]>
Commit | Line | Data |
---|---|---|
2da776db MH |
1 | /* |
2 | * RDMA protocol and interfaces | |
3 | * | |
4 | * Copyright IBM, Corp. 2010-2013 | |
6ddd2d76 | 5 | * Copyright Red Hat, Inc. 2015-2016 |
2da776db MH |
6 | * |
7 | * Authors: | |
8 | * Michael R. Hines <[email protected]> | |
9 | * Jiuxing Liu <[email protected]> | |
6ddd2d76 | 10 | * Daniel P. Berrange <[email protected]> |
2da776db MH |
11 | * |
12 | * This work is licensed under the terms of the GNU GPL, version 2 or | |
13 | * later. See the COPYING file in the top-level directory. | |
14 | * | |
15 | */ | |
1393a485 | 16 | #include "qemu/osdep.h" |
da34e65c | 17 | #include "qapi/error.h" |
2da776db | 18 | #include "qemu-common.h" |
f348b6d1 | 19 | #include "qemu/cutils.h" |
2da776db MH |
20 | #include "migration/migration.h" |
21 | #include "migration/qemu-file.h" | |
22 | #include "exec/cpu-common.h" | |
d49b6836 | 23 | #include "qemu/error-report.h" |
2da776db MH |
24 | #include "qemu/main-loop.h" |
25 | #include "qemu/sockets.h" | |
26 | #include "qemu/bitmap.h" | |
10817bf0 | 27 | #include "qemu/coroutine.h" |
2da776db MH |
28 | #include <sys/socket.h> |
29 | #include <netdb.h> | |
30 | #include <arpa/inet.h> | |
2da776db | 31 | #include <rdma/rdma_cma.h> |
733252de | 32 | #include "trace.h" |
2da776db MH |
33 | |
34 | /* | |
35 | * Print and error on both the Monitor and the Log file. | |
36 | */ | |
37 | #define ERROR(errp, fmt, ...) \ | |
38 | do { \ | |
66988941 | 39 | fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \ |
2da776db MH |
40 | if (errp && (*(errp) == NULL)) { \ |
41 | error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \ | |
42 | } \ | |
43 | } while (0) | |
44 | ||
45 | #define RDMA_RESOLVE_TIMEOUT_MS 10000 | |
46 | ||
47 | /* Do not merge data if larger than this. */ | |
48 | #define RDMA_MERGE_MAX (2 * 1024 * 1024) | |
49 | #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096) | |
50 | ||
51 | #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */ | |
52 | ||
53 | /* | |
54 | * This is only for non-live state being migrated. | |
55 | * Instead of RDMA_WRITE messages, we use RDMA_SEND | |
56 | * messages for that state, which requires a different | |
57 | * delivery design than main memory. | |
58 | */ | |
59 | #define RDMA_SEND_INCREMENT 32768 | |
60 | ||
61 | /* | |
62 | * Maximum size infiniband SEND message | |
63 | */ | |
64 | #define RDMA_CONTROL_MAX_BUFFER (512 * 1024) | |
65 | #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096 | |
66 | ||
67 | #define RDMA_CONTROL_VERSION_CURRENT 1 | |
68 | /* | |
69 | * Capabilities for negotiation. | |
70 | */ | |
71 | #define RDMA_CAPABILITY_PIN_ALL 0x01 | |
72 | ||
73 | /* | |
74 | * Add the other flags above to this list of known capabilities | |
75 | * as they are introduced. | |
76 | */ | |
77 | static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL; | |
78 | ||
79 | #define CHECK_ERROR_STATE() \ | |
80 | do { \ | |
81 | if (rdma->error_state) { \ | |
82 | if (!rdma->error_reported) { \ | |
733252de DDAG |
83 | error_report("RDMA is in an error state waiting migration" \ |
84 | " to abort!"); \ | |
2da776db MH |
85 | rdma->error_reported = 1; \ |
86 | } \ | |
87 | return rdma->error_state; \ | |
88 | } \ | |
89 | } while (0); | |
90 | ||
91 | /* | |
92 | * A work request ID is 64-bits and we split up these bits | |
93 | * into 3 parts: | |
94 | * | |
95 | * bits 0-15 : type of control message, 2^16 | |
96 | * bits 16-29: ram block index, 2^14 | |
97 | * bits 30-63: ram block chunk number, 2^34 | |
98 | * | |
99 | * The last two bit ranges are only used for RDMA writes, | |
100 | * in order to track their completion and potentially | |
101 | * also track unregistration status of the message. | |
102 | */ | |
103 | #define RDMA_WRID_TYPE_SHIFT 0UL | |
104 | #define RDMA_WRID_BLOCK_SHIFT 16UL | |
105 | #define RDMA_WRID_CHUNK_SHIFT 30UL | |
106 | ||
107 | #define RDMA_WRID_TYPE_MASK \ | |
108 | ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL) | |
109 | ||
110 | #define RDMA_WRID_BLOCK_MASK \ | |
111 | (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL)) | |
112 | ||
113 | #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK) | |
114 | ||
115 | /* | |
116 | * RDMA migration protocol: | |
117 | * 1. RDMA Writes (data messages, i.e. RAM) | |
118 | * 2. IB Send/Recv (control channel messages) | |
119 | */ | |
120 | enum { | |
121 | RDMA_WRID_NONE = 0, | |
122 | RDMA_WRID_RDMA_WRITE = 1, | |
123 | RDMA_WRID_SEND_CONTROL = 2000, | |
124 | RDMA_WRID_RECV_CONTROL = 4000, | |
125 | }; | |
126 | ||
2ae31aea | 127 | static const char *wrid_desc[] = { |
2da776db MH |
128 | [RDMA_WRID_NONE] = "NONE", |
129 | [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA", | |
130 | [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND", | |
131 | [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV", | |
132 | }; | |
133 | ||
134 | /* | |
135 | * Work request IDs for IB SEND messages only (not RDMA writes). | |
136 | * This is used by the migration protocol to transmit | |
137 | * control messages (such as device state and registration commands) | |
138 | * | |
139 | * We could use more WRs, but we have enough for now. | |
140 | */ | |
141 | enum { | |
142 | RDMA_WRID_READY = 0, | |
143 | RDMA_WRID_DATA, | |
144 | RDMA_WRID_CONTROL, | |
145 | RDMA_WRID_MAX, | |
146 | }; | |
147 | ||
148 | /* | |
149 | * SEND/RECV IB Control Messages. | |
150 | */ | |
151 | enum { | |
152 | RDMA_CONTROL_NONE = 0, | |
153 | RDMA_CONTROL_ERROR, | |
154 | RDMA_CONTROL_READY, /* ready to receive */ | |
155 | RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */ | |
156 | RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */ | |
157 | RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */ | |
158 | RDMA_CONTROL_COMPRESS, /* page contains repeat values */ | |
159 | RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */ | |
160 | RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */ | |
161 | RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */ | |
162 | RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */ | |
163 | RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */ | |
164 | }; | |
165 | ||
2ae31aea | 166 | static const char *control_desc[] = { |
2da776db MH |
167 | [RDMA_CONTROL_NONE] = "NONE", |
168 | [RDMA_CONTROL_ERROR] = "ERROR", | |
169 | [RDMA_CONTROL_READY] = "READY", | |
170 | [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE", | |
171 | [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST", | |
172 | [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT", | |
173 | [RDMA_CONTROL_COMPRESS] = "COMPRESS", | |
174 | [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST", | |
175 | [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT", | |
176 | [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED", | |
177 | [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST", | |
178 | [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED", | |
179 | }; | |
180 | ||
181 | /* | |
182 | * Memory and MR structures used to represent an IB Send/Recv work request. | |
183 | * This is *not* used for RDMA writes, only IB Send/Recv. | |
184 | */ | |
185 | typedef struct { | |
186 | uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */ | |
187 | struct ibv_mr *control_mr; /* registration metadata */ | |
188 | size_t control_len; /* length of the message */ | |
189 | uint8_t *control_curr; /* start of unconsumed bytes */ | |
190 | } RDMAWorkRequestData; | |
191 | ||
192 | /* | |
