]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Alpha emulation cpu helpers for qemu. | |
3 | * | |
4 | * Copyright (c) 2007 Jocelyn Mayer | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | ||
20 | #include <stdint.h> | |
21 | #include <stdlib.h> | |
22 | #include <stdio.h> | |
23 | ||
24 | #include "cpu.h" | |
25 | #include "fpu/softfloat.h" | |
26 | #include "helper.h" | |
27 | ||
28 | uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env) | |
29 | { | |
30 | uint64_t r = 0; | |
31 | uint8_t t; | |
32 | ||
33 | t = env->fpcr_exc_status; | |
34 | if (t) { | |
35 | r = FPCR_SUM; | |
36 | if (t & float_flag_invalid) { | |
37 | r |= FPCR_INV; | |
38 | } | |
39 | if (t & float_flag_divbyzero) { | |
40 | r |= FPCR_DZE; | |
41 | } | |
42 | if (t & float_flag_overflow) { | |
43 | r |= FPCR_OVF; | |
44 | } | |
45 | if (t & float_flag_underflow) { | |
46 | r |= FPCR_UNF; | |
47 | } | |
48 | if (t & float_flag_inexact) { | |
49 | r |= FPCR_INE; | |
50 | } | |
51 | } | |
52 | ||
53 | t = env->fpcr_exc_mask; | |
54 | if (t & float_flag_invalid) { | |
55 | r |= FPCR_INVD; | |
56 | } | |
57 | if (t & float_flag_divbyzero) { | |
58 | r |= FPCR_DZED; | |
59 | } | |
60 | if (t & float_flag_overflow) { | |
61 | r |= FPCR_OVFD; | |
62 | } | |
63 | if (t & float_flag_underflow) { | |
64 | r |= FPCR_UNFD; | |
65 | } | |
66 | if (t & float_flag_inexact) { | |
67 | r |= FPCR_INED; | |
68 | } | |
69 | ||
70 | switch (env->fpcr_dyn_round) { | |
71 | case float_round_nearest_even: | |
72 | r |= FPCR_DYN_NORMAL; | |
73 | break; | |
74 | case float_round_down: | |
75 | r |= FPCR_DYN_MINUS; | |
76 | break; | |
77 | case float_round_up: | |
78 | r |= FPCR_DYN_PLUS; | |
79 | break; | |
80 | case float_round_to_zero: | |
81 | r |= FPCR_DYN_CHOPPED; | |
82 | break; | |
83 | } | |
84 | ||
85 | if (env->fp_status.flush_inputs_to_zero) { | |
86 | r |= FPCR_DNZ; | |
87 | } | |
88 | if (env->fpcr_dnod) { | |
89 | r |= FPCR_DNOD; | |
90 | } | |
91 | if (env->fpcr_undz) { | |
92 | r |= FPCR_UNDZ; | |
93 | } | |
94 | ||
95 | return r; | |
96 | } | |
97 | ||
98 | void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val) | |
99 | { | |
100 | uint8_t t; | |
101 | ||
102 | t = 0; | |
103 | if (val & FPCR_INV) { | |
104 | t |= float_flag_invalid; | |
105 | } | |
106 | if (val & FPCR_DZE) { | |
107 | t |= float_flag_divbyzero; | |
108 | } | |
109 | if (val & FPCR_OVF) { | |
110 | t |= float_flag_overflow; | |
111 | } | |
112 | if (val & FPCR_UNF) { | |
113 | t |= float_flag_underflow; | |
114 | } | |
115 | if (val & FPCR_INE) { | |
116 | t |= float_flag_inexact; | |
117 | } | |
118 | env->fpcr_exc_status = t; | |
119 | ||
120 | t = 0; | |
121 | if (val & FPCR_INVD) { | |
122 | t |= float_flag_invalid; | |
123 | } | |
124 | if (val & FPCR_DZED) { | |
125 | t |= float_flag_divbyzero; | |
126 | } | |
127 | if (val & FPCR_OVFD) { | |
128 | t |= float_flag_overflow; | |
129 | } | |
130 | if (val & FPCR_UNFD) { | |
131 | t |= float_flag_underflow; | |
132 | } | |
133 | if (val & FPCR_INED) { | |
134 | t |= float_flag_inexact; | |
135 | } | |
136 | env->fpcr_exc_mask = t; | |
