]>
Commit | Line | Data |
---|---|---|
d3e35a1f AG |
1 | /* |
2 | * AArch64 specific helpers | |
3 | * | |
4 | * Copyright (c) 2013 Alexander Graf <[email protected]> | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
50f57e09 | 9 | * version 2.1 of the License, or (at your option) any later version. |
d3e35a1f AG |
10 | * |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | ||
74c21bd0 | 20 | #include "qemu/osdep.h" |
7b182eb2 | 21 | #include "qemu/units.h" |
d3e35a1f AG |
22 | #include "cpu.h" |
23 | #include "exec/gdbstub.h" | |
2ef6175a | 24 | #include "exec/helper-proto.h" |
d3e35a1f | 25 | #include "qemu/host-utils.h" |
63c91552 | 26 | #include "qemu/log.h" |
db725815 | 27 | #include "qemu/main-loop.h" |
d3e35a1f | 28 | #include "qemu/bitops.h" |
52e60cdd | 29 | #include "internals.h" |
130f2e7d | 30 | #include "qemu/crc32c.h" |
1dd089d0 EC |
31 | #include "exec/exec-all.h" |
32 | #include "exec/cpu_ldst.h" | |
33 | #include "qemu/int128.h" | |
1ec182c3 | 34 | #include "qemu/atomic128.h" |
24f91e81 | 35 | #include "fpu/softfloat.h" |
130f2e7d | 36 | #include <zlib.h> /* For crc32 */ |
8220e911 AG |
37 | |
38 | /* C2.4.7 Multiply and divide */ | |
39 | /* special cases for 0 and LLONG_MIN are mandated by the standard */ | |
40 | uint64_t HELPER(udiv64)(uint64_t num, uint64_t den) | |
41 | { | |
42 | if (den == 0) { | |
43 | return 0; | |
44 | } | |
45 | return num / den; | |
46 | } | |
47 | ||
48 | int64_t HELPER(sdiv64)(int64_t num, int64_t den) | |
49 | { | |
50 | if (den == 0) { | |
51 | return 0; | |
52 | } | |
53 | if (num == LLONG_MIN && den == -1) { | |
54 | return LLONG_MIN; | |
55 | } | |
56 | return num / den; | |
57 | } | |
680ead21 | 58 | |
82e14b02 AG |
59 | uint64_t HELPER(rbit64)(uint64_t x) |
60 | { | |
42fedbca | 61 | return revbit64(x); |
82e14b02 | 62 | } |
da7dafe7 | 63 | |
ff730e96 RH |
64 | void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm) |
65 | { | |
66 | update_spsel(env, imm); | |
67 | } | |
68 | ||
69 | static void daif_check(CPUARMState *env, uint32_t op, | |
70 | uint32_t imm, uintptr_t ra) | |
71 | { | |
72 | /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set. */ | |
aaec1432 | 73 | if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { |
ff730e96 RH |
74 | raise_exception_ra(env, EXCP_UDEF, |
75 | syn_aa64_sysregtrap(0, extract32(op, 0, 3), | |
76 | extract32(op, 3, 3), 4, | |
77 | imm, 0x1f, 0), | |
78 | exception_target_el(env), ra); | |
79 | } | |
80 | } | |
81 | ||
82 | void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm) | |
83 | { | |
84 | daif_check(env, 0x1e, imm, GETPC()); | |
85 | env->daif |= (imm << 6) & PSTATE_DAIF; | |
c737d868 | 86 | arm_rebuild_hflags(env); |
ff730e96 RH |
87 | } |
88 | ||
89 | void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm) | |
90 | { | |
91 | daif_check(env, 0x1f, imm, GETPC()); | |
92 | env->daif &= ~((imm << 6) & PSTATE_DAIF); | |
c737d868 | 93 | arm_rebuild_hflags(env); |
ff730e96 RH |
94 | } |
95 | ||
da7dafe7 CF |
96 | /* Convert a softfloat float_relation_ (as returned by |
97 | * the float*_compare functions) to the correct ARM | |
98 | * NZCV flag state. | |
99 | */ | |
100 | static inline uint32_t float_rel_to_flags(int res) | |
101 | { | |
102 | uint64_t flags; | |
103 | switch (res) { | |
104 | case float_relation_equal: | |
105 | flags = PSTATE_Z | PSTATE_C; | |
106 | break; | |
107 | case float_relation_less: | |
108 | flags = PSTATE_N; | |
109 | break; | |
110 | case float_relation_greater: | |
111 | flags = PSTATE_C; | |
112 | break; | |
113 | case float_relation_unordered: | |
114 | default: | |
115 | flags = PSTATE_C | PSTATE_V; | |
116 | break; | |
117 | } | |
118 | return flags; | |
119 | } | |
120 | ||
6c2be133 | 121 | uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, void *fp_status) |
7a192925 AB |
122 | { |
123 | return float_rel_to_flags(float16_compare_quiet(x, y, fp_status)); | |
124 | } | |
125 | ||
6c2be133 | 126 | uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, void *fp_status) |
7a192925 AB |
127 | { |
128 | return float_rel_to_flags(float16_compare(x, y, fp_status)); | |
129 | } | |
130 | ||
da7dafe7 CF |
131 | uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status) |
132 | { | |
133 | return float_rel_to_flags(float32_compare_quiet(x, y, fp_status)); | |
134 | } | |
135 | ||
136 | uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status) | |
137 | { | |
138 | return float_rel_to_flags(float32_compare(x, y, fp_status)); | |
139 | } | |
140 | ||
141 | uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status) | |
142 | { | |
143 | return float_rel_to_flags(float64_compare_quiet(x, y, fp_status)); | |
144 | } | |
145 | ||
146 | uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status) | |
147 | { | |
148 | return float_rel_to_flags(float64_compare(x, y, fp_status)); | |
149 | } | |
7c51048f | 150 | |
f5e51e7f PM |
151 | float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp) |
152 | { | |
153 | float_status *fpst = fpstp; | |
154 | ||
dabf0058 XH |
155 | a = float32_squash_input_denormal(a, fpst); |
156 | b = float32_squash_input_denormal(b, fpst); | |
157 | ||