193 | * Negotiate RDMA capabilities during connection-setup time. | |
194 | */ | |
195 | typedef struct { | |
196 | uint32_t version; | |
197 | uint32_t flags; | |
198 | } RDMACapabilities; | |
199 | ||
200 | static void caps_to_network(RDMACapabilities *cap) | |
201 | { | |
202 | cap->version = htonl(cap->version); | |
203 | cap->flags = htonl(cap->flags); | |
204 | } | |
205 | ||
206 | static void network_to_caps(RDMACapabilities *cap) | |
207 | { | |
208 | cap->version = ntohl(cap->version); | |
209 | cap->flags = ntohl(cap->flags); | |
210 | } | |
211 | ||
212 | /* | |
213 | * Representation of a RAMBlock from an RDMA perspective. | |
214 | * This is not transmitted, only local. | |
215 | * This and subsequent structures cannot be linked lists | |
216 | * because we're using a single IB message to transmit | |
217 | * the information. It's small anyway, so a list is overkill. | |
218 | */ | |
219 | typedef struct RDMALocalBlock { | |
4fb5364b DDAG |
220 | char *block_name; |
221 | uint8_t *local_host_addr; /* local virtual address */ | |
222 | uint64_t remote_host_addr; /* remote virtual address */ | |
223 | uint64_t offset; | |
224 | uint64_t length; | |
225 | struct ibv_mr **pmr; /* MRs for chunk-level registration */ | |
226 | struct ibv_mr *mr; /* MR for non-chunk-level registration */ | |
227 | uint32_t *remote_keys; /* rkeys for chunk-level registration */ | |
228 | uint32_t remote_rkey; /* rkeys for non-chunk-level registration */ | |
229 | int index; /* which block are we */ | |
e4d63320 | 230 | unsigned int src_index; /* (Only used on dest) */ |
4fb5364b DDAG |
231 | bool is_ram_block; |
232 | int nb_chunks; | |
2da776db MH |
233 | unsigned long *transit_bitmap; |
234 | unsigned long *unregister_bitmap; | |
235 | } RDMALocalBlock; | |
236 | ||
237 | /* | |
238 | * Also represents a RAMblock, but only on the dest. | |
239 | * This gets transmitted by the dest during connection-time | |
240 | * to the source VM and then is used to populate the | |
241 | * corresponding RDMALocalBlock with | |
242 | * the information needed to perform the actual RDMA. | |
243 | */ | |
a97270ad | 244 | typedef struct QEMU_PACKED RDMADestBlock { |
2da776db MH |
245 | uint64_t remote_host_addr; |
246 | uint64_t offset; | |
247 | uint64_t length; | |
248 | uint32_t remote_rkey; | |
249 | uint32_t padding; | |
a97270ad | 250 | } RDMADestBlock; |
2da776db MH |
251 | |
252 | static uint64_t htonll(uint64_t v) | |
253 | { | |
254 | union { uint32_t lv[2]; uint64_t llv; } u; | |
255 | u.lv[0] = htonl(v >> 32); | |
256 | u.lv[1] = htonl(v & 0xFFFFFFFFULL); | |
257 | return u.llv; | |
258 | } | |
259 | ||
260 | static uint64_t ntohll(uint64_t v) { | |
261 | union { uint32_t lv[2]; uint64_t llv; } u; | |
262 | u.llv = v; | |
263 | return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]); | |
264 | } | |
265 | ||
a97270ad | 266 | static void dest_block_to_network(RDMADestBlock *db) |
2da776db | 267 | { |
a97270ad DDAG |
268 | db->remote_host_addr = htonll(db->remote_host_addr); |
269 | db->offset = htonll(db->offset); | |
270 | db->length = htonll(db->length); | |
271 | db->remote_rkey = htonl(db->remote_rkey); | |
2da776db MH |
272 | } |
273 | ||
a97270ad | 274 | static void network_to_dest_block(RDMADestBlock *db) |
2da776db | 275 | { |
a97270ad DDAG |
276 | db->remote_host_addr = ntohll(db->remote_host_addr); |
277 | db->offset = ntohll(db->offset); | |
278 | db->length = ntohll(db->length); | |
279 | db->remote_rkey = ntohl(db->remote_rkey); | |
2da776db MH |
280 | } |
281 | ||
282 | /* | |
283 | * Virtual address of the above structures used for transmitting | |
284 | * the RAMBlock descriptions at connection-time. | |
285 | * This structure is *not* transmitted. | |
286 | */ | |
287 | typedef struct RDMALocalBlocks { | |
288 | int nb_blocks; | |
289 | bool init; /* main memory init complete */ | |
290 | RDMALocalBlock *block; | |
291 | } RDMALocalBlocks; | |
292 | ||
293 | /* | |
294 | * Main data structure for RDMA state. | |
295 | * While there is only one copy of this structure being allocated right now, | |
296 | * this is the place where one would start if you wanted to consider | |
297 | * having more than one RDMA connection open at the same time. | |
298 | */ | |
299 | typedef struct RDMAContext { | |
300 | char *host; | |
301 | int port; | |
302 | ||
1f22364b | 303 | RDMAWorkRequestData wr_data[RDMA_WRID_MAX]; |
2da776db MH |
304 | |
305 | /* | |
306 | * This is used by *_exchange_send() to figure out whether or not | |
307 | * the initial "READY" message has already been received or not. | |
308 | * This is because other functions may potentially poll() and detect | |
309 | * the READY message before send() does, in which case we need to | |
310 | * know if it completed. | |
311 | */ | |
312 | int control_ready_expected; | |
313 | ||
314 | /* number of outstanding writes */ | |
315 | int nb_sent; | |
316 | ||
317 | /* store info about current buffer so that we can | |
318 | merge it with future sends */ | |
319 | uint64_t current_addr; | |
320 | uint64_t current_length; | |
321 | /* index of ram block the current buffer belongs to */ | |
322 | int current_index; | |
323 | /* index of the chunk in the current ram block */ | |
324 | int current_chunk; | |
325 | ||
326 | bool pin_all; | |
327 | ||
328 | /* | |
329 | * infiniband-specific variables for opening the device | |
330 | * and maintaining connection state and so forth. | |
331 | * | |
332 | * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in | |
333 | * cm_id->verbs, cm_id->channel, and cm_id->qp. | |
334 | */ | |
335 | struct rdma_cm_id *cm_id; /* connection manager ID */ | |
336 | struct rdma_cm_id *listen_id; | |
5a91337c | 337 | bool connected; |
2da776db MH |
338 | |
339 | struct ibv_context *verbs; | |
340 | struct rdma_event_channel *channel; | |
341 | struct ibv_qp *qp; /* queue pair */ | |
342 | struct ibv_comp_channel *comp_channel; /* completion channel */ | |
343 | struct ibv_pd *pd; /* protection domain */ | |
344 | struct ibv_cq *cq; /* completion queue */ | |
345 | ||
346 | /* | |
347 | * If a previous write failed (perhaps because of a failed | |
348 | * memory registration, then do not attempt any future work | |
349 | * and remember the error state. | |
350 | */ | |
351 | int error_state; | |
352 | int error_reported; | |
cd5ea070 | 353 | int received_error; |
2da776db MH |
354 | |
355 | /* | |
356 | * Description of ram blocks used throughout the code. | |
357 | */ | |
358 | RDMALocalBlocks local_ram_blocks; | |
a97270ad | 359 | RDMADestBlock *dest_blocks; |
2da776db | 360 | |
e4d63320 DDAG |
361 | /* Index of the next RAMBlock received during block registration */ |
362 | unsigned int next_src_index; | |
363 | ||
2da776db MH |
364 | /* |
365 | * Migration on *destination* started. | |
366 | * Then use coroutine yield function. | |
367 | * Source runs in a thread, so we don't care. | |
368 | */ | |
369 | int migration_started_on_destination; | |
370 | ||
371 | int total_registrations; | |
372 | int total_writes; | |
373 | ||
374 | int unregister_current, unregister_next; | |
375 | uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX]; | |
376 | ||
377 | GHashTable *blockmap; | |
378 | } RDMAContext; | |
379 | ||
6ddd2d76 DB |
380 | #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma" |
381 | #define QIO_CHANNEL_RDMA(obj) \ | |
382 | OBJECT_CHECK(QIOChannelRDMA, (obj), TYPE_QIO_CHANNEL_RDMA) | |
383 | ||
384 | typedef struct QIOChannelRDMA QIOChannelRDMA; | |
385 | ||
386 | ||
387 | struct QIOChannelRDMA { | |
388 | QIOChannel parent; | |