137 | ||
138 | switch (val & FPCR_DYN_MASK) { | |
139 | case FPCR_DYN_CHOPPED: | |
140 | t = float_round_to_zero; | |
141 | break; | |
142 | case FPCR_DYN_MINUS: | |
143 | t = float_round_down; | |
144 | break; | |
145 | case FPCR_DYN_NORMAL: | |
146 | t = float_round_nearest_even; | |
147 | break; | |
148 | case FPCR_DYN_PLUS: | |
149 | t = float_round_up; | |
150 | break; | |
151 | } | |
152 | env->fpcr_dyn_round = t; | |
153 | ||
154 | env->fpcr_dnod = (val & FPCR_DNOD) != 0; | |
155 | env->fpcr_undz = (val & FPCR_UNDZ) != 0; | |
156 | env->fpcr_flush_to_zero = env->fpcr_dnod & env->fpcr_undz; | |
157 | env->fp_status.flush_inputs_to_zero = (val & FPCR_DNZ) != 0; | |
158 | } | |
159 | ||
160 | uint64_t helper_load_fpcr(CPUAlphaState *env) | |
161 | { | |
162 | return cpu_alpha_load_fpcr(env); | |
163 | } | |
164 | ||
165 | void helper_store_fpcr(CPUAlphaState *env, uint64_t val) | |
166 | { | |
167 | cpu_alpha_store_fpcr(env, val); | |
168 | } | |
169 | ||
170 | #if defined(CONFIG_USER_ONLY) | |
171 | int cpu_alpha_handle_mmu_fault(CPUAlphaState *env, target_ulong address, | |
172 | int rw, int mmu_idx) | |
173 | { | |
174 | env->exception_index = EXCP_MMFAULT; | |
175 | env->trap_arg0 = address; | |
176 | return 1; | |
177 | } | |
178 | #else | |
179 | void swap_shadow_regs(CPUAlphaState *env) | |
180 | { | |
181 | uint64_t i0, i1, i2, i3, i4, i5, i6, i7; | |
182 | ||
183 | i0 = env->ir[8]; | |
184 | i1 = env->ir[9]; | |
185 | i2 = env->ir[10]; | |
186 | i3 = env->ir[11]; | |
187 | i4 = env->ir[12]; | |
188 | i5 = env->ir[13]; | |
189 | i6 = env->ir[14]; | |
190 | i7 = env->ir[25]; | |
191 | ||
192 | env->ir[8] = env->shadow[0]; | |
193 | env->ir[9] = env->shadow[1]; | |
194 | env->ir[10] = env->shadow[2]; | |
195 | env->ir[11] = env->shadow[3]; | |
196 | env->ir[12] = env->shadow[4]; | |
197 | env->ir[13] = env->shadow[5]; | |
198 | env->ir[14] = env->shadow[6]; | |
199 | env->ir[25] = env->shadow[7]; | |
200 | ||
201 | env->shadow[0] = i0; | |
202 | env->shadow[1] = i1; | |
203 | env->shadow[2] = i2; | |
204 | env->shadow[3] = i3; | |
205 | env->shadow[4] = i4; | |
206 | env->shadow[5] = i5; | |
207 | env->shadow[6] = i6; | |
208 | env->shadow[7] = i7; | |
209 | } | |
210 | ||
211 | /* Returns the OSF/1 entMM failure indication, or -1 on success. */ | |
212 | static int get_physical_address(CPUAlphaState *env, target_ulong addr, | |
213 | int prot_need, int mmu_idx, | |
214 | target_ulong *pphys, int *pprot) | |
215 | { | |
216 | target_long saddr = addr; | |
217 | target_ulong phys = 0; | |
218 | target_ulong L1pte, L2pte, L3pte; | |
219 | target_ulong pt, index; | |
220 | int prot = 0; | |
221 | int ret = MM_K_ACV; | |
222 | ||
223 | /* Ensure that the virtual address is properly sign-extended from | |
224 | the last implemented virtual address bit. */ | |
225 | if (saddr >> TARGET_VIRT_ADDR_SPACE_BITS != saddr >> 63) { | |
226 | goto exit; | |
227 | } | |
228 | ||
229 | /* Translate the superpage. */ | |
230 | /* ??? When we do more than emulate Unix PALcode, we'll need to | |
231 | determine which KSEG is actually active. */ | |