f5e51e7f PM |
158 | if ((float32_is_zero(a) && float32_is_infinity(b)) || |
159 | (float32_is_infinity(a) && float32_is_zero(b))) { | |
160 | /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ | |
161 | return make_float32((1U << 30) | | |
162 | ((float32_val(a) ^ float32_val(b)) & (1U << 31))); | |
163 | } | |
164 | return float32_mul(a, b, fpst); | |
165 | } | |
166 | ||
167 | float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp) | |
168 | { | |
169 | float_status *fpst = fpstp; | |
170 | ||
dabf0058 XH |
171 | a = float64_squash_input_denormal(a, fpst); |
172 | b = float64_squash_input_denormal(b, fpst); | |
173 | ||
f5e51e7f PM |
174 | if ((float64_is_zero(a) && float64_is_infinity(b)) || |
175 | (float64_is_infinity(a) && float64_is_zero(b))) { | |
176 | /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ | |
177 | return make_float64((1ULL << 62) | | |
178 | ((float64_val(a) ^ float64_val(b)) & (1ULL << 63))); | |
179 | } | |
180 | return float64_mul(a, b, fpst); | |
181 | } | |
182 | ||
8908f4d1 AB |
183 | /* 64bit/double versions of the neon float compare functions */ |
184 | uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp) | |
185 | { | |
186 | float_status *fpst = fpstp; | |
187 | return -float64_eq_quiet(a, b, fpst); | |
188 | } | |
189 | ||
190 | uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp) | |
191 | { | |
192 | float_status *fpst = fpstp; | |
193 | return -float64_le(b, a, fpst); | |
194 | } | |
195 | ||
196 | uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp) | |
197 | { | |
198 | float_status *fpst = fpstp; | |
199 | return -float64_lt(b, a, fpst); | |
200 | } | |
057d5f62 PM |
201 | |
202 | /* Reciprocal step and sqrt step. Note that unlike the A32/T32 | |
203 | * versions, these do a fully fused multiply-add or | |
204 | * multiply-add-and-halve. | |
205 | */ | |
057d5f62 | 206 | |
6c2be133 | 207 | uint32_t HELPER(recpsf_f16)(uint32_t a, uint32_t b, void *fpstp) |
026e2d6e AB |
208 | { |
209 | float_status *fpst = fpstp; | |
210 | ||
211 | a = float16_squash_input_denormal(a, fpst); | |
212 | b = float16_squash_input_denormal(b, fpst); | |
213 | ||
214 | a = float16_chs(a); | |
215 | if ((float16_is_infinity(a) && float16_is_zero(b)) || | |
216 | (float16_is_infinity(b) && float16_is_zero(a))) { | |
217 | return float16_two; | |
218 | } | |
219 | return float16_muladd(a, b, float16_two, 0, fpst); | |
220 | } | |
221 | ||
057d5f62 PM |
222 | float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp) |
223 | { | |
224 | float_status *fpst = fpstp; | |
225 | ||
a8eb6e19 PM |
226 | a = float32_squash_input_denormal(a, fpst); |
227 | b = float32_squash_input_denormal(b, fpst); | |
228 | ||
057d5f62 PM |
229 | a = float32_chs(a); |
230 | if ((float32_is_infinity(a) && float32_is_zero(b)) || | |
231 | (float32_is_infinity(b) && float32_is_zero(a))) { | |
232 | return float32_two; | |
233 | } | |
234 | return float32_muladd(a, b, float32_two, 0, fpst); | |
235 | } | |
236 | ||
237 | float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp) | |
238 | { | |
239 | float_status *fpst = fpstp; | |
240 | ||
a8eb6e19 PM |
241 | a = float64_squash_input_denormal(a, fpst); |
242 | b = float64_squash_input_denormal(b, fpst); | |
243 | ||
057d5f62 PM |
244 | a = float64_chs(a); |
245 | if ((float64_is_infinity(a) && float64_is_zero(b)) || | |
246 | (float64_is_infinity(b) && float64_is_zero(a))) { | |
247 | return float64_two; | |
248 | } | |
249 | return float64_muladd(a, b, float64_two, 0, fpst); | |
250 | } | |
251 | ||
6c2be133 | 252 | uint32_t HELPER(rsqrtsf_f16)(uint32_t a, uint32_t b, void *fpstp) |
026e2d6e AB |
253 | { |
254 | float_status *fpst = fpstp; | |
255 | ||
256 | a = float16_squash_input_denormal(a, fpst); | |
257 | b = float16_squash_input_denormal(b, fpst); | |
258 | ||
259 | a = float16_chs(a); | |
260 | if ((float16_is_infinity(a) && float16_is_zero(b)) || | |
261 | (float16_is_infinity(b) && float16_is_zero(a))) { | |
262 | return float16_one_point_five; | |
263 | } | |
264 | return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst); | |
265 | } | |
266 | ||
057d5f62 PM |
267 | float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp) |
268 | { | |
269 | float_status *fpst = fpstp; | |
270 | ||
a8eb6e19 PM |
271 | a = float32_squash_input_denormal(a, fpst); |
272 | b = float32_squash_input_denormal(b, fpst); | |
273 | ||
057d5f62 PM |
274 | a = float32_chs(a); |
275 | if ((float32_is_infinity(a) && float32_is_zero(b)) || | |
276 | (float32_is_infinity(b) && float32_is_zero(a))) { | |
277 | return float32_one_point_five; | |
278 | } | |
279 | return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst); | |
280 | } | |
281 | ||
282 | float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp) | |
283 | { | |
284 | float_status *fpst = fpstp; | |
285 | ||
a8eb6e19 PM |
286 | a = float64_squash_input_denormal(a, fpst); |
287 | b = float64_squash_input_denormal(b, fpst); | |
288 | ||
057d5f62 PM |
289 | a = float64_chs(a); |
290 | if ((float64_is_infinity(a) && float64_is_zero(b)) || | |
291 | (float64_is_infinity(b) && float64_is_zero(a))) { | |
292 | return float64_one_point_five; | |
