]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * PowerPC emulation helpers for qemu. | |
3 | * | |
4 | * Copyright (c) 2003-2007 Jocelyn Mayer | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | #include <string.h> | |
20 | #include "exec.h" | |
21 | #include "host-utils.h" | |
22 | #include "helper.h" | |
23 | ||
24 | #include "helper_regs.h" | |
25 | ||
26 | //#define DEBUG_OP | |
27 | //#define DEBUG_EXCEPTIONS | |
28 | //#define DEBUG_SOFTWARE_TLB | |
29 | ||
30 | #ifdef DEBUG_SOFTWARE_TLB | |
31 | # define LOG_SWTLB(...) qemu_log(__VA_ARGS__) | |
32 | #else | |
33 | # define LOG_SWTLB(...) do { } while (0) | |
34 | #endif | |
35 | ||
36 | ||
37 | /*****************************************************************************/ | |
38 | /* Exceptions processing helpers */ | |
39 | ||
40 | void helper_raise_exception_err (uint32_t exception, uint32_t error_code) | |
41 | { | |
42 | #if 0 | |
43 | printf("Raise exception %3x code : %d\n", exception, error_code); | |
44 | #endif | |
45 | env->exception_index = exception; | |
46 | env->error_code = error_code; | |
47 | cpu_loop_exit(); | |
48 | } | |
49 | ||
50 | void helper_raise_exception (uint32_t exception) | |
51 | { | |
52 | helper_raise_exception_err(exception, 0); | |
53 | } | |
54 | ||
55 | /*****************************************************************************/ | |
56 | /* SPR accesses */ | |
57 | void helper_load_dump_spr (uint32_t sprn) | |
58 | { | |
59 | qemu_log("Read SPR %d %03x => " TARGET_FMT_lx "\n", sprn, sprn, | |
60 | env->spr[sprn]); | |
61 | } | |
62 | ||
63 | void helper_store_dump_spr (uint32_t sprn) | |
64 | { | |
65 | qemu_log("Write SPR %d %03x <= " TARGET_FMT_lx "\n", sprn, sprn, | |
66 | env->spr[sprn]); | |
67 | } | |
68 | ||
69 | target_ulong helper_load_tbl (void) | |
70 | { | |
71 | return (target_ulong)cpu_ppc_load_tbl(env); | |
72 | } | |
73 | ||
74 | target_ulong helper_load_tbu (void) | |
75 | { | |
76 | return cpu_ppc_load_tbu(env); | |
77 | } | |
78 | ||
79 | target_ulong helper_load_atbl (void) | |
80 | { | |
81 | return (target_ulong)cpu_ppc_load_atbl(env); | |
82 | } | |
83 | ||
84 | target_ulong helper_load_atbu (void) | |
85 | { | |
86 | return cpu_ppc_load_atbu(env); | |
87 | } | |
88 | ||
89 | #if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) | |
90 | target_ulong helper_load_purr (void) | |
91 | { | |
92 | return (target_ulong)cpu_ppc_load_purr(env); | |
93 | } | |
94 | #endif | |
95 | ||
96 | target_ulong helper_load_601_rtcl (void) | |
97 | { | |
98 | return cpu_ppc601_load_rtcl(env); | |
99 | } | |
100 | ||
101 | target_ulong helper_load_601_rtcu (void) | |
102 | { | |
103 | return cpu_ppc601_load_rtcu(env); | |
104 | } | |
105 | ||
106 | #if !defined(CONFIG_USER_ONLY) | |
107 | #if defined (TARGET_PPC64) | |
108 | void helper_store_asr (target_ulong val) | |
109 | { | |
110 | ppc_store_asr(env, val); | |
111 | } | |
112 | #endif | |
113 | ||
114 | void helper_store_sdr1 (target_ulong val) | |
115 | { | |
116 | ppc_store_sdr1(env, val); | |
117 | } | |
118 | ||
119 | void helper_store_tbl (target_ulong val) | |
120 | { | |
121 | cpu_ppc_store_tbl(env, val); | |
122 | } | |
123 | ||
124 | void helper_store_tbu (target_ulong val) | |
125 | { | |
126 | cpu_ppc_store_tbu(env, val); | |
127 | } | |
128 | ||
129 | void helper_store_atbl (target_ulong val) | |
130 | { | |
131 | cpu_ppc_store_atbl(env, val); | |
132 | } | |
133 | ||
134 | void helper_store_atbu (target_ulong val) | |
135 | { | |
136 | cpu_ppc_store_atbu(env, val); | |
137 | } | |
138 | ||
139 | void helper_store_601_rtcl (target_ulong val) | |
140 | { | |
141 | cpu_ppc601_store_rtcl(env, val); | |
142 | } | |
143 | ||
144 | void helper_store_601_rtcu (target_ulong val) | |
145 | { | |
146 | cpu_ppc601_store_rtcu(env, val); | |
147 | } | |
148 | ||
149 | target_ulong helper_load_decr (void) | |
150 | { | |
151 | return cpu_ppc_load_decr(env); | |
152 | } | |
153 | ||
154 | void helper_store_decr (target_ulong val) | |
155 | { | |
156 | cpu_ppc_store_decr(env, val); | |
157 | } | |
158 | ||
159 | void helper_store_hid0_601 (target_ulong val) | |
160 | { | |
161 | target_ulong hid0; | |
162 | ||
163 | hid0 = env->spr[SPR_HID0]; | |
164 | if ((val ^ hid0) & 0x00000008) { | |
165 | /* Change current endianness */ | |
166 | env->hflags &= ~(1 << MSR_LE); | |
167 | env->hflags_nmsr &= ~(1 << MSR_LE); | |
168 | env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE); | |
169 | env->hflags |= env->hflags_nmsr; | |
170 | qemu_log("%s: set endianness to %c => " TARGET_FMT_lx "\n", __func__, | |
171 | val & 0x8 ? 'l' : 'b', env->hflags); | |
172 | } | |
173 | env->spr[SPR_HID0] = (uint32_t)val; | |
174 | } | |
175 | ||
176 | void helper_store_403_pbr (uint32_t num, target_ulong value) | |
177 | { | |
178 | if (likely(env->pb[num] != value)) { | |
179 | env->pb[num] = value; | |
180 | /* Should be optimized */ | |
181 | tlb_flush(env, 1); | |
182 | } | |
183 | } | |
184 | ||
185 | target_ulong helper_load_40x_pit (void) | |
186 | { | |
187 | return load_40x_pit(env); | |
188 | } | |
189 | ||
190 | void helper_store_40x_pit (target_ulong val) | |
191 | { | |
192 | store_40x_pit(env, val); | |
193 | } | |
194 | ||
195 | void helper_store_40x_dbcr0 (target_ulong val) | |
196 | { | |
197 | store_40x_dbcr0(env, val); | |
198 | } | |
199 | ||
200 | void helper_store_40x_sler (target_ulong val) | |
201 | { | |
202 | store_40x_sler(env, val); | |
203 | } | |
204 | ||
205 | void helper_store_booke_tcr (target_ulong val) | |
206 | { | |
207 | store_booke_tcr(env, val); | |
208 | } | |
209 | ||
210 | void helper_store_booke_tsr (target_ulong val) | |
211 | { | |
212 | store_booke_tsr(env, val); | |
213 | } | |
214 | ||
215 | void helper_store_ibatu (uint32_t nr, target_ulong val) | |
216 | { | |
217 | ppc_store_ibatu(env, nr, val); | |
218 | } | |
219 | ||
220 | void helper_store_ibatl (uint32_t nr, target_ulong val) | |
221 | { | |
222 | ppc_store_ibatl(env, nr, val); | |
223 | } | |
224 | ||
225 | void helper_store_dbatu (uint32_t nr, target_ulong val) | |
226 | { | |
227 | ppc_store_dbatu(env, nr, val); | |
228 | } | |
229 | ||
230 | void helper_store_dbatl (uint32_t nr, target_ulong val) | |
231 | { | |
232 | ppc_store_dbatl(env, nr, val); | |
233 | } | |
234 | ||
235 | void helper_store_601_batl (uint32_t nr, target_ulong val) | |
236 | { | |
237 | ppc_store_ibatl_601(env, nr, val); | |
238 | } | |
239 | ||
240 | void helper_store_601_batu (uint32_t nr, target_ulong val) | |
241 | { | |
242 | ppc_store_ibatu_601(env, nr, val); | |
243 | } | |
244 | #endif | |
245 | ||
246 | /*****************************************************************************/ | |
247 | /* Memory load and stores */ | |
248 | ||
249 | static inline target_ulong addr_add(target_ulong addr, target_long arg) | |
250 | { | |
251 | #if defined(TARGET_PPC64) | |
252 | if (!msr_sf) | |
253 | return (uint32_t)(addr + arg); | |
254 | else | |
255 | #endif | |
256 | return addr + arg; | |
257 | } | |
258 | ||
259 | void helper_lmw (target_ulong addr, uint32_t reg) | |
260 | { | |
261 | for (; reg < 32; reg++) { | |
262 | if (msr_le) | |
263 | env->gpr[reg] = bswap32(ldl(addr)); | |
264 | else | |
265 | env->gpr[reg] = ldl(addr); | |
266 | addr = addr_add(addr, 4); | |
267 | } | |
268 | } | |
269 | ||
270 | void helper_stmw (target_ulong addr, uint32_t reg) | |
271 | { | |
272 | for (; reg < 32; reg++) { | |
273 | if (msr_le) | |
274 | stl(addr, bswap32((uint32_t)env->gpr[reg])); | |
275 | else | |
276 | stl(addr, (uint32_t)env->gpr[reg]); | |
277 | addr = addr_add(addr, 4); | |
278 | } | |
279 | } | |
280 | ||
281 | void helper_lsw(target_ulong addr, uint32_t nb, uint32_t reg) | |
282 | { | |
283 | int sh; | |
284 | for (; nb > 3; nb -= 4) { | |
285 | env->gpr[reg] = ldl(addr); | |
286 | reg = (reg + 1) % 32; | |
287 | addr = addr_add(addr, 4); | |
288 | } | |
289 | if (unlikely(nb > 0)) { | |
290 | env->gpr[reg] = 0; | |
291 | for (sh = 24; nb > 0; nb--, sh -= 8) { | |
292 | env->gpr[reg] |= ldub(addr) << sh; | |
293 | addr = addr_add(addr, 1); | |
294 | } | |
295 | } | |
296 | } | |
297 | /* PPC32 specification says we must generate an exception if | |
298 | * rA is in the range of registers to be loaded. | |
299 | * In an other hand, IBM says this is valid, but rA won't be loaded. | |
300 | * For now, I'll follow the spec... | |
301 | */ | |
302 | void helper_lswx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb) | |
303 | { | |
304 | if (likely(xer_bc != 0)) { | |
305 | if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) || | |
306 | (reg < rb && (reg + xer_bc) > rb))) { | |
307 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, | |
308 | POWERPC_EXCP_INVAL | | |
309 | POWERPC_EXCP_INVAL_LSWX); | |
310 | } else { | |
311 | helper_lsw(addr, xer_bc, reg); | |
312 | } | |
313 | } | |
314 | } | |
315 | ||
316 | void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg) | |
317 | { | |
318 | int sh; | |
319 | for (; nb > 3; nb -= 4) { | |
320 | stl(addr, env->gpr[reg]); | |
321 | reg = (reg + 1) % 32; | |
322 | addr = addr_add(addr, 4); | |
323 | } | |
324 | if (unlikely(nb > 0)) { | |
325 | for (sh = 24; nb > 0; nb--, sh -= 8) { | |
326 | stb(addr, (env->gpr[reg] >> sh) & 0xFF); | |
327 | addr = addr_add(addr, 1); | |
328 | } | |
329 | } | |
330 | } | |
331 | ||
332 | static void do_dcbz(target_ulong addr, int dcache_line_size) | |
333 | { | |
334 | addr &= ~(dcache_line_size - 1); | |
335 | int i; | |
336 | for (i = 0 ; i < dcache_line_size ; i += 4) { | |
337 | stl(addr + i , 0); | |
338 | } | |
339 | if (env->reserve_addr == addr) | |
340 | env->reserve_addr = (target_ulong)-1ULL; | |
341 | } | |
342 | ||
343 | void helper_dcbz(target_ulong addr) | |
344 | { | |
345 | do_dcbz(addr, env->dcache_line_size); | |
346 | } | |
347 | ||
348 | void helper_dcbz_970(target_ulong addr) | |
349 | { | |
350 | if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) | |
351 | do_dcbz(addr, 32); | |
352 | else | |
353 | do_dcbz(addr, env->dcache_line_size); | |
354 | } | |
355 | ||
356 | void helper_icbi(target_ulong addr) | |
357 | { | |
358 | addr &= ~(env->dcache_line_size - 1); | |
359 | /* Invalidate one cache line : | |
360 | * PowerPC specification says this is to be treated like a load | |
361 | * (not a fetch) by the MMU. To be sure it will be so, | |
362 | * do the load "by hand". | |
363 | */ | |
364 | ldl(addr); | |
365 | tb_invalidate_page_range(addr, addr + env->icache_line_size); | |
366 | } | |
367 | ||
368 | // XXX: to be tested | |
369 | target_ulong helper_lscbx (target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb) | |
370 | { | |
371 | int i, c, d; | |
372 | d = 24; | |
373 | for (i = 0; i < xer_bc; i++) { | |
374 | c = ldub(addr); | |
375 | addr = addr_add(addr, 1); | |
376 | /* ra (if not 0) and rb are never modified */ | |
377 | if (likely(reg != rb && (ra == 0 || reg != ra))) { | |
378 | env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d); | |
379 | } | |
380 | if (unlikely(c == xer_cmp)) | |
381 | break; | |
382 | if (likely(d != 0)) { | |
383 | d -= 8; | |
384 | } else { | |
385 | d = 24; | |
386 | reg++; | |
387 | reg = reg & 0x1F; | |
388 | } | |
389 | } | |
390 | return i; | |
391 | } | |
392 | ||
393 | /*****************************************************************************/ | |
394 | /* Fixed point operations helpers */ | |
395 | #if defined(TARGET_PPC64) | |
396 | ||
397 | /* multiply high word */ | |
398 | uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2) | |
399 | { | |
400 | uint64_t tl, th; | |
401 | ||
402 | muls64(&tl, &th, arg1, arg2); | |
403 | return th; | |
404 | } | |
405 | ||
406 | /* multiply high word unsigned */ | |
407 | uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2) | |
408 | { | |
409 | uint64_t tl, th; | |
410 | ||
411 | mulu64(&tl, &th, arg1, arg2); | |
412 | return th; | |
413 | } | |
414 | ||
415 | uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2) | |
416 | { | |
417 | int64_t th; | |
418 | uint64_t tl; | |
419 | ||
420 | muls64(&tl, (uint64_t *)&th, arg1, arg2); | |
421 | /* If th != 0 && th != -1, then we had an overflow */ | |
422 | if (likely((uint64_t)(th + 1) <= 1)) { | |
423 | env->xer &= ~(1 << XER_OV); | |
424 | } else { | |
425 | env->xer |= (1 << XER_OV) | (1 << XER_SO); | |
426 | } | |
427 | return (int64_t)tl; | |
428 | } | |
429 | #endif | |
430 | ||
431 | target_ulong helper_cntlzw (target_ulong t) | |
432 | { | |
433 | return clz32(t); | |
434 | } | |
435 | ||
436 | #if defined(TARGET_PPC64) | |
437 | target_ulong helper_cntlzd (target_ulong t) | |
438 | { | |
439 | return clz64(t); | |
440 | } | |
441 | #endif | |
442 | ||
443 | /* shift right arithmetic helper */ | |
444 | target_ulong helper_sraw (target_ulong value, target_ulong shift) | |
445 | { | |
446 | int32_t ret; | |
447 | ||
448 | if (likely(!(shift & 0x20))) { | |
449 | if (likely((uint32_t)shift != 0)) { | |
450 | shift &= 0x1f; | |
451 | ret = (int32_t)value >> shift; | |
452 | if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { | |
453 | env->xer &= ~(1 << XER_CA); | |
454 | } else { | |
455 | env->xer |= (1 << XER_CA); | |
456 | } | |
457 | } else { | |
458 | ret = (int32_t)value; | |
459 | env->xer &= ~(1 << XER_CA); | |
460 | } | |
461 | } else { | |
462 | ret = (int32_t)value >> 31; | |
463 | if (ret) { | |
464 | env->xer |= (1 << XER_CA); | |
465 | } else { | |
466 | env->xer &= ~(1 << XER_CA); | |
467 | } | |
468 | } | |
469 | return (target_long)ret; | |
470 | } | |
471 | ||
472 | #if defined(TARGET_PPC64) | |
473 | target_ulong helper_srad (target_ulong value, target_ulong shift) | |
474 | { | |
475 | int64_t ret; | |
476 | ||
477 | if (likely(!(shift & 0x40))) { | |
478 | if (likely((uint64_t)shift != 0)) { | |
479 | shift &= 0x3f; | |
480 | ret = (int64_t)value >> shift; | |
481 | if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { | |
482 | env->xer &= ~(1 << XER_CA); | |
483 | } else { | |
484 | env->xer |= (1 << XER_CA); | |
485 | } | |
486 | } else { | |
487 | ret = (int64_t)value; | |
488 | env->xer &= ~(1 << XER_CA); | |
489 | } | |
490 | } else { | |
491 | ret = (int64_t)value >> 63; | |
492 | if (ret) { | |
493 | env->xer |= (1 << XER_CA); | |
494 | } else { | |
495 | env->xer &= ~(1 << XER_CA); | |
496 | } | |
497 | } | |
498 | return ret; | |
499 | } | |
500 | #endif | |
501 | ||
502 | #if defined(TARGET_PPC64) | |
503 | target_ulong helper_popcntb (target_ulong val) | |
504 | { | |
505 | val = (val & 0x5555555555555555ULL) + ((val >> 1) & | |
506 | 0x5555555555555555ULL); | |
507 | val = (val & 0x3333333333333333ULL) + ((val >> 2) & | |
508 | 0x3333333333333333ULL); | |
509 | val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & | |
510 | 0x0f0f0f0f0f0f0f0fULL); | |
511 | return val; | |
512 | } | |
513 | ||
514 | target_ulong helper_popcntw (target_ulong val) | |
515 | { | |
516 | val = (val & 0x5555555555555555ULL) + ((val >> 1) & | |
517 | 0x5555555555555555ULL); | |
518 | val = (val & 0x3333333333333333ULL) + ((val >> 2) & | |
519 | 0x3333333333333333ULL); | |
520 | val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & | |
521 | 0x0f0f0f0f0f0f0f0fULL); | |
522 | val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) & | |
523 | 0x00ff00ff00ff00ffULL); | |
524 | val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) & | |
525 | 0x0000ffff0000ffffULL); | |
526 | return val; | |
527 | } | |
528 | ||
529 | target_ulong helper_popcntd (target_ulong val) | |
530 | { | |
531 | return ctpop64(val); | |
532 | } | |
533 | #else | |
534 | target_ulong helper_popcntb (target_ulong val) | |
535 | { | |
536 | val = (val & 0x55555555) + ((val >> 1) & 0x55555555); | |
537 | val = (val & 0x33333333) + ((val >> 2) & 0x33333333); | |
538 | val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f); | |
539 | return val; | |
540 | } | |
541 | ||
542 | target_ulong helper_popcntw (target_ulong val) | |
543 | { | |
544 | val = (val & 0x55555555) + ((val >> 1) & 0x55555555); | |
545 | val = (val & 0x33333333) + ((val >> 2) & 0x33333333); | |
546 | val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f); | |
547 | val = (val & 0x00ff00ff) + ((val >> 8) & 0x00ff00ff); | |
548 | val = (val & 0x0000ffff) + ((val >> 16) & 0x0000ffff); | |
549 | return val; | |
550 | } | |
551 | #endif | |
552 | ||
553 | /*****************************************************************************/ | |
554 | /* Floating point operations helpers */ | |
555 | uint64_t helper_float32_to_float64(uint32_t arg) | |
556 | { | |
557 | CPU_FloatU f; | |
558 | CPU_DoubleU d; | |
559 | f.l = arg; | |
560 | d.d = float32_to_float64(f.f, &env->fp_status); | |
561 | return d.ll; | |
562 | } | |
563 | ||
564 | uint32_t helper_float64_to_float32(uint64_t arg) | |
565 | { | |
566 | CPU_FloatU f; | |
567 | CPU_DoubleU d; | |
568 | d.ll = arg; | |
569 | f.f = float64_to_float32(d.d, &env->fp_status); | |
570 | return f.l; | |
571 | } | |
572 | ||
573 | static inline int isden(float64 d) | |
574 | { | |
575 | CPU_DoubleU u; | |
576 | ||
577 | u.d = d; | |
578 | ||
579 | return ((u.ll >> 52) & 0x7FF) == 0; | |
580 | } | |
581 | ||
582 | uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf) | |
583 | { | |
584 | CPU_DoubleU farg; | |
585 | int isneg; | |
586 | int ret; | |
587 | farg.ll = arg; | |
588 | isneg = float64_is_neg(farg.d); | |
589 | if (unlikely(float64_is_any_nan(farg.d))) { | |
590 | if (float64_is_signaling_nan(farg.d)) { | |
591 | /* Signaling NaN: flags are undefined */ | |
592 | ret = 0x00; | |
593 | } else { | |
594 | /* Quiet NaN */ | |
595 | ret = 0x11; | |
596 | } | |
597 | } else if (unlikely(float64_is_infinity(farg.d))) { | |
598 | /* +/- infinity */ | |
599 | if (isneg) | |
600 | ret = 0x09; | |
601 | else | |
602 | ret = 0x05; | |
603 | } else { | |
604 | if (float64_is_zero(farg.d)) { | |
605 | /* +/- zero */ | |
606 | if (isneg) | |
607 | ret = 0x12; | |
608 | else | |
609 | ret = 0x02; | |
610 | } else { | |
611 | if (isden(farg.d)) { | |
612 | /* Denormalized numbers */ | |
613 | ret = 0x10; | |
614 | } else { | |
615 | /* Normalized numbers */ | |
616 | ret = 0x00; | |
617 | } | |
618 | if (isneg) { | |
619 | ret |= 0x08; | |
620 | } else { | |
621 | ret |= 0x04; | |
622 | } | |
623 | } | |
624 | } | |
625 | if (set_fprf) { | |
626 | /* We update FPSCR_FPRF */ | |
627 | env->fpscr &= ~(0x1F << FPSCR_FPRF); | |
628 | env->fpscr |= ret << FPSCR_FPRF; | |
629 | } | |
630 | /* We just need fpcc to update Rc1 */ | |
631 | return ret & 0xF; | |
632 | } | |
633 | ||
634 | /* Floating-point invalid operations exception */ | |
635 | static inline uint64_t fload_invalid_op_excp(int op) | |
636 | { | |
637 | uint64_t ret = 0; | |
638 | int ve; | |
639 | ||
640 | ve = fpscr_ve; | |
641 | switch (op) { | |
642 | case POWERPC_EXCP_FP_VXSNAN: | |
643 | env->fpscr |= 1 << FPSCR_VXSNAN; | |
644 | break; | |
645 | case POWERPC_EXCP_FP_VXSOFT: | |
