, uint8_t *buf, int reg);
177 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
178 bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
179 void (*debug_excp_handler)(CPUState *cpu);
180
181 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
182 int cpuid, void *opaque);
183 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
184 void *opaque);
185 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
186 int cpuid, void *opaque);
187 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
188 void *opaque);
189
190 const struct VMStateDescription *vmsd;
191 int gdb_num_core_regs;
192 const char *gdb_core_xml_file;
193 gchar * (*gdb_arch_name)(CPUState *cpu);
194 bool gdb_stop_before_watchpoint;
195
196 void (*cpu_exec_enter)(CPUState *cpu);
197 void (*cpu_exec_exit)(CPUState *cpu);
198 bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
199
200 void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
201 vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
202} CPUClass;
203
204#ifdef HOST_WORDS_BIGENDIAN
205typedef struct icount_decr_u16 {
206 uint16_t high;
207 uint16_t low;
208} icount_decr_u16;
209#else
210typedef struct icount_decr_u16 {
211 uint16_t low;
212 uint16_t high;
213} icount_decr_u16;
214#endif
215
216typedef struct CPUBreakpoint {
217 vaddr pc;
218 int flags; /* BP_* */
219 QTAILQ_ENTRY(CPUBreakpoint) entry;
220} CPUBreakpoint;
221
222struct CPUWatchpoint {
223 vaddr vaddr;
224 vaddr len;
225 vaddr hitaddr;
226 MemTxAttrs hitattrs;
227 int flags; /* BP_* */
228 QTAILQ_ENTRY(CPUWatchpoint) entry;
229};
230
231struct KVMState;
232struct kvm_run;
233
234struct hax_vcpu_state;
235
236#define TB_JMP_CACHE_BITS 12
237#define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
238
239/* work queue */
240
241/* The union type allows passing of 64 bit target pointers on 32 bit
242 * hosts in a single parameter
243 */
244typedef union {
245 int host_int;
246 unsigned long host_ulong;
247 void *host_ptr;
248 vaddr target_ptr;
249} run_on_cpu_data;
250
251#define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)})
252#define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)})
253#define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
254#define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)})
255#define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL)
256
257typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
258
259struct qemu_work_item;
260
261/**
262 * CPUState:
263 * @cpu_index: CPU index (informative).
264 * @nr_cores: Number of cores within this CPU package.
265 * @nr_threads: Number of threads within this CPU.
266 * @numa_node: NUMA node this CPU is belonging to.
267 * @host_tid: Host thread ID.
268 * @running: #true if CPU is currently running (lockless).
269 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
270 * valid under cpu_list_lock.
271 * @created: Indicates whether the CPU thread has been successfully created.
272 * @interrupt_request: Indicates a pending interrupt request.
273 * @halted: Nonzero if the CPU is in suspended state.
274 * @stop: Indicates a pending stop request.
275 * @stopped: Indicates the CPU has been artificially stopped.
276 * @unplug: Indicates a pending CPU unplug request.
277 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
278 * @singlestep_enabled: Flags for single-stepping.
279 * @icount_extra: Instructions until next timer event.
280 * @icount_decr: Low 16 bits: number of cycles left, only used in icount mode.
281 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs for this
282 * CPU and return to its top level loop (even in non-icount mode).
283 * This allows a single read-compare-cbranch-write sequence to test
284 * for both decrementer underflow and exceptions.
285 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
286 * requires that IO only be performed on the last instruction of a TB
287 * so that interrupts take effect immediately.
288 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
289 * AddressSpaces this CPU has)
290 * @num_ases: number of CPUAddressSpaces in @cpu_ases
291 * @as: Pointer to the first AddressSpace, for the convenience of targets which
292 * only have a single AddressSpace
293 * @env_ptr: Pointer to subclass-specific CPUArchState field.
294 * @gdb_regs: Additional GDB registers.
295 * @gdb_num_regs: Number of total registers accessible to GDB.
296 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
297 * @next_cpu: Next CPU sharing TB cache.
298 * @opaque: User data.
299 * @mem_io_pc: Host Program Counter at which the memory was accessed.
300 * @mem_io_vaddr: Target virtual address at which the memory was accessed.
301 * @kvm_fd: vCPU file descriptor for KVM.
302 * @work_mutex: Lock to prevent multiple access to queued_work_*.
303 * @queued_work_first: First asynchronous work pending.
304 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
305 *
306 * State of one CPU core or thread.