293 | } | |
294 | return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst); | |
295 | } | |
6781fa11 PM |
296 | |
297 | /* Pairwise long add: add pairs of adjacent elements into | |
298 | * double-width elements in the result (eg _s8 is an 8x8->16 op) | |
299 | */ | |
300 | uint64_t HELPER(neon_addlp_s8)(uint64_t a) | |
301 | { | |
302 | uint64_t nsignmask = 0x0080008000800080ULL; | |
303 | uint64_t wsignmask = 0x8000800080008000ULL; | |
304 | uint64_t elementmask = 0x00ff00ff00ff00ffULL; | |
305 | uint64_t tmp1, tmp2; | |
306 | uint64_t res, signres; | |
307 | ||
308 | /* Extract odd elements, sign extend each to a 16 bit field */ | |
309 | tmp1 = a & elementmask; | |
310 | tmp1 ^= nsignmask; | |
311 | tmp1 |= wsignmask; | |
312 | tmp1 = (tmp1 - nsignmask) ^ wsignmask; | |
313 | /* Ditto for the even elements */ | |
314 | tmp2 = (a >> 8) & elementmask; | |
315 | tmp2 ^= nsignmask; | |
316 | tmp2 |= wsignmask; | |
317 | tmp2 = (tmp2 - nsignmask) ^ wsignmask; | |
318 | ||
319 | /* calculate the result by summing bits 0..14, 16..22, etc, | |
320 | * and then adjusting the sign bits 15, 23, etc manually. | |
321 | * This ensures the addition can't overflow the 16 bit field. | |
322 | */ | |
323 | signres = (tmp1 ^ tmp2) & wsignmask; | |
324 | res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask); | |
325 | res ^= signres; | |
326 | ||
327 | return res; | |
328 | } | |
329 | ||
330 | uint64_t HELPER(neon_addlp_u8)(uint64_t a) | |
331 | { | |
332 | uint64_t tmp; | |
333 | ||
334 | tmp = a & 0x00ff00ff00ff00ffULL; | |
335 | tmp += (a >> 8) & 0x00ff00ff00ff00ffULL; | |
336 | return tmp; | |
337 | } | |
338 | ||
339 | uint64_t HELPER(neon_addlp_s16)(uint64_t a) | |
340 | { | |
341 | int32_t reslo, reshi; | |
342 | ||
343 | reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16); | |
344 | reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48); | |
345 | ||
346 | return (uint32_t)reslo | (((uint64_t)reshi) << 32); | |
347 | } | |
348 | ||
349 | uint64_t HELPER(neon_addlp_u16)(uint64_t a) | |
350 | { | |
351 | uint64_t tmp; | |
352 | ||
353 | tmp = a & 0x0000ffff0000ffffULL; | |
354 | tmp += (a >> 16) & 0x0000ffff0000ffffULL; | |
355 | return tmp; | |
356 | } | |
8f0c6758 AB |
357 | |
358 | /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */ | |
6c2be133 | 359 | uint32_t HELPER(frecpx_f16)(uint32_t a, void *fpstp) |
98695028 AB |
360 | { |
361 | float_status *fpst = fpstp; | |
362 | uint16_t val16, sbit; | |
363 | int16_t exp; | |
364 | ||
365 | if (float16_is_any_nan(a)) { | |
366 | float16 nan = a; | |
367 | if (float16_is_signaling_nan(a, fpst)) { | |
368 | float_raise(float_flag_invalid, fpst); | |
103e7579 JK |
369 | if (!fpst->default_nan_mode) { |
370 | nan = float16_silence_nan(a, fpst); | |
371 | } | |
98695028 AB |
372 | } |
373 | if (fpst->default_nan_mode) { | |
374 | nan = float16_default_nan(fpst); | |
375 | } | |
376 | return nan; | |
377 | } | |
378 | ||
2cfbf36e PM |
379 | a = float16_squash_input_denormal(a, fpst); |
380 | ||
98695028 AB |
381 | val16 = float16_val(a); |
382 | sbit = 0x8000 & val16; | |
383 | exp = extract32(val16, 10, 5); | |
384 | ||
385 | if (exp == 0) { | |
386 | return make_float16(deposit32(sbit, 10, 5, 0x1e)); | |
387 | } else { | |
388 | return make_float16(deposit32(sbit, 10, 5, ~exp)); | |
389 | } | |
390 | } | |
391 | ||
8f0c6758 AB |
392 | float32 HELPER(frecpx_f32)(float32 a, void *fpstp) |
393 | { | |
394 | float_status *fpst = fpstp; | |
395 | uint32_t val32, sbit; | |
396 | int32_t exp; | |
397 | ||
398 | if (float32_is_any_nan(a)) { | |
399 | float32 nan = a; | |
af39bc8c | 400 | if (float32_is_signaling_nan(a, fpst)) { |
8f0c6758 | 401 | float_raise(float_flag_invalid, fpst); |
103e7579 JK |
402 | if (!fpst->default_nan_mode) { |
403 | nan = float32_silence_nan(a, fpst); | |
404 | } | |
8f0c6758 AB |
405 | } |
406 | if (fpst->default_nan_mode) { | |
af39bc8c | 407 | nan = float32_default_nan(fpst); |
8f0c6758 AB |
408 | } |
409 | return nan; | |
410 | } | |
411 | ||
2cfbf36e PM |
412 | a = float32_squash_input_denormal(a, fpst); |
413 | ||
8f0c6758 AB |
414 | val32 = float32_val(a); |
415 | sbit = 0x80000000ULL & val32; | |
416 | exp = extract32(val32, 23, 8); | |
417 | ||
418 | if (exp == 0) { | |
419 | return make_float32(sbit | (0xfe << 23)); | |
420 | } else { | |
421 | return make_float32(sbit | (~exp & 0xff) << 23); | |
422 | } | |
423 | } | |
424 | ||
425 | float64 HELPER(frecpx_f64)(float64 a, void *fpstp) | |
426 | { | |
427 | float_status *fpst = fpstp; | |
428 | uint64_t val64, sbit; | |
429 | int64_t exp; | |
430 | ||
431 | if (float64_is_any_nan(a)) { | |
432 | float64 nan = a; | |
af39bc8c | 433 | if (float64_is_signaling_nan(a, fpst)) { |
8f0c6758 | 434 | float_raise(float_flag_invalid, fpst); |
103e7579 JK |
435 | if (!fpst->default_nan_mode) { |
436 | nan = float64_silence_nan(a, fpst); | |
437 | } | |
8f0c6758 AB |
438 | } |
439 | if (fpst->default_nan_mode) { | |
af39bc8c | 440 | nan = float64_default_nan(fpst); |
8f0c6758 AB |
441 | } |
442 | return nan; | |
443 | } | |
444 | ||
2cfbf36e PM |
445 | a = float64_squash_input_denormal(a, fpst); |