646 | env->fpscr |= 1 << FPSCR_VXSOFT; | |
647 | break; | |
648 | case POWERPC_EXCP_FP_VXISI: | |
649 | /* Magnitude subtraction of infinities */ | |
650 | env->fpscr |= 1 << FPSCR_VXISI; | |
651 | goto update_arith; | |
652 | case POWERPC_EXCP_FP_VXIDI: | |
653 | /* Division of infinity by infinity */ | |
654 | env->fpscr |= 1 << FPSCR_VXIDI; | |
655 | goto update_arith; | |
656 | case POWERPC_EXCP_FP_VXZDZ: | |
657 | /* Division of zero by zero */ | |
658 | env->fpscr |= 1 << FPSCR_VXZDZ; | |
659 | goto update_arith; | |
660 | case POWERPC_EXCP_FP_VXIMZ: | |
661 | /* Multiplication of zero by infinity */ | |
662 | env->fpscr |= 1 << FPSCR_VXIMZ; | |
663 | goto update_arith; | |
664 | case POWERPC_EXCP_FP_VXVC: | |
665 | /* Ordered comparison of NaN */ | |
666 | env->fpscr |= 1 << FPSCR_VXVC; | |
667 | env->fpscr &= ~(0xF << FPSCR_FPCC); | |
668 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
669 | /* We must update the target FPR before raising the exception */ | |
670 | if (ve != 0) { | |
671 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
672 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; | |
673 | /* Update the floating-point enabled exception summary */ | |
674 | env->fpscr |= 1 << FPSCR_FEX; | |
675 | /* Exception is differed */ | |
676 | ve = 0; | |
677 | } | |
678 | break; | |
679 | case POWERPC_EXCP_FP_VXSQRT: | |
680 | /* Square root of a negative number */ | |
681 | env->fpscr |= 1 << FPSCR_VXSQRT; | |
682 | update_arith: | |
683 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
684 | if (ve == 0) { | |
685 | /* Set the result to quiet NaN */ | |
686 | ret = 0x7FF8000000000000ULL; | |
687 | env->fpscr &= ~(0xF << FPSCR_FPCC); | |
688 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
689 | } | |
690 | break; | |
691 | case POWERPC_EXCP_FP_VXCVI: | |
692 | /* Invalid conversion */ | |
693 | env->fpscr |= 1 << FPSCR_VXCVI; | |
694 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
695 | if (ve == 0) { | |
696 | /* Set the result to quiet NaN */ | |
697 | ret = 0x7FF8000000000000ULL; | |
698 | env->fpscr &= ~(0xF << FPSCR_FPCC); | |
699 | env->fpscr |= 0x11 << FPSCR_FPCC; | |
700 | } | |
701 | break; | |
702 | } | |
703 | /* Update the floating-point invalid operation summary */ | |
704 | env->fpscr |= 1 << FPSCR_VX; | |
705 | /* Update the floating-point exception summary */ | |
706 | env->fpscr |= 1 << FPSCR_FX; | |
707 | if (ve != 0) { | |
708 | /* Update the floating-point enabled exception summary */ | |
709 | env->fpscr |= 1 << FPSCR_FEX; | |
710 | if (msr_fe0 != 0 || msr_fe1 != 0) | |
711 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op); | |
712 | } | |
713 | return ret; | |
714 | } | |
715 | ||
716 | static inline void float_zero_divide_excp(void) | |
717 | { | |
718 | env->fpscr |= 1 << FPSCR_ZX; | |
719 | env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); | |
720 | /* Update the floating-point exception summary */ | |
721 | env->fpscr |= 1 << FPSCR_FX; | |
722 | if (fpscr_ze != 0) { | |
723 | /* Update the floating-point enabled exception summary */ | |
724 | env->fpscr |= 1 << FPSCR_FEX; | |
725 | if (msr_fe0 != 0 || msr_fe1 != 0) { | |
726 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, | |
727 | POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX); | |
728 | } | |
729 | } | |
730 | } | |
731 | ||
732 | static inline void float_overflow_excp(void) | |
733 | { | |
734 | env->fpscr |= 1 << FPSCR_OX; | |
735 | /* Update the floating-point exception summary */ | |
736 | env->fpscr |= 1 << FPSCR_FX; | |
737 | if (fpscr_oe != 0) { | |
738 | /* XXX: should adjust the result */ | |
739 | /* Update the floating-point enabled exception summary */ | |
740 | env->fpscr |= 1 << FPSCR_FEX; | |
741 | /* We must update the target FPR before raising the exception */ | |
742 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
743 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | |
744 | } else { | |
745 | env->fpscr |= 1 << FPSCR_XX; | |
746 | env->fpscr |= 1 << FPSCR_FI; | |
747 | } | |
748 | } | |
749 | ||
750 | static inline void float_underflow_excp(void) | |
751 | { | |
752 | env->fpscr |= 1 << FPSCR_UX; | |
753 | /* Update the floating-point exception summary */ | |
754 | env->fpscr |= 1 << FPSCR_FX; | |
755 | if (fpscr_ue != 0) { | |
756 | /* XXX: should adjust the result */ | |
757 | /* Update the floating-point enabled exception summary */ | |
758 | env->fpscr |= 1 << FPSCR_FEX; | |
759 | /* We must update the target FPR before raising the exception */ | |
760 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
761 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | |
762 | } | |
763 | } | |
764 | ||
765 | static inline void float_inexact_excp(void) | |
766 | { | |
767 | env->fpscr |= 1 << FPSCR_XX; | |
768 | /* Update the floating-point exception summary */ | |
769 | env->fpscr |= 1 << FPSCR_FX; | |
770 | if (fpscr_xe != 0) { | |
771 | /* Update the floating-point enabled exception summary */ | |
772 | env->fpscr |= 1 << FPSCR_FEX; | |
773 | /* We must update the target FPR before raising the exception */ | |
774 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
775 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | |
776 | } | |
777 | } | |
778 | ||
779 | static inline void fpscr_set_rounding_mode(void) | |
780 | { | |
781 | int rnd_type; | |
782 | ||
783 | /* Set rounding mode */ | |
784 | switch (fpscr_rn) { | |
785 | case 0: | |
786 | /* Best approximation (round to nearest) */ | |
787 | rnd_type = float_round_nearest_even; | |
788 | break; | |
789 | case 1: | |
790 | /* Smaller magnitude (round toward zero) */ | |
791 | rnd_type = float_round_to_zero; | |
792 | break; | |
793 | case 2: | |
794 | /* Round toward +infinite */ | |
795 | rnd_type = float_round_up; | |
796 | break; | |
797 | default: | |
798 | case 3: | |
799 | /* Round toward -infinite */ | |
800 | rnd_type = float_round_down; | |
801 | break; | |
802 | } | |
803 | set_float_rounding_mode(rnd_type, &env->fp_status); | |
804 | } | |
805 | ||
806 | void helper_fpscr_clrbit (uint32_t bit) | |
807 | { | |
808 | int prev; | |
809 | ||
810 | prev = (env->fpscr >> bit) & 1; | |
811 | env->fpscr &= ~(1 << bit); | |
812 | if (prev == 1) { | |
813 | switch (bit) { | |
814 | case FPSCR_RN1: | |
815 | case FPSCR_RN: | |
816 | fpscr_set_rounding_mode(); | |
817 | break; | |
818 | default: | |
819 | break; | |
820 | } | |
821 | } | |
822 | } | |
823 | ||
824 | void helper_fpscr_setbit (uint32_t bit) | |
825 | { | |
826 | int prev; | |
827 | ||
828 | prev = (env->fpscr >> bit) & 1; | |
829 | env->fpscr |= 1 << bit; | |
830 | if (prev == 0) { | |
831 | switch (bit) { | |
832 | case FPSCR_VX: | |
833 | env->fpscr |= 1 << FPSCR_FX; | |
834 | if (fpscr_ve) | |
835 | goto raise_ve; | |
836 | case FPSCR_OX: | |
837 | env->fpscr |= 1 << FPSCR_FX; | |
838 | if (fpscr_oe) | |
839 | goto raise_oe; | |
840 | break; | |
841 | case FPSCR_UX: | |
842 | env->fpscr |= 1 << FPSCR_FX; | |
843 | if (fpscr_ue) | |
844 | goto raise_ue; | |
845 | break; | |
846 | case FPSCR_ZX: | |
847 | env->fpscr |= 1 << FPSCR_FX; | |
848 | if (fpscr_ze) | |
849 | goto raise_ze; | |
850 | break; | |
851 | case FPSCR_XX: | |
852 | env->fpscr |= 1 << FPSCR_FX; | |
853 | if (fpscr_xe) | |
854 | goto raise_xe; | |
855 | break; | |
856 | case FPSCR_VXSNAN: | |
857 | case FPSCR_VXISI: | |
858 | case FPSCR_VXIDI: | |
859 | case FPSCR_VXZDZ: | |
860 | case FPSCR_VXIMZ: | |
861 | case FPSCR_VXVC: | |
862 | case FPSCR_VXSOFT: | |
863 | case FPSCR_VXSQRT: | |
864 | case FPSCR_VXCVI: | |
865 | env->fpscr |= 1 << FPSCR_VX; | |
866 | env->fpscr |= 1 << FPSCR_FX; | |
867 | if (fpscr_ve != 0) | |
868 | goto raise_ve; | |
869 | break; | |
870 | case FPSCR_VE: | |
871 | if (fpscr_vx != 0) { | |
872 | raise_ve: | |
873 | env->error_code = POWERPC_EXCP_FP; | |
874 | if (fpscr_vxsnan) | |
875 | env->error_code |= POWERPC_EXCP_FP_VXSNAN; | |
876 | if (fpscr_vxisi) | |
877 | env->error_code |= POWERPC_EXCP_FP_VXISI; | |
878 | if (fpscr_vxidi) | |
879 | env->error_code |= POWERPC_EXCP_FP_VXIDI; | |
880 | if (fpscr_vxzdz) | |
881 | env->error_code |= POWERPC_EXCP_FP_VXZDZ; | |
882 | if (fpscr_vximz) | |
883 | env->error_code |= POWERPC_EXCP_FP_VXIMZ; | |
884 | if (fpscr_vxvc) | |
885 | env->error_code |= POWERPC_EXCP_FP_VXVC; | |
886 | if (fpscr_vxsoft) | |
887 | env->error_code |= POWERPC_EXCP_FP_VXSOFT; | |
888 | if (fpscr_vxsqrt) | |
889 | env->error_code |= POWERPC_EXCP_FP_VXSQRT; | |
890 | if (fpscr_vxcvi) | |
891 | env->error_code |= POWERPC_EXCP_FP_VXCVI; | |
892 | goto raise_excp; | |
893 | } | |
894 | break; | |
895 | case FPSCR_OE: | |
896 | if (fpscr_ox != 0) { | |
897 | raise_oe: | |
898 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; | |
899 | goto raise_excp; | |
900 | } | |
901 | break; | |
902 | case FPSCR_UE: | |
903 | if (fpscr_ux != 0) { | |
904 | raise_ue: | |
905 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; | |
906 | goto raise_excp; | |
907 | } | |
908 | break; | |
909 | case FPSCR_ZE: | |
910 | if (fpscr_zx != 0) { | |
911 | raise_ze: | |
912 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; | |
913 | goto raise_excp; | |
914 | } | |
915 | break; | |
916 | case FPSCR_XE: | |
917 | if (fpscr_xx != 0) { | |
918 | raise_xe: | |
919 | env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; | |
920 | goto raise_excp; | |
921 | } | |
922 | break; | |
923 | case FPSCR_RN1: | |
924 | case FPSCR_RN: | |
925 | fpscr_set_rounding_mode(); | |
926 | break; | |
927 | default: | |
928 | break; | |
929 | raise_excp: | |
930 | /* Update the floating-point enabled exception summary */ | |
931 | env->fpscr |= 1 << FPSCR_FEX; | |
932 | /* We have to update Rc1 before raising the exception */ | |
933 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
934 | break; | |
935 | } | |
936 | } | |
937 | } | |
938 | ||
939 | void helper_store_fpscr (uint64_t arg, uint32_t mask) | |
940 | { | |
941 | /* | |
942 | * We use only the 32 LSB of the incoming fpr | |
943 | */ | |
944 | uint32_t prev, new; | |
945 | int i; | |
946 | ||
947 | prev = env->fpscr; | |
948 | new = (uint32_t)arg; | |
949 | new &= ~0x60000000; | |
950 | new |= prev & 0x60000000; | |
951 | for (i = 0; i < 8; i++) { | |
952 | if (mask & (1 << i)) { | |
953 | env->fpscr &= ~(0xF << (4 * i)); | |
954 | env->fpscr |= new & (0xF << (4 * i)); | |
955 | } | |
956 | } | |
957 | /* Update VX and FEX */ | |
958 | if (fpscr_ix != 0) | |
959 | env->fpscr |= 1 << FPSCR_VX; | |
960 | else | |
961 | env->fpscr &= ~(1 << FPSCR_VX); | |
962 | if ((fpscr_ex & fpscr_eex) != 0) { | |
963 | env->fpscr |= 1 << FPSCR_FEX; | |
964 | env->exception_index = POWERPC_EXCP_PROGRAM; | |
965 | /* XXX: we should compute it properly */ | |
966 | env->error_code = POWERPC_EXCP_FP; | |
967 | } | |
968 | else | |
969 | env->fpscr &= ~(1 << FPSCR_FEX); | |
970 | fpscr_set_rounding_mode(); | |
971 | } | |
972 | ||
973 | void helper_float_check_status (void) | |
974 | { | |
975 | #ifdef CONFIG_SOFTFLOAT | |
976 | if (env->exception_index == POWERPC_EXCP_PROGRAM && | |
977 | (env->error_code & POWERPC_EXCP_FP)) { | |
978 | /* Differred floating-point exception after target FPR update */ | |
979 | if (msr_fe0 != 0 || msr_fe1 != 0) | |
980 | helper_raise_exception_err(env->exception_index, env->error_code); | |
981 | } else { | |
982 | int status = get_float_exception_flags(&env->fp_status); | |
983 | if (status & float_flag_divbyzero) { | |
984 | float_zero_divide_excp(); | |
985 | } else if (status & float_flag_overflow) { | |
986 | float_overflow_excp(); | |
987 | } else if (status & float_flag_underflow) { | |
988 | float_underflow_excp(); | |
989 | } else if (status & float_flag_inexact) { | |
990 | float_inexact_excp(); | |
991 | } | |
992 | } | |
993 | #else | |
994 | if (env->exception_index == POWERPC_EXCP_PROGRAM && | |
995 | (env->error_code & POWERPC_EXCP_FP)) { | |
996 | /* Differred floating-point exception after target FPR update */ | |
997 | if (msr_fe0 != 0 || msr_fe1 != 0) | |
998 | helper_raise_exception_err(env->exception_index, env->error_code); | |
999 | } | |
1000 | #endif | |
1001 | } | |
1002 | ||
1003 | #ifdef CONFIG_SOFTFLOAT | |
1004 | void helper_reset_fpstatus (void) | |
1005 | { | |
1006 | set_float_exception_flags(0, &env->fp_status); | |
1007 | } | |
1008 | #endif | |
1009 | ||
1010 | /* fadd - fadd. */ | |
1011 | uint64_t helper_fadd (uint64_t arg1, uint64_t arg2) | |
1012 | { | |
1013 | CPU_DoubleU farg1, farg2; | |
1014 | ||
1015 | farg1.ll = arg1; | |
1016 | farg2.ll = arg2; | |
1017 | ||
1018 | if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) && | |
1019 | float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) { | |
1020 | /* Magnitude subtraction of infinities */ | |
1021 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
1022 | } else { | |
1023 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1024 | float64_is_signaling_nan(farg2.d))) { | |
1025 | /* sNaN addition */ | |
1026 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1027 | } | |
1028 | farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status); | |
1029 | } | |
1030 | ||
1031 | return farg1.ll; | |
1032 | } | |
1033 | ||
1034 | /* fsub - fsub. */ | |
1035 | uint64_t helper_fsub (uint64_t arg1, uint64_t arg2) | |
1036 | { | |
1037 | CPU_DoubleU farg1, farg2; | |
1038 | ||
1039 | farg1.ll = arg1; | |
1040 | farg2.ll = arg2; | |
1041 | ||
1042 | if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) && | |
1043 | float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) { | |
1044 | /* Magnitude subtraction of infinities */ | |
1045 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
1046 | } else { | |
1047 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1048 | float64_is_signaling_nan(farg2.d))) { | |
1049 | /* sNaN subtraction */ | |
1050 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1051 | } | |
1052 | farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status); | |
1053 | } | |
1054 | ||
1055 | return farg1.ll; | |
1056 | } | |
1057 | ||
1058 | /* fmul - fmul. */ | |
1059 | uint64_t helper_fmul (uint64_t arg1, uint64_t arg2) | |
1060 | { | |
1061 | CPU_DoubleU farg1, farg2; | |
1062 | ||
1063 | farg1.ll = arg1; | |
1064 | farg2.ll = arg2; | |
1065 | ||
1066 | if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || | |
1067 | (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { | |
1068 | /* Multiplication of zero by infinity */ | |
1069 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); | |
1070 | } else { | |
1071 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1072 | float64_is_signaling_nan(farg2.d))) { | |
1073 | /* sNaN multiplication */ | |
1074 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1075 | } | |
1076 | farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); | |
1077 | } | |
1078 | ||
1079 | return farg1.ll; | |
1080 | } | |
1081 | ||
1082 | /* fdiv - fdiv. */ | |
1083 | uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2) | |
1084 | { | |
1085 | CPU_DoubleU farg1, farg2; | |
1086 | ||
1087 | farg1.ll = arg1; | |
1088 | farg2.ll = arg2; | |
1089 | ||
1090 | if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d))) { | |
1091 | /* Division of infinity by infinity */ | |
1092 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI); | |
1093 | } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) { | |
1094 | /* Division of zero by zero */ | |
1095 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ); | |
1096 | } else { | |
1097 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1098 | float64_is_signaling_nan(farg2.d))) { | |
1099 | /* sNaN division */ | |
1100 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1101 | } | |
1102 | farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status); | |
1103 | } | |
1104 | ||
1105 | return farg1.ll; | |
1106 | } | |
1107 | ||
1108 | /* fabs */ | |
1109 | uint64_t helper_fabs (uint64_t arg) | |
1110 | { | |
1111 | CPU_DoubleU farg; | |
1112 | ||
1113 | farg.ll = arg; | |
1114 | farg.d = float64_abs(farg.d); | |
1115 | return farg.ll; | |
1116 | } | |
1117 | ||
1118 | /* fnabs */ | |
1119 | uint64_t helper_fnabs (uint64_t arg) | |
1120 | { | |
1121 | CPU_DoubleU farg; | |
1122 | ||
1123 | farg.ll = arg; | |
1124 | farg.d = float64_abs(farg.d); | |
1125 | farg.d = float64_chs(farg.d); | |
1126 | return farg.ll; | |
1127 | } | |
1128 | ||
1129 | /* fneg */ | |
1130 | uint64_t helper_fneg (uint64_t arg) | |
1131 | { | |
1132 | CPU_DoubleU farg; | |
1133 | ||
1134 | farg.ll = arg; | |
1135 | farg.d = float64_chs(farg.d); | |
1136 | return farg.ll; | |
1137 | } | |
1138 | ||
1139 | /* fctiw - fctiw. */ | |
1140 | uint64_t helper_fctiw (uint64_t arg) | |
1141 | { | |
1142 | CPU_DoubleU farg; | |
1143 | farg.ll = arg; | |
1144 | ||
1145 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1146 | /* sNaN conversion */ | |
1147 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1148 | } else if (unlikely(float64_is_quiet_nan(farg.d) || float64_is_infinity(farg.d))) { | |
1149 | /* qNan / infinity conversion */ | |
1150 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1151 | } else { | |
1152 | farg.ll = float64_to_int32(farg.d, &env->fp_status); | |
1153 | /* XXX: higher bits are not supposed to be significant. | |
1154 | * to make tests easier, return the same as a real PowerPC 750 | |
1155 | */ | |
1156 | farg.ll |= 0xFFF80000ULL << 32; | |
1157 | } | |
1158 | return farg.ll; | |
1159 | } | |
1160 | ||
1161 | /* fctiwz - fctiwz. */ | |
1162 | uint64_t helper_fctiwz (uint64_t arg) | |
1163 | { | |
1164 | CPU_DoubleU farg; | |
1165 | farg.ll = arg; | |
1166 | ||
1167 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1168 | /* sNaN conversion */ | |
1169 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1170 | } else if (unlikely(float64_is_quiet_nan(farg.d) || float64_is_infinity(farg.d))) { | |
1171 | /* qNan / infinity conversion */ | |
1172 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1173 | } else { | |
1174 | farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status); | |
1175 | /* XXX: higher bits are not supposed to be significant. | |
1176 | * to make tests easier, return the same as a real PowerPC 750 | |
1177 | */ | |
1178 | farg.ll |= 0xFFF80000ULL << 32; | |
1179 | } | |
1180 | return farg.ll; | |
1181 | } | |
1182 | ||
1183 | #if defined(TARGET_PPC64) | |
1184 | /* fcfid - fcfid. */ | |
1185 | uint64_t helper_fcfid (uint64_t arg) | |
1186 | { | |
1187 | CPU_DoubleU farg; | |
1188 | farg.d = int64_to_float64(arg, &env->fp_status); | |
1189 | return farg.ll; | |
1190 | } | |
1191 | ||
1192 | /* fctid - fctid. */ | |
1193 | uint64_t helper_fctid (uint64_t arg) | |
1194 | { | |
1195 | CPU_DoubleU farg; | |
1196 | farg.ll = arg; | |
1197 | ||
1198 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1199 | /* sNaN conversion */ | |