307 */
308struct CPUState {
309 /*< private >*/
310 DeviceState parent_obj;
311 /*< public >*/
312
313 int nr_cores;
314 int nr_threads;
315 int numa_node;
316
317 struct QemuThread *thread;
318#ifdef _WIN32
319 HANDLE hThread;
320#endif
321 int thread_id;
322 uint32_t host_tid;
323 bool running, has_waiter;
324 struct QemuCond *halt_cond;
325 bool thread_kicked;
326 bool created;
327 bool stop;
328 bool stopped;
329 bool unplug;
330 bool crash_occurred;
331 bool exit_request;
332 /* updates protected by BQL */
333 uint32_t interrupt_request;
334 int singlestep_enabled;
335 int64_t icount_extra;
336 sigjmp_buf jmp_env;
337
338 QemuMutex work_mutex;
339 struct qemu_work_item *queued_work_first, *queued_work_last;
340
341 CPUAddressSpace *cpu_ases;
342 int num_ases;
343 AddressSpace *as;
344 MemoryRegion *memory;
345
346 void *env_ptr; /* CPUArchState */
347
348 /* Writes protected by tb_lock, reads not thread-safe */
349 struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
350
351 struct GDBRegisterState *gdb_regs;
352 int gdb_num_regs;
353 int gdb_num_g_regs;
354 QTAILQ_ENTRY(CPUState) node;
355
356 /* ice debug support */
357 QTAILQ_HEAD(breakpoints_head, CPUBreakpoint) breakpoints;
358
359 QTAILQ_HEAD(watchpoints_head, CPUWatchpoint) watchpoints;
360 CPUWatchpoint *watchpoint_hit;
361
362 void *opaque;
363
364 /* In order to avoid passing too many arguments to the MMIO helpers,
365 * we store some rarely used information in the CPU context.
366 */
367 uintptr_t mem_io_pc;
368 vaddr mem_io_vaddr;
369
370 int kvm_fd;
371 bool kvm_vcpu_dirty;
372 struct KVMState *kvm_state;
373 struct kvm_run *kvm_run;
374
375 /*
376 * Used for events with 'vcpu' and *without* the 'disabled' properties.
377 * Dynamically allocated based on bitmap requried to hold up to
378 * trace_get_vcpu_event_count() entries.
379 */
380 unsigned long *trace_dstate;
381
382 /* TODO Move common fields from CPUArchState here. */
383 int cpu_index; /* used by alpha TCG */
384 uint32_t halted; /* used by alpha, cris, ppc TCG */
385 uint32_t can_do_io;
386 int32_t exception_index; /* used by m68k TCG */
387
388 /* Used to keep track of an outstanding cpu throttle thread for migration
389 * autoconverge
390 */
391 bool throttle_thread_scheduled;
392
393 /* Note that this is accessed at the start of every TB via a negative
394 offset from AREG0. Leave this field at the end so as to make the
395 (absolute value) offset as small as possible. This reduces code
396 size, especially for hosts without large memory offsets. */
397 union {
398 uint32_t u32;
399 icount_decr_u16 u16;
400 } icount_decr;
401
402 bool hax_vcpu_dirty;
403 struct hax_vcpu_state *hax_vcpu;
404
405 /* The pending_tlb_flush flag is set and cleared atomically to
406 * avoid potential races. The aim of the flag is to avoid
407 * unnecessary flushes.
408 */
409 uint16_t pending_tlb_flush;
410};
411
412QTAILQ_HEAD(CPUTailQ, CPUState);
413extern struct CPUTailQ cpus;
414#define CPU_NEXT(cpu) QTAILQ_NEXT(cpu, node)
415#define CPU_FOREACH(cpu) QTAILQ_FOREACH(cpu, &cpus, node)
416#define CPU_FOREACH_SAFE(cpu, next_cpu) \
417 QTAILQ_FOREACH_SAFE(cpu, &cpus, node, next_cpu)
418#define CPU_FOREACH_REVERSE(cpu) \
419 QTAILQ_FOREACH_REVERSE(cpu, &cpus, CPUTailQ, node)
420#define first_cpu QTAILQ_FIRST(&cpus)
421
422extern __thread CPUState *current_cpu;
423
424/**
425 * qemu_tcg_mttcg_enabled:
426 * Check whether we are running MultiThread TCG or not.
427 *
428 * Returns: %true if we are in MTTCG mode %false otherwise.