2da776db | 389 | RDMAContext *rdma; |
6ddd2d76 | 390 | QEMUFile *file; |
2da776db | 391 | size_t len; |
6ddd2d76 DB |
392 | bool blocking; /* XXX we don't actually honour this yet */ |
393 | }; | |
2da776db MH |
394 | |
395 | /* | |
396 | * Main structure for IB Send/Recv control messages. | |
397 | * This gets prepended at the beginning of every Send/Recv. | |
398 | */ | |
399 | typedef struct QEMU_PACKED { | |
400 | uint32_t len; /* Total length of data portion */ | |
401 | uint32_t type; /* which control command to perform */ | |
402 | uint32_t repeat; /* number of commands in data portion of same type */ | |
403 | uint32_t padding; | |
404 | } RDMAControlHeader; | |
405 | ||
406 | static void control_to_network(RDMAControlHeader *control) | |
407 | { | |
408 | control->type = htonl(control->type); | |
409 | control->len = htonl(control->len); | |
410 | control->repeat = htonl(control->repeat); | |
411 | } | |
412 | ||
413 | static void network_to_control(RDMAControlHeader *control) | |
414 | { | |
415 | control->type = ntohl(control->type); | |
416 | control->len = ntohl(control->len); | |
417 | control->repeat = ntohl(control->repeat); | |
418 | } | |
419 | ||
420 | /* | |
421 | * Register a single Chunk. | |
422 | * Information sent by the source VM to inform the dest | |
423 | * to register an single chunk of memory before we can perform | |
424 | * the actual RDMA operation. | |
425 | */ | |
426 | typedef struct QEMU_PACKED { | |
427 | union QEMU_PACKED { | |
b12f7777 | 428 | uint64_t current_addr; /* offset into the ram_addr_t space */ |
2da776db MH |
429 | uint64_t chunk; /* chunk to lookup if unregistering */ |
430 | } key; | |
431 | uint32_t current_index; /* which ramblock the chunk belongs to */ | |
432 | uint32_t padding; | |
433 | uint64_t chunks; /* how many sequential chunks to register */ | |
434 | } RDMARegister; | |
435 | ||
b12f7777 | 436 | static void register_to_network(RDMAContext *rdma, RDMARegister *reg) |
2da776db | 437 | { |
b12f7777 DDAG |
438 | RDMALocalBlock *local_block; |
439 | local_block = &rdma->local_ram_blocks.block[reg->current_index]; | |
440 | ||
441 | if (local_block->is_ram_block) { | |
442 | /* | |
443 | * current_addr as passed in is an address in the local ram_addr_t | |
444 | * space, we need to translate this for the destination | |
445 | */ | |
446 | reg->key.current_addr -= local_block->offset; | |
447 | reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset; | |
448 | } | |
2da776db MH |
449 | reg->key.current_addr = htonll(reg->key.current_addr); |
450 | reg->current_index = htonl(reg->current_index); | |
451 | reg->chunks = htonll(reg->chunks); | |
452 | } | |
453 | ||
454 | static void network_to_register(RDMARegister *reg) | |
455 | { | |
456 | reg->key.current_addr = ntohll(reg->key.current_addr); | |
457 | reg->current_index = ntohl(reg->current_index); | |
458 | reg->chunks = ntohll(reg->chunks); | |
459 | } | |
460 | ||
461 | typedef struct QEMU_PACKED { | |
462 | uint32_t value; /* if zero, we will madvise() */ | |
463 | uint32_t block_idx; /* which ram block index */ | |
b12f7777 | 464 | uint64_t offset; /* Address in remote ram_addr_t space */ |
2da776db MH |
465 | uint64_t length; /* length of the chunk */ |
466 | } RDMACompress; | |
467 | ||
b12f7777 | 468 | static void compress_to_network(RDMAContext *rdma, RDMACompress *comp) |
2da776db MH |
469 | { |
470 | comp->value = htonl(comp->value); | |
b12f7777 DDAG |
471 | /* |
472 | * comp->offset as passed in is an address in the local ram_addr_t | |
473 | * space, we need to translate this for the destination | |
474 | */ | |
475 | comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset; | |
476 | comp->offset += rdma->dest_blocks[comp->block_idx].offset; | |
2da776db MH |
477 | comp->block_idx = htonl(comp->block_idx); |
478 | comp->offset = htonll(comp->offset); | |
479 | comp->length = htonll(comp->length); | |
480 | } | |
481 | ||
482 | static void network_to_compress(RDMACompress *comp) | |
483 | { | |
484 | comp->value = ntohl(comp->value); | |
485 | comp->block_idx = ntohl(comp->block_idx); | |
486 | comp->offset = ntohll(comp->offset); | |
487 | comp->length = ntohll(comp->length); | |
488 | } | |
489 | ||
490 | /* | |
491 | * The result of the dest's memory registration produces an "rkey" | |
492 | * which the source VM must reference in order to perform | |
493 | * the RDMA operation. | |
494 | */ | |
495 | typedef struct QEMU_PACKED { | |
496 | uint32_t rkey; | |
497 | uint32_t padding; | |
498 | uint64_t host_addr; | |
499 | } RDMARegisterResult; | |
500 | ||
501 | static void result_to_network(RDMARegisterResult *result) | |
502 | { | |
503 | result->rkey = htonl(result->rkey); | |
504 | result->host_addr = htonll(result->host_addr); | |
505 | }; | |
506 | ||
507 | static void network_to_result(RDMARegisterResult *result) | |
508 | { | |
509 | result->rkey = ntohl(result->rkey); | |
510 | result->host_addr = ntohll(result->host_addr); | |
511 | }; | |
512 | ||
513 | const char *print_wrid(int wrid); | |
514 | static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, | |
515 | uint8_t *data, RDMAControlHeader *resp, | |
516 | int *resp_idx, | |
517 | int (*callback)(RDMAContext *rdma)); | |
518 | ||
dd286ed7 IY |
519 | static inline uint64_t ram_chunk_index(const uint8_t *start, |
520 | const uint8_t *host) | |
2da776db MH |
521 | { |
522 | return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT; | |
523 | } | |
524 | ||
dd286ed7 | 525 | static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block, |
2da776db MH |
526 | uint64_t i) |
527 | { | |
fbce8c25 SW |
528 | return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr + |
529 | (i << RDMA_REG_CHUNK_SHIFT)); | |
2da776db MH |
530 | } |
531 | ||
dd286ed7 IY |
532 | static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block, |
533 | uint64_t i) | |
2da776db MH |
534 | { |
535 | uint8_t *result = ram_chunk_start(rdma_ram_block, i) + | |
536 | (1UL << RDMA_REG_CHUNK_SHIFT); | |
537 | ||
538 | if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) { | |
539 | result = rdma_ram_block->local_host_addr + rdma_ram_block->length; | |
540 | } | |
541 | ||
542 | return result; | |
543 | } | |
544 | ||
4fb5364b DDAG |
545 | static int rdma_add_block(RDMAContext *rdma, const char *block_name, |
546 | void *host_addr, | |
2da776db MH |
547 | ram_addr_t block_offset, uint64_t length) |
548 | { | |
549 | RDMALocalBlocks *local = &rdma->local_ram_blocks; | |
760ff4be | 550 | RDMALocalBlock *block; |
2da776db MH |
551 | RDMALocalBlock *old = local->block; |
552 | ||
97f3ad35 | 553 | local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1); |
2da776db MH |
554 | |
555 | if (local->nb_blocks) { | |
556 | int x; | |
557 | ||
760ff4be DDAG |
558 | if (rdma->blockmap) { |
559 | for (x = 0; x < local->nb_blocks; x++) { | |
560 | g_hash_table_remove(rdma->blockmap, | |
561 | (void *)(uintptr_t)old[x].offset); | |
562 | g_hash_table_insert(rdma->blockmap, | |
563 | (void *)(uintptr_t)old[x].offset, | |
564 | &local->block[x]); | |
565 | } | |
2da776db MH |
566 | } |
567 | memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks); | |
568 | g_free(old); | |
569 | } | |
570 | ||
571 | block = &local->block[local->nb_blocks]; | |
572 | ||
4fb5364b | 573 | block->block_name = g_strdup(block_name); |
2da776db MH |
574 | block->local_host_addr = host_addr; |
575 | block->offset = block_offset; | |
576 | block->length = length; | |
577 | block->index = local->nb_blocks; | |