446 | ||
8f0c6758 AB |
447 | val64 = float64_val(a); |
448 | sbit = 0x8000000000000000ULL & val64; | |
449 | exp = extract64(float64_val(a), 52, 11); | |
450 | ||
451 | if (exp == 0) { | |
452 | return make_float64(sbit | (0x7feULL << 52)); | |
453 | } else { | |
454 | return make_float64(sbit | (~exp & 0x7ffULL) << 52); | |
455 | } | |
456 | } | |
5553955e PM |
457 | |
458 | float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env) | |
459 | { | |
460 | /* Von Neumann rounding is implemented by using round-to-zero | |
461 | * and then setting the LSB of the result if Inexact was raised. | |
462 | */ | |
463 | float32 r; | |
464 | float_status *fpst = &env->vfp.fp_status; | |
465 | float_status tstat = *fpst; | |
466 | int exflags; | |
467 | ||
468 | set_float_rounding_mode(float_round_to_zero, &tstat); | |
469 | set_float_exception_flags(0, &tstat); | |
470 | r = float64_to_float32(a, &tstat); | |
5553955e PM |
471 | exflags = get_float_exception_flags(&tstat); |
472 | if (exflags & float_flag_inexact) { | |
473 | r = make_float32(float32_val(r) | 1); | |
474 | } | |
475 | exflags |= get_float_exception_flags(fpst); | |
476 | set_float_exception_flags(exflags, fpst); | |
477 | return r; | |
478 | } | |
52e60cdd | 479 | |
130f2e7d PM |
480 | /* 64-bit versions of the CRC helpers. Note that although the operation |
481 | * (and the prototypes of crc32c() and crc32() mean that only the bottom | |
482 | * 32 bits of the accumulator and result are used, we pass and return | |
483 | * uint64_t for convenience of the generated code. Unlike the 32-bit | |
484 | * instruction set versions, val may genuinely have 64 bits of data in it. | |
485 | * The upper bytes of val (above the number specified by 'bytes') must have | |
486 | * been zeroed out by the caller. | |
487 | */ | |
488 | uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes) | |
489 | { | |
490 | uint8_t buf[8]; | |
491 | ||
492 | stq_le_p(buf, val); | |
493 | ||
494 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
495 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
496 | } | |
497 | ||
498 | uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes) | |
499 | { | |
500 | uint8_t buf[8]; | |
501 | ||
502 | stq_le_p(buf, val); | |
503 | ||
504 | /* Linux crc32c converts the output to one's complement. */ | |
505 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
506 | } | |
1dd089d0 | 507 | |
1ec182c3 RH |
508 | uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr, |
509 | uint64_t new_lo, uint64_t new_hi) | |
1dd089d0 | 510 | { |
1ec182c3 RH |
511 | Int128 cmpv = int128_make128(env->exclusive_val, env->exclusive_high); |
512 | Int128 newv = int128_make128(new_lo, new_hi); | |
513 | Int128 oldv; | |
514 | uintptr_t ra = GETPC(); | |
515 | uint64_t o0, o1; | |
1dd089d0 | 516 | bool success; |
1ec182c3 | 517 | int mem_idx = cpu_mmu_index(env, false); |
fc313c64 FP |
518 | MemOpIdx oi0 = make_memop_idx(MO_LEUQ | MO_ALIGN_16, mem_idx); |
519 | MemOpIdx oi1 = make_memop_idx(MO_LEUQ, mem_idx); | |
1ec182c3 | 520 | |
1a2eaf9e RH |
521 | o0 = cpu_ldq_le_mmu(env, addr + 0, oi0, ra); |
522 | o1 = cpu_ldq_le_mmu(env, addr + 8, oi1, ra); | |
1ec182c3 RH |
523 | oldv = int128_make128(o0, o1); |
524 | ||
525 | success = int128_eq(oldv, cmpv); | |
526 | if (success) { | |
1a2eaf9e RH |
527 | cpu_stq_le_mmu(env, addr + 0, int128_getlo(newv), oi1, ra); |
528 | cpu_stq_le_mmu(env, addr + 8, int128_gethi(newv), oi1, ra); | |
1dd089d0 EC |
529 | } |
530 | ||
531 | return !success; | |
532 | } | |
533 | ||
2399d4e7 EC |
534 | uint64_t HELPER(paired_cmpxchg64_le_parallel)(CPUARMState *env, uint64_t addr, |
535 | uint64_t new_lo, uint64_t new_hi) | |
1dd089d0 | 536 | { |
1dd089d0 | 537 | Int128 oldv, cmpv, newv; |
1ec182c3 | 538 | uintptr_t ra = GETPC(); |
1dd089d0 | 539 | bool success; |
1ec182c3 | 540 | int mem_idx; |
9002ffcb | 541 | MemOpIdx oi; |
1dd089d0 | 542 | |
62823083 | 543 | assert(HAVE_CMPXCHG128); |
1dd089d0 | 544 | |
1ec182c3 | 545 | mem_idx = cpu_mmu_index(env, false); |
c21751f3 | 546 | oi = make_memop_idx(MO_LE | MO_128 | MO_ALIGN, mem_idx); |
1ec182c3 RH |
547 | |
548 | cmpv = int128_make128(env->exclusive_val, env->exclusive_high); | |
549 | newv = int128_make128(new_lo, new_hi); | |
be9568b4 | 550 | oldv = cpu_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra); |
1ec182c3 RH |
551 | |
552 | success = int128_eq(oldv, cmpv); | |
1dd089d0 EC |
553 | return !success; |
554 | } | |
2399d4e7 EC |
555 | |
556 | uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr, | |
557 | uint64_t new_lo, uint64_t new_hi) | |
558 | { | |
1ec182c3 RH |
559 | /* |
560 | * High and low need to be switched here because this is not actually a | |
561 | * 128bit store but two doublewords stored consecutively | |
562 | */ | |
abd5abc5 CH |
563 | Int128 cmpv = int128_make128(env->exclusive_high, env->exclusive_val); |
564 | Int128 newv = int128_make128(new_hi, new_lo); | |
1ec182c3 RH |
565 | Int128 oldv; |
566 | uintptr_t ra = GETPC(); | |
567 | uint64_t o0, o1; | |
568 | bool success; | |
1ec182c3 | 569 | int mem_idx = cpu_mmu_index(env, false); |
fc313c64 FP |