429 */
430extern bool mttcg_enabled;
431#define qemu_tcg_mttcg_enabled() (mttcg_enabled)
432
433/**
434 * cpu_paging_enabled:
435 * @cpu: The CPU whose state is to be inspected.
436 *
437 * Returns: %true if paging is enabled, %false otherwise.
438 */
439bool cpu_paging_enabled(const CPUState *cpu);
440
441/**
442 * cpu_get_memory_mapping:
443 * @cpu: The CPU whose memory mappings are to be obtained.
444 * @list: Where to write the memory mappings to.
445 * @errp: Pointer for reporting an #Error.
446 */
447void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
448 Error **errp);
449
450/**
451 * cpu_write_elf64_note:
452 * @f: pointer to a function that writes memory to a file
453 * @cpu: The CPU whose memory is to be dumped
454 * @cpuid: ID number of the CPU
455 * @opaque: pointer to the CPUState struct
456 */
457int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
458 int cpuid, void *opaque);
459
460/**
461 * cpu_write_elf64_qemunote:
462 * @f: pointer to a function that writes memory to a file
463 * @cpu: The CPU whose memory is to be dumped
464 * @cpuid: ID number of the CPU
465 * @opaque: pointer to the CPUState struct
466 */
467int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
468 void *opaque);
469
470/**
471 * cpu_write_elf32_note:
472 * @f: pointer to a function that writes memory to a file
473 * @cpu: The CPU whose memory is to be dumped
474 * @cpuid: ID number of the CPU
475 * @opaque: pointer to the CPUState struct
476 */
477int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
478 int cpuid, void *opaque);
479
480/**
481 * cpu_write_elf32_qemunote:
482 * @f: pointer to a function that writes memory to a file
483 * @cpu: The CPU whose memory is to be dumped
484 * @cpuid: ID number of the CPU
485 * @opaque: pointer to the CPUState struct
486 */
487int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
488 void *opaque);
489
490/**
491 * cpu_get_crash_info:
492 * @cpu: The CPU to get crash information for
493 *
494 * Gets the previously saved crash information.
495 * Caller is responsible for freeing the data.
496 */
497GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
498
499/**
500 * CPUDumpFlags:
501 * @CPU_DUMP_CODE:
502 * @CPU_DUMP_FPU: dump FPU register state, not just integer
503 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
504 */
505enum CPUDumpFlags {
506 CPU_DUMP_CODE = 0x00010000,
507 CPU_DUMP_FPU = 0x00020000,
508 CPU_DUMP_CCOP = 0x00040000,
509};
510
511/**
512 * cpu_dump_state:
513 * @cpu: The CPU whose state is to be dumped.
514 * @f: File to dump to.
515 * @cpu_fprintf: Function to dump with.
516 * @flags: Flags what to dump.
517 *
518 * Dumps CPU state.
519 */
520void cpu_dump_state(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
521 int flags);
522
523/**
524 * cpu_dump_statistics:
525 * @cpu: The CPU whose state is to be dumped.
526 * @f: File to dump to.
527 * @cpu_fprintf: Function to dump with.
528 * @flags: Flags what to dump.
529 *
530 * Dumps CPU statistics.
531 */
532void cpu_dump_statistics(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
533 int flags);
534
535#ifndef CONFIG_USER_ONLY
536/**
537 * cpu_get_phys_page_attrs_debug:
538 * @cpu: The CPU to obtain the physical page address for.
539 * @addr: The virtual address.
540 * @attrs: Updated on return with the memory transaction attributes to use
541 * for this access.
542 *
543 * Obtains the physical page corresponding to a virtual one, together
544 * with the corresponding memory transaction attributes to use for the access.
545 * Use it only for debugging because no protection checks are done.
546 *
547 * Returns: Corresponding physical page address or -1 if no page found.
548 */
549static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
550 MemTxAttrs *attrs)
551{
552 CPUClass *cc = CPU_GET_CLASS(cpu);
553
554 if (cc->get_phys_page_attrs_debug) {
555 return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
556 }
557 /* Fallback for CPUs which don't implement the _attrs_ hook */
558 *attrs = MEMTXATTRS_UNSPECIFIED;
559 return cc->get_phys_page_debug(cpu, addr);
560}
561
562/**
563 * cpu_get_phys_page_debug:
564 * @cpu: The CPU to obtain the physical page address for.
565 * @addr: The virtual address.