1200 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1201 | } else if (unlikely(float64_is_quiet_nan(farg.d) || float64_is_infinity(farg.d))) { | |
1202 | /* qNan / infinity conversion */ | |
1203 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1204 | } else { | |
1205 | farg.ll = float64_to_int64(farg.d, &env->fp_status); | |
1206 | } | |
1207 | return farg.ll; | |
1208 | } | |
1209 | ||
1210 | /* fctidz - fctidz. */ | |
1211 | uint64_t helper_fctidz (uint64_t arg) | |
1212 | { | |
1213 | CPU_DoubleU farg; | |
1214 | farg.ll = arg; | |
1215 | ||
1216 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1217 | /* sNaN conversion */ | |
1218 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1219 | } else if (unlikely(float64_is_quiet_nan(farg.d) || float64_is_infinity(farg.d))) { | |
1220 | /* qNan / infinity conversion */ | |
1221 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1222 | } else { | |
1223 | farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status); | |
1224 | } | |
1225 | return farg.ll; | |
1226 | } | |
1227 | ||
1228 | #endif | |
1229 | ||
1230 | static inline uint64_t do_fri(uint64_t arg, int rounding_mode) | |
1231 | { | |
1232 | CPU_DoubleU farg; | |
1233 | farg.ll = arg; | |
1234 | ||
1235 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1236 | /* sNaN round */ | |
1237 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); | |
1238 | } else if (unlikely(float64_is_quiet_nan(farg.d) || float64_is_infinity(farg.d))) { | |
1239 | /* qNan / infinity round */ | |
1240 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); | |
1241 | } else { | |
1242 | set_float_rounding_mode(rounding_mode, &env->fp_status); | |
1243 | farg.ll = float64_round_to_int(farg.d, &env->fp_status); | |
1244 | /* Restore rounding mode from FPSCR */ | |
1245 | fpscr_set_rounding_mode(); | |
1246 | } | |
1247 | return farg.ll; | |
1248 | } | |
1249 | ||
1250 | uint64_t helper_frin (uint64_t arg) | |
1251 | { | |
1252 | return do_fri(arg, float_round_nearest_even); | |
1253 | } | |
1254 | ||
1255 | uint64_t helper_friz (uint64_t arg) | |
1256 | { | |
1257 | return do_fri(arg, float_round_to_zero); | |
1258 | } | |
1259 | ||
1260 | uint64_t helper_frip (uint64_t arg) | |
1261 | { | |
1262 | return do_fri(arg, float_round_up); | |
1263 | } | |
1264 | ||
1265 | uint64_t helper_frim (uint64_t arg) | |
1266 | { | |
1267 | return do_fri(arg, float_round_down); | |
1268 | } | |
1269 | ||
1270 | /* fmadd - fmadd. */ | |
1271 | uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3) | |
1272 | { | |
1273 | CPU_DoubleU farg1, farg2, farg3; | |
1274 | ||
1275 | farg1.ll = arg1; | |
1276 | farg2.ll = arg2; | |
1277 | farg3.ll = arg3; | |
1278 | ||
1279 | if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || | |
1280 | (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { | |
1281 | /* Multiplication of zero by infinity */ | |
1282 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); | |
1283 | } else { | |
1284 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1285 | float64_is_signaling_nan(farg2.d) || | |
1286 | float64_is_signaling_nan(farg3.d))) { | |
1287 | /* sNaN operation */ | |
1288 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1289 | } | |
1290 | /* This is the way the PowerPC specification defines it */ | |
1291 | float128 ft0_128, ft1_128; | |
1292 | ||
1293 | ft0_128 = float64_to_float128(farg1.d, &env->fp_status); | |
1294 | ft1_128 = float64_to_float128(farg2.d, &env->fp_status); | |
1295 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1296 | if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && | |
1297 | float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) { | |
1298 | /* Magnitude subtraction of infinities */ | |
1299 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
1300 | } else { | |
1301 | ft1_128 = float64_to_float128(farg3.d, &env->fp_status); | |
1302 | ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); | |
1303 | farg1.d = float128_to_float64(ft0_128, &env->fp_status); | |
1304 | } | |
1305 | } | |
1306 | ||
1307 | return farg1.ll; | |
1308 | } | |
1309 | ||
1310 | /* fmsub - fmsub. */ | |
1311 | uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3) | |
1312 | { | |
1313 | CPU_DoubleU farg1, farg2, farg3; | |
1314 | ||
1315 | farg1.ll = arg1; | |
1316 | farg2.ll = arg2; | |
1317 | farg3.ll = arg3; | |
1318 | ||
1319 | if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || | |
1320 | (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { | |
1321 | /* Multiplication of zero by infinity */ | |
1322 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); | |
1323 | } else { | |
1324 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1325 | float64_is_signaling_nan(farg2.d) || | |
1326 | float64_is_signaling_nan(farg3.d))) { | |
1327 | /* sNaN operation */ | |
1328 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1329 | } | |
1330 | /* This is the way the PowerPC specification defines it */ | |
1331 | float128 ft0_128, ft1_128; | |
1332 | ||
1333 | ft0_128 = float64_to_float128(farg1.d, &env->fp_status); | |
1334 | ft1_128 = float64_to_float128(farg2.d, &env->fp_status); | |
1335 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1336 | if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && | |
1337 | float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) { | |
1338 | /* Magnitude subtraction of infinities */ | |
1339 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
1340 | } else { | |
1341 | ft1_128 = float64_to_float128(farg3.d, &env->fp_status); | |
1342 | ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); | |
1343 | farg1.d = float128_to_float64(ft0_128, &env->fp_status); | |
1344 | } | |
1345 | } | |
1346 | return farg1.ll; | |
1347 | } | |
1348 | ||
1349 | /* fnmadd - fnmadd. */ | |
1350 | uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3) | |
1351 | { | |
1352 | CPU_DoubleU farg1, farg2, farg3; | |
1353 | ||
1354 | farg1.ll = arg1; | |
1355 | farg2.ll = arg2; | |
1356 | farg3.ll = arg3; | |
1357 | ||
1358 | if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || | |
1359 | (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { | |
1360 | /* Multiplication of zero by infinity */ | |
1361 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); | |
1362 | } else { | |
1363 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1364 | float64_is_signaling_nan(farg2.d) || | |
1365 | float64_is_signaling_nan(farg3.d))) { | |
1366 | /* sNaN operation */ | |
1367 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1368 | } | |
1369 | /* This is the way the PowerPC specification defines it */ | |
1370 | float128 ft0_128, ft1_128; | |
1371 | ||
1372 | ft0_128 = float64_to_float128(farg1.d, &env->fp_status); | |
1373 | ft1_128 = float64_to_float128(farg2.d, &env->fp_status); | |
1374 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1375 | if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && | |
1376 | float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) { | |
1377 | /* Magnitude subtraction of infinities */ | |
1378 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
1379 | } else { | |
1380 | ft1_128 = float64_to_float128(farg3.d, &env->fp_status); | |
1381 | ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); | |
1382 | farg1.d = float128_to_float64(ft0_128, &env->fp_status); | |
1383 | } | |
1384 | if (likely(!float64_is_any_nan(farg1.d))) { | |
1385 | farg1.d = float64_chs(farg1.d); | |
1386 | } | |
1387 | } | |
1388 | return farg1.ll; | |
1389 | } | |
1390 | ||
1391 | /* fnmsub - fnmsub. */ | |
1392 | uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3) | |
1393 | { | |
1394 | CPU_DoubleU farg1, farg2, farg3; | |
1395 | ||
1396 | farg1.ll = arg1; | |
1397 | farg2.ll = arg2; | |
1398 | farg3.ll = arg3; | |
1399 | ||
1400 | if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || | |
1401 | (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { | |
1402 | /* Multiplication of zero by infinity */ | |
1403 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); | |
1404 | } else { | |
1405 | if (unlikely(float64_is_signaling_nan(farg1.d) || | |
1406 | float64_is_signaling_nan(farg2.d) || | |
1407 | float64_is_signaling_nan(farg3.d))) { | |
1408 | /* sNaN operation */ | |
1409 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1410 | } | |
1411 | /* This is the way the PowerPC specification defines it */ | |
1412 | float128 ft0_128, ft1_128; | |
1413 | ||
1414 | ft0_128 = float64_to_float128(farg1.d, &env->fp_status); | |
1415 | ft1_128 = float64_to_float128(farg2.d, &env->fp_status); | |
1416 | ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); | |
1417 | if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && | |
1418 | float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) { | |
1419 | /* Magnitude subtraction of infinities */ | |
1420 | farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); | |
1421 | } else { | |
1422 | ft1_128 = float64_to_float128(farg3.d, &env->fp_status); | |
1423 | ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); | |
1424 | farg1.d = float128_to_float64(ft0_128, &env->fp_status); | |
1425 | } | |
1426 | if (likely(!float64_is_any_nan(farg1.d))) { | |
1427 | farg1.d = float64_chs(farg1.d); | |
1428 | } | |
1429 | } | |
1430 | return farg1.ll; | |
1431 | } | |
1432 | ||
1433 | /* frsp - frsp. */ | |
1434 | uint64_t helper_frsp (uint64_t arg) | |
1435 | { | |
1436 | CPU_DoubleU farg; | |
1437 | float32 f32; | |
1438 | farg.ll = arg; | |
1439 | ||
1440 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1441 | /* sNaN square root */ | |
1442 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1443 | } | |
1444 | f32 = float64_to_float32(farg.d, &env->fp_status); | |
1445 | farg.d = float32_to_float64(f32, &env->fp_status); | |
1446 | ||
1447 | return farg.ll; | |
1448 | } | |
1449 | ||
1450 | /* fsqrt - fsqrt. */ | |
1451 | uint64_t helper_fsqrt (uint64_t arg) | |
1452 | { | |
1453 | CPU_DoubleU farg; | |
1454 | farg.ll = arg; | |
1455 | ||
1456 | if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) { | |
1457 | /* Square root of a negative nonzero number */ | |
1458 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); | |
1459 | } else { | |
1460 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1461 | /* sNaN square root */ | |
1462 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1463 | } | |
1464 | farg.d = float64_sqrt(farg.d, &env->fp_status); | |
1465 | } | |
1466 | return farg.ll; | |
1467 | } | |
1468 | ||
1469 | /* fre - fre. */ | |
1470 | uint64_t helper_fre (uint64_t arg) | |
1471 | { | |
1472 | CPU_DoubleU farg; | |
1473 | farg.ll = arg; | |
1474 | ||
1475 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1476 | /* sNaN reciprocal */ | |
1477 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1478 | } | |
1479 | farg.d = float64_div(float64_one, farg.d, &env->fp_status); | |
1480 | return farg.d; | |
1481 | } | |
1482 | ||
1483 | /* fres - fres. */ | |
1484 | uint64_t helper_fres (uint64_t arg) | |
1485 | { | |
1486 | CPU_DoubleU farg; | |
1487 | float32 f32; | |
1488 | farg.ll = arg; | |
1489 | ||
1490 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1491 | /* sNaN reciprocal */ | |
1492 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1493 | } | |
1494 | farg.d = float64_div(float64_one, farg.d, &env->fp_status); | |
1495 | f32 = float64_to_float32(farg.d, &env->fp_status); | |
1496 | farg.d = float32_to_float64(f32, &env->fp_status); | |
1497 | ||
1498 | return farg.ll; | |
1499 | } | |
1500 | ||
1501 | /* frsqrte - frsqrte. */ | |
1502 | uint64_t helper_frsqrte (uint64_t arg) | |
1503 | { | |
1504 | CPU_DoubleU farg; | |
1505 | float32 f32; | |
1506 | farg.ll = arg; | |
1507 | ||
1508 | if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) { | |
1509 | /* Reciprocal square root of a negative nonzero number */ | |
1510 | farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); | |
1511 | } else { | |
1512 | if (unlikely(float64_is_signaling_nan(farg.d))) { | |
1513 | /* sNaN reciprocal square root */ | |
1514 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1515 | } | |
1516 | farg.d = float64_sqrt(farg.d, &env->fp_status); | |
1517 | farg.d = float64_div(float64_one, farg.d, &env->fp_status); | |
1518 | f32 = float64_to_float32(farg.d, &env->fp_status); | |
1519 | farg.d = float32_to_float64(f32, &env->fp_status); | |
1520 | } | |
1521 | return farg.ll; | |
1522 | } | |
1523 | ||
1524 | /* fsel - fsel. */ | |
1525 | uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3) | |
1526 | { | |
1527 | CPU_DoubleU farg1; | |
1528 | ||
1529 | farg1.ll = arg1; | |
1530 | ||
1531 | if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && !float64_is_any_nan(farg1.d)) { | |
1532 | return arg2; | |
1533 | } else { | |
1534 | return arg3; | |
1535 | } | |
1536 | } | |
1537 | ||
1538 | void helper_fcmpu (uint64_t arg1, uint64_t arg2, uint32_t crfD) | |
1539 | { | |
1540 | CPU_DoubleU farg1, farg2; | |
1541 | uint32_t ret = 0; | |
1542 | farg1.ll = arg1; | |
1543 | farg2.ll = arg2; | |
1544 | ||
1545 | if (unlikely(float64_is_any_nan(farg1.d) || | |
1546 | float64_is_any_nan(farg2.d))) { | |
1547 | ret = 0x01UL; | |
1548 | } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { | |
1549 | ret = 0x08UL; | |
1550 | } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { | |
1551 | ret = 0x04UL; | |
1552 | } else { | |
1553 | ret = 0x02UL; | |
1554 | } | |
1555 | ||
1556 | env->fpscr &= ~(0x0F << FPSCR_FPRF); | |
1557 | env->fpscr |= ret << FPSCR_FPRF; | |
1558 | env->crf[crfD] = ret; | |
1559 | if (unlikely(ret == 0x01UL | |
1560 | && (float64_is_signaling_nan(farg1.d) || | |
1561 | float64_is_signaling_nan(farg2.d)))) { | |
1562 | /* sNaN comparison */ | |
1563 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); | |
1564 | } | |
1565 | } | |
1566 | ||
1567 | void helper_fcmpo (uint64_t arg1, uint64_t arg2, uint32_t crfD) | |
1568 | { | |
1569 | CPU_DoubleU farg1, farg2; | |
1570 | uint32_t ret = 0; | |
1571 | farg1.ll = arg1; | |
1572 | farg2.ll = arg2; | |
1573 | ||
1574 | if (unlikely(float64_is_any_nan(farg1.d) || | |
1575 | float64_is_any_nan(farg2.d))) { | |
1576 | ret = 0x01UL; | |
1577 | } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { | |
1578 | ret = 0x08UL; | |
1579 | } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { | |
1580 | ret = 0x04UL; | |
1581 | } else { | |
1582 | ret = 0x02UL; | |
1583 | } | |
1584 | ||
1585 | env->fpscr &= ~(0x0F << FPSCR_FPRF); | |
1586 | env->fpscr |= ret << FPSCR_FPRF; | |
1587 | env->crf[crfD] = ret; | |
1588 | if (unlikely (ret == 0x01UL)) { | |
1589 | if (float64_is_signaling_nan(farg1.d) || | |
1590 | float64_is_signaling_nan(farg2.d)) { | |
1591 | /* sNaN comparison */ | |
1592 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | | |
1593 | POWERPC_EXCP_FP_VXVC); | |
1594 | } else { | |
1595 | /* qNaN comparison */ | |
1596 | fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC); | |
1597 | } | |
1598 | } | |
1599 | } | |
1600 | ||
1601 | #if !defined (CONFIG_USER_ONLY) | |
1602 | void helper_store_msr (target_ulong val) | |
1603 | { | |
1604 | val = hreg_store_msr(env, val, 0); | |
1605 | if (val != 0) { | |
1606 | env->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
1607 | helper_raise_exception(val); | |
1608 | } | |
1609 | } | |
1610 | ||
1611 | static inline void do_rfi(target_ulong nip, target_ulong msr, | |
1612 | target_ulong msrm, int keep_msrh) | |
1613 | { | |
1614 | #if defined(TARGET_PPC64) | |
1615 | if (msr & (1ULL << MSR_SF)) { | |
1616 | nip = (uint64_t)nip; | |
1617 | msr &= (uint64_t)msrm; | |
1618 | } else { | |
1619 | nip = (uint32_t)nip; | |
1620 | msr = (uint32_t)(msr & msrm); | |
1621 | if (keep_msrh) | |
1622 | msr |= env->msr & ~((uint64_t)0xFFFFFFFF); | |
1623 | } | |
1624 | #else | |
1625 | nip = (uint32_t)nip; | |
1626 | msr &= (uint32_t)msrm; | |
1627 | #endif | |
1628 | /* XXX: beware: this is false if VLE is supported */ | |
1629 | env->nip = nip & ~((target_ulong)0x00000003); | |
1630 | hreg_store_msr(env, msr, 1); | |
1631 | #if defined (DEBUG_OP) | |
1632 | cpu_dump_rfi(env->nip, env->msr); | |
1633 | #endif | |
1634 | /* No need to raise an exception here, | |
1635 | * as rfi is always the last insn of a TB | |
1636 | */ | |
1637 | env->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
1638 | } | |
1639 | ||
1640 | void helper_rfi (void) | |
1641 | { | |
1642 | do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], | |
1643 | ~((target_ulong)0x783F0000), 1); | |
1644 | } | |
1645 | ||
1646 | #if defined(TARGET_PPC64) | |
1647 | void helper_rfid (void) | |
1648 | { | |
1649 | do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], | |
1650 | ~((target_ulong)0x783F0000), 0); | |
1651 | } | |
1652 | ||
1653 | void helper_hrfid (void) | |
1654 | { | |
1655 | do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1], | |
1656 | ~((target_ulong)0x783F0000), 0); | |
1657 | } | |
1658 | #endif | |
1659 | #endif | |
1660 | ||
1661 | void helper_tw (target_ulong arg1, target_ulong arg2, uint32_t flags) | |
1662 | { | |
1663 | if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) || | |
1664 | ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) || | |
1665 | ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) || | |
1666 | ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) || | |
1667 | ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) { | |
1668 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); | |
1669 | } | |
1670 | } | |
1671 | ||
1672 | #if defined(TARGET_PPC64) | |
1673 | void helper_td (target_ulong arg1, target_ulong arg2, uint32_t flags) | |
1674 | { | |
1675 | if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) || | |
1676 | ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) || | |
1677 | ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) || | |
1678 | ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) || | |
1679 | ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01))))) | |
1680 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); | |
1681 | } | |
1682 | #endif | |
1683 | ||
1684 | /*****************************************************************************/ | |
1685 | /* PowerPC 601 specific instructions (POWER bridge) */ | |
1686 | ||
1687 | target_ulong helper_clcs (uint32_t arg) | |
1688 | { | |
1689 | switch (arg) { | |
1690 | case 0x0CUL: | |
1691 | /* Instruction cache line size */ | |
1692 | return env->icache_line_size; | |
1693 | break; | |
1694 | case 0x0DUL: | |
1695 | /* Data cache line size */ | |
1696 | return env->dcache_line_size; | |
1697 | break; | |
1698 | case 0x0EUL: | |
1699 | /* Minimum cache line size */ | |
1700 | return (env->icache_line_size < env->dcache_line_size) ? | |
1701 | env->icache_line_size : env->dcache_line_size; | |