e4d63320 | 578 | block->src_index = ~0U; /* Filled in by the receipt of the block list */ |
2da776db MH |
579 | block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL; |
580 | block->transit_bitmap = bitmap_new(block->nb_chunks); | |
581 | bitmap_clear(block->transit_bitmap, 0, block->nb_chunks); | |
582 | block->unregister_bitmap = bitmap_new(block->nb_chunks); | |
583 | bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks); | |
97f3ad35 | 584 | block->remote_keys = g_new0(uint32_t, block->nb_chunks); |
2da776db MH |
585 | |
586 | block->is_ram_block = local->init ? false : true; | |
587 | ||
760ff4be | 588 | if (rdma->blockmap) { |
80e60c6e | 589 | g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block); |
760ff4be | 590 | } |
2da776db | 591 | |
4fb5364b DDAG |
592 | trace_rdma_add_block(block_name, local->nb_blocks, |
593 | (uintptr_t) block->local_host_addr, | |
ba795761 | 594 | block->offset, block->length, |
fbce8c25 | 595 | (uintptr_t) (block->local_host_addr + block->length), |
ba795761 DDAG |
596 | BITS_TO_LONGS(block->nb_chunks) * |
597 | sizeof(unsigned long) * 8, | |
598 | block->nb_chunks); | |
2da776db MH |
599 | |
600 | local->nb_blocks++; | |
601 | ||
602 | return 0; | |
603 | } | |
604 | ||
605 | /* | |
606 | * Memory regions need to be registered with the device and queue pairs setup | |
607 | * in advanced before the migration starts. This tells us where the RAM blocks | |
608 | * are so that we can register them individually. | |
609 | */ | |
e3807054 | 610 | static int qemu_rdma_init_one_block(const char *block_name, void *host_addr, |
2da776db MH |
611 | ram_addr_t block_offset, ram_addr_t length, void *opaque) |
612 | { | |
4fb5364b | 613 | return rdma_add_block(opaque, block_name, host_addr, block_offset, length); |
2da776db MH |
614 | } |
615 | ||
616 | /* | |
617 | * Identify the RAMBlocks and their quantity. They will be references to | |
618 | * identify chunk boundaries inside each RAMBlock and also be referenced | |
619 | * during dynamic page registration. | |
620 | */ | |
621 | static int qemu_rdma_init_ram_blocks(RDMAContext *rdma) | |
622 | { | |
623 | RDMALocalBlocks *local = &rdma->local_ram_blocks; | |
624 | ||
625 | assert(rdma->blockmap == NULL); | |
2da776db MH |
626 | memset(local, 0, sizeof *local); |
627 | qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma); | |
733252de | 628 | trace_qemu_rdma_init_ram_blocks(local->nb_blocks); |
97f3ad35 MA |
629 | rdma->dest_blocks = g_new0(RDMADestBlock, |
630 | rdma->local_ram_blocks.nb_blocks); | |
2da776db MH |
631 | local->init = true; |
632 | return 0; | |
633 | } | |
634 | ||
03fcab38 DDAG |
635 | /* |
636 | * Note: If used outside of cleanup, the caller must ensure that the destination | |
637 | * block structures are also updated | |
638 | */ | |
639 | static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block) | |
2da776db MH |
640 | { |
641 | RDMALocalBlocks *local = &rdma->local_ram_blocks; | |
2da776db MH |
642 | RDMALocalBlock *old = local->block; |
643 | int x; | |
644 | ||
03fcab38 DDAG |
645 | if (rdma->blockmap) { |
646 | g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset); | |
647 | } | |
2da776db MH |
648 | if (block->pmr) { |
649 | int j; | |
650 | ||
651 | for (j = 0; j < block->nb_chunks; j++) { | |
652 | if (!block->pmr[j]) { | |
653 | continue; | |
654 | } | |
655 | ibv_dereg_mr(block->pmr[j]); | |
656 | rdma->total_registrations--; | |
657 | } | |
658 | g_free(block->pmr); | |
659 | block->pmr = NULL; | |
660 | } | |
661 | ||
662 | if (block->mr) { | |
663 | ibv_dereg_mr(block->mr); | |
664 | rdma->total_registrations--; | |
665 | block->mr = NULL; | |
666 | } | |
667 | ||
668 | g_free(block->transit_bitmap); | |
669 | block->transit_bitmap = NULL; | |
670 | ||
671 | g_free(block->unregister_bitmap); | |
672 | block->unregister_bitmap = NULL; | |
673 | ||
674 | g_free(block->remote_keys); | |
675 | block->remote_keys = NULL; | |
676 | ||
4fb5364b DDAG |
677 | g_free(block->block_name); |
678 | block->block_name = NULL; | |
679 | ||
03fcab38 DDAG |
680 | if (rdma->blockmap) { |
681 | for (x = 0; x < local->nb_blocks; x++) { | |
682 | g_hash_table_remove(rdma->blockmap, | |
683 | (void *)(uintptr_t)old[x].offset); | |
684 | } | |
2da776db MH |
685 | } |
686 | ||
687 | if (local->nb_blocks > 1) { | |
688 | ||
97f3ad35 | 689 | local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1); |
2da776db MH |
690 | |
691 | if (block->index) { | |
692 | memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index); | |
693 | } | |
694 | ||
695 | if (block->index < (local->nb_blocks - 1)) { | |
696 | memcpy(local->block + block->index, old + (block->index + 1), | |
697 | sizeof(RDMALocalBlock) * | |
698 | (local->nb_blocks - (block->index + 1))); | |
699 | } | |
700 | } else { | |
701 | assert(block == local->block); | |
702 | local->block = NULL; | |
703 | } | |
704 | ||
03fcab38 | 705 | trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr, |
733252de | 706 | block->offset, block->length, |
fbce8c25 | 707 | (uintptr_t)(block->local_host_addr + block->length), |
733252de DDAG |
708 | BITS_TO_LONGS(block->nb_chunks) * |
709 | sizeof(unsigned long) * 8, block->nb_chunks); | |
2da776db MH |
710 | |
711 | g_free(old); | |
712 | ||
713 | local->nb_blocks--; | |
714 | ||
03fcab38 | 715 | if (local->nb_blocks && rdma->blockmap) { |
2da776db | 716 | for (x = 0; x < local->nb_blocks; x++) { |
fbce8c25 SW |
717 | g_hash_table_insert(rdma->blockmap, |
718 | (void *)(uintptr_t)local->block[x].offset, | |
719 | &local->block[x]); | |
2da776db MH |
720 | } |
721 | } | |
722 | ||
723 | return 0; | |
724 | } | |
725 | ||
726 | /* | |
727 | * Put in the log file which RDMA device was opened and the details | |
728 | * associated with that device. | |
729 | */ | |
730 | static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs) | |
731 | { | |
7fc5b13f MH |
732 | struct ibv_port_attr port; |
733 | ||
734 | if (ibv_query_port(verbs, 1, &port)) { | |
733252de | 735 | error_report("Failed to query port information"); |
7fc5b13f MH |
736 | return; |
737 | } | |
738 | ||
2da776db MH |
739 | printf("%s RDMA Device opened: kernel name %s " |
740 | "uverbs device name %s, " | |
7fc5b13f MH |
741 | "infiniband_verbs class device path %s, " |
742 | "infiniband class device path %s, " | |
743 | "transport: (%d) %s\n", | |
2da776db MH |
744 | who, |
745 | verbs->device->name, | |
746 | verbs->device->dev_name, | |
747 | verbs->device->dev_path, | |
7fc5b13f MH |
748 | verbs->device->ibdev_path, |
749 | port.link_layer, | |
750 | (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" : | |
02942db7 | 751 | ((port.link_layer == IBV_LINK_LAYER_ETHERNET) |
7fc5b13f | 752 | ? "Ethernet" : "Unknown")); |
2da776db MH |
753 | } |
754 | ||
755 | /* | |
756 | * Put in the log file the RDMA gid addressing information, | |
757 | * useful for folks who have trouble understanding the | |
758 | * RDMA device hierarchy in the kernel. | |
759 | */ | |
760 | static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id) | |
761 | { | |
762 | char sgid[33]; | |
763 | char dgid[33]; | |
764 | inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid); | |
765 | inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid); | |
733252de | 766 | trace_qemu_rdma_dump_gid(who, sgid, dgid); |
2da776db MH |
767 | } |
768 | ||
7fc5b13f MH |
769 | /* |
770 | * As of now, IPv6 over RoCE / iWARP is not supported by linux. | |
771 | * We will try the next addrinfo struct, and fail if there are | |
772 | * no other valid addresses to bind against. | |
773 | * | |