232 | if (saddr < 0 && ((saddr >> 41) & 3) == 2) { | |
233 | /* User-space cannot access KSEG addresses. */ | |
234 | if (mmu_idx != MMU_KERNEL_IDX) { | |
235 | goto exit; | |
236 | } | |
237 | ||
238 | /* For the benefit of the Typhoon chipset, move bit 40 to bit 43. | |
239 | We would not do this if the 48-bit KSEG is enabled. */ | |
240 | phys = saddr & ((1ull << 40) - 1); | |
241 | phys |= (saddr & (1ull << 40)) << 3; | |
242 | ||
243 | prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | |
244 | ret = -1; | |
245 | goto exit; | |
246 | } | |
247 | ||
248 | /* Interpret the page table exactly like PALcode does. */ | |
249 | ||
250 | pt = env->ptbr; | |
251 | ||
252 | /* L1 page table read. */ | |
253 | index = (addr >> (TARGET_PAGE_BITS + 20)) & 0x3ff; | |
254 | L1pte = ldq_phys(pt + index*8); | |
255 | ||
256 | if (unlikely((L1pte & PTE_VALID) == 0)) { | |
257 | ret = MM_K_TNV; | |
258 | goto exit; | |
259 | } | |
260 | if (unlikely((L1pte & PTE_KRE) == 0)) { | |
261 | goto exit; | |
262 | } | |
263 | pt = L1pte >> 32 << TARGET_PAGE_BITS; | |
264 | ||
265 | /* L2 page table read. */ | |
266 | index = (addr >> (TARGET_PAGE_BITS + 10)) & 0x3ff; | |
267 | L2pte = ldq_phys(pt + index*8); | |
268 | ||
269 | if (unlikely((L2pte & PTE_VALID) == 0)) { | |
270 | ret = MM_K_TNV; | |
271 | goto exit; | |
272 | } | |
273 | if (unlikely((L2pte & PTE_KRE) == 0)) { | |
274 | goto exit; | |
275 | } | |
276 | pt = L2pte >> 32 << TARGET_PAGE_BITS; | |
277 | ||
278 | /* L3 page table read. */ | |
279 | index = (addr >> TARGET_PAGE_BITS) & 0x3ff; | |
280 | L3pte = ldq_phys(pt + index*8); | |
281 | ||
282 | phys = L3pte >> 32 << TARGET_PAGE_BITS; | |
283 | if (unlikely((L3pte & PTE_VALID) == 0)) { | |
284 | ret = MM_K_TNV; | |
285 | goto exit; | |
286 | } | |
287 | ||
288 | #if PAGE_READ != 1 || PAGE_WRITE != 2 || PAGE_EXEC != 4 | |
289 | # error page bits out of date | |
290 | #endif | |
291 | ||
292 | /* Check access violations. */ | |
293 | if (L3pte & (PTE_KRE << mmu_idx)) { | |
294 | prot |= PAGE_READ | PAGE_EXEC; | |
295 | } | |
296 | if (L3pte & (PTE_KWE << mmu_idx)) { | |
297 | prot |= PAGE_WRITE; | |
298 | } | |
299 | if (unlikely((prot & prot_need) == 0 && prot_need)) { | |
300 | goto exit; | |
301 | } | |
302 | ||
303 | /* Check fault-on-operation violations. */ | |
304 | prot &= ~(L3pte >> 1); | |
305 | ret = -1; | |
306 | if (unlikely((prot & prot_need) == 0)) { | |
307 | ret = (prot_need & PAGE_EXEC ? MM_K_FOE : | |
308 | prot_need & PAGE_WRITE ? MM_K_FOW : | |
309 | prot_need & PAGE_READ ? MM_K_FOR : -1); | |
310 | } | |
311 | ||
312 | exit: | |
313 | *pphys = phys; | |
314 | *pprot = prot; | |
315 | return ret; | |
316 | } | |
317 | ||
318 | hwaddr alpha_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) | |
319 | { | |
320 | AlphaCPU *cpu = ALPHA_CPU(cs); | |
321 | target_ulong phys; | |
322 | int prot, fail; | |
323 | ||
324 | fail = get_physical_address(&cpu->env, addr, 0, 0, &phys, &prot); | |
325 | return (fail >= 0 ? -1 : phys); | |
326 | } | |
327 | ||
328 | int cpu_alpha_handle_mmu_fault(CPUAlphaState *env, target_ulong addr, int rw, | |