570 | MemOpIdx oi0 = make_memop_idx(MO_BEUQ | MO_ALIGN_16, mem_idx); |
571 | MemOpIdx oi1 = make_memop_idx(MO_BEUQ, mem_idx); | |
1ec182c3 | 572 | |
1a2eaf9e RH |
573 | o1 = cpu_ldq_be_mmu(env, addr + 0, oi0, ra); |
574 | o0 = cpu_ldq_be_mmu(env, addr + 8, oi1, ra); | |
1ec182c3 RH |
575 | oldv = int128_make128(o0, o1); |
576 | ||
577 | success = int128_eq(oldv, cmpv); | |
578 | if (success) { | |
1a2eaf9e RH |
579 | cpu_stq_be_mmu(env, addr + 0, int128_gethi(newv), oi1, ra); |
580 | cpu_stq_be_mmu(env, addr + 8, int128_getlo(newv), oi1, ra); | |
1ec182c3 | 581 | } |
1ec182c3 RH |
582 | |
583 | return !success; | |
2399d4e7 EC |
584 | } |
585 | ||
586 | uint64_t HELPER(paired_cmpxchg64_be_parallel)(CPUARMState *env, uint64_t addr, | |
1ec182c3 | 587 | uint64_t new_lo, uint64_t new_hi) |
2399d4e7 | 588 | { |
1ec182c3 RH |
589 | Int128 oldv, cmpv, newv; |
590 | uintptr_t ra = GETPC(); | |
591 | bool success; | |
592 | int mem_idx; | |
9002ffcb | 593 | MemOpIdx oi; |
1ec182c3 | 594 | |
62823083 | 595 | assert(HAVE_CMPXCHG128); |
1ec182c3 RH |
596 | |
597 | mem_idx = cpu_mmu_index(env, false); | |
c21751f3 | 598 | oi = make_memop_idx(MO_BE | MO_128 | MO_ALIGN, mem_idx); |
1ec182c3 RH |
599 | |
600 | /* | |
601 | * High and low need to be switched here because this is not actually a | |
602 | * 128bit store but two doublewords stored consecutively | |
603 | */ | |
604 | cmpv = int128_make128(env->exclusive_high, env->exclusive_val); | |
605 | newv = int128_make128(new_hi, new_lo); | |
be9568b4 | 606 | oldv = cpu_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra); |
1ec182c3 RH |
607 | |
608 | success = int128_eq(oldv, cmpv); | |
609 | return !success; | |
2399d4e7 | 610 | } |
807cdd50 | 611 | |
44ac14b0 RH |
612 | /* Writes back the old data into Rs. */ |
613 | void HELPER(casp_le_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr, | |
614 | uint64_t new_lo, uint64_t new_hi) | |
615 | { | |
44ac14b0 | 616 | Int128 oldv, cmpv, newv; |
1ec182c3 RH |
617 | uintptr_t ra = GETPC(); |
618 | int mem_idx; | |
9002ffcb | 619 | MemOpIdx oi; |
1ec182c3 | 620 | |
62823083 | 621 | assert(HAVE_CMPXCHG128); |
1ec182c3 RH |
622 | |
623 | mem_idx = cpu_mmu_index(env, false); | |
c21751f3 | 624 | oi = make_memop_idx(MO_LE | MO_128 | MO_ALIGN, mem_idx); |
44ac14b0 RH |
625 | |
626 | cmpv = int128_make128(env->xregs[rs], env->xregs[rs + 1]); | |
627 | newv = int128_make128(new_lo, new_hi); | |
be9568b4 | 628 | oldv = cpu_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra); |
44ac14b0 RH |
629 | |
630 | env->xregs[rs] = int128_getlo(oldv); | |
631 | env->xregs[rs + 1] = int128_gethi(oldv); | |
44ac14b0 RH |
632 | } |
633 | ||
634 | void HELPER(casp_be_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr, | |
635 | uint64_t new_hi, uint64_t new_lo) | |
636 | { | |
44ac14b0 | 637 | Int128 oldv, cmpv, newv; |
1ec182c3 RH |
638 | uintptr_t ra = GETPC(); |
639 | int mem_idx; | |
9002ffcb | 640 | MemOpIdx oi; |
1ec182c3 | 641 | |
62823083 | 642 | assert(HAVE_CMPXCHG128); |
1ec182c3 RH |
643 | |
644 | mem_idx = cpu_mmu_index(env, false); | |
c21751f3 | 645 | oi = make_memop_idx(MO_LE | MO_128 | MO_ALIGN, mem_idx); |
44ac14b0 RH |
646 | |
647 | cmpv = int128_make128(env->xregs[rs + 1], env->xregs[rs]); | |
648 | newv = int128_make128(new_lo, new_hi); | |
be9568b4 | 649 | oldv = cpu_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra); |
44ac14b0 RH |
650 | |
651 | env->xregs[rs + 1] = int128_getlo(oldv); | |
652 | env->xregs[rs] = int128_gethi(oldv); | |
44ac14b0 RH |
653 | } |
654 | ||
807cdd50 AB |
655 | /* |
656 | * AdvSIMD half-precision | |
657 | */ | |
658 | ||
659 | #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix)) | |
660 | ||
661 | #define ADVSIMD_HALFOP(name) \ | |
6c2be133 | 662 | uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, void *fpstp) \ |
807cdd50 AB |
663 | { \ |
664 | float_status *fpst = fpstp; \ | |
665 | return float16_ ## name(a, b, fpst); \ | |
666 | } | |
667 | ||
37208734 AB |
668 | ADVSIMD_HALFOP(add) |
669 | ADVSIMD_HALFOP(sub) | |
670 | ADVSIMD_HALFOP(mul) | |
671 | ADVSIMD_HALFOP(div) | |
807cdd50 AB |
672 | ADVSIMD_HALFOP(min) |
673 | ADVSIMD_HALFOP(max) | |
674 | ADVSIMD_HALFOP(minnum) | |
675 | ADVSIMD_HALFOP(maxnum) | |
d32adeae | 676 | |
6089030c AB |
677 | #define ADVSIMD_TWOHALFOP(name) \ |
678 | uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \ | |
679 | { \ | |
680 | float16 a1, a2, b1, b2; \ | |
681 | uint32_t r1, r2; \ | |
682 | float_status *fpst = fpstp; \ | |
683 | a1 = extract32(two_a, 0, 16); \ | |
684 | a2 = extract32(two_a, 16, 16); \ | |
685 | b1 = extract32(two_b, 0, 16); \ | |
686 | b2 = extract32(two_b, 16, 16); \ | |
687 | r1 = float16_ ## name(a1, b1, fpst); \ | |
688 | r2 = float16_ ## name(a2, b2, fpst); \ | |
689 | return deposit32(r1, 16, 16, r2); \ | |
690 | } | |
691 | ||
692 | ADVSIMD_TWOHALFOP(add) | |
693 | ADVSIMD_TWOHALFOP(sub) | |
694 | ADVSIMD_TWOHALFOP(mul) | |
695 | ADVSIMD_TWOHALFOP(div) | |
696 | ADVSIMD_TWOHALFOP(min) | |
697 | ADVSIMD_TWOHALFOP(max) | |
698 | ADVSIMD_TWOHALFOP(minnum) | |
699 | ADVSIMD_TWOHALFOP(maxnum) | |
700 | ||