774 | * If user is listening on '[::]', then we will not have a opened a device | |
775 | * yet and have no way of verifying if the device is RoCE or not. | |
776 | * | |
777 | * In this case, the source VM will throw an error for ALL types of | |
778 | * connections (both IPv4 and IPv6) if the destination machine does not have | |
779 | * a regular infiniband network available for use. | |
780 | * | |
4c293dc6 | 781 | * The only way to guarantee that an error is thrown for broken kernels is |
7fc5b13f MH |
782 | * for the management software to choose a *specific* interface at bind time |
783 | * and validate what time of hardware it is. | |
784 | * | |
785 | * Unfortunately, this puts the user in a fix: | |
02942db7 | 786 | * |
7fc5b13f MH |
787 | * If the source VM connects with an IPv4 address without knowing that the |
788 | * destination has bound to '[::]' the migration will unconditionally fail | |
b6af0975 | 789 | * unless the management software is explicitly listening on the IPv4 |
7fc5b13f MH |
790 | * address while using a RoCE-based device. |
791 | * | |
792 | * If the source VM connects with an IPv6 address, then we're OK because we can | |
793 | * throw an error on the source (and similarly on the destination). | |
02942db7 | 794 | * |
7fc5b13f MH |
795 | * But in mixed environments, this will be broken for a while until it is fixed |
796 | * inside linux. | |
797 | * | |
798 | * We do provide a *tiny* bit of help in this function: We can list all of the | |
799 | * devices in the system and check to see if all the devices are RoCE or | |
02942db7 | 800 | * Infiniband. |
7fc5b13f MH |
801 | * |
802 | * If we detect that we have a *pure* RoCE environment, then we can safely | |
4c293dc6 | 803 | * thrown an error even if the management software has specified '[::]' as the |
7fc5b13f MH |
804 | * bind address. |
805 | * | |
806 | * However, if there is are multiple hetergeneous devices, then we cannot make | |
807 | * this assumption and the user just has to be sure they know what they are | |
808 | * doing. | |
809 | * | |
810 | * Patches are being reviewed on linux-rdma. | |
811 | */ | |
bbfb89e3 | 812 | static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp) |
7fc5b13f MH |
813 | { |
814 | struct ibv_port_attr port_attr; | |
815 | ||
816 | /* This bug only exists in linux, to our knowledge. */ | |
817 | #ifdef CONFIG_LINUX | |
818 | ||
02942db7 | 819 | /* |
7fc5b13f | 820 | * Verbs are only NULL if management has bound to '[::]'. |
02942db7 | 821 | * |
7fc5b13f MH |
822 | * Let's iterate through all the devices and see if there any pure IB |
823 | * devices (non-ethernet). | |
02942db7 | 824 | * |
7fc5b13f | 825 | * If not, then we can safely proceed with the migration. |
4c293dc6 | 826 | * Otherwise, there are no guarantees until the bug is fixed in linux. |
7fc5b13f MH |
827 | */ |
828 | if (!verbs) { | |
02942db7 | 829 | int num_devices, x; |
7fc5b13f MH |
830 | struct ibv_device ** dev_list = ibv_get_device_list(&num_devices); |
831 | bool roce_found = false; | |
832 | bool ib_found = false; | |
833 | ||
834 | for (x = 0; x < num_devices; x++) { | |
835 | verbs = ibv_open_device(dev_list[x]); | |
5b61d575 PR |
836 | if (!verbs) { |
837 | if (errno == EPERM) { | |
838 | continue; | |
839 | } else { | |
840 | return -EINVAL; | |
841 | } | |
842 | } | |
7fc5b13f MH |
843 | |
844 | if (ibv_query_port(verbs, 1, &port_attr)) { | |
845 | ibv_close_device(verbs); | |
846 | ERROR(errp, "Could not query initial IB port"); | |
847 | return -EINVAL; | |
848 | } | |
849 | ||
850 | if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) { | |
851 | ib_found = true; | |
852 | } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { | |
853 | roce_found = true; | |
854 | } | |
855 | ||
856 | ibv_close_device(verbs); | |
857 | ||
858 | } | |
859 | ||
860 | if (roce_found) { | |
861 | if (ib_found) { | |
862 | fprintf(stderr, "WARN: migrations may fail:" | |
863 | " IPv6 over RoCE / iWARP in linux" | |
864 | " is broken. But since you appear to have a" | |
865 | " mixed RoCE / IB environment, be sure to only" | |
866 | " migrate over the IB fabric until the kernel " | |
867 | " fixes the bug.\n"); | |
868 | } else { | |
869 | ERROR(errp, "You only have RoCE / iWARP devices in your systems" | |
870 | " and your management software has specified '[::]'" | |
871 | ", but IPv6 over RoCE / iWARP is not supported in Linux."); | |
872 | return -ENONET; | |
873 | } | |
874 | } | |
875 | ||
876 | return 0; | |
877 | } | |
878 | ||
879 | /* | |
880 | * If we have a verbs context, that means that some other than '[::]' was | |
02942db7 SW |
881 | * used by the management software for binding. In which case we can |
882 | * actually warn the user about a potentially broken kernel. | |
7fc5b13f MH |
883 | */ |
884 | ||
885 | /* IB ports start with 1, not 0 */ | |
886 | if (ibv_query_port(verbs, 1, &port_attr)) { | |
887 | ERROR(errp, "Could not query initial IB port"); | |
888 | return -EINVAL; | |
889 | } | |
890 | ||
891 | if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { | |
892 | ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 " | |
893 | "(but patches on linux-rdma in progress)"); | |
894 | return -ENONET; | |
895 | } | |
896 | ||
897 | #endif | |
898 | ||
899 | return 0; | |
900 | } | |
901 | ||
2da776db MH |
902 | /* |
903 | * Figure out which RDMA device corresponds to the requested IP hostname | |
904 | * Also create the initial connection manager identifiers for opening | |
905 | * the connection. | |
906 | */ | |
907 | static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp) | |
908 | { | |
909 | int ret; | |
7fc5b13f | 910 | struct rdma_addrinfo *res; |
2da776db MH |
911 | char port_str[16]; |
912 | struct rdma_cm_event *cm_event; | |
913 | char ip[40] = "unknown"; | |
7fc5b13f | 914 | struct rdma_addrinfo *e; |
2da776db MH |
915 | |
916 | if (rdma->host == NULL || !strcmp(rdma->host, "")) { | |
66988941 | 917 | ERROR(errp, "RDMA hostname has not been set"); |
7fc5b13f | 918 | return -EINVAL; |
2da776db MH |
919 | } |
920 | ||
921 | /* create CM channel */ | |
922 | rdma->channel = rdma_create_event_channel(); | |
923 | if (!rdma->channel) { | |
66988941 | 924 | ERROR(errp, "could not create CM channel"); |
7fc5b13f | 925 | return -EINVAL; |
2da776db MH |
926 | } |
927 | ||
928 | /* create CM id */ | |
929 | ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP); | |
930 | if (ret) { | |
66988941 | 931 | ERROR(errp, "could not create channel id"); |
2da776db MH |
932 | goto err_resolve_create_id; |
933 | } | |
934 | ||
935 | snprintf(port_str, 16, "%d", rdma->port); | |
936 | port_str[15] = '\0'; | |
937 | ||
7fc5b13f | 938 | ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); |
2da776db | 939 | if (ret < 0) { |
7fc5b13f | 940 | ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); |
2da776db MH |
941 | goto err_resolve_get_addr; |
942 | } | |
943 | ||
6470215b MH |
944 | for (e = res; e != NULL; e = e->ai_next) { |
945 | inet_ntop(e->ai_family, | |
7fc5b13f | 946 | &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); |
733252de | 947 | trace_qemu_rdma_resolve_host_trying(rdma->host, ip); |
2da776db | 948 | |
7fc5b13f | 949 | ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr, |
6470215b MH |
950 | RDMA_RESOLVE_TIMEOUT_MS); |
951 | if (!ret) { | |
c89aa2f1 | 952 | if (e->ai_family == AF_INET6) { |
bbfb89e3 | 953 | ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp); |
c89aa2f1 MH |
954 | if (ret) { |
955 | continue; | |
956 | } | |
7fc5b13f | 957 | } |