1702 | break; | |
1703 | case 0x0FUL: | |
1704 | /* Maximum cache line size */ | |
1705 | return (env->icache_line_size > env->dcache_line_size) ? | |
1706 | env->icache_line_size : env->dcache_line_size; | |
1707 | break; | |
1708 | default: | |
1709 | /* Undefined */ | |
1710 | return 0; | |
1711 | break; | |
1712 | } | |
1713 | } | |
1714 | ||
1715 | target_ulong helper_div (target_ulong arg1, target_ulong arg2) | |
1716 | { | |
1717 | uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; | |
1718 | ||
1719 | if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || | |
1720 | (int32_t)arg2 == 0) { | |
1721 | env->spr[SPR_MQ] = 0; | |
1722 | return INT32_MIN; | |
1723 | } else { | |
1724 | env->spr[SPR_MQ] = tmp % arg2; | |
1725 | return tmp / (int32_t)arg2; | |
1726 | } | |
1727 | } | |
1728 | ||
1729 | target_ulong helper_divo (target_ulong arg1, target_ulong arg2) | |
1730 | { | |
1731 | uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; | |
1732 | ||
1733 | if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || | |
1734 | (int32_t)arg2 == 0) { | |
1735 | env->xer |= (1 << XER_OV) | (1 << XER_SO); | |
1736 | env->spr[SPR_MQ] = 0; | |
1737 | return INT32_MIN; | |
1738 | } else { | |
1739 | env->spr[SPR_MQ] = tmp % arg2; | |
1740 | tmp /= (int32_t)arg2; | |
1741 | if ((int32_t)tmp != tmp) { | |
1742 | env->xer |= (1 << XER_OV) | (1 << XER_SO); | |
1743 | } else { | |
1744 | env->xer &= ~(1 << XER_OV); | |
1745 | } | |
1746 | return tmp; | |
1747 | } | |
1748 | } | |
1749 | ||
1750 | target_ulong helper_divs (target_ulong arg1, target_ulong arg2) | |
1751 | { | |
1752 | if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || | |
1753 | (int32_t)arg2 == 0) { | |
1754 | env->spr[SPR_MQ] = 0; | |
1755 | return INT32_MIN; | |
1756 | } else { | |
1757 | env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; | |
1758 | return (int32_t)arg1 / (int32_t)arg2; | |
1759 | } | |
1760 | } | |
1761 | ||
1762 | target_ulong helper_divso (target_ulong arg1, target_ulong arg2) | |
1763 | { | |
1764 | if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || | |
1765 | (int32_t)arg2 == 0) { | |
1766 | env->xer |= (1 << XER_OV) | (1 << XER_SO); | |
1767 | env->spr[SPR_MQ] = 0; | |
1768 | return INT32_MIN; | |
1769 | } else { | |
1770 | env->xer &= ~(1 << XER_OV); | |
1771 | env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; | |
1772 | return (int32_t)arg1 / (int32_t)arg2; | |
1773 | } | |
1774 | } | |
1775 | ||
1776 | #if !defined (CONFIG_USER_ONLY) | |
1777 | target_ulong helper_rac (target_ulong addr) | |
1778 | { | |
1779 | mmu_ctx_t ctx; | |
1780 | int nb_BATs; | |
1781 | target_ulong ret = 0; | |
1782 | ||
1783 | /* We don't have to generate many instances of this instruction, | |
1784 | * as rac is supervisor only. | |
1785 | */ | |
1786 | /* XXX: FIX THIS: Pretend we have no BAT */ | |
1787 | nb_BATs = env->nb_BATs; | |
1788 | env->nb_BATs = 0; | |
1789 | if (get_physical_address(env, &ctx, addr, 0, ACCESS_INT) == 0) | |
1790 | ret = ctx.raddr; | |
1791 | env->nb_BATs = nb_BATs; | |
1792 | return ret; | |
1793 | } | |
1794 | ||
1795 | void helper_rfsvc (void) | |
1796 | { | |
1797 | do_rfi(env->lr, env->ctr, 0x0000FFFF, 0); | |
1798 | } | |
1799 | #endif | |
1800 | ||
1801 | /*****************************************************************************/ | |
1802 | /* 602 specific instructions */ | |
1803 | /* mfrom is the most crazy instruction ever seen, imho ! */ | |
1804 | /* Real implementation uses a ROM table. Do the same */ | |
1805 | /* Extremly decomposed: | |
1806 | * -arg / 256 | |
1807 | * return 256 * log10(10 + 1.0) + 0.5 | |
1808 | */ | |
1809 | #if !defined (CONFIG_USER_ONLY) | |
1810 | target_ulong helper_602_mfrom (target_ulong arg) | |
1811 | { | |
1812 | if (likely(arg < 602)) { | |
1813 | #include "mfrom_table.c" | |
1814 | return mfrom_ROM_table[arg]; | |
1815 | } else { | |
1816 | return 0; | |
1817 | } | |
1818 | } | |
1819 | #endif | |
1820 | ||
1821 | /*****************************************************************************/ | |
1822 | /* Embedded PowerPC specific helpers */ | |
1823 | ||
1824 | /* XXX: to be improved to check access rights when in user-mode */ | |
1825 | target_ulong helper_load_dcr (target_ulong dcrn) | |
1826 | { | |
1827 | uint32_t val = 0; | |
1828 | ||
1829 | if (unlikely(env->dcr_env == NULL)) { | |
1830 | qemu_log("No DCR environment\n"); | |
1831 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, | |
1832 | POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); | |
1833 | } else if (unlikely(ppc_dcr_read(env->dcr_env, (uint32_t)dcrn, &val) != 0)) { | |
1834 | qemu_log("DCR read error %d %03x\n", (uint32_t)dcrn, (uint32_t)dcrn); | |
1835 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, | |
1836 | POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); | |
1837 | } | |
1838 | return val; | |
1839 | } | |
1840 | ||
1841 | void helper_store_dcr (target_ulong dcrn, target_ulong val) | |
1842 | { | |
1843 | if (unlikely(env->dcr_env == NULL)) { | |
1844 | qemu_log("No DCR environment\n"); | |
1845 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, | |
1846 | POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); | |
1847 | } else if (unlikely(ppc_dcr_write(env->dcr_env, (uint32_t)dcrn, (uint32_t)val) != 0)) { | |
1848 | qemu_log("DCR write error %d %03x\n", (uint32_t)dcrn, (uint32_t)dcrn); | |
1849 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, | |
1850 | POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); | |
1851 | } | |
1852 | } | |
1853 | ||
1854 | #if !defined(CONFIG_USER_ONLY) | |
1855 | void helper_40x_rfci (void) | |
1856 | { | |
1857 | do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3], | |
1858 | ~((target_ulong)0xFFFF0000), 0); | |
1859 | } | |
1860 | ||
1861 | void helper_rfci (void) | |
1862 | { | |
1863 | do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1, | |
1864 | ~((target_ulong)0x3FFF0000), 0); | |
1865 | } | |
1866 | ||
1867 | void helper_rfdi (void) | |
1868 | { | |
1869 | do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1, | |
1870 | ~((target_ulong)0x3FFF0000), 0); | |
1871 | } | |
1872 | ||
1873 | void helper_rfmci (void) | |
1874 | { | |
1875 | do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1, | |
1876 | ~((target_ulong)0x3FFF0000), 0); | |
1877 | } | |
1878 | #endif | |
1879 | ||
1880 | /* 440 specific */ | |
1881 | target_ulong helper_dlmzb (target_ulong high, target_ulong low, uint32_t update_Rc) | |
1882 | { | |
1883 | target_ulong mask; | |
1884 | int i; | |
1885 | ||
1886 | i = 1; | |
1887 | for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { | |
1888 | if ((high & mask) == 0) { | |
1889 | if (update_Rc) { | |
1890 | env->crf[0] = 0x4; | |
1891 | } | |
1892 | goto done; | |
1893 | } | |
1894 | i++; | |
1895 | } | |
1896 | for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { | |
1897 | if ((low & mask) == 0) { | |
1898 | if (update_Rc) { | |
1899 | env->crf[0] = 0x8; | |
1900 | } | |
1901 | goto done; | |
1902 | } | |
1903 | i++; | |
1904 | } | |
1905 | if (update_Rc) { | |
1906 | env->crf[0] = 0x2; | |
1907 | } | |
1908 | done: | |
1909 | env->xer = (env->xer & ~0x7F) | i; | |
1910 | if (update_Rc) { | |
1911 | env->crf[0] |= xer_so; | |
1912 | } | |
1913 | return i; | |
1914 | } | |
1915 | ||
1916 | /*****************************************************************************/ | |
1917 | /* Altivec extension helpers */ | |
1918 | #if defined(HOST_WORDS_BIGENDIAN) | |
1919 | #define HI_IDX 0 | |
1920 | #define LO_IDX 1 | |
1921 | #else | |
1922 | #define HI_IDX 1 | |
1923 | #define LO_IDX 0 | |
1924 | #endif | |
1925 | ||
1926 | #if defined(HOST_WORDS_BIGENDIAN) | |
1927 | #define VECTOR_FOR_INORDER_I(index, element) \ | |
1928 | for (index = 0; index < ARRAY_SIZE(r->element); index++) | |
1929 | #else | |
1930 | #define VECTOR_FOR_INORDER_I(index, element) \ | |
1931 | for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--) | |
1932 | #endif | |
1933 | ||
1934 | /* If X is a NaN, store the corresponding QNaN into RESULT. Otherwise, | |
1935 | * execute the following block. */ | |
1936 | #define DO_HANDLE_NAN(result, x) \ | |
1937 | if (float32_is_any_nan(x)) { \ | |
1938 | CPU_FloatU __f; \ | |
1939 | __f.f = x; \ | |
1940 | __f.l = __f.l | (1 << 22); /* Set QNaN bit. */ \ | |
1941 | result = __f.f; \ | |
1942 | } else | |
1943 | ||
1944 | #define HANDLE_NAN1(result, x) \ | |
1945 | DO_HANDLE_NAN(result, x) | |
1946 | #define HANDLE_NAN2(result, x, y) \ | |
1947 | DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) | |
1948 | #define HANDLE_NAN3(result, x, y, z) \ | |
1949 | DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) DO_HANDLE_NAN(result, z) | |
1950 | ||
1951 | /* Saturating arithmetic helpers. */ | |
1952 | #define SATCVT(from, to, from_type, to_type, min, max) \ | |
1953 | static inline to_type cvt##from##to(from_type x, int *sat) \ | |
1954 | { \ | |
1955 | to_type r; \ | |
1956 | if (x < (from_type)min) { \ | |
1957 | r = min; \ | |
1958 | *sat = 1; \ | |
1959 | } else if (x > (from_type)max) { \ | |
1960 | r = max; \ | |
1961 | *sat = 1; \ | |
1962 | } else { \ | |
1963 | r = x; \ | |
1964 | } \ | |
1965 | return r; \ | |
1966 | } | |
1967 | #define SATCVTU(from, to, from_type, to_type, min, max) \ | |
1968 | static inline to_type cvt##from##to(from_type x, int *sat) \ | |
1969 | { \ | |
1970 | to_type r; \ | |
1971 | if (x > (from_type)max) { \ | |
1972 | r = max; \ | |
1973 | *sat = 1; \ | |
1974 | } else { \ | |
1975 | r = x; \ | |
1976 | } \ | |
1977 | return r; \ | |
1978 | } | |
1979 | SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX) | |
1980 | SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX) | |
1981 | SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX) | |
1982 | ||
1983 | SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX) | |
1984 | SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX) | |
1985 | SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX) | |
1986 | SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX) | |
1987 | SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX) | |
1988 | SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX) | |
1989 | #undef SATCVT | |
1990 | #undef SATCVTU | |
1991 | ||
1992 | #define LVE(name, access, swap, element) \ | |
1993 | void helper_##name (ppc_avr_t *r, target_ulong addr) \ | |
1994 | { \ | |
1995 | size_t n_elems = ARRAY_SIZE(r->element); \ | |
1996 | int adjust = HI_IDX*(n_elems-1); \ | |
1997 | int sh = sizeof(r->element[0]) >> 1; \ | |
1998 | int index = (addr & 0xf) >> sh; \ | |
1999 | if(msr_le) { \ | |
2000 | r->element[LO_IDX ? index : (adjust - index)] = swap(access(addr)); \ | |
2001 | } else { \ | |
2002 | r->element[LO_IDX ? index : (adjust - index)] = access(addr); \ | |
2003 | } \ | |
2004 | } | |
2005 | #define I(x) (x) | |
2006 | LVE(lvebx, ldub, I, u8) | |
2007 | LVE(lvehx, lduw, bswap16, u16) | |
2008 | LVE(lvewx, ldl, bswap32, u32) | |
2009 | #undef I | |
2010 | #undef LVE | |
2011 | ||
2012 | void helper_lvsl (ppc_avr_t *r, target_ulong sh) | |
2013 | { | |
2014 | int i, j = (sh & 0xf); | |
2015 | ||
2016 | VECTOR_FOR_INORDER_I (i, u8) { | |
2017 | r->u8[i] = j++; | |
2018 | } | |
2019 | } | |
2020 | ||
2021 | void helper_lvsr (ppc_avr_t *r, target_ulong sh) | |
2022 | { | |
2023 | int i, j = 0x10 - (sh & 0xf); | |
2024 | ||
2025 | VECTOR_FOR_INORDER_I (i, u8) { | |
2026 | r->u8[i] = j++; | |
2027 | } | |
2028 | } | |
2029 | ||
2030 | #define STVE(name, access, swap, element) \ | |
2031 | void helper_##name (ppc_avr_t *r, target_ulong addr) \ | |
2032 | { \ | |
2033 | size_t n_elems = ARRAY_SIZE(r->element); \ | |
2034 | int adjust = HI_IDX*(n_elems-1); \ | |
2035 | int sh = sizeof(r->element[0]) >> 1; \ | |
2036 | int index = (addr & 0xf) >> sh; \ | |
2037 | if(msr_le) { \ | |
2038 | access(addr, swap(r->element[LO_IDX ? index : (adjust - index)])); \ | |
2039 | } else { \ | |
2040 | access(addr, r->element[LO_IDX ? index : (adjust - index)]); \ | |
2041 | } \ | |
2042 | } | |
2043 | #define I(x) (x) | |
2044 | STVE(stvebx, stb, I, u8) | |
2045 | STVE(stvehx, stw, bswap16, u16) | |
2046 | STVE(stvewx, stl, bswap32, u32) | |
2047 | #undef I | |
2048 | #undef LVE | |
2049 | ||
2050 | void helper_mtvscr (ppc_avr_t *r) | |
2051 | { | |
2052 | #if defined(HOST_WORDS_BIGENDIAN) | |
2053 | env->vscr = r->u32[3]; | |
2054 | #else | |
2055 | env->vscr = r->u32[0]; | |
2056 | #endif | |
2057 | set_flush_to_zero(vscr_nj, &env->vec_status); | |
2058 | } | |
2059 | ||
2060 | void helper_vaddcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2061 | { | |
2062 | int i; | |
2063 | for (i = 0; i < ARRAY_SIZE(r->u32); i++) { | |
2064 | r->u32[i] = ~a->u32[i] < b->u32[i]; | |
2065 | } | |
2066 | } | |
2067 | ||
2068 | #define VARITH_DO(name, op, element) \ | |
2069 | void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2070 | { \ | |
2071 | int i; \ | |
2072 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2073 | r->element[i] = a->element[i] op b->element[i]; \ | |
2074 | } \ | |
2075 | } | |
2076 | #define VARITH(suffix, element) \ | |
2077 | VARITH_DO(add##suffix, +, element) \ | |
2078 | VARITH_DO(sub##suffix, -, element) | |
2079 | VARITH(ubm, u8) | |
2080 | VARITH(uhm, u16) | |
2081 | VARITH(uwm, u32) | |
2082 | #undef VARITH_DO | |
2083 | #undef VARITH | |
2084 | ||
2085 | #define VARITHFP(suffix, func) \ | |
2086 | void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2087 | { \ | |
2088 | int i; \ | |
2089 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ | |
2090 | HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \ | |
2091 | r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \ | |
2092 | } \ | |
2093 | } \ | |
2094 | } | |
2095 | VARITHFP(addfp, float32_add) | |
2096 | VARITHFP(subfp, float32_sub) | |
2097 | #undef VARITHFP | |
2098 | ||
2099 | #define VARITHSAT_CASE(type, op, cvt, element) \ | |
2100 | { \ | |
2101 | type result = (type)a->element[i] op (type)b->element[i]; \ | |
2102 | r->element[i] = cvt(result, &sat); \ | |
2103 | } | |
2104 | ||
2105 | #define VARITHSAT_DO(name, op, optype, cvt, element) \ | |
2106 | void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2107 | { \ | |
2108 | int sat = 0; \ | |
2109 | int i; \ | |
2110 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2111 | switch (sizeof(r->element[0])) { \ | |
2112 | case 1: VARITHSAT_CASE(optype, op, cvt, element); break; \ | |
2113 | case 2: VARITHSAT_CASE(optype, op, cvt, element); break; \ | |
2114 | case 4: VARITHSAT_CASE(optype, op, cvt, element); break; \ | |
2115 | } \ | |
2116 | } \ | |
2117 | if (sat) { \ | |
2118 | env->vscr |= (1 << VSCR_SAT); \ | |
2119 | } \ | |
2120 | } | |
2121 | #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \ | |
2122 | VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \ | |
2123 | VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element) | |
2124 | #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \ | |
2125 | VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \ | |
2126 | VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element) | |
2127 | VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb) | |
2128 | VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh) | |
2129 | VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw) | |
2130 | VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub) | |
2131 | VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh) | |
2132 | VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw) | |
2133 | #undef VARITHSAT_CASE | |
2134 | #undef VARITHSAT_DO | |
2135 | #undef VARITHSAT_SIGNED | |
2136 | #undef VARITHSAT_UNSIGNED | |
2137 | ||
2138 | #define VAVG_DO(name, element, etype) \ | |
2139 | void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2140 | { \ | |
2141 | int i; \ | |
2142 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2143 | etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \ | |
2144 | r->element[i] = x >> 1; \ | |
2145 | } \ | |
2146 | } | |
2147 | ||
2148 | #define VAVG(type, signed_element, signed_type, unsigned_element, unsigned_type) \ | |
2149 | VAVG_DO(avgs##type, signed_element, signed_type) \ | |
2150 | VAVG_DO(avgu##type, unsigned_element, unsigned_type) | |
2151 | VAVG(b, s8, int16_t, u8, uint16_t) | |
2152 | VAVG(h, s16, int32_t, u16, uint32_t) | |
2153 | VAVG(w, s32, int64_t, u32, uint64_t) | |
2154 | #undef VAVG_DO | |
2155 | #undef VAVG | |
2156 | ||
2157 | #define VCF(suffix, cvt, element) \ | |
2158 | void helper_vcf##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \ | |
2159 | { \ | |
2160 | int i; \ | |
2161 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ | |
2162 | float32 t = cvt(b->element[i], &env->vec_status); \ | |
2163 | r->f[i] = float32_scalbn (t, -uim, &env->vec_status); \ | |
2164 | } \ | |
2165 | } | |
2166 | VCF(ux, uint32_to_float32, u32) | |
2167 | VCF(sx, int32_to_float32, s32) | |
2168 | #undef VCF | |
2169 | ||
2170 | #define VCMP_DO(suffix, compare, element, record) \ | |
2171 | void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2172 | { \ | |
2173 | uint32_t ones = (uint32_t)-1; \ | |
2174 | uint32_t all = ones; \ | |
2175 | uint32_t none = 0; \ | |
2176 | int i; \ | |
2177 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2178 | uint32_t result = (a->element[i] compare b->element[i] ? ones : 0x0); \ | |
2179 | switch (sizeof (a->element[0])) { \ | |
2180 | case 4: r->u32[i] = result; break; \ | |
2181 | case 2: r->u16[i] = result; break; \ | |
2182 | case 1: r->u8[i] = result; break; \ | |
2183 | } \ | |
2184 | all &= result; \ | |
2185 | none |= result; \ | |
2186 | } \ | |
2187 | if (record) { \ | |
2188 | env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \ | |
2189 | } \ | |
2190 | } | |
2191 | #define VCMP(suffix, compare, element) \ | |
2192 | VCMP_DO(suffix, compare, element, 0) \ | |
2193 | VCMP_DO(suffix##_dot, compare, element, 1) | |
2194 | VCMP(equb, ==, u8) | |
2195 | VCMP(equh, ==, u16) | |
2196 | VCMP(equw, ==, u32) | |
2197 | VCMP(gtub, >, u8) | |
2198 | VCMP(gtuh, >, u16) | |
2199 | VCMP(gtuw, >, u32) | |
2200 | VCMP(gtsb, >, s8) | |
2201 | VCMP(gtsh, >, s16) | |
2202 | VCMP(gtsw, >, s32) | |
2203 | #undef VCMP_DO | |
2204 | #undef VCMP | |
2205 | ||
2206 | #define VCMPFP_DO(suffix, compare, order, record) \ | |
2207 | void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2208 | { \ | |
2209 | uint32_t ones = (uint32_t)-1; \ | |
2210 | uint32_t all = ones; \ | |
2211 | uint32_t none = 0; \ | |
2212 | int i; \ | |
2213 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ | |
2214 | uint32_t result; \ | |
2215 | int rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status); \ | |
2216 | if (rel == float_relation_unordered) { \ | |
2217 | result = 0; \ | |
2218 | } else if (rel compare order) { \ | |
2219 | result = ones; \ | |