2deb992b | 701 | /* Data processing - scalar floating-point and advanced SIMD */ |
6089030c | 702 | static float16 float16_mulx(float16 a, float16 b, void *fpstp) |
2deb992b AB |
703 | { |
704 | float_status *fpst = fpstp; | |
705 | ||
706 | a = float16_squash_input_denormal(a, fpst); | |
707 | b = float16_squash_input_denormal(b, fpst); | |
708 | ||
709 | if ((float16_is_zero(a) && float16_is_infinity(b)) || | |
710 | (float16_is_infinity(a) && float16_is_zero(b))) { | |
711 | /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ | |
712 | return make_float16((1U << 14) | | |
713 | ((float16_val(a) ^ float16_val(b)) & (1U << 15))); | |
714 | } | |
715 | return float16_mul(a, b, fpst); | |
716 | } | |
717 | ||
6089030c AB |
718 | ADVSIMD_HALFOP(mulx) |
719 | ADVSIMD_TWOHALFOP(mulx) | |
720 | ||
2deb992b | 721 | /* fused multiply-accumulate */ |
6c2be133 RH |
722 | uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c, |
723 | void *fpstp) | |
2deb992b AB |
724 | { |
725 | float_status *fpst = fpstp; | |
726 | return float16_muladd(a, b, c, 0, fpst); | |
727 | } | |
728 | ||
6089030c AB |
729 | uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b, |
730 | uint32_t two_c, void *fpstp) | |
731 | { | |
732 | float_status *fpst = fpstp; | |
733 | float16 a1, a2, b1, b2, c1, c2; | |
734 | uint32_t r1, r2; | |
735 | a1 = extract32(two_a, 0, 16); | |
736 | a2 = extract32(two_a, 16, 16); | |
737 | b1 = extract32(two_b, 0, 16); | |
738 | b2 = extract32(two_b, 16, 16); | |
739 | c1 = extract32(two_c, 0, 16); | |
740 | c2 = extract32(two_c, 16, 16); | |
741 | r1 = float16_muladd(a1, b1, c1, 0, fpst); | |
742 | r2 = float16_muladd(a2, b2, c2, 0, fpst); | |
743 | return deposit32(r1, 16, 16, r2); | |
744 | } | |
745 | ||
d32adeae AB |
746 | /* |
747 | * Floating point comparisons produce an integer result. Softfloat | |
748 | * routines return float_relation types which we convert to the 0/-1 | |
749 | * Neon requires. | |
750 | */ | |
751 | ||
752 | #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0 | |
753 | ||
6c2be133 | 754 | uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, void *fpstp) |
d32adeae AB |
755 | { |
756 | float_status *fpst = fpstp; | |
757 | int compare = float16_compare_quiet(a, b, fpst); | |
758 | return ADVSIMD_CMPRES(compare == float_relation_equal); | |
759 | } | |
760 | ||
6c2be133 | 761 | uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, void *fpstp) |
d32adeae AB |
762 | { |
763 | float_status *fpst = fpstp; | |
764 | int compare = float16_compare(a, b, fpst); | |
765 | return ADVSIMD_CMPRES(compare == float_relation_greater || | |
766 | compare == float_relation_equal); | |
767 | } | |
768 | ||
6c2be133 | 769 | uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, void *fpstp) |
d32adeae AB |
770 | { |
771 | float_status *fpst = fpstp; | |
772 | int compare = float16_compare(a, b, fpst); | |
773 | return ADVSIMD_CMPRES(compare == float_relation_greater); | |
774 | } | |
775 | ||
6c2be133 | 776 | uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, void *fpstp) |
d32adeae AB |
777 | { |
778 | float_status *fpst = fpstp; | |
779 | float16 f0 = float16_abs(a); | |
780 | float16 f1 = float16_abs(b); | |
781 | int compare = float16_compare(f0, f1, fpst); | |
782 | return ADVSIMD_CMPRES(compare == float_relation_greater || | |
783 | compare == float_relation_equal); | |
784 | } | |
785 | ||
6c2be133 | 786 | uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, void *fpstp) |
d32adeae AB |
787 | { |
788 | float_status *fpst = fpstp; | |
789 | float16 f0 = float16_abs(a); | |
790 | float16 f1 = float16_abs(b); | |
791 | int compare = float16_compare(f0, f1, fpst); | |
792 | return ADVSIMD_CMPRES(compare == float_relation_greater); | |
793 | } | |
6109aea2 AB |
794 | |
795 | /* round to integral */ | |
6c2be133 | 796 | uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, void *fp_status) |
6109aea2 AB |
797 | { |
798 | return float16_round_to_int(x, fp_status); | |
799 | } | |
800 | ||
6c2be133 | 801 | uint32_t HELPER(advsimd_rinth)(uint32_t x, void *fp_status) |
6109aea2 AB |
802 | { |
803 | int old_flags = get_float_exception_flags(fp_status), new_flags; | |
804 | float16 ret; | |
805 | ||
806 | ret = float16_round_to_int(x, fp_status); | |
807 | ||
808 | /* Suppress any inexact exceptions the conversion produced */ | |
809 | if (!(old_flags & float_flag_inexact)) { | |
810 | new_flags = get_float_exception_flags(fp_status); | |
811 | set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); | |
812 | } | |
813 | ||
814 | return ret; | |
815 | } | |
2df58130 AB |
816 | |
817 | /* | |
818 | * Half-precision floating point conversion functions | |
819 | * | |
820 | * There are a multitude of conversion functions with various | |
821 | * different rounding modes. This is dealt with by the calling code | |
822 | * setting the mode appropriately before calling the helper. | |
823 | */ | |
824 | ||
6c2be133 | 825 | uint32_t HELPER(advsimd_f16tosinth)(uint32_t a, void *fpstp) |
2df58130 AB |
826 | { |
827 | float_status *fpst = fpstp; | |
828 | ||
829 | /* Invalid if we are passed a NaN */ | |
830 | if (float16_is_any_nan(a)) { | |