6470215b MH |
958 | goto route; |
959 | } | |
2da776db MH |
960 | } |
961 | ||
6470215b MH |
962 | ERROR(errp, "could not resolve address %s", rdma->host); |
963 | goto err_resolve_get_addr; | |
964 | ||
965 | route: | |
2da776db MH |
966 | qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id); |
967 | ||
968 | ret = rdma_get_cm_event(rdma->channel, &cm_event); | |
969 | if (ret) { | |
66988941 | 970 | ERROR(errp, "could not perform event_addr_resolved"); |
2da776db MH |
971 | goto err_resolve_get_addr; |
972 | } | |
973 | ||
974 | if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) { | |
66988941 | 975 | ERROR(errp, "result not equal to event_addr_resolved %s", |
2da776db MH |
976 | rdma_event_str(cm_event->event)); |
977 | perror("rdma_resolve_addr"); | |
2a934347 | 978 | rdma_ack_cm_event(cm_event); |
7fc5b13f | 979 | ret = -EINVAL; |
2da776db MH |
980 | goto err_resolve_get_addr; |
981 | } | |
982 | rdma_ack_cm_event(cm_event); | |
983 | ||
984 | /* resolve route */ | |
985 | ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS); | |
986 | if (ret) { | |
66988941 | 987 | ERROR(errp, "could not resolve rdma route"); |
2da776db MH |
988 | goto err_resolve_get_addr; |
989 | } | |
990 | ||
991 | ret = rdma_get_cm_event(rdma->channel, &cm_event); | |
992 | if (ret) { | |
66988941 | 993 | ERROR(errp, "could not perform event_route_resolved"); |
2da776db MH |
994 | goto err_resolve_get_addr; |
995 | } | |
996 | if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) { | |
66988941 | 997 | ERROR(errp, "result not equal to event_route_resolved: %s", |
2da776db MH |
998 | rdma_event_str(cm_event->event)); |
999 | rdma_ack_cm_event(cm_event); | |
7fc5b13f | 1000 | ret = -EINVAL; |
2da776db MH |
1001 | goto err_resolve_get_addr; |
1002 | } | |
1003 | rdma_ack_cm_event(cm_event); | |
1004 | rdma->verbs = rdma->cm_id->verbs; | |
1005 | qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs); | |
1006 | qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id); | |
1007 | return 0; | |
1008 | ||
1009 | err_resolve_get_addr: | |
1010 | rdma_destroy_id(rdma->cm_id); | |
1011 | rdma->cm_id = NULL; | |
1012 | err_resolve_create_id: | |
1013 | rdma_destroy_event_channel(rdma->channel); | |
1014 | rdma->channel = NULL; | |
7fc5b13f | 1015 | return ret; |
2da776db MH |
1016 | } |
1017 | ||
1018 | /* | |
1019 | * Create protection domain and completion queues | |
1020 | */ | |
1021 | static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma) | |
1022 | { | |
1023 | /* allocate pd */ | |
1024 | rdma->pd = ibv_alloc_pd(rdma->verbs); | |
1025 | if (!rdma->pd) { | |
733252de | 1026 | error_report("failed to allocate protection domain"); |
2da776db MH |
1027 | return -1; |
1028 | } | |
1029 | ||
1030 | /* create completion channel */ | |
1031 | rdma->comp_channel = ibv_create_comp_channel(rdma->verbs); | |
1032 | if (!rdma->comp_channel) { | |
733252de | 1033 | error_report("failed to allocate completion channel"); |
2da776db MH |
1034 | goto err_alloc_pd_cq; |
1035 | } | |
1036 | ||
1037 | /* | |
1038 | * Completion queue can be filled by both read and write work requests, | |
1039 | * so must reflect the sum of both possible queue sizes. | |
1040 | */ | |
1041 | rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3), | |
1042 | NULL, rdma->comp_channel, 0); | |
1043 | if (!rdma->cq) { | |
733252de | 1044 | error_report("failed to allocate completion queue"); |
2da776db MH |
1045 | goto err_alloc_pd_cq; |
1046 | } | |
1047 | ||
1048 | return 0; | |
1049 | ||
1050 | err_alloc_pd_cq: | |
1051 | if (rdma->pd) { | |
1052 | ibv_dealloc_pd(rdma->pd); | |
1053 | } | |
1054 | if (rdma->comp_channel) { | |
1055 | ibv_destroy_comp_channel(rdma->comp_channel); | |
1056 | } | |
1057 | rdma->pd = NULL; | |
1058 | rdma->comp_channel = NULL; | |
1059 | return -1; | |
1060 | ||
1061 | } | |
1062 | ||
1063 | /* | |
1064 | * Create queue pairs. | |
1065 | */ | |
1066 | static int qemu_rdma_alloc_qp(RDMAContext *rdma) | |
1067 | { | |
1068 | struct ibv_qp_init_attr attr = { 0 }; | |
1069 | int ret; | |
1070 | ||
1071 | attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX; | |
1072 | attr.cap.max_recv_wr = 3; | |
1073 | attr.cap.max_send_sge = 1; | |
1074 | attr.cap.max_recv_sge = 1; | |
1075 | attr.send_cq = rdma->cq; | |
1076 | attr.recv_cq = rdma->cq; | |
1077 | attr.qp_type = IBV_QPT_RC; | |
1078 | ||
1079 | ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr); | |
1080 | if (ret) { | |
1081 | return -1; | |
1082 | } | |
1083 | ||
1084 | rdma->qp = rdma->cm_id->qp; | |
1085 | return 0; | |
1086 | } | |
1087 | ||
1088 | static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma) | |
1089 | { | |
1090 | int i; | |
1091 | RDMALocalBlocks *local = &rdma->local_ram_blocks; | |
1092 | ||
1093 | for (i = 0; i < local->nb_blocks; i++) { | |
1094 | local->block[i].mr = | |
1095 | ibv_reg_mr(rdma->pd, | |
1096 | local->block[i].local_host_addr, | |
1097 | local->block[i].length, | |
1098 | IBV_ACCESS_LOCAL_WRITE | | |
1099 | IBV_ACCESS_REMOTE_WRITE | |
1100 | ); | |
1101 | if (!local->block[i].mr) { | |
1102 | perror("Failed to register local dest ram block!\n"); | |
1103 | break; | |
1104 | } | |
1105 | rdma->total_registrations++; | |
1106 | } | |
1107 | ||
1108 | if (i >= local->nb_blocks) { | |
1109 | return 0; | |
1110 | } | |
1111 | ||
1112 | for (i--; i >= 0; i--) { | |
1113 | ibv_dereg_mr(local->block[i].mr); | |
1114 | rdma->total_registrations--; | |
1115 | } | |
1116 | ||
1117 | return -1; | |
1118 | ||
1119 | } | |
1120 | ||
1121 | /* | |
1122 | * Find the ram block that corresponds to the page requested to be | |
1123 | * transmitted by QEMU. | |
1124 | * | |
1125 | * Once the block is found, also identify which 'chunk' within that | |
1126 | * block that the page belongs to. | |
1127 | * | |
1128 | * This search cannot fail or the migration will fail. | |
1129 | */ | |
1130 | static int qemu_rdma_search_ram_block(RDMAContext *rdma, | |
fbce8c25 | 1131 | uintptr_t block_offset, |
2da776db MH |
1132 | uint64_t offset, |
1133 | uint64_t length, | |
1134 | uint64_t *block_index, | |
1135 | uint64_t *chunk_index) | |
1136 | { | |
1137 | uint64_t current_addr = block_offset + offset; | |
1138 | RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, | |
1139 | (void *) block_offset); | |
1140 | assert(block); | |
1141 | assert(current_addr >= block->offset); | |
1142 | assert((current_addr + length) <= (block->offset + block->length)); | |
1143 | ||
1144 | *block_index = block->index; | |
1145 | *chunk_index = ram_chunk_index(block->local_host_addr, | |
1146 | block->local_host_addr + (current_addr - block->offset)); | |
1147 | ||
1148 | return 0; | |
1149 | } | |
1150 | ||
1151 | /* | |
1152 | * Register a chunk with IB. If the chunk was already registered | |
1153 | * previously, then skip. | |
1154 | * | |
1155 | * Also return the keys associated with the registration needed | |
1156 | * to perform the actual RDMA operation. | |
1157 | */ | |
1158 | static int qemu_rdma_register_and_get_keys(RDMAContext *rdma, | |
3ac040c0 | 1159 | RDMALocalBlock *block, uintptr_t host_addr, |
2da776db MH |
1160 | uint32_t *lkey, uint32_t *rkey, int chunk, |
1161 | uint8_t *chunk_start, uint8_t *chunk_end) | |
1162 | { | |
1163 | if (block->mr) { | |
1164 | if (lkey) { | |
1165 | *lkey = block->mr->lkey; | |
1166 | } | |
1167 | if (rkey) { | |
1168 | *rkey = block->mr->rkey; | |
1169 | } | |
1170 | return 0; | |
1171 | } | |
1172 | ||
1173 | /* allocate memory to store chunk MRs */ | |
1174 | if (!block->pmr) { | |