566 *
567 * Obtains the physical page corresponding to a virtual one.
568 * Use it only for debugging because no protection checks are done.
569 *
570 * Returns: Corresponding physical page address or -1 if no page found.
571 */
572static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
573{
574 MemTxAttrs attrs = {};
575
576 return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
577}
578
579/** cpu_asidx_from_attrs:
580 * @cpu: CPU
581 * @attrs: memory transaction attributes
582 *
583 * Returns the address space index specifying the CPU AddressSpace
584 * to use for a memory access with the given transaction attributes.
585 */
586static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
587{
588 CPUClass *cc = CPU_GET_CLASS(cpu);
589
590 if (cc->asidx_from_attrs) {
591 return cc->asidx_from_attrs(cpu, attrs);
592 }
593 return 0;
594}
595#endif
596
597/**
598 * cpu_list_add:
599 * @cpu: The CPU to be added to the list of CPUs.
600 */
601void cpu_list_add(CPUState *cpu);
602
603/**
604 * cpu_list_remove:
605 * @cpu: The CPU to be removed from the list of CPUs.
606 */
607void cpu_list_remove(CPUState *cpu);
608
609/**
610 * cpu_reset:
611 * @cpu: The CPU whose state is to be reset.
612 */
613void cpu_reset(CPUState *cpu);
614
615/**
616 * cpu_class_by_name:
617 * @typename: The CPU base type.
618 * @cpu_model: The model string without any parameters.
619 *
620 * Looks up a CPU #ObjectClass matching name @cpu_model.
621 *
622 * Returns: A #CPUClass or %NULL if not matching class is found.
623 */
624ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
625
626/**
627 * cpu_generic_init:
628 * @typename: The CPU base type.
629 * @cpu_model: The model string including optional parameters.
630 *
631 * Instantiates a CPU, processes optional parameters and realizes the CPU.
632 *
633 * Returns: A #CPUState or %NULL if an error occurred.
634 */
635CPUState *cpu_generic_init(const char *typename, const char *cpu_model);
636
637/**
638 * cpu_has_work:
639 * @cpu: The vCPU to check.
640 *
641 * Checks whether the CPU has work to do.
642 *
643 * Returns: %true if the CPU has work, %false otherwise.
644 */
645static inline bool cpu_has_work(CPUState *cpu)
646{
647 CPUClass *cc = CPU_GET_CLASS(cpu);
648
649 g_assert(cc->has_work);
650 return cc->has_work(cpu);
651}
652
653/**
654 * qemu_cpu_is_self:
655 * @cpu: The vCPU to check against.
656 *
657 * Checks whether the caller is executing on the vCPU thread.
658 *
659 * Returns: %true if called from @cpu's thread, %false otherwise.
660 */
661bool qemu_cpu_is_self(CPUState *cpu);
662
663/**
664 * qemu_cpu_kick:
665 * @cpu: The vCPU to kick.
666 *
667 * Kicks @cpu's thread.
668 */
669void qemu_cpu_kick(CPUState *cpu);
670
671/**
672 * cpu_is_stopped:
673 * @cpu: The CPU to check.
674 *
675 * Checks whether the CPU is stopped.
676 *
677 * Returns: %true if run state is not running or if artificially stopped;
678 * %false otherwise.
679 */
680bool cpu_is_stopped(CPUState *cpu);
681
682/**
683 * do_run_on_cpu:
684 * @cpu: The vCPU to run on.
685 * @func: The function to be executed.
686 * @data: Data to pass to the function.
687 * @mutex: Mutex to release while waiting for @func to run.
688 *
689 * Used internally in the implementation of run_on_cpu.
690 */
691void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
692 QemuMutex *mutex);
693
694/**
695 * run_on_cpu:
696 * @cpu: The vCPU to run on.
697 * @func: The function to be executed.
698 * @data: Data to pass to the function.
699 *
700 * Schedules the function @func for execution on the vCPU @cpu.
701 */
702void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
703
704/**
705 * async_run_on_cpu:
706 * @cpu: The vCPU to run on.
707 * @func: The function to be executed.
708 * @data: Data to pass to the function.
709 *
710 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
711 */
712void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
713
714/**
715 * async_safe_run_on_cpu:
716 * @cpu: The vCPU to run on.
717 * @func: The function to be executed.
718 * @data: Data to pass to the function.
719 *
720 * Schedules the function @func for execution on the vCPU @cpu asynchronously,
721 * while all other vCPUs are sleeping.