2220 | } else { \ | |
2221 | result = 0; \ | |
2222 | } \ | |
2223 | r->u32[i] = result; \ | |
2224 | all &= result; \ | |
2225 | none |= result; \ | |
2226 | } \ | |
2227 | if (record) { \ | |
2228 | env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \ | |
2229 | } \ | |
2230 | } | |
2231 | #define VCMPFP(suffix, compare, order) \ | |
2232 | VCMPFP_DO(suffix, compare, order, 0) \ | |
2233 | VCMPFP_DO(suffix##_dot, compare, order, 1) | |
2234 | VCMPFP(eqfp, ==, float_relation_equal) | |
2235 | VCMPFP(gefp, !=, float_relation_less) | |
2236 | VCMPFP(gtfp, ==, float_relation_greater) | |
2237 | #undef VCMPFP_DO | |
2238 | #undef VCMPFP | |
2239 | ||
2240 | static inline void vcmpbfp_internal(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, | |
2241 | int record) | |
2242 | { | |
2243 | int i; | |
2244 | int all_in = 0; | |
2245 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | |
2246 | int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status); | |
2247 | if (le_rel == float_relation_unordered) { | |
2248 | r->u32[i] = 0xc0000000; | |
2249 | /* ALL_IN does not need to be updated here. */ | |
2250 | } else { | |
2251 | float32 bneg = float32_chs(b->f[i]); | |
2252 | int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status); | |
2253 | int le = le_rel != float_relation_greater; | |
2254 | int ge = ge_rel != float_relation_less; | |
2255 | r->u32[i] = ((!le) << 31) | ((!ge) << 30); | |
2256 | all_in |= (!le | !ge); | |
2257 | } | |
2258 | } | |
2259 | if (record) { | |
2260 | env->crf[6] = (all_in == 0) << 1; | |
2261 | } | |
2262 | } | |
2263 | ||
2264 | void helper_vcmpbfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2265 | { | |
2266 | vcmpbfp_internal(r, a, b, 0); | |
2267 | } | |
2268 | ||
2269 | void helper_vcmpbfp_dot (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2270 | { | |
2271 | vcmpbfp_internal(r, a, b, 1); | |
2272 | } | |
2273 | ||
2274 | #define VCT(suffix, satcvt, element) \ | |
2275 | void helper_vct##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \ | |
2276 | { \ | |
2277 | int i; \ | |
2278 | int sat = 0; \ | |
2279 | float_status s = env->vec_status; \ | |
2280 | set_float_rounding_mode(float_round_to_zero, &s); \ | |
2281 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ | |
2282 | if (float32_is_any_nan(b->f[i])) { \ | |
2283 | r->element[i] = 0; \ | |
2284 | } else { \ | |
2285 | float64 t = float32_to_float64(b->f[i], &s); \ | |
2286 | int64_t j; \ | |
2287 | t = float64_scalbn(t, uim, &s); \ | |
2288 | j = float64_to_int64(t, &s); \ | |
2289 | r->element[i] = satcvt(j, &sat); \ | |
2290 | } \ | |
2291 | } \ | |
2292 | if (sat) { \ | |
2293 | env->vscr |= (1 << VSCR_SAT); \ | |
2294 | } \ | |
2295 | } | |
2296 | VCT(uxs, cvtsduw, u32) | |
2297 | VCT(sxs, cvtsdsw, s32) | |
2298 | #undef VCT | |
2299 | ||
2300 | void helper_vmaddfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2301 | { | |
2302 | int i; | |
2303 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | |
2304 | HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) { | |
2305 | /* Need to do the computation in higher precision and round | |
2306 | * once at the end. */ | |
2307 | float64 af, bf, cf, t; | |
2308 | af = float32_to_float64(a->f[i], &env->vec_status); | |
2309 | bf = float32_to_float64(b->f[i], &env->vec_status); | |
2310 | cf = float32_to_float64(c->f[i], &env->vec_status); | |
2311 | t = float64_mul(af, cf, &env->vec_status); | |
2312 | t = float64_add(t, bf, &env->vec_status); | |
2313 | r->f[i] = float64_to_float32(t, &env->vec_status); | |
2314 | } | |
2315 | } | |
2316 | } | |
2317 | ||
2318 | void helper_vmhaddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2319 | { | |
2320 | int sat = 0; | |
2321 | int i; | |
2322 | ||
2323 | for (i = 0; i < ARRAY_SIZE(r->s16); i++) { | |
2324 | int32_t prod = a->s16[i] * b->s16[i]; | |
2325 | int32_t t = (int32_t)c->s16[i] + (prod >> 15); | |
2326 | r->s16[i] = cvtswsh (t, &sat); | |
2327 | } | |
2328 | ||
2329 | if (sat) { | |
2330 | env->vscr |= (1 << VSCR_SAT); | |
2331 | } | |
2332 | } | |
2333 | ||
2334 | void helper_vmhraddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2335 | { | |
2336 | int sat = 0; | |
2337 | int i; | |
2338 | ||
2339 | for (i = 0; i < ARRAY_SIZE(r->s16); i++) { | |
2340 | int32_t prod = a->s16[i] * b->s16[i] + 0x00004000; | |
2341 | int32_t t = (int32_t)c->s16[i] + (prod >> 15); | |
2342 | r->s16[i] = cvtswsh (t, &sat); | |
2343 | } | |
2344 | ||
2345 | if (sat) { | |
2346 | env->vscr |= (1 << VSCR_SAT); | |
2347 | } | |
2348 | } | |
2349 | ||
2350 | #define VMINMAX_DO(name, compare, element) \ | |
2351 | void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2352 | { \ | |
2353 | int i; \ | |
2354 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2355 | if (a->element[i] compare b->element[i]) { \ | |
2356 | r->element[i] = b->element[i]; \ | |
2357 | } else { \ | |
2358 | r->element[i] = a->element[i]; \ | |
2359 | } \ | |
2360 | } \ | |
2361 | } | |
2362 | #define VMINMAX(suffix, element) \ | |
2363 | VMINMAX_DO(min##suffix, >, element) \ | |
2364 | VMINMAX_DO(max##suffix, <, element) | |
2365 | VMINMAX(sb, s8) | |
2366 | VMINMAX(sh, s16) | |
2367 | VMINMAX(sw, s32) | |
2368 | VMINMAX(ub, u8) | |
2369 | VMINMAX(uh, u16) | |
2370 | VMINMAX(uw, u32) | |
2371 | #undef VMINMAX_DO | |
2372 | #undef VMINMAX | |
2373 | ||
2374 | #define VMINMAXFP(suffix, rT, rF) \ | |
2375 | void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2376 | { \ | |
2377 | int i; \ | |
2378 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ | |
2379 | HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \ | |
2380 | if (float32_lt_quiet(a->f[i], b->f[i], &env->vec_status)) { \ | |
2381 | r->f[i] = rT->f[i]; \ | |
2382 | } else { \ | |
2383 | r->f[i] = rF->f[i]; \ | |
2384 | } \ | |
2385 | } \ | |
2386 | } \ | |
2387 | } | |
2388 | VMINMAXFP(minfp, a, b) | |
2389 | VMINMAXFP(maxfp, b, a) | |
2390 | #undef VMINMAXFP | |
2391 | ||
2392 | void helper_vmladduhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2393 | { | |
2394 | int i; | |
2395 | for (i = 0; i < ARRAY_SIZE(r->s16); i++) { | |
2396 | int32_t prod = a->s16[i] * b->s16[i]; | |
2397 | r->s16[i] = (int16_t) (prod + c->s16[i]); | |
2398 | } | |
2399 | } | |
2400 | ||
2401 | #define VMRG_DO(name, element, highp) \ | |
2402 | void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2403 | { \ | |
2404 | ppc_avr_t result; \ | |
2405 | int i; \ | |
2406 | size_t n_elems = ARRAY_SIZE(r->element); \ | |
2407 | for (i = 0; i < n_elems/2; i++) { \ | |
2408 | if (highp) { \ | |
2409 | result.element[i*2+HI_IDX] = a->element[i]; \ | |
2410 | result.element[i*2+LO_IDX] = b->element[i]; \ | |
2411 | } else { \ | |
2412 | result.element[n_elems - i*2 - (1+HI_IDX)] = b->element[n_elems - i - 1]; \ | |
2413 | result.element[n_elems - i*2 - (1+LO_IDX)] = a->element[n_elems - i - 1]; \ | |
2414 | } \ | |
2415 | } \ | |
2416 | *r = result; \ | |
2417 | } | |
2418 | #if defined(HOST_WORDS_BIGENDIAN) | |
2419 | #define MRGHI 0 | |
2420 | #define MRGLO 1 | |
2421 | #else | |
2422 | #define MRGHI 1 | |
2423 | #define MRGLO 0 | |
2424 | #endif | |
2425 | #define VMRG(suffix, element) \ | |
2426 | VMRG_DO(mrgl##suffix, element, MRGHI) \ | |
2427 | VMRG_DO(mrgh##suffix, element, MRGLO) | |
2428 | VMRG(b, u8) | |
2429 | VMRG(h, u16) | |
2430 | VMRG(w, u32) | |
2431 | #undef VMRG_DO | |
2432 | #undef VMRG | |
2433 | #undef MRGHI | |
2434 | #undef MRGLO | |
2435 | ||
2436 | void helper_vmsummbm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2437 | { | |
2438 | int32_t prod[16]; | |
2439 | int i; | |
2440 | ||
2441 | for (i = 0; i < ARRAY_SIZE(r->s8); i++) { | |
2442 | prod[i] = (int32_t)a->s8[i] * b->u8[i]; | |
2443 | } | |
2444 | ||
2445 | VECTOR_FOR_INORDER_I(i, s32) { | |
2446 | r->s32[i] = c->s32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3]; | |
2447 | } | |
2448 | } | |
2449 | ||
2450 | void helper_vmsumshm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2451 | { | |
2452 | int32_t prod[8]; | |
2453 | int i; | |
2454 | ||
2455 | for (i = 0; i < ARRAY_SIZE(r->s16); i++) { | |
2456 | prod[i] = a->s16[i] * b->s16[i]; | |
2457 | } | |
2458 | ||
2459 | VECTOR_FOR_INORDER_I(i, s32) { | |
2460 | r->s32[i] = c->s32[i] + prod[2*i] + prod[2*i+1]; | |
2461 | } | |
2462 | } | |
2463 | ||
2464 | void helper_vmsumshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2465 | { | |
2466 | int32_t prod[8]; | |
2467 | int i; | |
2468 | int sat = 0; | |
2469 | ||
2470 | for (i = 0; i < ARRAY_SIZE(r->s16); i++) { | |
2471 | prod[i] = (int32_t)a->s16[i] * b->s16[i]; | |
2472 | } | |
2473 | ||
2474 | VECTOR_FOR_INORDER_I (i, s32) { | |
2475 | int64_t t = (int64_t)c->s32[i] + prod[2*i] + prod[2*i+1]; | |
2476 | r->u32[i] = cvtsdsw(t, &sat); | |
2477 | } | |
2478 | ||
2479 | if (sat) { | |
2480 | env->vscr |= (1 << VSCR_SAT); | |
2481 | } | |
2482 | } | |
2483 | ||
2484 | void helper_vmsumubm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2485 | { | |
2486 | uint16_t prod[16]; | |
2487 | int i; | |
2488 | ||
2489 | for (i = 0; i < ARRAY_SIZE(r->u8); i++) { | |
2490 | prod[i] = a->u8[i] * b->u8[i]; | |
2491 | } | |
2492 | ||
2493 | VECTOR_FOR_INORDER_I(i, u32) { | |
2494 | r->u32[i] = c->u32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3]; | |
2495 | } | |
2496 | } | |
2497 | ||
2498 | void helper_vmsumuhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2499 | { | |
2500 | uint32_t prod[8]; | |
2501 | int i; | |
2502 | ||
2503 | for (i = 0; i < ARRAY_SIZE(r->u16); i++) { | |
2504 | prod[i] = a->u16[i] * b->u16[i]; | |
2505 | } | |
2506 | ||
2507 | VECTOR_FOR_INORDER_I(i, u32) { | |
2508 | r->u32[i] = c->u32[i] + prod[2*i] + prod[2*i+1]; | |
2509 | } | |
2510 | } | |
2511 | ||
2512 | void helper_vmsumuhs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2513 | { | |
2514 | uint32_t prod[8]; | |
2515 | int i; | |
2516 | int sat = 0; | |
2517 | ||
2518 | for (i = 0; i < ARRAY_SIZE(r->u16); i++) { | |
2519 | prod[i] = a->u16[i] * b->u16[i]; | |
2520 | } | |
2521 | ||
2522 | VECTOR_FOR_INORDER_I (i, s32) { | |
2523 | uint64_t t = (uint64_t)c->u32[i] + prod[2*i] + prod[2*i+1]; | |
2524 | r->u32[i] = cvtuduw(t, &sat); | |
2525 | } | |
2526 | ||
2527 | if (sat) { | |
2528 | env->vscr |= (1 << VSCR_SAT); | |
2529 | } | |
2530 | } | |
2531 | ||
2532 | #define VMUL_DO(name, mul_element, prod_element, evenp) \ | |
2533 | void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2534 | { \ | |
2535 | int i; \ | |
2536 | VECTOR_FOR_INORDER_I(i, prod_element) { \ | |
2537 | if (evenp) { \ | |
2538 | r->prod_element[i] = a->mul_element[i*2+HI_IDX] * b->mul_element[i*2+HI_IDX]; \ | |
2539 | } else { \ | |
2540 | r->prod_element[i] = a->mul_element[i*2+LO_IDX] * b->mul_element[i*2+LO_IDX]; \ | |
2541 | } \ | |
2542 | } \ | |
2543 | } | |
2544 | #define VMUL(suffix, mul_element, prod_element) \ | |
2545 | VMUL_DO(mule##suffix, mul_element, prod_element, 1) \ | |
2546 | VMUL_DO(mulo##suffix, mul_element, prod_element, 0) | |
2547 | VMUL(sb, s8, s16) | |
2548 | VMUL(sh, s16, s32) | |
2549 | VMUL(ub, u8, u16) | |
2550 | VMUL(uh, u16, u32) | |
2551 | #undef VMUL_DO | |
2552 | #undef VMUL | |
2553 | ||
2554 | void helper_vnmsubfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2555 | { | |
2556 | int i; | |
2557 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | |
2558 | HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) { | |
2559 | /* Need to do the computation is higher precision and round | |
2560 | * once at the end. */ | |
2561 | float64 af, bf, cf, t; | |
2562 | af = float32_to_float64(a->f[i], &env->vec_status); | |
2563 | bf = float32_to_float64(b->f[i], &env->vec_status); | |
2564 | cf = float32_to_float64(c->f[i], &env->vec_status); | |
2565 | t = float64_mul(af, cf, &env->vec_status); | |
2566 | t = float64_sub(t, bf, &env->vec_status); | |
2567 | t = float64_chs(t); | |
2568 | r->f[i] = float64_to_float32(t, &env->vec_status); | |
2569 | } | |
2570 | } | |
2571 | } | |
2572 | ||
2573 | void helper_vperm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2574 | { | |
2575 | ppc_avr_t result; | |
2576 | int i; | |
2577 | VECTOR_FOR_INORDER_I (i, u8) { | |
2578 | int s = c->u8[i] & 0x1f; | |
2579 | #if defined(HOST_WORDS_BIGENDIAN) | |
2580 | int index = s & 0xf; | |
2581 | #else | |
2582 | int index = 15 - (s & 0xf); | |
2583 | #endif | |
2584 | if (s & 0x10) { | |
2585 | result.u8[i] = b->u8[index]; | |
2586 | } else { | |
2587 | result.u8[i] = a->u8[index]; | |
2588 | } | |
2589 | } | |
2590 | *r = result; | |
2591 | } | |
2592 | ||
2593 | #if defined(HOST_WORDS_BIGENDIAN) | |
2594 | #define PKBIG 1 | |
2595 | #else | |
2596 | #define PKBIG 0 | |
2597 | #endif | |
2598 | void helper_vpkpx (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2599 | { | |
2600 | int i, j; | |
2601 | ppc_avr_t result; | |
2602 | #if defined(HOST_WORDS_BIGENDIAN) | |
2603 | const ppc_avr_t *x[2] = { a, b }; | |
2604 | #else | |
2605 | const ppc_avr_t *x[2] = { b, a }; | |
2606 | #endif | |
2607 | ||
2608 | VECTOR_FOR_INORDER_I (i, u64) { | |
2609 | VECTOR_FOR_INORDER_I (j, u32){ | |
2610 | uint32_t e = x[i]->u32[j]; | |
2611 | result.u16[4*i+j] = (((e >> 9) & 0xfc00) | | |
2612 | ((e >> 6) & 0x3e0) | | |
2613 | ((e >> 3) & 0x1f)); | |
2614 | } | |
2615 | } | |
2616 | *r = result; | |
2617 | } | |
2618 | ||
2619 | #define VPK(suffix, from, to, cvt, dosat) \ | |
2620 | void helper_vpk##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2621 | { \ | |
2622 | int i; \ | |
2623 | int sat = 0; \ | |
2624 | ppc_avr_t result; \ | |
2625 | ppc_avr_t *a0 = PKBIG ? a : b; \ | |
2626 | ppc_avr_t *a1 = PKBIG ? b : a; \ | |
2627 | VECTOR_FOR_INORDER_I (i, from) { \ | |
2628 | result.to[i] = cvt(a0->from[i], &sat); \ | |
2629 | result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \ | |
2630 | } \ | |
2631 | *r = result; \ | |
2632 | if (dosat && sat) { \ | |
2633 | env->vscr |= (1 << VSCR_SAT); \ | |
2634 | } \ | |
2635 | } | |
2636 | #define I(x, y) (x) | |
2637 | VPK(shss, s16, s8, cvtshsb, 1) | |
2638 | VPK(shus, s16, u8, cvtshub, 1) | |
2639 | VPK(swss, s32, s16, cvtswsh, 1) | |
2640 | VPK(swus, s32, u16, cvtswuh, 1) | |
2641 | VPK(uhus, u16, u8, cvtuhub, 1) | |
2642 | VPK(uwus, u32, u16, cvtuwuh, 1) | |
2643 | VPK(uhum, u16, u8, I, 0) | |
2644 | VPK(uwum, u32, u16, I, 0) | |
2645 | #undef I | |
2646 | #undef VPK | |
2647 | #undef PKBIG | |
2648 | ||
2649 | void helper_vrefp (ppc_avr_t *r, ppc_avr_t *b) | |
2650 | { | |
2651 | int i; | |
2652 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | |
2653 | HANDLE_NAN1(r->f[i], b->f[i]) { | |
2654 | r->f[i] = float32_div(float32_one, b->f[i], &env->vec_status); | |
2655 | } | |
2656 | } | |
2657 | } | |
2658 | ||
2659 | #define VRFI(suffix, rounding) \ | |
2660 | void helper_vrfi##suffix (ppc_avr_t *r, ppc_avr_t *b) \ | |
2661 | { \ | |
2662 | int i; \ | |
2663 | float_status s = env->vec_status; \ | |
2664 | set_float_rounding_mode(rounding, &s); \ | |
2665 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { \ | |
2666 | HANDLE_NAN1(r->f[i], b->f[i]) { \ | |
2667 | r->f[i] = float32_round_to_int (b->f[i], &s); \ | |
2668 | } \ | |
2669 | } \ | |
2670 | } | |
2671 | VRFI(n, float_round_nearest_even) | |
2672 | VRFI(m, float_round_down) | |
2673 | VRFI(p, float_round_up) | |
2674 | VRFI(z, float_round_to_zero) | |
2675 | #undef VRFI | |
2676 | ||
2677 | #define VROTATE(suffix, element) \ | |
2678 | void helper_vrl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2679 | { \ | |
2680 | int i; \ | |
2681 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2682 | unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \ | |
2683 | unsigned int shift = b->element[i] & mask; \ | |
2684 | r->element[i] = (a->element[i] << shift) | (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \ | |
2685 | } \ | |
2686 | } | |
2687 | VROTATE(b, u8) | |
2688 | VROTATE(h, u16) | |
2689 | VROTATE(w, u32) | |
2690 | #undef VROTATE | |
2691 | ||
2692 | void helper_vrsqrtefp (ppc_avr_t *r, ppc_avr_t *b) | |
2693 | { | |
2694 | int i; | |
2695 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | |
2696 | HANDLE_NAN1(r->f[i], b->f[i]) { | |
2697 | float32 t = float32_sqrt(b->f[i], &env->vec_status); | |
2698 | r->f[i] = float32_div(float32_one, t, &env->vec_status); | |
2699 | } | |
2700 | } | |
2701 | } | |
2702 | ||
2703 | void helper_vsel (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | |
2704 | { | |
2705 | r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]); | |
2706 | r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]); | |
2707 | } | |
2708 | ||
2709 | void helper_vexptefp (ppc_avr_t *r, ppc_avr_t *b) | |
2710 | { | |
2711 | int i; | |
2712 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | |
2713 | HANDLE_NAN1(r->f[i], b->f[i]) { | |
2714 | r->f[i] = float32_exp2(b->f[i], &env->vec_status); | |
2715 | } | |
2716 | } | |
2717 | } | |
2718 | ||
2719 | void helper_vlogefp (ppc_avr_t *r, ppc_avr_t *b) | |
2720 | { | |
2721 | int i; | |
2722 | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | |
2723 | HANDLE_NAN1(r->f[i], b->f[i]) { | |
2724 | r->f[i] = float32_log2(b->f[i], &env->vec_status); | |
2725 | } | |
2726 | } | |
2727 | } | |
2728 | ||
2729 | #if defined(HOST_WORDS_BIGENDIAN) | |
2730 | #define LEFT 0 | |
2731 | #define RIGHT 1 | |
2732 | #else | |
2733 | #define LEFT 1 | |
2734 | #define RIGHT 0 | |
2735 | #endif | |
2736 | /* The specification says that the results are undefined if all of the | |
2737 | * shift counts are not identical. We check to make sure that they are | |
2738 | * to conform to what real hardware appears to do. */ | |
2739 | #define VSHIFT(suffix, leftp) \ | |
2740 | void helper_vs##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2741 | { \ | |
2742 | int shift = b->u8[LO_IDX*15] & 0x7; \ | |
2743 | int doit = 1; \ | |
2744 | int i; \ | |
2745 | for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \ | |
2746 | doit = doit && ((b->u8[i] & 0x7) == shift); \ | |
2747 | } \ | |
2748 | if (doit) { \ | |
2749 | if (shift == 0) { \ | |
2750 | *r = *a; \ | |
2751 | } else if (leftp) { \ | |
2752 | uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \ | |
2753 | r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \ | |
2754 | r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \ | |
2755 | } else { \ | |
2756 | uint64_t carry = a->u64[HI_IDX] << (64 - shift); \ | |
2757 | r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \ | |
2758 | r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \ | |
2759 | } \ | |
2760 | } \ | |
2761 | } | |
2762 | VSHIFT(l, LEFT) | |
2763 | VSHIFT(r, RIGHT) | |
2764 | #undef VSHIFT | |
2765 | #undef LEFT | |
2766 | #undef RIGHT | |
2767 | ||
2768 | #define VSL(suffix, element) \ | |
2769 | void helper_vsl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2770 | { \ | |
2771 | int i; \ | |