97f3ad35 | 1175 | block->pmr = g_new0(struct ibv_mr *, block->nb_chunks); |
2da776db MH |
1176 | } |
1177 | ||
1178 | /* | |
1179 | * If 'rkey', then we're the destination, so grant access to the source. | |
1180 | * | |
1181 | * If 'lkey', then we're the source VM, so grant access only to ourselves. | |
1182 | */ | |
1183 | if (!block->pmr[chunk]) { | |
1184 | uint64_t len = chunk_end - chunk_start; | |
1185 | ||
733252de | 1186 | trace_qemu_rdma_register_and_get_keys(len, chunk_start); |
2da776db MH |
1187 | |
1188 | block->pmr[chunk] = ibv_reg_mr(rdma->pd, | |
1189 | chunk_start, len, | |
1190 | (rkey ? (IBV_ACCESS_LOCAL_WRITE | | |
1191 | IBV_ACCESS_REMOTE_WRITE) : 0)); | |
1192 | ||
1193 | if (!block->pmr[chunk]) { | |
1194 | perror("Failed to register chunk!"); | |
1195 | fprintf(stderr, "Chunk details: block: %d chunk index %d" | |
3ac040c0 SW |
1196 | " start %" PRIuPTR " end %" PRIuPTR |
1197 | " host %" PRIuPTR | |
1198 | " local %" PRIuPTR " registrations: %d\n", | |
1199 | block->index, chunk, (uintptr_t)chunk_start, | |
1200 | (uintptr_t)chunk_end, host_addr, | |
1201 | (uintptr_t)block->local_host_addr, | |
2da776db MH |
1202 | rdma->total_registrations); |
1203 | return -1; | |
1204 | } | |
1205 | rdma->total_registrations++; | |
1206 | } | |
1207 | ||
1208 | if (lkey) { | |
1209 | *lkey = block->pmr[chunk]->lkey; | |
1210 | } | |
1211 | if (rkey) { | |
1212 | *rkey = block->pmr[chunk]->rkey; | |
1213 | } | |
1214 | return 0; | |
1215 | } | |
1216 | ||
1217 | /* | |
1218 | * Register (at connection time) the memory used for control | |
1219 | * channel messages. | |
1220 | */ | |
1221 | static int qemu_rdma_reg_control(RDMAContext *rdma, int idx) | |
1222 | { | |
1223 | rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd, | |
1224 | rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER, | |
1225 | IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); | |
1226 | if (rdma->wr_data[idx].control_mr) { | |
1227 | rdma->total_registrations++; | |
1228 | return 0; | |
1229 | } | |
733252de | 1230 | error_report("qemu_rdma_reg_control failed"); |
2da776db MH |
1231 | return -1; |
1232 | } | |
1233 | ||
1234 | const char *print_wrid(int wrid) | |
1235 | { | |
1236 | if (wrid >= RDMA_WRID_RECV_CONTROL) { | |
1237 | return wrid_desc[RDMA_WRID_RECV_CONTROL]; | |
1238 | } | |
1239 | return wrid_desc[wrid]; | |
1240 | } | |
1241 | ||
1242 | /* | |
1243 | * RDMA requires memory registration (mlock/pinning), but this is not good for | |
1244 | * overcommitment. | |
1245 | * | |
1246 | * In preparation for the future where LRU information or workload-specific | |
1247 | * writable writable working set memory access behavior is available to QEMU | |
1248 | * it would be nice to have in place the ability to UN-register/UN-pin | |
1249 | * particular memory regions from the RDMA hardware when it is determine that | |
1250 | * those regions of memory will likely not be accessed again in the near future. | |
1251 | * | |
1252 | * While we do not yet have such information right now, the following | |
1253 | * compile-time option allows us to perform a non-optimized version of this | |
1254 | * behavior. | |
1255 | * | |
1256 | * By uncommenting this option, you will cause *all* RDMA transfers to be | |
1257 | * unregistered immediately after the transfer completes on both sides of the | |
1258 | * connection. This has no effect in 'rdma-pin-all' mode, only regular mode. | |
1259 | * | |
1260 | * This will have a terrible impact on migration performance, so until future | |
1261 | * workload information or LRU information is available, do not attempt to use | |
1262 | * this feature except for basic testing. | |
1263 | */ | |
1264 | //#define RDMA_UNREGISTRATION_EXAMPLE | |
1265 | ||
1266 | /* | |
1267 | * Perform a non-optimized memory unregistration after every transfer | |
24ec68ef | 1268 | * for demonstration purposes, only if pin-all is not requested. |
2da776db MH |
1269 | * |
1270 | * Potential optimizations: | |
1271 | * 1. Start a new thread to run this function continuously | |
1272 | - for bit clearing | |
1273 | - and for receipt of unregister messages | |
1274 | * 2. Use an LRU. | |
1275 | * 3. Use workload hints. | |
1276 | */ | |
1277 | static int qemu_rdma_unregister_waiting(RDMAContext *rdma) | |
1278 | { | |
1279 | while (rdma->unregistrations[rdma->unregister_current]) { | |
1280 | int ret; | |
1281 | uint64_t wr_id = rdma->unregistrations[rdma->unregister_current]; | |
1282 | uint64_t chunk = | |
1283 | (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; | |
1284 | uint64_t index = | |
1285 | (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; | |
1286 | RDMALocalBlock *block = | |
1287 | &(rdma->local_ram_blocks.block[index]); | |
1288 | RDMARegister reg = { .current_index = index }; | |
1289 | RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED, | |
1290 | }; | |
1291 | RDMAControlHeader head = { .len = sizeof(RDMARegister), | |
1292 | .type = RDMA_CONTROL_UNREGISTER_REQUEST, | |
1293 | .repeat = 1, | |
1294 | }; | |
1295 | ||
733252de DDAG |
1296 | trace_qemu_rdma_unregister_waiting_proc(chunk, |
1297 | rdma->unregister_current); | |
2da776db MH |
1298 | |
1299 | rdma->unregistrations[rdma->unregister_current] = 0; | |
1300 | rdma->unregister_current++; | |
1301 | ||
1302 | if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) { | |
1303 | rdma->unregister_current = 0; | |
1304 | } | |
1305 | ||
1306 | ||
1307 | /* | |
1308 | * Unregistration is speculative (because migration is single-threaded | |
1309 | * and we cannot break the protocol's inifinband message ordering). | |
1310 | * Thus, if the memory is currently being used for transmission, | |
1311 | * then abort the attempt to unregister and try again | |
1312 | * later the next time a completion is received for this memory. | |
1313 | */ | |
1314 | clear_bit(chunk, block->unregister_bitmap); | |
1315 | ||
1316 | if (test_bit(chunk, block->transit_bitmap)) { | |
733252de | 1317 | trace_qemu_rdma_unregister_waiting_inflight(chunk); |
2da776db MH |
1318 | continue; |
1319 | } | |
1320 | ||
733252de | 1321 | trace_qemu_rdma_unregister_waiting_send(chunk); |
2da776db MH |
1322 | |
1323 | ret = ibv_dereg_mr(block->pmr[chunk]); | |
1324 | block->pmr[chunk] = NULL; | |
1325 | block->remote_keys[chunk] = 0; | |
1326 | ||
1327 | if (ret != 0) { | |
1328 | perror("unregistration chunk failed"); | |
1329 | return -ret; | |
1330 | } | |
1331 | rdma->total_registrations--; | |
1332 | ||
1333 | reg.key.chunk = chunk; | |
b12f7777 | 1334 | register_to_network(rdma, ®); |
2da776db MH |
1335 | ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, |
1336 | &resp, NULL, NULL); | |
1337 | if (ret < 0) { | |
1338 | return ret; | |
1339 | } | |
1340 | ||
733252de | 1341 | trace_qemu_rdma_unregister_waiting_complete(chunk); |
2da776db MH |
1342 | } |
1343 | ||
1344 | return 0; | |
1345 | } | |
1346 | ||
1347 | static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index, | |
1348 | uint64_t chunk) | |
1349 | { | |
1350 | uint64_t result = wr_id & RDMA_WRID_TYPE_MASK; | |
1351 | ||
1352 | result |= (index << RDMA_WRID_BLOCK_SHIFT); | |
1353 | result |= (chunk << RDMA_WRID_CHUNK_SHIFT); | |
1354 | ||
1355 | return result; | |
1356 | } | |
1357 | ||
1358 | /* | |
1359 | * Set bit for unregistration in the next iteration. | |
1360 | * We cannot transmit right here, but will unpin later. | |
1361 | */ | |
1362 | static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index, | |
1363 | uint64_t chunk, uint64_t wr_id) | |