831 | float_raise(float_flag_invalid, fpst); | |
832 | return 0; | |
833 | } | |
834 | return float16_to_int16(a, fpst); | |
835 | } | |
836 | ||
6c2be133 | 837 | uint32_t HELPER(advsimd_f16touinth)(uint32_t a, void *fpstp) |
2df58130 AB |
838 | { |
839 | float_status *fpst = fpstp; | |
840 | ||
841 | /* Invalid if we are passed a NaN */ | |
842 | if (float16_is_any_nan(a)) { | |
843 | float_raise(float_flag_invalid, fpst); | |
844 | return 0; | |
845 | } | |
846 | return float16_to_uint16(a, fpst); | |
847 | } | |
b96a54c7 | 848 | |
ce02fd99 RH |
849 | static int el_from_spsr(uint32_t spsr) |
850 | { | |
851 | /* Return the exception level that this SPSR is requesting a return to, | |
852 | * or -1 if it is invalid (an illegal return) | |
853 | */ | |
854 | if (spsr & PSTATE_nRW) { | |
855 | switch (spsr & CPSR_M) { | |
856 | case ARM_CPU_MODE_USR: | |
857 | return 0; | |
858 | case ARM_CPU_MODE_HYP: | |
859 | return 2; | |
860 | case ARM_CPU_MODE_FIQ: | |
861 | case ARM_CPU_MODE_IRQ: | |
862 | case ARM_CPU_MODE_SVC: | |
863 | case ARM_CPU_MODE_ABT: | |
864 | case ARM_CPU_MODE_UND: | |
865 | case ARM_CPU_MODE_SYS: | |
866 | return 1; | |
867 | case ARM_CPU_MODE_MON: | |
868 | /* Returning to Mon from AArch64 is never possible, | |
869 | * so this is an illegal return. | |
870 | */ | |
871 | default: | |
872 | return -1; | |
873 | } | |
874 | } else { | |
875 | if (extract32(spsr, 1, 1)) { | |
876 | /* Return with reserved M[1] bit set */ | |
877 | return -1; | |
878 | } | |
879 | if (extract32(spsr, 0, 4) == 1) { | |
880 | /* return to EL0 with M[0] bit set */ | |
881 | return -1; | |
882 | } | |
883 | return extract32(spsr, 2, 2); | |
884 | } | |
885 | } | |
886 | ||
f944a854 RC |
887 | static void cpsr_write_from_spsr_elx(CPUARMState *env, |
888 | uint32_t val) | |
889 | { | |
890 | uint32_t mask; | |
891 | ||
892 | /* Save SPSR_ELx.SS into PSTATE. */ | |
893 | env->pstate = (env->pstate & ~PSTATE_SS) | (val & PSTATE_SS); | |
894 | val &= ~PSTATE_SS; | |
895 | ||
896 | /* Move DIT to the correct location for CPSR */ | |
897 | if (val & PSTATE_DIT) { | |
898 | val &= ~PSTATE_DIT; | |
899 | val |= CPSR_DIT; | |
900 | } | |
901 | ||
902 | mask = aarch32_cpsr_valid_mask(env->features, \ | |
903 | &env_archcpu(env)->isar); | |
904 | cpsr_write(env, val, mask, CPSRWriteRaw); | |
905 | } | |
906 | ||
d9f482a0 | 907 | void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc) |
ce02fd99 RH |
908 | { |
909 | int cur_el = arm_current_el(env); | |
910 | unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el); | |
f944a854 | 911 | uint32_t spsr = env->banked_spsr[spsr_idx]; |
ce02fd99 RH |
912 | int new_el; |
913 | bool return_to_aa64 = (spsr & PSTATE_nRW) == 0; | |
914 | ||
915 | aarch64_save_sp(env, cur_el); | |
916 | ||
917 | arm_clear_exclusive(env); | |
918 | ||
919 | /* We must squash the PSTATE.SS bit to zero unless both of the | |
920 | * following hold: | |
921 | * 1. debug exceptions are currently disabled | |
922 | * 2. singlestep will be active in the EL we return to | |
923 | * We check 1 here and 2 after we've done the pstate/cpsr write() to | |
924 | * transition to the EL we're going to. | |
925 | */ | |
926 | if (arm_generate_debug_exceptions(env)) { | |
927 | spsr &= ~PSTATE_SS; | |
928 | } | |
929 | ||
930 | new_el = el_from_spsr(spsr); | |
931 | if (new_el == -1) { | |
932 | goto illegal_return; | |
933 | } | |
e6ef0169 | 934 | if (new_el > cur_el || (new_el == 2 && !arm_is_el2_enabled(env))) { |
ce02fd99 RH |
935 | /* Disallow return to an EL which is unimplemented or higher |
936 | * than the current one. | |
937 | */ | |
938 | goto illegal_return; | |
939 | } | |
940 | ||
941 | if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) { | |
942 | /* Return to an EL which is configured for a different register width */ | |
943 | goto illegal_return; | |
944 | } | |
945 | ||
ce02fd99 RH |
946 | if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) { |
947 | goto illegal_return; | |
948 | } | |
949 | ||
950 | qemu_mutex_lock_iothread(); | |
2fc0cc0e | 951 | arm_call_pre_el_change_hook(env_archcpu(env)); |
ce02fd99 RH |
952 | qemu_mutex_unlock_iothread(); |
953 | ||
954 | if (!return_to_aa64) { | |
53221552 | 955 | env->aarch64 = false; |
ce02fd99 RH |
956 | /* We do a raw CPSR write because aarch64_sync_64_to_32() |
957 | * will sort the register banks out for us, and we've already | |
958 | * caught all the bad-mode cases in el_from_spsr(). | |
959 | */ | |
f944a854 | 960 | cpsr_write_from_spsr_elx(env, spsr); |
ce02fd99 | 961 | if (!arm_singlestep_active(env)) { |
f944a854 | 962 | env->pstate &= ~PSTATE_SS; |
ce02fd99 RH |
963 | } |
964 | aarch64_sync_64_to_32(env); | |
965 | ||
966 | if (spsr & CPSR_T) { | |
d9f482a0 | 967 | env->regs[15] = new_pc & ~0x1; |
ce02fd99 | 968 | } else { |
d9f482a0 | 969 | env->regs[15] = new_pc & ~0x3; |
ce02fd99 | 970 | } |
a8a79c7a | 971 | helper_rebuild_hflags_a32(env, new_el); |
ce02fd99 RH |
972 | qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to " |
973 | "AArch32 EL%d PC 0x%" PRIx32 "\n", | |
974 | cur_el, new_el, env->regs[15]); | |
975 | } else { | |
d4564afe RH |
976 | int tbii; |
977 | ||