2772 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2773 | unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \ | |
2774 | unsigned int shift = b->element[i] & mask; \ | |
2775 | r->element[i] = a->element[i] << shift; \ | |
2776 | } \ | |
2777 | } | |
2778 | VSL(b, u8) | |
2779 | VSL(h, u16) | |
2780 | VSL(w, u32) | |
2781 | #undef VSL | |
2782 | ||
2783 | void helper_vsldoi (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift) | |
2784 | { | |
2785 | int sh = shift & 0xf; | |
2786 | int i; | |
2787 | ppc_avr_t result; | |
2788 | ||
2789 | #if defined(HOST_WORDS_BIGENDIAN) | |
2790 | for (i = 0; i < ARRAY_SIZE(r->u8); i++) { | |
2791 | int index = sh + i; | |
2792 | if (index > 0xf) { | |
2793 | result.u8[i] = b->u8[index-0x10]; | |
2794 | } else { | |
2795 | result.u8[i] = a->u8[index]; | |
2796 | } | |
2797 | } | |
2798 | #else | |
2799 | for (i = 0; i < ARRAY_SIZE(r->u8); i++) { | |
2800 | int index = (16 - sh) + i; | |
2801 | if (index > 0xf) { | |
2802 | result.u8[i] = a->u8[index-0x10]; | |
2803 | } else { | |
2804 | result.u8[i] = b->u8[index]; | |
2805 | } | |
2806 | } | |
2807 | #endif | |
2808 | *r = result; | |
2809 | } | |
2810 | ||
2811 | void helper_vslo (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2812 | { | |
2813 | int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf; | |
2814 | ||
2815 | #if defined (HOST_WORDS_BIGENDIAN) | |
2816 | memmove (&r->u8[0], &a->u8[sh], 16-sh); | |
2817 | memset (&r->u8[16-sh], 0, sh); | |
2818 | #else | |
2819 | memmove (&r->u8[sh], &a->u8[0], 16-sh); | |
2820 | memset (&r->u8[0], 0, sh); | |
2821 | #endif | |
2822 | } | |
2823 | ||
2824 | /* Experimental testing shows that hardware masks the immediate. */ | |
2825 | #define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1)) | |
2826 | #if defined(HOST_WORDS_BIGENDIAN) | |
2827 | #define SPLAT_ELEMENT(element) _SPLAT_MASKED(element) | |
2828 | #else | |
2829 | #define SPLAT_ELEMENT(element) (ARRAY_SIZE(r->element)-1 - _SPLAT_MASKED(element)) | |
2830 | #endif | |
2831 | #define VSPLT(suffix, element) \ | |
2832 | void helper_vsplt##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \ | |
2833 | { \ | |
2834 | uint32_t s = b->element[SPLAT_ELEMENT(element)]; \ | |
2835 | int i; \ | |
2836 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2837 | r->element[i] = s; \ | |
2838 | } \ | |
2839 | } | |
2840 | VSPLT(b, u8) | |
2841 | VSPLT(h, u16) | |
2842 | VSPLT(w, u32) | |
2843 | #undef VSPLT | |
2844 | #undef SPLAT_ELEMENT | |
2845 | #undef _SPLAT_MASKED | |
2846 | ||
2847 | #define VSPLTI(suffix, element, splat_type) \ | |
2848 | void helper_vspltis##suffix (ppc_avr_t *r, uint32_t splat) \ | |
2849 | { \ | |
2850 | splat_type x = (int8_t)(splat << 3) >> 3; \ | |
2851 | int i; \ | |
2852 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2853 | r->element[i] = x; \ | |
2854 | } \ | |
2855 | } | |
2856 | VSPLTI(b, s8, int8_t) | |
2857 | VSPLTI(h, s16, int16_t) | |
2858 | VSPLTI(w, s32, int32_t) | |
2859 | #undef VSPLTI | |
2860 | ||
2861 | #define VSR(suffix, element) \ | |
2862 | void helper_vsr##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \ | |
2863 | { \ | |
2864 | int i; \ | |
2865 | for (i = 0; i < ARRAY_SIZE(r->element); i++) { \ | |
2866 | unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \ | |
2867 | unsigned int shift = b->element[i] & mask; \ | |
2868 | r->element[i] = a->element[i] >> shift; \ | |
2869 | } \ | |
2870 | } | |
2871 | VSR(ab, s8) | |
2872 | VSR(ah, s16) | |
2873 | VSR(aw, s32) | |
2874 | VSR(b, u8) | |
2875 | VSR(h, u16) | |
2876 | VSR(w, u32) | |
2877 | #undef VSR | |
2878 | ||
2879 | void helper_vsro (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2880 | { | |
2881 | int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf; | |
2882 | ||
2883 | #if defined (HOST_WORDS_BIGENDIAN) | |
2884 | memmove (&r->u8[sh], &a->u8[0], 16-sh); | |
2885 | memset (&r->u8[0], 0, sh); | |
2886 | #else | |
2887 | memmove (&r->u8[0], &a->u8[sh], 16-sh); | |
2888 | memset (&r->u8[16-sh], 0, sh); | |
2889 | #endif | |
2890 | } | |
2891 | ||
2892 | void helper_vsubcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2893 | { | |
2894 | int i; | |
2895 | for (i = 0; i < ARRAY_SIZE(r->u32); i++) { | |
2896 | r->u32[i] = a->u32[i] >= b->u32[i]; | |
2897 | } | |
2898 | } | |
2899 | ||
2900 | void helper_vsumsws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2901 | { | |
2902 | int64_t t; | |
2903 | int i, upper; | |
2904 | ppc_avr_t result; | |
2905 | int sat = 0; | |
2906 | ||
2907 | #if defined(HOST_WORDS_BIGENDIAN) | |
2908 | upper = ARRAY_SIZE(r->s32)-1; | |
2909 | #else | |
2910 | upper = 0; | |
2911 | #endif | |
2912 | t = (int64_t)b->s32[upper]; | |
2913 | for (i = 0; i < ARRAY_SIZE(r->s32); i++) { | |
2914 | t += a->s32[i]; | |
2915 | result.s32[i] = 0; | |
2916 | } | |
2917 | result.s32[upper] = cvtsdsw(t, &sat); | |
2918 | *r = result; | |
2919 | ||
2920 | if (sat) { | |
2921 | env->vscr |= (1 << VSCR_SAT); | |
2922 | } | |
2923 | } | |
2924 | ||
2925 | void helper_vsum2sws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2926 | { | |
2927 | int i, j, upper; | |
2928 | ppc_avr_t result; | |
2929 | int sat = 0; | |
2930 | ||
2931 | #if defined(HOST_WORDS_BIGENDIAN) | |
2932 | upper = 1; | |
2933 | #else | |
2934 | upper = 0; | |
2935 | #endif | |
2936 | for (i = 0; i < ARRAY_SIZE(r->u64); i++) { | |
2937 | int64_t t = (int64_t)b->s32[upper+i*2]; | |
2938 | result.u64[i] = 0; | |
2939 | for (j = 0; j < ARRAY_SIZE(r->u64); j++) { | |
2940 | t += a->s32[2*i+j]; | |
2941 | } | |
2942 | result.s32[upper+i*2] = cvtsdsw(t, &sat); | |
2943 | } | |
2944 | ||
2945 | *r = result; | |
2946 | if (sat) { | |
2947 | env->vscr |= (1 << VSCR_SAT); | |
2948 | } | |
2949 | } | |
2950 | ||
2951 | void helper_vsum4sbs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2952 | { | |
2953 | int i, j; | |
2954 | int sat = 0; | |
2955 | ||
2956 | for (i = 0; i < ARRAY_SIZE(r->s32); i++) { | |
2957 | int64_t t = (int64_t)b->s32[i]; | |
2958 | for (j = 0; j < ARRAY_SIZE(r->s32); j++) { | |
2959 | t += a->s8[4*i+j]; | |
2960 | } | |
2961 | r->s32[i] = cvtsdsw(t, &sat); | |
2962 | } | |
2963 | ||
2964 | if (sat) { | |
2965 | env->vscr |= (1 << VSCR_SAT); | |
2966 | } | |
2967 | } | |
2968 | ||
2969 | void helper_vsum4shs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2970 | { | |
2971 | int sat = 0; | |
2972 | int i; | |
2973 | ||
2974 | for (i = 0; i < ARRAY_SIZE(r->s32); i++) { | |
2975 | int64_t t = (int64_t)b->s32[i]; | |
2976 | t += a->s16[2*i] + a->s16[2*i+1]; | |
2977 | r->s32[i] = cvtsdsw(t, &sat); | |
2978 | } | |
2979 | ||
2980 | if (sat) { | |
2981 | env->vscr |= (1 << VSCR_SAT); | |
2982 | } | |
2983 | } | |
2984 | ||
2985 | void helper_vsum4ubs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | |
2986 | { | |
2987 | int i, j; | |
2988 | int sat = 0; | |
2989 | ||
2990 | for (i = 0; i < ARRAY_SIZE(r->u32); i++) { | |
2991 | uint64_t t = (uint64_t)b->u32[i]; | |
2992 | for (j = 0; j < ARRAY_SIZE(r->u32); j++) { | |
2993 | t += a->u8[4*i+j]; | |
2994 | } | |
2995 | r->u32[i] = cvtuduw(t, &sat); | |
2996 | } | |
2997 | ||
2998 | if (sat) { | |
2999 | env->vscr |= (1 << VSCR_SAT); | |
3000 | } | |
3001 | } | |
3002 | ||
3003 | #if defined(HOST_WORDS_BIGENDIAN) | |
3004 | #define UPKHI 1 | |
3005 | #define UPKLO 0 | |
3006 | #else | |
3007 | #define UPKHI 0 | |
3008 | #define UPKLO 1 | |
3009 | #endif | |
3010 | #define VUPKPX(suffix, hi) \ | |
3011 | void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \ | |
3012 | { \ | |
3013 | int i; \ | |
3014 | ppc_avr_t result; \ | |
3015 | for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \ | |
3016 | uint16_t e = b->u16[hi ? i : i+4]; \ | |
3017 | uint8_t a = (e >> 15) ? 0xff : 0; \ | |
3018 | uint8_t r = (e >> 10) & 0x1f; \ | |
3019 | uint8_t g = (e >> 5) & 0x1f; \ | |
3020 | uint8_t b = e & 0x1f; \ | |
3021 | result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \ | |
3022 | } \ | |
3023 | *r = result; \ | |
3024 | } | |
3025 | VUPKPX(lpx, UPKLO) | |
3026 | VUPKPX(hpx, UPKHI) | |
3027 | #undef VUPKPX | |
3028 | ||
3029 | #define VUPK(suffix, unpacked, packee, hi) \ | |
3030 | void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \ | |
3031 | { \ | |
3032 | int i; \ | |
3033 | ppc_avr_t result; \ | |
3034 | if (hi) { \ | |
3035 | for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \ | |
3036 | result.unpacked[i] = b->packee[i]; \ | |
3037 | } \ | |
3038 | } else { \ | |
3039 | for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); i++) { \ | |
3040 | result.unpacked[i-ARRAY_SIZE(r->unpacked)] = b->packee[i]; \ | |
3041 | } \ | |
3042 | } \ | |
3043 | *r = result; \ | |
3044 | } | |
3045 | VUPK(hsb, s16, s8, UPKHI) | |
3046 | VUPK(hsh, s32, s16, UPKHI) | |
3047 | VUPK(lsb, s16, s8, UPKLO) | |
3048 | VUPK(lsh, s32, s16, UPKLO) | |
3049 | #undef VUPK | |
3050 | #undef UPKHI | |
3051 | #undef UPKLO | |
3052 | ||
3053 | #undef DO_HANDLE_NAN | |
3054 | #undef HANDLE_NAN1 | |
3055 | #undef HANDLE_NAN2 | |
3056 | #undef HANDLE_NAN3 | |
3057 | #undef VECTOR_FOR_INORDER_I | |
3058 | #undef HI_IDX | |
3059 | #undef LO_IDX | |
3060 | ||
3061 | /*****************************************************************************/ | |
3062 | /* SPE extension helpers */ | |
3063 | /* Use a table to make this quicker */ | |
3064 | static uint8_t hbrev[16] = { | |
3065 | 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, | |
3066 | 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, | |
3067 | }; | |
3068 | ||
3069 | static inline uint8_t byte_reverse(uint8_t val) | |
3070 | { | |
3071 | return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); | |
3072 | } | |
3073 | ||
3074 | static inline uint32_t word_reverse(uint32_t val) | |
3075 | { | |
3076 | return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | | |
3077 | (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); | |
3078 | } | |
3079 | ||
3080 | #define MASKBITS 16 // Random value - to be fixed (implementation dependant) | |
3081 | target_ulong helper_brinc (target_ulong arg1, target_ulong arg2) | |
3082 | { | |
3083 | uint32_t a, b, d, mask; | |
3084 | ||
3085 | mask = UINT32_MAX >> (32 - MASKBITS); | |
3086 | a = arg1 & mask; | |
3087 | b = arg2 & mask; | |
3088 | d = word_reverse(1 + word_reverse(a | ~b)); | |
3089 | return (arg1 & ~mask) | (d & b); | |
3090 | } | |
3091 | ||
3092 | uint32_t helper_cntlsw32 (uint32_t val) | |
3093 | { | |
3094 | if (val & 0x80000000) | |
3095 | return clz32(~val); | |
3096 | else | |
3097 | return clz32(val); | |
3098 | } | |
3099 | ||
3100 | uint32_t helper_cntlzw32 (uint32_t val) | |
3101 | { | |
3102 | return clz32(val); | |
3103 | } | |
3104 | ||
3105 | /* Single-precision floating-point conversions */ | |
3106 | static inline uint32_t efscfsi(uint32_t val) | |
3107 | { | |
3108 | CPU_FloatU u; | |
3109 | ||
3110 | u.f = int32_to_float32(val, &env->vec_status); | |
3111 | ||
3112 | return u.l; | |
3113 | } | |
3114 | ||
3115 | static inline uint32_t efscfui(uint32_t val) | |
3116 | { | |
3117 | CPU_FloatU u; | |
3118 | ||
3119 | u.f = uint32_to_float32(val, &env->vec_status); | |
3120 | ||
3121 | return u.l; | |
3122 | } | |
3123 | ||
3124 | static inline int32_t efsctsi(uint32_t val) | |
3125 | { | |
3126 | CPU_FloatU u; | |
3127 | ||
3128 | u.l = val; | |
3129 | /* NaN are not treated the same way IEEE 754 does */ | |
3130 | if (unlikely(float32_is_quiet_nan(u.f))) | |
3131 | return 0; | |
3132 | ||
3133 | return float32_to_int32(u.f, &env->vec_status); | |
3134 | } | |
3135 | ||
3136 | static inline uint32_t efsctui(uint32_t val) | |
3137 | { | |
3138 | CPU_FloatU u; | |
3139 | ||
3140 | u.l = val; | |
3141 | /* NaN are not treated the same way IEEE 754 does */ | |
3142 | if (unlikely(float32_is_quiet_nan(u.f))) | |
3143 | return 0; | |
3144 | ||
3145 | return float32_to_uint32(u.f, &env->vec_status); | |
3146 | } | |
3147 | ||
3148 | static inline uint32_t efsctsiz(uint32_t val) | |
3149 | { | |
3150 | CPU_FloatU u; | |
3151 | ||
3152 | u.l = val; | |
3153 | /* NaN are not treated the same way IEEE 754 does */ | |
3154 | if (unlikely(float32_is_quiet_nan(u.f))) | |
3155 | return 0; | |
3156 | ||
3157 | return float32_to_int32_round_to_zero(u.f, &env->vec_status); | |
3158 | } | |
3159 | ||
3160 | static inline uint32_t efsctuiz(uint32_t val) | |
3161 | { | |
3162 | CPU_FloatU u; | |
3163 | ||
3164 | u.l = val; | |
3165 | /* NaN are not treated the same way IEEE 754 does */ | |
3166 | if (unlikely(float32_is_quiet_nan(u.f))) | |
3167 | return 0; | |
3168 | ||
3169 | return float32_to_uint32_round_to_zero(u.f, &env->vec_status); | |
3170 | } | |
3171 | ||
3172 | static inline uint32_t efscfsf(uint32_t val) | |
3173 | { | |
3174 | CPU_FloatU u; | |
3175 | float32 tmp; | |
3176 | ||
3177 | u.f = int32_to_float32(val, &env->vec_status); | |
3178 | tmp = int64_to_float32(1ULL << 32, &env->vec_status); | |
3179 | u.f = float32_div(u.f, tmp, &env->vec_status); | |
3180 | ||
3181 | return u.l; | |
3182 | } | |
3183 | ||
3184 | static inline uint32_t efscfuf(uint32_t val) | |
3185 | { | |
3186 | CPU_FloatU u; | |
3187 | float32 tmp; | |
3188 | ||
3189 | u.f = uint32_to_float32(val, &env->vec_status); | |
3190 | tmp = uint64_to_float32(1ULL << 32, &env->vec_status); | |
3191 | u.f = float32_div(u.f, tmp, &env->vec_status); | |
3192 | ||
3193 | return u.l; | |
3194 | } | |
3195 | ||
3196 | static inline uint32_t efsctsf(uint32_t val) | |
3197 | { | |
3198 | CPU_FloatU u; | |
3199 | float32 tmp; | |
3200 | ||
3201 | u.l = val; | |
3202 | /* NaN are not treated the same way IEEE 754 does */ | |
3203 | if (unlikely(float32_is_quiet_nan(u.f))) | |
3204 | return 0; | |
3205 | tmp = uint64_to_float32(1ULL << 32, &env->vec_status); | |
3206 | u.f = float32_mul(u.f, tmp, &env->vec_status); | |
3207 | ||
3208 | return float32_to_int32(u.f, &env->vec_status); | |
3209 | } | |
3210 | ||
3211 | static inline uint32_t efsctuf(uint32_t val) | |
3212 | { | |
3213 | CPU_FloatU u; | |
3214 | float32 tmp; | |
3215 | ||
3216 | u.l = val; | |
3217 | /* NaN are not treated the same way IEEE 754 does */ | |
3218 | if (unlikely(float32_is_quiet_nan(u.f))) | |
3219 | return 0; | |
3220 | tmp = uint64_to_float32(1ULL << 32, &env->vec_status); | |
3221 | u.f = float32_mul(u.f, tmp, &env->vec_status); | |
3222 | ||
3223 | return float32_to_uint32(u.f, &env->vec_status); | |
3224 | } | |
3225 | ||
3226 | #define HELPER_SPE_SINGLE_CONV(name) \ | |
3227 | uint32_t helper_e##name (uint32_t val) \ | |
3228 | { \ | |
3229 | return e##name(val); \ | |
3230 | } | |
3231 | /* efscfsi */ | |
3232 | HELPER_SPE_SINGLE_CONV(fscfsi); | |
3233 | /* efscfui */ | |
3234 | HELPER_SPE_SINGLE_CONV(fscfui); | |
3235 | /* efscfuf */ | |
3236 | HELPER_SPE_SINGLE_CONV(fscfuf); | |
3237 | /* efscfsf */ | |
3238 | HELPER_SPE_SINGLE_CONV(fscfsf); | |
3239 | /* efsctsi */ | |
3240 | HELPER_SPE_SINGLE_CONV(fsctsi); | |
3241 | /* efsctui */ | |
3242 | HELPER_SPE_SINGLE_CONV(fsctui); | |
3243 | /* efsctsiz */ | |
3244 | HELPER_SPE_SINGLE_CONV(fsctsiz); | |
3245 | /* efsctuiz */ | |
3246 | HELPER_SPE_SINGLE_CONV(fsctuiz); | |
3247 | /* efsctsf */ | |
3248 | HELPER_SPE_SINGLE_CONV(fsctsf); | |
3249 | /* efsctuf */ | |
3250 | HELPER_SPE_SINGLE_CONV(fsctuf); | |
3251 | ||
3252 | #define HELPER_SPE_VECTOR_CONV(name) \ | |
3253 | uint64_t helper_ev##name (uint64_t val) \ | |
3254 | { \ | |
3255 | return ((uint64_t)e##name(val >> 32) << 32) | \ | |
3256 | (uint64_t)e##name(val); \ | |
3257 | } | |
3258 | /* evfscfsi */ | |
3259 | HELPER_SPE_VECTOR_CONV(fscfsi); | |
3260 | /* evfscfui */ | |
3261 | HELPER_SPE_VECTOR_CONV(fscfui); | |
3262 | /* evfscfuf */ | |
3263 | HELPER_SPE_VECTOR_CONV(fscfuf); | |
3264 | /* evfscfsf */ | |
3265 | HELPER_SPE_VECTOR_CONV(fscfsf); | |
3266 | /* evfsctsi */ | |
3267 | HELPER_SPE_VECTOR_CONV(fsctsi); | |
3268 | /* evfsctui */ | |
3269 | HELPER_SPE_VECTOR_CONV(fsctui); | |
3270 | /* evfsctsiz */ | |
3271 | HELPER_SPE_VECTOR_CONV(fsctsiz); | |
3272 | /* evfsctuiz */ | |
3273 | HELPER_SPE_VECTOR_CONV(fsctuiz); | |
3274 | /* evfsctsf */ | |
3275 | HELPER_SPE_VECTOR_CONV(fsctsf); | |
3276 | /* evfsctuf */ | |
3277 | HELPER_SPE_VECTOR_CONV(fsctuf); | |
3278 | ||
3279 | /* Single-precision floating-point arithmetic */ | |
3280 | static inline uint32_t efsadd(uint32_t op1, uint32_t op2) | |
3281 | { | |
3282 | CPU_FloatU u1, u2; | |
3283 | u1.l = op1; | |
3284 | u2.l = op2; | |
3285 | u1.f = float32_add(u1.f, u2.f, &env->vec_status); | |
3286 | return u1.l; | |
3287 | } | |
3288 | ||
3289 | static inline uint32_t efssub(uint32_t op1, uint32_t op2) | |
3290 | { | |
3291 | CPU_FloatU u1, u2; | |
3292 | u1.l = op1; | |
3293 | u2.l = op2; | |
3294 | u1.f = float32_sub(u1.f, u2.f, &env->vec_status); | |
3295 | return u1.l; | |
3296 | } | |
3297 | ||
3298 | static inline uint32_t efsmul(uint32_t op1, uint32_t op2) | |
3299 | { | |
3300 | CPU_FloatU u1, u2; | |
3301 | u1.l = op1; | |
3302 | u2.l = op2; | |
3303 | u1.f = float32_mul(u1.f, u2.f, &env->vec_status); | |
3304 | return u1.l; | |
3305 | } | |
3306 | ||
3307 | static inline uint32_t efsdiv(uint32_t op1, uint32_t op2) | |
3308 | { | |
3309 | CPU_FloatU u1, u2; | |
3310 | u1.l = op1; | |
3311 | u2.l = op2; | |
3312 | u1.f = float32_div(u1.f, u2.f, &env->vec_status); | |
3313 | return u1.l; | |
3314 | } | |
3315 | ||
3316 | #define HELPER_SPE_SINGLE_ARITH(name) \ | |
3317 | uint32_t helper_e##name (uint32_t op1, uint32_t op2) \ | |
3318 | { \ | |
3319 | return e##name(op1, op2); \ | |
3320 | } | |
3321 | /* efsadd */ | |
3322 | HELPER_SPE_SINGLE_ARITH(fsadd); | |
3323 | /* efssub */ | |
3324 | HELPER_SPE_SINGLE_ARITH(fssub); | |
3325 | /* efsmul */ | |
3326 | HELPER_SPE_SINGLE_ARITH(fsmul); | |
3327 | /* efsdiv */ | |
3328 | HELPER_SPE_SINGLE_ARITH(fsdiv); | |
3329 | ||
3330 | #define HELPER_SPE_VECTOR_ARITH(name) \ | |
3331 | uint64_t helper_ev##name (uint64_t op1, uint64_t op2) \ | |
3332 | { \ | |
3333 | return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) | \ | |
3334 | (uint64_t)e##name(op1, op2); \ | |
3335 | } | |
3336 | /* evfsadd */ | |
3337 | HELPER_SPE_VECTOR_ARITH(fsadd); | |
3338 | /* evfssub */ | |
3339 | HELPER_SPE_VECTOR_ARITH(fssub); | |
3340 | /* evfsmul */ | |
3341 | HELPER_SPE_VECTOR_ARITH(fsmul); | |
3342 | /* evfsdiv */ | |
3343 | HELPER_SPE_VECTOR_ARITH(fsdiv); | |
3344 | ||
3345 | /* Single-precision floating-point comparisons */ | |
3346 | static inline uint32_t efscmplt(uint32_t op1, uint32_t op2) | |
3347 | { | |
3348 | CPU_FloatU u1, u2; | |
3349 | u1.l = op1; | |
3350 | u2.l = op2; | |
3351 | return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0; | |
3352 | } | |
3353 | ||
3354 | static inline uint32_t efscmpgt(uint32_t op1, uint32_t op2) | |
3355 | { | |
3356 | CPU_FloatU u1, u2; | |
3357 | u1.l = op1; | |
3358 | u2.l = op2; | |
3359 | return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4; | |
