]>
Commit | Line | Data |
---|---|---|
e16f4c87 | 1 | #include "qemu/osdep.h" |
28ecbaee | 2 | #include "ui/console.h" |
254e5950 GH |
3 | |
4 | #include "cursor_hidden.xpm" | |
5 | #include "cursor_left_ptr.xpm" | |
6 | ||
7 | /* for creating built-in cursors */ | |
8 | static QEMUCursor *cursor_parse_xpm(const char *xpm[]) | |
9 | { | |
10 | QEMUCursor *c; | |
11 | uint32_t ctab[128]; | |
12 | unsigned int width, height, colors, chars; | |
13 | unsigned int line = 0, i, r, g, b, x, y, pixel; | |
14 | char name[16]; | |
15 | uint8_t idx; | |
16 | ||
17 | /* parse header line: width, height, #colors, #chars */ | |
1c467855 SW |
18 | if (sscanf(xpm[line], "%u %u %u %u", |
19 | &width, &height, &colors, &chars) != 4) { | |
254e5950 | 20 | fprintf(stderr, "%s: header parse error: \"%s\"\n", |
a89f364a | 21 | __func__, xpm[line]); |
254e5950 GH |
22 | return NULL; |
23 | } | |
24 | if (chars != 1) { | |
a89f364a | 25 | fprintf(stderr, "%s: chars != 1 not supported\n", __func__); |
254e5950 GH |
26 | return NULL; |
27 | } | |
28 | line++; | |
29 | ||
30 | /* parse color table */ | |
31 | for (i = 0; i < colors; i++, line++) { | |
32 | if (sscanf(xpm[line], "%c c %15s", &idx, name) == 2) { | |
33 | if (sscanf(name, "#%02x%02x%02x", &r, &g, &b) == 3) { | |
34 | ctab[idx] = (0xff << 24) | (b << 16) | (g << 8) | r; | |
35 | continue; | |
36 | } | |
37 | if (strcmp(name, "None") == 0) { | |
38 | ctab[idx] = 0x00000000; | |
39 | continue; | |
40 | } | |
41 | } | |
42 | fprintf(stderr, "%s: color parse error: \"%s\"\n", | |
a89f364a | 43 | __func__, xpm[line]); |
254e5950 GH |
44 | return NULL; |
45 | } | |
46 | ||
47 | /* parse pixel data */ | |
48 | c = cursor_alloc(width, height); | |
49 | for (pixel = 0, y = 0; y < height; y++, line++) { | |
50 | for (x = 0; x < height; x++, pixel++) { | |
51 | idx = xpm[line][x]; | |
52 | c->data[pixel] = ctab[idx]; | |
53 | } | |
54 | } | |
55 | return c; | |
56 | } | |
57 | ||
58 | /* nice for debugging */ | |
59 | void cursor_print_ascii_art(QEMUCursor *c, const char *prefix) | |
60 | { | |
61 | uint32_t *data = c->data; | |
62 | int x,y; | |
63 | ||
64 | for (y = 0; y < c->height; y++) { | |
65 | fprintf(stderr, "%s: %2d: |", prefix, y); | |
66 | for (x = 0; x < c->width; x++, data++) { | |
67 | if ((*data & 0xff000000) != 0xff000000) { | |
68 | fprintf(stderr, " "); /* transparent */ | |
69 | } else if ((*data & 0x00ffffff) == 0x00ffffff) { | |
70 | fprintf(stderr, "."); /* white */ | |
71 | } else if ((*data & 0x00ffffff) == 0x00000000) { | |
72 | fprintf(stderr, "X"); /* black */ | |
73 | } else { | |
74 | fprintf(stderr, "o"); /* other */ | |
75 | } | |
76 | } | |
77 | fprintf(stderr, "|\n"); | |
78 | } | |
79 | } | |
80 | ||
81 | QEMUCursor *cursor_builtin_hidden(void) | |
82 | { | |
9be38598 | 83 | return cursor_parse_xpm(cursor_hidden_xpm); |
254e5950 GH |
84 | } |
85 | ||
86 | QEMUCursor *cursor_builtin_left_ptr(void) | |
87 | { | |
9be38598 | 88 | return cursor_parse_xpm(cursor_left_ptr_xpm); |
254e5950 GH |
89 | } |
90 | ||
91 | QEMUCursor *cursor_alloc(int width, int height) | |
92 | { | |
93 | QEMUCursor *c; | |
94 | int datasize = width * height * sizeof(uint32_t); | |
95 | ||
7267c094 | 96 | c = g_malloc0(sizeof(QEMUCursor) + datasize); |
254e5950 GH |
97 | c->width = width; |
98 | c->height = height; | |
99 | c->refcount = 1; | |
100 | return c; | |
101 | } | |
102 | ||
103 | void cursor_get(QEMUCursor *c) | |
104 | { | |
105 | c->refcount++; | |
106 | } | |
107 | ||
108 | void cursor_put(QEMUCursor *c) | |
109 | { | |
110 | if (c == NULL) | |
111 | return; | |
112 | c->refcount--; | |
113 | if (c->refcount) | |
114 | return; | |
7267c094 | 115 | g_free(c); |
254e5950 GH |
116 | } |
117 | ||
118 | int cursor_get_mono_bpl(QEMUCursor *c) | |
119 | { | |
935b3332 | 120 | return DIV_ROUND_UP(c->width, 8); |
254e5950 GH |
121 | } |
122 | ||