329 | int mmu_idx) | |
330 | { | |
331 | target_ulong phys; | |
332 | int prot, fail; | |
333 | ||
334 | fail = get_physical_address(env, addr, 1 << rw, mmu_idx, &phys, &prot); | |
335 | if (unlikely(fail >= 0)) { | |
336 | env->exception_index = EXCP_MMFAULT; | |
337 | env->trap_arg0 = addr; | |
338 | env->trap_arg1 = fail; | |
339 | env->trap_arg2 = (rw == 2 ? -1 : rw); | |
340 | return 1; | |
341 | } | |
342 | ||
343 | tlb_set_page(env, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK, | |
344 | prot, mmu_idx, TARGET_PAGE_SIZE); | |
345 | return 0; | |
346 | } | |
347 | #endif /* USER_ONLY */ | |
348 | ||
349 | void alpha_cpu_do_interrupt(CPUState *cs) | |
350 | { | |
351 | AlphaCPU *cpu = ALPHA_CPU(cs); | |
352 | CPUAlphaState *env = &cpu->env; | |
353 | int i = env->exception_index; | |
354 | ||
355 | if (qemu_loglevel_mask(CPU_LOG_INT)) { | |
356 | static int count; | |
357 | const char *name = "<unknown>"; | |
358 | ||
359 | switch (i) { | |
360 | case EXCP_RESET: | |
361 | name = "reset"; | |
362 | break; | |
363 | case EXCP_MCHK: | |
364 | name = "mchk"; | |
365 | break; | |
366 | case EXCP_SMP_INTERRUPT: | |
367 | name = "smp_interrupt"; | |
368 | break; | |
369 | case EXCP_CLK_INTERRUPT: | |
370 | name = "clk_interrupt"; | |
371 | break; | |
372 | case EXCP_DEV_INTERRUPT: | |
373 | name = "dev_interrupt"; | |
374 | break; | |
375 | case EXCP_MMFAULT: | |
376 | name = "mmfault"; | |
377 | break; | |
378 | case EXCP_UNALIGN: | |
379 | name = "unalign"; | |
380 | break; | |
381 | case EXCP_OPCDEC: | |
382 | name = "opcdec"; | |
383 | break; | |
384 | case EXCP_ARITH: | |
385 | name = "arith"; | |
386 | break; | |
387 | case EXCP_FEN: | |
388 | name = "fen"; | |
389 | break; | |
390 | case EXCP_CALL_PAL: | |
391 | name = "call_pal"; | |
392 | break; | |
393 | case EXCP_STL_C: | |
394 | name = "stl_c"; | |
395 | break; | |
396 | case EXCP_STQ_C: | |
397 | name = "stq_c"; | |
398 | break; | |
399 | } | |
400 | qemu_log("INT %6d: %s(%#x) pc=%016" PRIx64 " sp=%016" PRIx64 "\n", | |
401 | ++count, name, env->error_code, env->pc, env->ir[IR_SP]); | |
402 | } | |
403 | ||
404 | env->exception_index = -1; | |
405 | ||
406 | #if !defined(CONFIG_USER_ONLY) | |
407 | switch (i) { | |
408 | case EXCP_RESET: | |
409 | i = 0x0000; | |
410 | break; | |
411 | case EXCP_MCHK: | |
412 | i = 0x0080; | |
413 | break; | |
414 | case EXCP_SMP_INTERRUPT: | |
415 | i = 0x0100; | |
416 | break; | |
417 | case EXCP_CLK_INTERRUPT: | |
418 | i = 0x0180; | |
419 | break; | |
420 | case EXCP_DEV_INTERRUPT: | |
421 | i = 0x0200; | |
422 | break; | |
423 | case EXCP_MMFAULT: | |
424 | i = 0x0280; | |
425 | break; | |
426 | case EXCP_UNALIGN: | |
427 | i = 0x0300; | |
428 | break; | |
429 | case EXCP_OPCDEC: | |
430 | i = 0x0380; | |
431 | break; | |
432 | case EXCP_ARITH: | |
433 | i = 0x0400; | |
434 | break; | |
435 | case EXCP_FEN: | |
436 | i = 0x0480; | |
437 | break; | |
438 | case EXCP_CALL_PAL: | |
439 | i = env->error_code; | |
440 | /* There are 64 entry points for both privileged and unprivileged, | |