722 *
723 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
724 * BQL.
725 */
726void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
727
728/**
729 * qemu_get_cpu:
730 * @index: The CPUState@cpu_index value of the CPU to obtain.
731 *
732 * Gets a CPU matching @index.
733 *
734 * Returns: The CPU or %NULL if there is no matching CPU.
735 */
736CPUState *qemu_get_cpu(int index);
737
738/**
739 * cpu_exists:
740 * @id: Guest-exposed CPU ID to lookup.
741 *
742 * Search for CPU with specified ID.
743 *
744 * Returns: %true - CPU is found, %false - CPU isn't found.
745 */
746bool cpu_exists(int64_t id);
747
748/**
749 * cpu_throttle_set:
750 * @new_throttle_pct: Percent of sleep time. Valid range is 1 to 99.
751 *
752 * Throttles all vcpus by forcing them to sleep for the given percentage of
753 * time. A throttle_percentage of 25 corresponds to a 75% duty cycle roughly.
754 * (example: 10ms sleep for every 30ms awake).
755 *
756 * cpu_throttle_set can be called as needed to adjust new_throttle_pct.
757 * Once the throttling starts, it will remain in effect until cpu_throttle_stop
758 * is called.
759 */
760void cpu_throttle_set(int new_throttle_pct);
761
762/**
763 * cpu_throttle_stop:
764 *
765 * Stops the vcpu throttling started by cpu_throttle_set.
766 */
767void cpu_throttle_stop(void);
768
769/**
770 * cpu_throttle_active:
771 *
772 * Returns: %true if the vcpus are currently being throttled, %false otherwise.
773 */
774bool cpu_throttle_active(void);
775
776/**
777 * cpu_throttle_get_percentage:
778 *
779 * Returns the vcpu throttle percentage. See cpu_throttle_set for details.
780 *
781 * Returns: The throttle percentage in range 1 to 99.
782 */
783int cpu_throttle_get_percentage(void);
784
785#ifndef CONFIG_USER_ONLY
786
787typedef void (*CPUInterruptHandler)(CPUState *, int);
788
789extern CPUInterruptHandler cpu_interrupt_handler;
790
791/**
792 * cpu_interrupt:
793 * @cpu: The CPU to set an interrupt on.
794 * @mask: The interupts to set.
795 *
796 * Invokes the interrupt handler.
797 */
798static inline void cpu_interrupt(CPUState *cpu, int mask)
799{
800 cpu_interrupt_handler(cpu, mask);
801}
802
803#else /* USER_ONLY */
804
805void cpu_interrupt(CPUState *cpu, int mask);
806
807#endif /* USER_ONLY */
808
809#ifdef CONFIG_SOFTMMU
810static inline void cpu_unassigned_access(CPUState *cpu, hwaddr addr,
811 bool is_write, bool is_exec,
812 int opaque, unsigned size)
813{
814 CPUClass *cc = CPU_GET_CLASS(cpu);
815
816 if (cc->do_unassigned_access) {
817 cc->do_unassigned_access(cpu, addr, is_write, is_exec, opaque, size);
818 }
819}
820
821static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
822 MMUAccessType access_type,
823 int mmu_idx, uintptr_t retaddr)
824{
825 CPUClass *cc = CPU_GET_CLASS(cpu);
826
827 cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
828}
829#endif
830
831/**
832 * cpu_set_pc:
833 * @cpu: The CPU to set the program counter for.
834 * @addr: Program counter value.
835 *
836 * Sets the program counter for a CPU.
837 */
838static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
839{
840 CPUClass *cc = CPU_GET_CLASS(cpu);
841
842 cc->set_pc(cpu, addr);
843}
844
845/**
846 * cpu_reset_interrupt:
847 * @cpu: The CPU to clear the interrupt on.
848 * @mask: The interrupt mask to clear.
849 *
850 * Resets interrupts on the vCPU @cpu.
851 */
852void cpu_reset_interrupt(CPUState *cpu, int mask);
853
854/**
855 * cpu_exit:
856 * @cpu: The CPU to exit.
857 *
858 * Requests the CPU @cpu to exit execution.
859 */
860void cpu_exit(CPUState *cpu);
861
862/**
863 * cpu_resume:
864 * @cpu: The CPU to resume.
865 *
866 * Resumes CPU, i.e. puts CPU into runnable state.