3360 | } | |
3361 | ||
3362 | static inline uint32_t efscmpeq(uint32_t op1, uint32_t op2) | |
3363 | { | |
3364 | CPU_FloatU u1, u2; | |
3365 | u1.l = op1; | |
3366 | u2.l = op2; | |
3367 | return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0; | |
3368 | } | |
3369 | ||
3370 | static inline uint32_t efststlt(uint32_t op1, uint32_t op2) | |
3371 | { | |
3372 | /* XXX: TODO: ignore special values (NaN, infinites, ...) */ | |
3373 | return efscmplt(op1, op2); | |
3374 | } | |
3375 | ||
3376 | static inline uint32_t efststgt(uint32_t op1, uint32_t op2) | |
3377 | { | |
3378 | /* XXX: TODO: ignore special values (NaN, infinites, ...) */ | |
3379 | return efscmpgt(op1, op2); | |
3380 | } | |
3381 | ||
3382 | static inline uint32_t efststeq(uint32_t op1, uint32_t op2) | |
3383 | { | |
3384 | /* XXX: TODO: ignore special values (NaN, infinites, ...) */ | |
3385 | return efscmpeq(op1, op2); | |
3386 | } | |
3387 | ||
3388 | #define HELPER_SINGLE_SPE_CMP(name) \ | |
3389 | uint32_t helper_e##name (uint32_t op1, uint32_t op2) \ | |
3390 | { \ | |
3391 | return e##name(op1, op2) << 2; \ | |
3392 | } | |
3393 | /* efststlt */ | |
3394 | HELPER_SINGLE_SPE_CMP(fststlt); | |
3395 | /* efststgt */ | |
3396 | HELPER_SINGLE_SPE_CMP(fststgt); | |
3397 | /* efststeq */ | |
3398 | HELPER_SINGLE_SPE_CMP(fststeq); | |
3399 | /* efscmplt */ | |
3400 | HELPER_SINGLE_SPE_CMP(fscmplt); | |
3401 | /* efscmpgt */ | |
3402 | HELPER_SINGLE_SPE_CMP(fscmpgt); | |
3403 | /* efscmpeq */ | |
3404 | HELPER_SINGLE_SPE_CMP(fscmpeq); | |
3405 | ||
3406 | static inline uint32_t evcmp_merge(int t0, int t1) | |
3407 | { | |
3408 | return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); | |
3409 | } | |
3410 | ||
3411 | #define HELPER_VECTOR_SPE_CMP(name) \ | |
3412 | uint32_t helper_ev##name (uint64_t op1, uint64_t op2) \ | |
3413 | { \ | |
3414 | return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2)); \ | |
3415 | } | |
3416 | /* evfststlt */ | |
3417 | HELPER_VECTOR_SPE_CMP(fststlt); | |
3418 | /* evfststgt */ | |
3419 | HELPER_VECTOR_SPE_CMP(fststgt); | |
3420 | /* evfststeq */ | |
3421 | HELPER_VECTOR_SPE_CMP(fststeq); | |
3422 | /* evfscmplt */ | |
3423 | HELPER_VECTOR_SPE_CMP(fscmplt); | |
3424 | /* evfscmpgt */ | |
3425 | HELPER_VECTOR_SPE_CMP(fscmpgt); | |
3426 | /* evfscmpeq */ | |
3427 | HELPER_VECTOR_SPE_CMP(fscmpeq); | |
3428 | ||
3429 | /* Double-precision floating-point conversion */ | |
3430 | uint64_t helper_efdcfsi (uint32_t val) | |
3431 | { | |
3432 | CPU_DoubleU u; | |
3433 | ||
3434 | u.d = int32_to_float64(val, &env->vec_status); | |
3435 | ||
3436 | return u.ll; | |
3437 | } | |
3438 | ||
3439 | uint64_t helper_efdcfsid (uint64_t val) | |
3440 | { | |
3441 | CPU_DoubleU u; | |
3442 | ||
3443 | u.d = int64_to_float64(val, &env->vec_status); | |
3444 | ||
3445 | return u.ll; | |
3446 | } | |
3447 | ||
3448 | uint64_t helper_efdcfui (uint32_t val) | |
3449 | { | |
3450 | CPU_DoubleU u; | |
3451 | ||
3452 | u.d = uint32_to_float64(val, &env->vec_status); | |
3453 | ||
3454 | return u.ll; | |
3455 | } | |
3456 | ||
3457 | uint64_t helper_efdcfuid (uint64_t val) | |
3458 | { | |
3459 | CPU_DoubleU u; | |
3460 | ||
3461 | u.d = uint64_to_float64(val, &env->vec_status); | |
3462 | ||
3463 | return u.ll; | |
3464 | } | |
3465 | ||
3466 | uint32_t helper_efdctsi (uint64_t val) | |
3467 | { | |
3468 | CPU_DoubleU u; | |
3469 | ||
3470 | u.ll = val; | |
3471 | /* NaN are not treated the same way IEEE 754 does */ | |
3472 | if (unlikely(float64_is_any_nan(u.d))) { | |
3473 | return 0; | |
3474 | } | |
3475 | ||
3476 | return float64_to_int32(u.d, &env->vec_status); | |
3477 | } | |
3478 | ||
3479 | uint32_t helper_efdctui (uint64_t val) | |
3480 | { | |
3481 | CPU_DoubleU u; | |
3482 | ||
3483 | u.ll = val; | |
3484 | /* NaN are not treated the same way IEEE 754 does */ | |
3485 | if (unlikely(float64_is_any_nan(u.d))) { | |
3486 | return 0; | |
3487 | } | |
3488 | ||
3489 | return float64_to_uint32(u.d, &env->vec_status); | |
3490 | } | |
3491 | ||
3492 | uint32_t helper_efdctsiz (uint64_t val) | |
3493 | { | |
3494 | CPU_DoubleU u; | |
3495 | ||
3496 | u.ll = val; | |
3497 | /* NaN are not treated the same way IEEE 754 does */ | |
3498 | if (unlikely(float64_is_any_nan(u.d))) { | |
3499 | return 0; | |
3500 | } | |
3501 | ||
3502 | return float64_to_int32_round_to_zero(u.d, &env->vec_status); | |
3503 | } | |
3504 | ||
3505 | uint64_t helper_efdctsidz (uint64_t val) | |
3506 | { | |
3507 | CPU_DoubleU u; | |
3508 | ||
3509 | u.ll = val; | |
3510 | /* NaN are not treated the same way IEEE 754 does */ | |
3511 | if (unlikely(float64_is_any_nan(u.d))) { | |
3512 | return 0; | |
3513 | } | |
3514 | ||
3515 | return float64_to_int64_round_to_zero(u.d, &env->vec_status); | |
3516 | } | |
3517 | ||
3518 | uint32_t helper_efdctuiz (uint64_t val) | |
3519 | { | |
3520 | CPU_DoubleU u; | |
3521 | ||
3522 | u.ll = val; | |
3523 | /* NaN are not treated the same way IEEE 754 does */ | |
3524 | if (unlikely(float64_is_any_nan(u.d))) { | |
3525 | return 0; | |
3526 | } | |
3527 | ||
3528 | return float64_to_uint32_round_to_zero(u.d, &env->vec_status); | |
3529 | } | |
3530 | ||
3531 | uint64_t helper_efdctuidz (uint64_t val) | |
3532 | { | |
3533 | CPU_DoubleU u; | |
3534 | ||
3535 | u.ll = val; | |
3536 | /* NaN are not treated the same way IEEE 754 does */ | |
3537 | if (unlikely(float64_is_any_nan(u.d))) { | |
3538 | return 0; | |
3539 | } | |
3540 | ||
3541 | return float64_to_uint64_round_to_zero(u.d, &env->vec_status); | |
3542 | } | |
3543 | ||
3544 | uint64_t helper_efdcfsf (uint32_t val) | |
3545 | { | |
3546 | CPU_DoubleU u; | |
3547 | float64 tmp; | |
3548 | ||
3549 | u.d = int32_to_float64(val, &env->vec_status); | |
3550 | tmp = int64_to_float64(1ULL << 32, &env->vec_status); | |
3551 | u.d = float64_div(u.d, tmp, &env->vec_status); | |
3552 | ||
3553 | return u.ll; | |
3554 | } | |
3555 | ||
3556 | uint64_t helper_efdcfuf (uint32_t val) | |
3557 | { | |
3558 | CPU_DoubleU u; | |
3559 | float64 tmp; | |
3560 | ||
3561 | u.d = uint32_to_float64(val, &env->vec_status); | |
3562 | tmp = int64_to_float64(1ULL << 32, &env->vec_status); | |
3563 | u.d = float64_div(u.d, tmp, &env->vec_status); | |
3564 | ||
3565 | return u.ll; | |
3566 | } | |
3567 | ||
3568 | uint32_t helper_efdctsf (uint64_t val) | |
3569 | { | |
3570 | CPU_DoubleU u; | |
3571 | float64 tmp; | |
3572 | ||
3573 | u.ll = val; | |
3574 | /* NaN are not treated the same way IEEE 754 does */ | |
3575 | if (unlikely(float64_is_any_nan(u.d))) { | |
3576 | return 0; | |
3577 | } | |
3578 | tmp = uint64_to_float64(1ULL << 32, &env->vec_status); | |
3579 | u.d = float64_mul(u.d, tmp, &env->vec_status); | |
3580 | ||
3581 | return float64_to_int32(u.d, &env->vec_status); | |
3582 | } | |
3583 | ||
3584 | uint32_t helper_efdctuf (uint64_t val) | |
3585 | { | |
3586 | CPU_DoubleU u; | |
3587 | float64 tmp; | |
3588 | ||
3589 | u.ll = val; | |
3590 | /* NaN are not treated the same way IEEE 754 does */ | |
3591 | if (unlikely(float64_is_any_nan(u.d))) { | |
3592 | return 0; | |
3593 | } | |
3594 | tmp = uint64_to_float64(1ULL << 32, &env->vec_status); | |
3595 | u.d = float64_mul(u.d, tmp, &env->vec_status); | |
3596 | ||
3597 | return float64_to_uint32(u.d, &env->vec_status); | |
3598 | } | |
3599 | ||
3600 | uint32_t helper_efscfd (uint64_t val) | |
3601 | { | |
3602 | CPU_DoubleU u1; | |
3603 | CPU_FloatU u2; | |
3604 | ||
3605 | u1.ll = val; | |
3606 | u2.f = float64_to_float32(u1.d, &env->vec_status); | |
3607 | ||
3608 | return u2.l; | |
3609 | } | |
3610 | ||
3611 | uint64_t helper_efdcfs (uint32_t val) | |
3612 | { | |
3613 | CPU_DoubleU u2; | |
3614 | CPU_FloatU u1; | |
3615 | ||
3616 | u1.l = val; | |
3617 | u2.d = float32_to_float64(u1.f, &env->vec_status); | |
3618 | ||
3619 | return u2.ll; | |
3620 | } | |
3621 | ||
3622 | /* Double precision fixed-point arithmetic */ | |
3623 | uint64_t helper_efdadd (uint64_t op1, uint64_t op2) | |
3624 | { | |
3625 | CPU_DoubleU u1, u2; | |
3626 | u1.ll = op1; | |
3627 | u2.ll = op2; | |
3628 | u1.d = float64_add(u1.d, u2.d, &env->vec_status); | |
3629 | return u1.ll; | |
3630 | } | |
3631 | ||
3632 | uint64_t helper_efdsub (uint64_t op1, uint64_t op2) | |
3633 | { | |
3634 | CPU_DoubleU u1, u2; | |
3635 | u1.ll = op1; | |
3636 | u2.ll = op2; | |
3637 | u1.d = float64_sub(u1.d, u2.d, &env->vec_status); | |
3638 | return u1.ll; | |
3639 | } | |
3640 | ||
3641 | uint64_t helper_efdmul (uint64_t op1, uint64_t op2) | |
3642 | { | |
3643 | CPU_DoubleU u1, u2; | |
3644 | u1.ll = op1; | |
3645 | u2.ll = op2; | |
3646 | u1.d = float64_mul(u1.d, u2.d, &env->vec_status); | |
3647 | return u1.ll; | |
3648 | } | |
3649 | ||
3650 | uint64_t helper_efddiv (uint64_t op1, uint64_t op2) | |
3651 | { | |
3652 | CPU_DoubleU u1, u2; | |
3653 | u1.ll = op1; | |
3654 | u2.ll = op2; | |
3655 | u1.d = float64_div(u1.d, u2.d, &env->vec_status); | |
3656 | return u1.ll; | |
3657 | } | |
3658 | ||
3659 | /* Double precision floating point helpers */ | |
3660 | uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2) | |
3661 | { | |
3662 | CPU_DoubleU u1, u2; | |
3663 | u1.ll = op1; | |
3664 | u2.ll = op2; | |
3665 | return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0; | |
3666 | } | |
3667 | ||
3668 | uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2) | |
3669 | { | |
3670 | CPU_DoubleU u1, u2; | |
3671 | u1.ll = op1; | |
3672 | u2.ll = op2; | |
3673 | return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4; | |
3674 | } | |
3675 | ||
3676 | uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2) | |
3677 | { | |
3678 | CPU_DoubleU u1, u2; | |
3679 | u1.ll = op1; | |
3680 | u2.ll = op2; | |
3681 | return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0; | |
3682 | } | |
3683 | ||
3684 | uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2) | |
3685 | { | |
3686 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
3687 | return helper_efdtstlt(op1, op2); | |
3688 | } | |
3689 | ||
3690 | uint32_t helper_efdcmpgt (uint64_t op1, uint64_t op2) | |
3691 | { | |
3692 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
3693 | return helper_efdtstgt(op1, op2); | |
3694 | } | |
3695 | ||
3696 | uint32_t helper_efdcmpeq (uint64_t op1, uint64_t op2) | |
3697 | { | |
3698 | /* XXX: TODO: test special values (NaN, infinites, ...) */ | |
3699 | return helper_efdtsteq(op1, op2); | |
3700 | } | |
3701 | ||
3702 | /*****************************************************************************/ | |
3703 | /* Softmmu support */ | |
3704 | #if !defined (CONFIG_USER_ONLY) | |
3705 | ||
3706 | #define MMUSUFFIX _mmu | |
3707 | ||
3708 | #define SHIFT 0 | |
3709 | #include "softmmu_template.h" | |
3710 | ||
3711 | #define SHIFT 1 | |
3712 | #include "softmmu_template.h" | |
3713 | ||
3714 | #define SHIFT 2 | |
3715 | #include "softmmu_template.h" | |
3716 | ||
3717 | #define SHIFT 3 | |
3718 | #include "softmmu_template.h" | |
3719 | ||
3720 | /* try to fill the TLB and return an exception if error. If retaddr is | |
3721 | NULL, it means that the function was called in C code (i.e. not | |
3722 | from generated code or from helper.c) */ | |
3723 | /* XXX: fix it to restore all registers */ | |
3724 | void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) | |
3725 | { | |
3726 | TranslationBlock *tb; | |
3727 | CPUState *saved_env; | |
3728 | unsigned long pc; | |
3729 | int ret; | |
3730 | ||
3731 | /* XXX: hack to restore env in all cases, even if not called from | |
3732 | generated code */ | |
3733 | saved_env = env; | |
3734 | env = cpu_single_env; | |
3735 | ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); | |
3736 | if (unlikely(ret != 0)) { | |
3737 | if (likely(retaddr)) { | |
3738 | /* now we have a real cpu fault */ | |
3739 | pc = (unsigned long)retaddr; | |
3740 | tb = tb_find_pc(pc); | |
3741 | if (likely(tb)) { | |
3742 | /* the PC is inside the translated code. It means that we have | |
3743 | a virtual CPU fault */ | |
3744 | cpu_restore_state(tb, env, pc); | |
3745 | } | |
3746 | } | |
3747 | helper_raise_exception_err(env->exception_index, env->error_code); | |
3748 | } | |
3749 | env = saved_env; | |
3750 | } | |
3751 | ||
3752 | /* Segment registers load and store */ | |
3753 | target_ulong helper_load_sr (target_ulong sr_num) | |
3754 | { | |
3755 | #if defined(TARGET_PPC64) | |
3756 | if (env->mmu_model & POWERPC_MMU_64) | |
3757 | return ppc_load_sr(env, sr_num); | |
3758 | #endif | |
3759 | return env->sr[sr_num]; | |
3760 | } | |
3761 | ||
3762 | void helper_store_sr (target_ulong sr_num, target_ulong val) | |
3763 | { | |
3764 | ppc_store_sr(env, sr_num, val); | |
3765 | } | |
3766 | ||
3767 | /* SLB management */ | |
3768 | #if defined(TARGET_PPC64) | |
3769 | void helper_store_slb (target_ulong rb, target_ulong rs) | |
3770 | { | |
3771 | if (ppc_store_slb(env, rb, rs) < 0) { | |
3772 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL); | |
3773 | } | |
3774 | } | |
3775 | ||
3776 | target_ulong helper_load_slb_esid (target_ulong rb) | |
3777 | { | |
3778 | target_ulong rt; | |
3779 | ||
3780 | if (ppc_load_slb_esid(env, rb, &rt) < 0) { | |
3781 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL); | |
3782 | } | |
3783 | return rt; | |
3784 | } | |
3785 | ||
3786 | target_ulong helper_load_slb_vsid (target_ulong rb) | |
3787 | { | |
3788 | target_ulong rt; | |
3789 | ||
3790 | if (ppc_load_slb_vsid(env, rb, &rt) < 0) { | |
3791 | helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL); | |
3792 | } | |
3793 | return rt; | |
3794 | } | |
3795 | ||
3796 | void helper_slbia (void) | |
3797 | { | |
3798 | ppc_slb_invalidate_all(env); | |
3799 | } | |
3800 | ||
3801 | void helper_slbie (target_ulong addr) | |
3802 | { | |
3803 | ppc_slb_invalidate_one(env, addr); | |
3804 | } | |
3805 | ||
3806 | #endif /* defined(TARGET_PPC64) */ | |
3807 | ||
3808 | /* TLB management */ | |
3809 | void helper_tlbia (void) | |
3810 | { | |
3811 | ppc_tlb_invalidate_all(env); | |
3812 | } | |
3813 | ||
3814 | void helper_tlbie (target_ulong addr) | |
3815 | { | |
3816 | ppc_tlb_invalidate_one(env, addr); | |
3817 | } | |
3818 | ||
3819 | /* Software driven TLBs management */ | |
3820 | /* PowerPC 602/603 software TLB load instructions helpers */ | |
3821 | static void do_6xx_tlb (target_ulong new_EPN, int is_code) | |
3822 | { | |
3823 | target_ulong RPN, CMP, EPN; | |
3824 | int way; | |
3825 | ||
3826 | RPN = env->spr[SPR_RPA]; | |
3827 | if (is_code) { | |
3828 | CMP = env->spr[SPR_ICMP]; | |
3829 | EPN = env->spr[SPR_IMISS]; | |
3830 | } else { | |
3831 | CMP = env->spr[SPR_DCMP]; | |
3832 | EPN = env->spr[SPR_DMISS]; | |
3833 | } | |
3834 | way = (env->spr[SPR_SRR1] >> 17) & 1; | |
3835 | (void)EPN; /* avoid a compiler warning */ | |
3836 | LOG_SWTLB("%s: EPN " TARGET_FMT_lx " " TARGET_FMT_lx " PTE0 " TARGET_FMT_lx | |
3837 | " PTE1 " TARGET_FMT_lx " way %d\n", __func__, new_EPN, EPN, CMP, | |
3838 | RPN, way); | |
3839 | /* Store this TLB */ | |
3840 | ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK), | |
3841 | way, is_code, CMP, RPN); | |
3842 | } | |
3843 | ||
3844 | void helper_6xx_tlbd (target_ulong EPN) | |
3845 | { | |
3846 | do_6xx_tlb(EPN, 0); | |
3847 | } | |
3848 | ||
3849 | void helper_6xx_tlbi (target_ulong EPN) | |
3850 | { | |
3851 | do_6xx_tlb(EPN, 1); | |
3852 | } | |
3853 | ||
3854 | /* PowerPC 74xx software TLB load instructions helpers */ | |
3855 | static void do_74xx_tlb (target_ulong new_EPN, int is_code) | |
3856 | { | |
3857 | target_ulong RPN, CMP, EPN; | |
3858 | int way; | |
3859 | ||
3860 | RPN = env->spr[SPR_PTELO]; | |
3861 | CMP = env->spr[SPR_PTEHI]; | |
3862 | EPN = env->spr[SPR_TLBMISS] & ~0x3; | |
3863 | way = env->spr[SPR_TLBMISS] & 0x3; | |
3864 | (void)EPN; /* avoid a compiler warning */ | |
3865 | LOG_SWTLB("%s: EPN " TARGET_FMT_lx " " TARGET_FMT_lx " PTE0 " TARGET_FMT_lx | |
3866 | " PTE1 " TARGET_FMT_lx " way %d\n", __func__, new_EPN, EPN, CMP, | |
3867 | RPN, way); | |
3868 | /* Store this TLB */ | |
3869 | ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK), | |
3870 | way, is_code, CMP, RPN); | |
3871 | } | |
3872 | ||
3873 | void helper_74xx_tlbd (target_ulong EPN) | |
3874 | { | |
3875 | do_74xx_tlb(EPN, 0); | |
3876 | } | |
3877 | ||
3878 | void helper_74xx_tlbi (target_ulong EPN) | |
3879 | { | |
3880 | do_74xx_tlb(EPN, 1); | |
3881 | } | |
3882 | ||
3883 | static inline target_ulong booke_tlb_to_page_size(int size) | |
3884 | { | |
3885 | return 1024 << (2 * size); | |
3886 | } | |
3887 | ||
3888 | static inline int booke_page_size_to_tlb(target_ulong page_size) | |
3889 | { | |
3890 | int size; | |
3891 | ||
3892 | switch (page_size) { | |
3893 | case 0x00000400UL: | |
3894 | size = 0x0; | |
3895 | break; | |
3896 | case 0x00001000UL: | |
3897 | size = 0x1; | |
3898 | break; | |
3899 | case 0x00004000UL: | |
3900 | size = 0x2; | |
3901 | break; | |
3902 | case 0x00010000UL: | |
3903 | size = 0x3; | |
3904 | break; | |
3905 | case 0x00040000UL: | |
3906 | size = 0x4; | |
3907 | break; | |
3908 | case 0x00100000UL: | |
3909 | size = 0x5; | |
3910 | break; | |
3911 | case 0x00400000UL: | |
3912 | size = 0x6; | |
3913 | break; | |
3914 | case 0x01000000UL: | |
3915 | size = 0x7; | |
3916 | break; | |
3917 | case 0x04000000UL: | |
3918 | size = 0x8; | |
3919 | break; | |
3920 | case 0x10000000UL: | |
3921 | size = 0x9; | |
3922 | break; | |
3923 | case 0x40000000UL: | |
3924 | size = 0xA; | |
3925 | break; | |
3926 | #if defined (TARGET_PPC64) | |
3927 | case 0x000100000000ULL: | |
3928 | size = 0xB; | |
3929 | break; | |
3930 | case 0x000400000000ULL: | |
3931 | size = 0xC; | |
3932 | break; | |
3933 | case 0x001000000000ULL: | |
3934 | size = 0xD; | |
3935 | break; | |
3936 | case 0x004000000000ULL: | |
3937 | size = 0xE; | |
3938 | break; | |
3939 | case 0x010000000000ULL: | |
3940 | size = 0xF; | |
3941 | break; | |
3942 | #endif | |
3943 | default: | |
3944 | size = -1; | |
3945 | break; | |
3946 | } | |
3947 | ||
3948 | return size; | |
3949 | } | |
3950 | ||
3951 | /* Helpers for 4xx TLB management */ | |
3952 | #define PPC4XX_TLB_ENTRY_MASK 0x0000003f /* Mask for 64 TLB entries */ | |
3953 | ||
3954 | #define PPC4XX_TLBHI_V 0x00000040 | |
3955 | #define PPC4XX_TLBHI_E 0x00000020 | |
3956 | #define PPC4XX_TLBHI_SIZE_MIN 0 | |
3957 | #define PPC4XX_TLBHI_SIZE_MAX 7 | |
3958 | #define PPC4XX_TLBHI_SIZE_DEFAULT 1 | |
3959 | #define PPC4XX_TLBHI_SIZE_SHIFT 7 | |
3960 | #define PPC4XX_TLBHI_SIZE_MASK 0x00000007 | |
3961 | ||
3962 | #define PPC4XX_TLBLO_EX 0x00000200 | |
3963 | #define PPC4XX_TLBLO_WR 0x00000100 | |
3964 | #define PPC4XX_TLBLO_ATTR_MASK 0x000000FF | |
3965 | #define PPC4XX_TLBLO_RPN_MASK 0xFFFFFC00 | |
3966 | ||
3967 | target_ulong helper_4xx_tlbre_hi (target_ulong entry) | |
3968 | { | |
3969 | ppcemb_tlb_t *tlb; | |
3970 | target_ulong ret; | |