441 | with bit 0x80 indicating unprivileged. Each entry point gets | |
442 | 64 bytes to do its job. */ | |
443 | if (i & 0x80) { | |
444 | i = 0x2000 + (i - 0x80) * 64; | |
445 | } else { | |
446 | i = 0x1000 + i * 64; | |
447 | } | |
448 | break; | |
449 | default: | |
450 | cpu_abort(env, "Unhandled CPU exception"); | |
451 | } | |
452 | ||
453 | /* Remember where the exception happened. Emulate real hardware in | |
454 | that the low bit of the PC indicates PALmode. */ | |
455 | env->exc_addr = env->pc | env->pal_mode; | |
456 | ||
457 | /* Continue execution at the PALcode entry point. */ | |
458 | env->pc = env->palbr + i; | |
459 | ||
460 | /* Switch to PALmode. */ | |
461 | if (!env->pal_mode) { | |
462 | env->pal_mode = 1; | |
463 | swap_shadow_regs(env); | |
464 | } | |
465 | #endif /* !USER_ONLY */ | |
466 | } | |
467 | ||
468 | void alpha_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, | |
469 | int flags) | |
470 | { | |
471 | static const char *linux_reg_names[] = { | |
472 | "v0 ", "t0 ", "t1 ", "t2 ", "t3 ", "t4 ", "t5 ", "t6 ", | |
473 | "t7 ", "s0 ", "s1 ", "s2 ", "s3 ", "s4 ", "s5 ", "fp ", | |
474 | "a0 ", "a1 ", "a2 ", "a3 ", "a4 ", "a5 ", "t8 ", "t9 ", | |
475 | "t10", "t11", "ra ", "t12", "at ", "gp ", "sp ", "zero", | |
476 | }; | |
477 | AlphaCPU *cpu = ALPHA_CPU(cs); | |
478 | CPUAlphaState *env = &cpu->env; | |
479 | int i; | |
480 | ||
481 | cpu_fprintf(f, " PC " TARGET_FMT_lx " PS %02x\n", | |
482 | env->pc, env->ps); | |
483 | for (i = 0; i < 31; i++) { | |
484 | cpu_fprintf(f, "IR%02d %s " TARGET_FMT_lx " ", i, | |
485 | linux_reg_names[i], env->ir[i]); | |
486 | if ((i % 3) == 2) | |
487 | cpu_fprintf(f, "\n"); | |
488 | } | |
489 | ||
490 | cpu_fprintf(f, "lock_a " TARGET_FMT_lx " lock_v " TARGET_FMT_lx "\n", | |
491 | env->lock_addr, env->lock_value); | |
492 | ||
493 | for (i = 0; i < 31; i++) { | |
494 | cpu_fprintf(f, "FIR%02d " TARGET_FMT_lx " ", i, | |
495 | *((uint64_t *)(&env->fir[i]))); | |
496 | if ((i % 3) == 2) | |
497 | cpu_fprintf(f, "\n"); | |
498 | } | |
499 | cpu_fprintf(f, "\n"); | |
500 | } | |
501 | ||
502 | /* This should only be called from translate, via gen_excp. | |
503 | We expect that ENV->PC has already been updated. */ | |
504 | void QEMU_NORETURN helper_excp(CPUAlphaState *env, int excp, int error) | |
505 | { | |
506 | env->exception_index = excp; | |
507 | env->error_code = error; | |
508 | cpu_loop_exit(env); | |
509 | } | |
510 | ||
511 | /* This may be called from any of the helpers to set up EXCEPTION_INDEX. */ | |
512 | void QEMU_NORETURN dynamic_excp(CPUAlphaState *env, uintptr_t retaddr, | |
513 | int excp, int error) | |
514 | { | |
515 | env->exception_index = excp; | |
516 | env->error_code = error; | |
517 | if (retaddr) { | |
518 | cpu_restore_state(env, retaddr); | |
519 | } | |
520 | cpu_loop_exit(env); | |
521 | } | |
522 | ||
523 | void QEMU_NORETURN arith_excp(CPUAlphaState *env, uintptr_t retaddr, | |
524 | int exc, uint64_t mask) | |
525 | { | |
526 | env->trap_arg0 = exc; | |
527 | env->trap_arg1 = mask; | |
528 | dynamic_excp(env, retaddr, EXCP_ARITH, 0); | |
529 | } |