53221552 | 978 | env->aarch64 = true; |
14084511 | 979 | spsr &= aarch64_pstate_valid_mask(&env_archcpu(env)->isar); |
ce02fd99 RH |
980 | pstate_write(env, spsr); |
981 | if (!arm_singlestep_active(env)) { | |
982 | env->pstate &= ~PSTATE_SS; | |
983 | } | |
984 | aarch64_restore_sp(env, new_el); | |
a8a79c7a | 985 | helper_rebuild_hflags_a64(env, new_el); |
d4564afe RH |
986 | |
987 | /* | |
988 | * Apply TBI to the exception return address. We had to delay this | |
989 | * until after we selected the new EL, so that we could select the | |
990 | * correct TBI+TBID bits. This is made easier by waiting until after | |
991 | * the hflags rebuild, since we can pull the composite TBII field | |
992 | * from there. | |
993 | */ | |
a729a46b | 994 | tbii = EX_TBFLAG_A64(env->hflags, TBII); |
d4564afe RH |
995 | if ((tbii >> extract64(new_pc, 55, 1)) & 1) { |
996 | /* TBI is enabled. */ | |
997 | int core_mmu_idx = cpu_mmu_index(env, false); | |
998 | if (regime_has_2_ranges(core_to_aa64_mmu_idx(core_mmu_idx))) { | |
999 | new_pc = sextract64(new_pc, 0, 56); | |
1000 | } else { | |
1001 | new_pc = extract64(new_pc, 0, 56); | |
1002 | } | |
1003 | } | |
1004 | env->pc = new_pc; | |
1005 | ||
ce02fd99 RH |
1006 | qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to " |
1007 | "AArch64 EL%d PC 0x%" PRIx64 "\n", | |
1008 | cur_el, new_el, env->pc); | |
1009 | } | |
a8a79c7a | 1010 | |
ce02fd99 RH |
1011 | /* |
1012 | * Note that cur_el can never be 0. If new_el is 0, then | |
1013 | * el0_a64 is return_to_aa64, else el0_a64 is ignored. | |
1014 | */ | |
1015 | aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64); | |
1016 | ||
1017 | qemu_mutex_lock_iothread(); | |
2fc0cc0e | 1018 | arm_call_el_change_hook(env_archcpu(env)); |
ce02fd99 RH |
1019 | qemu_mutex_unlock_iothread(); |
1020 | ||
1021 | return; | |
1022 | ||
1023 | illegal_return: | |
1024 | /* Illegal return events of various kinds have architecturally | |
1025 | * mandated behaviour: | |
1026 | * restore NZCV and DAIF from SPSR_ELx | |
1027 | * set PSTATE.IL | |
1028 | * restore PC from ELR_ELx | |
1029 | * no change to exception level, execution state or stack pointer | |
1030 | */ | |
1031 | env->pstate |= PSTATE_IL; | |
d9f482a0 | 1032 | env->pc = new_pc; |
ce02fd99 RH |
1033 | spsr &= PSTATE_NZCV | PSTATE_DAIF; |
1034 | spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF); | |
1035 | pstate_write(env, spsr); | |
1036 | if (!arm_singlestep_active(env)) { | |
1037 | env->pstate &= ~PSTATE_SS; | |
1038 | } | |
520d1621 | 1039 | helper_rebuild_hflags_a64(env, cur_el); |
ce02fd99 RH |
1040 | qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: " |
1041 | "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc); | |
1042 | } | |
1043 | ||
b96a54c7 AB |
1044 | /* |
1045 | * Square Root and Reciprocal square root | |
1046 | */ | |
1047 | ||
6c2be133 | 1048 | uint32_t HELPER(sqrt_f16)(uint32_t a, void *fpstp) |
b96a54c7 AB |
1049 | { |
1050 | float_status *s = fpstp; | |
1051 | ||
1052 | return float16_sqrt(a, s); | |
1053 | } | |
1054 | ||
7b182eb2 RH |
1055 | void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) |
1056 | { | |
1057 | /* | |
1058 | * Implement DC ZVA, which zeroes a fixed-length block of memory. | |
1059 | * Note that we do not implement the (architecturally mandated) | |
1060 | * alignment fault for attempts to use this on Device memory | |
1061 | * (which matches the usual QEMU behaviour of not implementing either | |
1062 | * alignment faults or any memory attribute handling). | |
1063 | */ | |
e26d0d22 | 1064 | int blocklen = 4 << env_archcpu(env)->dcz_blocksize; |
7b182eb2 | 1065 | uint64_t vaddr = vaddr_in & ~(blocklen - 1); |
e26d0d22 RH |
1066 | int mmu_idx = cpu_mmu_index(env, false); |
1067 | void *mem; | |
1068 | ||
1069 | /* | |
1070 | * Trapless lookup. In addition to actual invalid page, may | |
1071 | * return NULL for I/O, watchpoints, clean pages, etc. | |
1072 | */ | |
1073 | mem = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx); | |
7b182eb2 RH |
1074 | |
1075 | #ifndef CONFIG_USER_ONLY | |
e26d0d22 RH |
1076 | if (unlikely(!mem)) { |
1077 | uintptr_t ra = GETPC(); | |
1078 | ||
7b182eb2 | 1079 | /* |
e26d0d22 RH |
1080 | * Trap if accessing an invalid page. DC_ZVA requires that we supply |
1081 | * the original pointer for an invalid page. But watchpoints require | |
1082 | * that we probe the actual space. So do both. | |
7b182eb2 | 1083 | */ |
e26d0d22 RH |
1084 | (void) probe_write(env, vaddr_in, 1, mmu_idx, ra); |
1085 | mem = probe_write(env, vaddr, blocklen, mmu_idx, ra); | |
1086 | ||
1087 | if (unlikely(!mem)) { | |
7b182eb2 | 1088 | /* |
e26d0d22 RH |
1089 | * The only remaining reason for mem == NULL is I/O. |
1090 | * Just do a series of byte writes as the architecture demands. | |
7b182eb2 | 1091 | */ |
e26d0d22 RH |
1092 | for (int i = 0; i < blocklen; i++) { |
1093 | cpu_stb_mmuidx_ra(env, vaddr + i, 0, mmu_idx, ra); | |
7b182eb2 | 1094 | } |
e26d0d22 | 1095 | return; |
7b182eb2 RH |
1096 | } |
1097 | } | |
7b182eb2 | 1098 | #endif |
e26d0d22 RH |
1099 | |
1100 | memset(mem, 0, blocklen); | |
7b182eb2 | 1101 | } |