123 | void cursor_set_mono(QEMUCursor *c, | |
124 | uint32_t foreground, uint32_t background, uint8_t *image, | |
125 | int transparent, uint8_t *mask) | |
126 | { | |
127 | uint32_t *data = c->data; | |
128 | uint8_t bit; | |
129 | int x,y,bpl; | |
36ffc122 PW |
130 | bool expand_bitmap_only = image == mask; |
131 | bool has_inverted_colors = false; | |
132 | const uint32_t inverted = 0x80000000; | |
133 | ||
134 | /* | |
135 | * Converts a monochrome bitmap with XOR mask 'image' and AND mask 'mask': | |
136 | * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/drawing-monochrome-pointers | |
137 | */ | |
254e5950 GH |
138 | bpl = cursor_get_mono_bpl(c); |
139 | for (y = 0; y < c->height; y++) { | |
140 | bit = 0x80; | |
141 | for (x = 0; x < c->width; x++, data++) { | |
142 | if (transparent && mask[x/8] & bit) { | |
36ffc122 PW |
143 | if (!expand_bitmap_only && image[x / 8] & bit) { |
144 | *data = inverted; | |
145 | has_inverted_colors = true; | |
146 | } else { | |
147 | *data = 0x00000000; | |
148 | } | |
254e5950 GH |
149 | } else if (!transparent && !(mask[x/8] & bit)) { |
150 | *data = 0x00000000; | |
151 | } else if (image[x/8] & bit) { | |
152 | *data = 0xff000000 | foreground; | |
153 | } else { | |
154 | *data = 0xff000000 | background; | |
155 | } | |
156 | bit >>= 1; | |
157 | if (bit == 0) { | |
158 | bit = 0x80; | |
159 | } | |
160 | } | |
161 | mask += bpl; | |
162 | image += bpl; | |
163 | } | |
36ffc122 PW |
164 | |
165 | /* | |
166 | * If there are any pixels with inverted colors, create an outline (fill | |
167 | * transparent neighbors with the background color) and use the foreground | |
168 | * color as "inverted" color. | |
169 | */ | |
170 | if (has_inverted_colors) { | |
171 | data = c->data; | |
172 | for (y = 0; y < c->height; y++) { | |
173 | for (x = 0; x < c->width; x++, data++) { | |
174 | if (*data == 0 /* transparent */ && | |
175 | ((x > 0 && data[-1] == inverted) || | |
176 | (x + 1 < c->width && data[1] == inverted) || | |
177 | (y > 0 && data[-c->width] == inverted) || | |
178 | (y + 1 < c->height && data[c->width] == inverted))) { | |
179 | *data = 0xff000000 | background; | |
180 | } | |
181 | } | |
182 | } | |
183 | data = c->data; | |
184 | for (x = 0; x < c->width * c->height; x++, data++) { | |
185 | if (*data == inverted) { | |
186 | *data = 0xff000000 | foreground; | |
187 | } | |
188 | } | |
189 | } | |
254e5950 GH |
190 | } |
191 | ||
192 | void cursor_get_mono_image(QEMUCursor *c, int foreground, uint8_t *image) | |
193 | { | |
194 | uint32_t *data = c->data; | |
195 | uint8_t bit; | |
196 | int x,y,bpl; | |
197 | ||
198 | bpl = cursor_get_mono_bpl(c); | |
199 | memset(image, 0, bpl * c->height); | |
200 | for (y = 0; y < c->height; y++) { | |
201 | bit = 0x80; | |
202 | for (x = 0; x < c->width; x++, data++) { | |
203 | if (((*data & 0xff000000) == 0xff000000) && | |
204 | ((*data & 0x00ffffff) == foreground)) { | |
205 | image[x/8] |= bit; | |
206 | } | |
207 | bit >>= 1; | |
208 | if (bit == 0) { | |
209 | bit = 0x80; | |
210 | } | |
211 | } | |
212 | image += bpl; | |
213 | } | |
214 | } | |
215 | ||
216 | void cursor_get_mono_mask(QEMUCursor *c, int transparent, uint8_t *mask) | |
217 | { | |
218 | uint32_t *data = c->data; | |
219 | uint8_t bit; | |
220 | int x,y,bpl; | |
221 | ||
222 | bpl = cursor_get_mono_bpl(c); | |
223 | memset(mask, 0, bpl * c->height); | |
224 | for (y = 0; y < c->height; y++) { | |
225 | bit = 0x80; | |
226 | for (x = 0; x < c->width; x++, data++) { | |
227 | if ((*data & 0xff000000) != 0xff000000) { | |
228 | if (transparent != 0) { | |
229 | mask[x/8] |= bit; | |
230 | } | |
231 | } else { | |
232 | if (transparent == 0) { | |
233 | mask[x/8] |= bit; | |
234 | } | |
235 | } | |
236 | bit >>= 1; | |
237 | if (bit == 0) { | |
238 | bit = 0x80; | |
239 | } | |
240 | } | |
241 | mask += bpl; | |
242 | } | |
243 | } |