3971 | int size; | |
3972 | ||
3973 | entry &= PPC4XX_TLB_ENTRY_MASK; | |
3974 | tlb = &env->tlb[entry].tlbe; | |
3975 | ret = tlb->EPN; | |
3976 | if (tlb->prot & PAGE_VALID) { | |
3977 | ret |= PPC4XX_TLBHI_V; | |
3978 | } | |
3979 | size = booke_page_size_to_tlb(tlb->size); | |
3980 | if (size < PPC4XX_TLBHI_SIZE_MIN || size > PPC4XX_TLBHI_SIZE_MAX) { | |
3981 | size = PPC4XX_TLBHI_SIZE_DEFAULT; | |
3982 | } | |
3983 | ret |= size << PPC4XX_TLBHI_SIZE_SHIFT; | |
3984 | env->spr[SPR_40x_PID] = tlb->PID; | |
3985 | return ret; | |
3986 | } | |
3987 | ||
3988 | target_ulong helper_4xx_tlbre_lo (target_ulong entry) | |
3989 | { | |
3990 | ppcemb_tlb_t *tlb; | |
3991 | target_ulong ret; | |
3992 | ||
3993 | entry &= PPC4XX_TLB_ENTRY_MASK; | |
3994 | tlb = &env->tlb[entry].tlbe; | |
3995 | ret = tlb->RPN; | |
3996 | if (tlb->prot & PAGE_EXEC) { | |
3997 | ret |= PPC4XX_TLBLO_EX; | |
3998 | } | |
3999 | if (tlb->prot & PAGE_WRITE) { | |
4000 | ret |= PPC4XX_TLBLO_WR; | |
4001 | } | |
4002 | return ret; | |
4003 | } | |
4004 | ||
4005 | void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val) | |
4006 | { | |
4007 | ppcemb_tlb_t *tlb; | |
4008 | target_ulong page, end; | |
4009 | ||
4010 | LOG_SWTLB("%s entry %d val " TARGET_FMT_lx "\n", __func__, (int)entry, | |
4011 | val); | |
4012 | entry &= PPC4XX_TLB_ENTRY_MASK; | |
4013 | tlb = &env->tlb[entry].tlbe; | |
4014 | /* Invalidate previous TLB (if it's valid) */ | |
4015 | if (tlb->prot & PAGE_VALID) { | |
4016 | end = tlb->EPN + tlb->size; | |
4017 | LOG_SWTLB("%s: invalidate old TLB %d start " TARGET_FMT_lx " end " | |
4018 | TARGET_FMT_lx "\n", __func__, (int)entry, tlb->EPN, end); | |
4019 | for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) { | |
4020 | tlb_flush_page(env, page); | |
4021 | } | |
4022 | } | |
4023 | tlb->size = booke_tlb_to_page_size((val >> PPC4XX_TLBHI_SIZE_SHIFT) | |
4024 | & PPC4XX_TLBHI_SIZE_MASK); | |
4025 | /* We cannot handle TLB size < TARGET_PAGE_SIZE. | |
4026 | * If this ever occurs, one should use the ppcemb target instead | |
4027 | * of the ppc or ppc64 one | |
4028 | */ | |
4029 | if ((val & PPC4XX_TLBHI_V) && tlb->size < TARGET_PAGE_SIZE) { | |
4030 | cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u " | |
4031 | "are not supported (%d)\n", | |
4032 | tlb->size, TARGET_PAGE_SIZE, (int)((val >> 7) & 0x7)); | |
4033 | } | |
4034 | tlb->EPN = val & ~(tlb->size - 1); | |
4035 | if (val & PPC4XX_TLBHI_V) { | |
4036 | tlb->prot |= PAGE_VALID; | |
4037 | if (val & PPC4XX_TLBHI_E) { | |
4038 | /* XXX: TO BE FIXED */ | |
4039 | cpu_abort(env, | |
4040 | "Little-endian TLB entries are not supported by now\n"); | |
4041 | } | |
4042 | } else { | |
4043 | tlb->prot &= ~PAGE_VALID; | |
4044 | } | |
4045 | tlb->PID = env->spr[SPR_40x_PID]; /* PID */ | |
4046 | LOG_SWTLB("%s: set up TLB %d RPN " TARGET_FMT_plx " EPN " TARGET_FMT_lx | |
4047 | " size " TARGET_FMT_lx " prot %c%c%c%c PID %d\n", __func__, | |
4048 | (int)entry, tlb->RPN, tlb->EPN, tlb->size, | |
4049 | tlb->prot & PAGE_READ ? 'r' : '-', | |
4050 | tlb->prot & PAGE_WRITE ? 'w' : '-', | |
4051 | tlb->prot & PAGE_EXEC ? 'x' : '-', | |
4052 | tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); | |
4053 | /* Invalidate new TLB (if valid) */ | |
4054 | if (tlb->prot & PAGE_VALID) { | |
4055 | end = tlb->EPN + tlb->size; | |
4056 | LOG_SWTLB("%s: invalidate TLB %d start " TARGET_FMT_lx " end " | |
4057 | TARGET_FMT_lx "\n", __func__, (int)entry, tlb->EPN, end); | |
4058 | for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) { | |
4059 | tlb_flush_page(env, page); | |
4060 | } | |
4061 | } | |
4062 | } | |
4063 | ||
4064 | void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val) | |
4065 | { | |
4066 | ppcemb_tlb_t *tlb; | |
4067 | ||
4068 | LOG_SWTLB("%s entry %i val " TARGET_FMT_lx "\n", __func__, (int)entry, | |
4069 | val); | |
4070 | entry &= PPC4XX_TLB_ENTRY_MASK; | |
4071 | tlb = &env->tlb[entry].tlbe; | |
4072 | tlb->attr = val & PPC4XX_TLBLO_ATTR_MASK; | |
4073 | tlb->RPN = val & PPC4XX_TLBLO_RPN_MASK; | |
4074 | tlb->prot = PAGE_READ; | |
4075 | if (val & PPC4XX_TLBLO_EX) { | |
4076 | tlb->prot |= PAGE_EXEC; | |
4077 | } | |
4078 | if (val & PPC4XX_TLBLO_WR) { | |
4079 | tlb->prot |= PAGE_WRITE; | |
4080 | } | |
4081 | LOG_SWTLB("%s: set up TLB %d RPN " TARGET_FMT_plx " EPN " TARGET_FMT_lx | |
4082 | " size " TARGET_FMT_lx " prot %c%c%c%c PID %d\n", __func__, | |
4083 | (int)entry, tlb->RPN, tlb->EPN, tlb->size, | |
4084 | tlb->prot & PAGE_READ ? 'r' : '-', | |
4085 | tlb->prot & PAGE_WRITE ? 'w' : '-', | |
4086 | tlb->prot & PAGE_EXEC ? 'x' : '-', | |
4087 | tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); | |
4088 | } | |
4089 | ||
4090 | target_ulong helper_4xx_tlbsx (target_ulong address) | |
4091 | { | |
4092 | return ppcemb_tlb_search(env, address, env->spr[SPR_40x_PID]); | |
4093 | } | |
4094 | ||
4095 | /* PowerPC 440 TLB management */ | |
4096 | void helper_440_tlbwe (uint32_t word, target_ulong entry, target_ulong value) | |
4097 | { | |
4098 | ppcemb_tlb_t *tlb; | |
4099 | target_ulong EPN, RPN, size; | |
4100 | int do_flush_tlbs; | |
4101 | ||
4102 | LOG_SWTLB("%s word %d entry %d value " TARGET_FMT_lx "\n", | |
4103 | __func__, word, (int)entry, value); | |
4104 | do_flush_tlbs = 0; | |
4105 | entry &= 0x3F; | |
4106 | tlb = &env->tlb[entry].tlbe; | |
4107 | switch (word) { | |
4108 | default: | |
4109 | /* Just here to please gcc */ | |
4110 | case 0: | |
4111 | EPN = value & 0xFFFFFC00; | |
4112 | if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN) | |
4113 | do_flush_tlbs = 1; | |
4114 | tlb->EPN = EPN; | |
4115 | size = booke_tlb_to_page_size((value >> 4) & 0xF); | |
4116 | if ((tlb->prot & PAGE_VALID) && tlb->size < size) | |
4117 | do_flush_tlbs = 1; | |
4118 | tlb->size = size; | |
4119 | tlb->attr &= ~0x1; | |
4120 | tlb->attr |= (value >> 8) & 1; | |
4121 | if (value & 0x200) { | |
4122 | tlb->prot |= PAGE_VALID; | |
4123 | } else { | |
4124 | if (tlb->prot & PAGE_VALID) { | |
4125 | tlb->prot &= ~PAGE_VALID; | |
4126 | do_flush_tlbs = 1; | |
4127 | } | |
4128 | } | |
4129 | tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF; | |
4130 | if (do_flush_tlbs) | |
4131 | tlb_flush(env, 1); | |
4132 | break; | |
4133 | case 1: | |
4134 | RPN = value & 0xFFFFFC0F; | |
4135 | if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN) | |
4136 | tlb_flush(env, 1); | |
4137 | tlb->RPN = RPN; | |
4138 | break; | |
4139 | case 2: | |
4140 | tlb->attr = (tlb->attr & 0x1) | (value & 0x0000FF00); | |
4141 | tlb->prot = tlb->prot & PAGE_VALID; | |
4142 | if (value & 0x1) | |
4143 | tlb->prot |= PAGE_READ << 4; | |
4144 | if (value & 0x2) | |
4145 | tlb->prot |= PAGE_WRITE << 4; | |
4146 | if (value & 0x4) | |
4147 | tlb->prot |= PAGE_EXEC << 4; | |
4148 | if (value & 0x8) | |
4149 | tlb->prot |= PAGE_READ; | |
4150 | if (value & 0x10) | |
4151 | tlb->prot |= PAGE_WRITE; | |
4152 | if (value & 0x20) | |
4153 | tlb->prot |= PAGE_EXEC; | |
4154 | break; | |
4155 | } | |
4156 | } | |
4157 | ||
4158 | target_ulong helper_440_tlbre (uint32_t word, target_ulong entry) | |
4159 | { | |
4160 | ppcemb_tlb_t *tlb; | |
4161 | target_ulong ret; | |
4162 | int size; | |
4163 | ||
4164 | entry &= 0x3F; | |
4165 | tlb = &env->tlb[entry].tlbe; | |
4166 | switch (word) { | |
4167 | default: | |
4168 | /* Just here to please gcc */ | |
4169 | case 0: | |
4170 | ret = tlb->EPN; | |
4171 | size = booke_page_size_to_tlb(tlb->size); | |
4172 | if (size < 0 || size > 0xF) | |
4173 | size = 1; | |
4174 | ret |= size << 4; | |
4175 | if (tlb->attr & 0x1) | |
4176 | ret |= 0x100; | |
4177 | if (tlb->prot & PAGE_VALID) | |
4178 | ret |= 0x200; | |
4179 | env->spr[SPR_440_MMUCR] &= ~0x000000FF; | |
4180 | env->spr[SPR_440_MMUCR] |= tlb->PID; | |
4181 | break; | |
4182 | case 1: | |
4183 | ret = tlb->RPN; | |
4184 | break; | |
4185 | case 2: | |
4186 | ret = tlb->attr & ~0x1; | |
4187 | if (tlb->prot & (PAGE_READ << 4)) | |
4188 | ret |= 0x1; | |
4189 | if (tlb->prot & (PAGE_WRITE << 4)) | |
4190 | ret |= 0x2; | |
4191 | if (tlb->prot & (PAGE_EXEC << 4)) | |
4192 | ret |= 0x4; | |
4193 | if (tlb->prot & PAGE_READ) | |
4194 | ret |= 0x8; | |
4195 | if (tlb->prot & PAGE_WRITE) | |
4196 | ret |= 0x10; | |
4197 | if (tlb->prot & PAGE_EXEC) | |
4198 | ret |= 0x20; | |
4199 | break; | |
4200 | } | |
4201 | return ret; | |
4202 | } | |
4203 | ||
4204 | target_ulong helper_440_tlbsx (target_ulong address) | |
4205 | { | |
4206 | return ppcemb_tlb_search(env, address, env->spr[SPR_440_MMUCR] & 0xFF); | |
4207 | } | |
4208 | ||
4209 | /* PowerPC BookE 2.06 TLB management */ | |
4210 | ||
4211 | static ppcemb_tlb_t *booke206_cur_tlb(CPUState *env) | |
4212 | { | |
4213 | uint32_t tlbncfg = 0; | |
4214 | int esel = (env->spr[SPR_BOOKE_MAS0] & MAS0_ESEL_MASK) >> MAS0_ESEL_SHIFT; | |
4215 | int ea = (env->spr[SPR_BOOKE_MAS2] & MAS2_EPN_MASK); | |
4216 | int tlb; | |
4217 | ||
4218 | tlb = (env->spr[SPR_BOOKE_MAS0] & MAS0_TLBSEL_MASK) >> MAS0_TLBSEL_SHIFT; | |
4219 | tlbncfg = env->spr[SPR_BOOKE_TLB0CFG + tlb]; | |
4220 | ||
4221 | if ((tlbncfg & TLBnCFG_HES) && (env->spr[SPR_BOOKE_MAS0] & MAS0_HES)) { | |
4222 | cpu_abort(env, "we don't support HES yet\n"); | |
4223 | } | |
4224 | ||
4225 | return booke206_get_tlbe(env, tlb, ea, esel); | |
4226 | } | |
4227 | ||
4228 | static inline target_phys_addr_t booke206_tlb_to_page_size(int size) | |
4229 | { | |
4230 | return (1 << (size << 1)) << 10; | |
4231 | } | |
4232 | ||
4233 | static inline target_phys_addr_t booke206_page_size_to_tlb(uint64_t size) | |
4234 | { | |
4235 | return (ffs(size >> 10) - 1) >> 1; | |
4236 | } | |
4237 | ||
4238 | void helper_booke_setpid(uint32_t pidn, target_ulong pid) | |
4239 | { | |
4240 | env->spr[pidn] = pid; | |
4241 | /* changing PIDs mean we're in a different address space now */ | |
4242 | tlb_flush(env, 1); | |
4243 | } | |
4244 | ||
4245 | void helper_booke206_tlbwe(void) | |
4246 | { | |
4247 | uint32_t tlbncfg, tlbn; | |
4248 | ppcemb_tlb_t *tlb; | |
4249 | target_phys_addr_t rpn; | |
4250 | int tlbe_size; | |
4251 | ||
4252 | switch (env->spr[SPR_BOOKE_MAS0] & MAS0_WQ_MASK) { | |
4253 | case MAS0_WQ_ALWAYS: | |
4254 | /* good to go, write that entry */ | |
4255 | break; | |
4256 | case MAS0_WQ_COND: | |
4257 | /* XXX check if reserved */ | |
4258 | if (0) { | |
4259 | return; | |
4260 | } | |
4261 | break; | |
4262 | case MAS0_WQ_CLR_RSRV: | |
4263 | /* XXX clear entry */ | |
4264 | return; | |
4265 | default: | |
4266 | /* no idea what to do */ | |
4267 | return; | |
4268 | } | |
4269 | ||
4270 | if (((env->spr[SPR_BOOKE_MAS0] & MAS0_ATSEL) == MAS0_ATSEL_LRAT) && | |
4271 | !msr_gs) { | |
4272 | /* XXX we don't support direct LRAT setting yet */ | |
4273 | fprintf(stderr, "cpu: don't support LRAT setting yet\n"); | |
4274 | return; | |
4275 | } | |
4276 | ||
4277 | tlbn = (env->spr[SPR_BOOKE_MAS0] & MAS0_TLBSEL_MASK) >> MAS0_TLBSEL_SHIFT; | |
4278 | tlbncfg = env->spr[SPR_BOOKE_TLB0CFG + tlbn]; | |
4279 | ||
4280 | tlb = booke206_cur_tlb(env); | |
4281 | ||
4282 | if (msr_gs) { | |
4283 | cpu_abort(env, "missing HV implementation\n"); | |
4284 | } else { | |
4285 | rpn = ((uint64_t)env->spr[SPR_BOOKE_MAS7] << 32) | | |
4286 | (env->spr[SPR_BOOKE_MAS3] & 0xfffff000); | |
4287 | } | |
4288 | tlb->RPN = rpn; | |
4289 | ||
4290 | tlb->PID = (env->spr[SPR_BOOKE_MAS1] & MAS1_TID_MASK) >> MAS1_TID_SHIFT; | |
4291 | if (tlbncfg & TLBnCFG_AVAIL) { | |
4292 | tlbe_size = (env->spr[SPR_BOOKE_MAS1] & MAS1_TSIZE_MASK) | |
4293 | >> MAS1_TSIZE_SHIFT; | |
4294 | } else { | |
4295 | tlbe_size = (tlbncfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT; | |
4296 | } | |
4297 | ||
4298 | tlb->size = booke206_tlb_to_page_size(tlbe_size); | |
4299 | tlb->EPN = (uint32_t)(env->spr[SPR_BOOKE_MAS2] & MAS2_EPN_MASK); | |
4300 | tlb->attr = env->spr[SPR_BOOKE_MAS2] & (MAS2_ACM | MAS2_VLE | MAS2_W | | |
4301 | MAS2_I | MAS2_M | MAS2_G | MAS2_E) | |
4302 | << 1; | |
4303 | ||
4304 | if (tlbncfg & TLBnCFG_IPROT) { | |
4305 | tlb->attr |= env->spr[SPR_BOOKE_MAS1] & MAS1_IPROT; | |
4306 | } | |
4307 | tlb->attr |= (env->spr[SPR_BOOKE_MAS3] & | |
4308 | ((MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3)) << 8); | |
4309 | if (env->spr[SPR_BOOKE_MAS1] & MAS1_TS) { | |
4310 | tlb->attr |= 1; | |
4311 | } | |
4312 | ||
4313 | tlb->prot = 0; | |
4314 | ||
4315 | if (env->spr[SPR_BOOKE_MAS1] & MAS1_VALID) { | |
4316 | tlb->prot |= PAGE_VALID; | |
4317 | } | |
4318 | if (env->spr[SPR_BOOKE_MAS3] & MAS3_UX) { | |
4319 | tlb->prot |= PAGE_EXEC; | |
4320 | } | |
4321 | if (env->spr[SPR_BOOKE_MAS3] & MAS3_SX) { | |
4322 | tlb->prot |= PAGE_EXEC << 4; | |
4323 | } | |
4324 | if (env->spr[SPR_BOOKE_MAS3] & MAS3_UW) { | |
4325 | tlb->prot |= PAGE_WRITE; | |
4326 | } | |
4327 | if (env->spr[SPR_BOOKE_MAS3] & MAS3_SW) { | |
4328 | tlb->prot |= PAGE_WRITE << 4; | |
4329 | } | |
4330 | if (env->spr[SPR_BOOKE_MAS3] & MAS3_UR) { | |
4331 | tlb->prot |= PAGE_READ; | |
4332 | } | |
4333 | if (env->spr[SPR_BOOKE_MAS3] & MAS3_SR) { | |
4334 | tlb->prot |= PAGE_READ << 4; | |
4335 | } | |
4336 | ||
4337 | if (tlb->size == TARGET_PAGE_SIZE) { | |
4338 | tlb_flush_page(env, tlb->EPN); | |
4339 | } else { | |
4340 | tlb_flush(env, 1); | |
4341 | } | |
4342 | } | |
4343 | ||
4344 | static inline void booke206_tlb_to_mas(CPUState *env, ppcemb_tlb_t *tlb) | |
4345 | { | |
4346 | int tlbn = booke206_tlbe_to_tlbn(env, tlb); | |
4347 | int way = booke206_tlbe_to_way(env, tlb); | |
4348 | ||
4349 | env->spr[SPR_BOOKE_MAS0] = tlbn << MAS0_TLBSEL_SHIFT; | |
4350 | env->spr[SPR_BOOKE_MAS0] |= way << MAS0_ESEL_SHIFT; | |
4351 | ||
4352 | env->spr[SPR_BOOKE_MAS1] = MAS1_VALID; | |
4353 | env->spr[SPR_BOOKE_MAS2] = 0; | |
4354 | ||
4355 | env->spr[SPR_BOOKE_MAS7] = (uint64_t)tlb->RPN >> 32; | |
4356 | env->spr[SPR_BOOKE_MAS3] = tlb->RPN; | |
4357 | env->spr[SPR_BOOKE_MAS1] |= tlb->PID << MAS1_TID_SHIFT; | |
4358 | env->spr[SPR_BOOKE_MAS1] |= booke206_page_size_to_tlb(tlb->size) | |
4359 | << MAS1_TSIZE_SHIFT; | |
4360 | env->spr[SPR_BOOKE_MAS1] |= tlb->attr & MAS1_IPROT; | |
4361 | if (tlb->attr & 1) { | |
4362 | env->spr[SPR_BOOKE_MAS1] |= MAS1_TS; | |
4363 | } | |
4364 | ||
4365 | env->spr[SPR_BOOKE_MAS2] = tlb->EPN; | |
4366 | env->spr[SPR_BOOKE_MAS2] |= (tlb->attr >> 1) & | |
4367 | (MAS2_ACM | MAS2_VLE | MAS2_W | MAS2_I | MAS2_M | MAS2_G | MAS2_E); | |
4368 | ||
4369 | if (tlb->prot & PAGE_EXEC) { | |
4370 | env->spr[SPR_BOOKE_MAS3] |= MAS3_UX; | |
4371 | } | |
4372 | if (tlb->prot & (PAGE_EXEC << 4)) { | |
4373 | env->spr[SPR_BOOKE_MAS3] |= MAS3_SX; | |
4374 | } | |
4375 | if (tlb->prot & PAGE_WRITE) { | |
4376 | env->spr[SPR_BOOKE_MAS3] |= MAS3_UW; | |
4377 | } | |
4378 | if (tlb->prot & (PAGE_WRITE << 4)) { | |
4379 | env->spr[SPR_BOOKE_MAS3] |= MAS3_SW; | |
4380 | } | |
4381 | if (tlb->prot & PAGE_READ) { | |
4382 | env->spr[SPR_BOOKE_MAS3] |= MAS3_UR; | |
4383 | } | |
4384 | if (tlb->prot & (PAGE_READ << 4)) { | |
4385 | env->spr[SPR_BOOKE_MAS3] |= MAS3_SR; | |
4386 | } | |
4387 | ||
4388 | env->spr[SPR_BOOKE_MAS0] |= env->last_way << MAS0_NV_SHIFT; | |
4389 | } | |
4390 | ||
4391 | void helper_booke206_tlbre(void) | |
4392 | { | |
4393 | ppcemb_tlb_t *tlb = NULL; | |
4394 | ||
4395 | tlb = booke206_cur_tlb(env); | |
4396 | booke206_tlb_to_mas(env, tlb); | |
4397 | } | |
4398 | ||
4399 | void helper_booke206_tlbsx(target_ulong address) | |
4400 | { | |
4401 | ppcemb_tlb_t *tlb = NULL; | |
4402 | int i, j; | |
4403 | target_phys_addr_t raddr; | |
4404 | uint32_t spid, sas; | |
4405 | ||
4406 | spid = (env->spr[SPR_BOOKE_MAS6] & MAS6_SPID_MASK) >> MAS6_SPID_SHIFT; | |
4407 | sas = env->spr[SPR_BOOKE_MAS6] & MAS6_SAS; | |
4408 | ||
4409 | for (i = 0; i < BOOKE206_MAX_TLBN; i++) { | |
4410 | int ways = booke206_tlb_ways(env, i); | |
4411 | ||
4412 | for (j = 0; j < ways; j++) { | |
4413 | tlb = booke206_get_tlbe(env, i, address, j); | |
4414 | ||
4415 | if (ppcemb_tlb_check(env, tlb, &raddr, address, spid, 0, j)) { | |
4416 | continue; | |
4417 | } | |
4418 | ||
4419 | if (sas != (tlb->attr & MAS6_SAS)) { | |
4420 | continue; | |
4421 | } | |
4422 | ||
4423 | booke206_tlb_to_mas(env, tlb); | |
4424 | return; | |
4425 | } | |
4426 | } | |
4427 | ||
4428 | /* no entry found, fill with defaults */ | |
4429 | env->spr[SPR_BOOKE_MAS0] = env->spr[SPR_BOOKE_MAS4] & MAS4_TLBSELD_MASK; | |
4430 | env->spr[SPR_BOOKE_MAS1] = env->spr[SPR_BOOKE_MAS4] & MAS4_TSIZED_MASK; | |
4431 | env->spr[SPR_BOOKE_MAS2] = env->spr[SPR_BOOKE_MAS4] & MAS4_WIMGED_MASK; | |
4432 | env->spr[SPR_BOOKE_MAS3] = 0; | |
4433 | env->spr[SPR_BOOKE_MAS7] = 0; | |
4434 | ||
4435 | if (env->spr[SPR_BOOKE_MAS6] & MAS6_SAS) { | |
4436 | env->spr[SPR_BOOKE_MAS1] |= MAS1_TS; | |
4437 | } | |
4438 | ||
4439 | env->spr[SPR_BOOKE_MAS1] |= (env->spr[SPR_BOOKE_MAS6] >> 16) | |
4440 | << MAS1_TID_SHIFT; | |
4441 | ||
4442 | /* next victim logic */ | |
4443 | env->spr[SPR_BOOKE_MAS0] |= env->last_way << MAS0_ESEL_SHIFT; | |
4444 | env->last_way++; | |
4445 | env->last_way &= booke206_tlb_ways(env, 0) - 1; | |
4446 | env->spr[SPR_BOOKE_MAS0] |= env->last_way << MAS0_NV_SHIFT; | |
4447 | } | |
4448 | ||
4449 | static inline void booke206_invalidate_ea_tlb(CPUState *env, int tlbn, | |
4450 | uint32_t ea) | |
4451 | { | |
4452 | int i; | |
4453 | int ways = booke206_tlb_ways(env, tlbn); | |
4454 | ||
4455 | for (i = 0; i < ways; i++) { | |
4456 | ppcemb_tlb_t *tlb = booke206_get_tlbe(env, tlbn, ea, i); | |
4457 | target_phys_addr_t masked_ea = ea & ~(tlb->size - 1); | |
4458 | if ((tlb->EPN == (masked_ea >> MAS2_EPN_SHIFT)) && | |
4459 | !(tlb->attr & MAS1_IPROT)) { | |
4460 | tlb->prot = 0; | |
4461 | } | |
4462 | } | |
4463 | } | |
4464 | ||
4465 | void helper_booke206_tlbivax(target_ulong address) | |
4466 | { | |
4467 | if (address & 0x4) { | |
4468 | /* flush all entries */ | |
4469 | if (address & 0x8) { | |
4470 | /* flush all of TLB1 */ | |
4471 | booke206_flush_tlb(env, BOOKE206_FLUSH_TLB1, 1); | |
4472 | } else { | |
4473 | /* flush all of TLB0 */ | |
4474 | booke206_flush_tlb(env, BOOKE206_FLUSH_TLB0, 0); | |
4475 | } | |
4476 | return; | |
4477 | } | |
4478 | ||
4479 | if (address & 0x8) { | |
4480 | /* flush TLB1 entries */ | |
4481 | booke206_invalidate_ea_tlb(env, 1, address); | |
4482 | tlb_flush(env, 1); | |
4483 | } else { | |
4484 | /* flush TLB0 entries */ | |
4485 | booke206_invalidate_ea_tlb(env, 0, address); | |
4486 | tlb_flush_page(env, address & MAS2_EPN_MASK); | |
4487 | } | |
4488 | } | |
4489 | ||
4490 | void helper_booke206_tlbflush(uint32_t type) | |
4491 | { | |
4492 | int flags = 0; | |
4493 | ||
4494 | if (type & 2) { | |
4495 | flags |= BOOKE206_FLUSH_TLB1; | |
4496 | } | |
4497 | ||
4498 | if (type & 4) { | |
4499 | flags |= BOOKE206_FLUSH_TLB0; | |
4500 | } | |
4501 | ||
4502 | booke206_flush_tlb(env, flags, 1); | |
4503 | } | |
4504 | ||
4505 | #endif /* !CONFIG_USER_ONLY */ |