867 */
868void cpu_resume(CPUState *cpu);
869
870/**
871 * cpu_remove:
872 * @cpu: The CPU to remove.
873 *
874 * Requests the CPU to be removed.
875 */
876void cpu_remove(CPUState *cpu);
877
878 /**
879 * cpu_remove_sync:
880 * @cpu: The CPU to remove.
881 *
882 * Requests the CPU to be removed and waits till it is removed.
883 */
884void cpu_remove_sync(CPUState *cpu);
885
886/**
887 * process_queued_cpu_work() - process all items on CPU work queue
888 * @cpu: The CPU which work queue to process.
889 */
890void process_queued_cpu_work(CPUState *cpu);
891
892/**
893 * cpu_exec_start:
894 * @cpu: The CPU for the current thread.
895 *
896 * Record that a CPU has started execution and can be interrupted with
897 * cpu_exit.
898 */
899void cpu_exec_start(CPUState *cpu);
900
901/**
902 * cpu_exec_end:
903 * @cpu: The CPU for the current thread.
904 *
905 * Record that a CPU has stopped execution and exclusive sections
906 * can be executed without interrupting it.
907 */
908void cpu_exec_end(CPUState *cpu);
909
910/**
911 * start_exclusive:
912 *
913 * Wait for a concurrent exclusive section to end, and then start
914 * a section of work that is run while other CPUs are not running
915 * between cpu_exec_start and cpu_exec_end. CPUs that are running
916 * cpu_exec are exited immediately. CPUs that call cpu_exec_start
917 * during the exclusive section go to sleep until this CPU calls
918 * end_exclusive.
919 */
920void start_exclusive(void);
921
922/**
923 * end_exclusive:
924 *
925 * Concludes an exclusive execution section started by start_exclusive.
926 */
927void end_exclusive(void);
928
929/**
930 * qemu_init_vcpu:
931 * @cpu: The vCPU to initialize.
932 *
933 * Initializes a vCPU.
934 */
935void qemu_init_vcpu(CPUState *cpu);
936
937#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
938#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
939#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
940
941/**
942 * cpu_single_step:
943 * @cpu: CPU to the flags for.
944 * @enabled: Flags to enable.
945 *
946 * Enables or disables single-stepping for @cpu.
947 */
948void cpu_single_step(CPUState *cpu, int enabled);
949
950/* Breakpoint/watchpoint flags */
951#define BP_MEM_READ 0x01
952#define BP_MEM_WRITE 0x02
953#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
954#define BP_STOP_BEFORE_ACCESS 0x04
955/* 0x08 currently unused */
956#define BP_GDB 0x10
957#define BP_CPU 0x20
958#define BP_ANY (BP_GDB | BP_CPU)
959#define BP_WATCHPOINT_HIT_READ 0x40
960#define BP_WATCHPOINT_HIT_WRITE 0x80
961#define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
962
963int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
964 CPUBreakpoint **breakpoint);
965int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
966void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
967void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
968
969/* Return true if PC matches an installed breakpoint. */
970static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
971{
972 CPUBreakpoint *bp;
973
974 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
975 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
976 if (bp->pc == pc && (bp->flags & mask)) {
977 return true;
978 }
979 }
980 }
981 return false;
982}
983
984int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
985 int flags, CPUWatchpoint **watchpoint);
986int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
987 vaddr len, int flags);
988void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
989void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
990
991/**
992 * cpu_get_address_space:
993 * @cpu: CPU to get address space from
994 * @asidx: index identifying which address space to get
995 *
996 * Return the requested address space of this CPU. @asidx
997 * specifies which address space to read.
998 */
999AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1000
1001void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1002 GCC_FMT_ATTR(2, 3);
1003void cpu_exec_initfn(CPUState *cpu);
1004void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1005void cpu_exec_unrealizefn(CPUState *cpu);
1006
1007#ifdef CONFIG_SOFTMMU
1008extern const struct VMStateDescription vmstate_cpu_common;
1009#else
1010#define vmstate_cpu_common vmstate_dummy
1011#endif
1012
1013#define VMSTATE_CPU() { \
1014 .name = "parent_obj", \
1015 .size = sizeof(CPUState), \
1016 .vmsd = &vmstate_cpu_common, \
1017 .flags = VMS_STRUCT, \
1018 .offset = 0, \
1019}
1020
1021#define UNASSIGNED_CPU_INDEX -1
1022
1023#endif
This page took 0.03001 seconds and 4 git commands to generate.