1364 | { | |
1365 | if (rdma->unregistrations[rdma->unregister_next] != 0) { | |
733252de | 1366 | error_report("rdma migration: queue is full"); |
2da776db MH |
1367 | } else { |
1368 | RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); | |
1369 | ||
1370 | if (!test_and_set_bit(chunk, block->unregister_bitmap)) { | |
733252de DDAG |
1371 | trace_qemu_rdma_signal_unregister_append(chunk, |
1372 | rdma->unregister_next); | |
2da776db MH |
1373 | |
1374 | rdma->unregistrations[rdma->unregister_next++] = | |
1375 | qemu_rdma_make_wrid(wr_id, index, chunk); | |
1376 | ||
1377 | if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) { | |
1378 | rdma->unregister_next = 0; | |
1379 | } | |
1380 | } else { | |
733252de | 1381 | trace_qemu_rdma_signal_unregister_already(chunk); |
2da776db MH |
1382 | } |
1383 | } | |
1384 | } | |
1385 | ||
1386 | /* | |
1387 | * Consult the connection manager to see a work request | |
1388 | * (of any kind) has completed. | |
1389 | * Return the work request ID that completed. | |
1390 | */ | |
88571882 IY |
1391 | static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out, |
1392 | uint32_t *byte_len) | |
2da776db MH |
1393 | { |
1394 | int ret; | |
1395 | struct ibv_wc wc; | |
1396 | uint64_t wr_id; | |
1397 | ||
1398 | ret = ibv_poll_cq(rdma->cq, 1, &wc); | |
1399 | ||
1400 | if (!ret) { | |
1401 | *wr_id_out = RDMA_WRID_NONE; | |
1402 | return 0; | |
1403 | } | |
1404 | ||
1405 | if (ret < 0) { | |
733252de | 1406 | error_report("ibv_poll_cq return %d", ret); |
2da776db MH |
1407 | return ret; |
1408 | } | |
1409 | ||
1410 | wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK; | |
1411 | ||
1412 | if (wc.status != IBV_WC_SUCCESS) { | |
1413 | fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n", | |
1414 | wc.status, ibv_wc_status_str(wc.status)); | |
1415 | fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]); | |
1416 | ||
1417 | return -1; | |
1418 | } | |
1419 | ||
1420 | if (rdma->control_ready_expected && | |
1421 | (wr_id >= RDMA_WRID_RECV_CONTROL)) { | |
733252de | 1422 | trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL], |
2da776db MH |
1423 | wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent); |
1424 | rdma->control_ready_expected = 0; | |
1425 | } | |
1426 | ||
1427 | if (wr_id == RDMA_WRID_RDMA_WRITE) { | |
1428 | uint64_t chunk = | |
1429 | (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; | |
1430 | uint64_t index = | |
1431 | (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; | |
1432 | RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); | |
1433 | ||
733252de | 1434 | trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent, |
fbce8c25 SW |
1435 | index, chunk, block->local_host_addr, |
1436 | (void *)(uintptr_t)block->remote_host_addr); | |
2da776db MH |
1437 | |
1438 | clear_bit(chunk, block->transit_bitmap); | |
1439 | ||
1440 | if (rdma->nb_sent > 0) { | |
1441 | rdma->nb_sent--; | |
1442 | } | |
1443 | ||
1444 | if (!rdma->pin_all) { | |
1445 | /* | |
1446 | * FYI: If one wanted to signal a specific chunk to be unregistered | |
1447 | * using LRU or workload-specific information, this is the function | |
1448 | * you would call to do so. That chunk would then get asynchronously | |
1449 | * unregistered later. | |
1450 | */ | |
1451 | #ifdef RDMA_UNREGISTRATION_EXAMPLE | |
1452 | qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id); | |
1453 | #endif | |
1454 | } | |
1455 | } else { | |
733252de | 1456 | trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent); |
2da776db MH |
1457 | } |
1458 | ||
1459 | *wr_id_out = wc.wr_id; | |
88571882 IY |
1460 | if (byte_len) { |
1461 | *byte_len = wc.byte_len; | |
1462 | } | |
2da776db MH |
1463 | |
1464 | return 0; | |
1465 | } | |
1466 | ||
1467 | /* | |
1468 | * Block until the next work request has completed. | |
1469 | * | |
1470 | * First poll to see if a work request has already completed, | |
1471 | * otherwise block. | |
1472 | * | |
1473 | * If we encounter completed work requests for IDs other than | |
1474 | * the one we're interested in, then that's generally an error. | |
1475 | * | |
1476 | * The only exception is actual RDMA Write completions. These | |
1477 | * completions only need to be recorded, but do not actually | |
1478 | * need further processing. | |
1479 | */ | |
88571882 IY |
1480 | static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested, |
1481 | uint32_t *byte_len) | |
2da776db MH |
1482 | { |
1483 | int num_cq_events = 0, ret = 0; | |
1484 | struct ibv_cq *cq; | |
1485 | void *cq_ctx; | |
1486 | uint64_t wr_id = RDMA_WRID_NONE, wr_id_in; | |
1487 | ||
1488 | if (ibv_req_notify_cq(rdma->cq, 0)) { | |
1489 | return -1; | |
1490 | } | |
1491 | /* poll cq first */ | |
1492 | while (wr_id != wrid_requested) { | |
88571882 | 1493 | ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); |
2da776db MH |
1494 | if (ret < 0) { |
1495 | return ret; | |
1496 | } | |
1497 | ||
1498 | wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; | |
1499 | ||
1500 | if (wr_id == RDMA_WRID_NONE) { | |
1501 | break; | |
1502 | } | |
1503 | if (wr_id != wrid_requested) { | |
733252de DDAG |
1504 | trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested), |
1505 | wrid_requested, print_wrid(wr_id), wr_id); | |
2da776db MH |
1506 | } |
1507 | } | |
1508 | ||
1509 | if (wr_id == wrid_requested) { | |
1510 | return 0; | |
1511 | } | |
1512 | ||
1513 | while (1) { | |
1514 | /* | |
22724f49 | 1515 | * Coroutine doesn't start until migration_fd_process_incoming() |
2da776db MH |
1516 | * so don't yield unless we know we're running inside of a coroutine. |
1517 | */ | |
1518 | if (rdma->migration_started_on_destination) { | |
1519 | yield_until_fd_readable(rdma->comp_channel->fd); | |
1520 | } | |
1521 | ||
1522 | if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) { | |
1523 | perror("ibv_get_cq_event"); | |
1524 | goto err_block_for_wrid; | |
1525 | } | |
1526 | ||
1527 | num_cq_events++; | |
1528 | ||
1529 | if (ibv_req_notify_cq(cq, 0)) { | |
1530 | goto err_block_for_wrid; | |
1531 | } | |
1532 | ||
1533 | while (wr_id != wrid_requested) { | |
88571882 | 1534 | ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); |
2da776db MH |
1535 | if (ret < 0) { |
1536 | goto err_block_for_wrid; | |
1537 | } | |
1538 | ||
1539 | wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; | |
1540 | ||
1541 | if (wr_id == RDMA_WRID_NONE) { | |
1542 | break; | |
1543 | } | |
1544 | if (wr_id != wrid_requested) { | |
733252de DDAG |
1545 | trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested), |
1546 | wrid_requested, print_wrid(wr_id), wr_id); | |
2da776db MH |
1547 | } |
1548 | } | |
1549 | ||
1550 | if (wr_id == wrid_requested) { | |
1551 | goto success_block_for_wrid; | |
1552 | } | |
1553 | } | |
1554 | ||
1555 | success_block_for_wrid: | |
1556 | if (num_cq_events) { | |
1557 | ibv_ack_cq_events(cq, num_cq_events); | |
1558 | } | |
1559 | return 0; | |
1560 | ||
1561 | err_block_for_wrid: | |
1562 | if (num_cq_events) { | |
1563 | ibv_ack_cq_events(cq, num_cq_events); | |
1564 | } | |
1565 | return ret; | |
1566 | } | |
1567 | ||
1568 | /* | |
1569 | * Post a SEND message work request for the control channel | |
1570 | * containing some data and block until the post completes. | |
1571 | */ | |
1572 | static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf, | |
1573 | RDMAControlHeader *head) | |
1574 | { | |
1575 | int ret = 0; | |
1f22364b | 1576 | RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL]; |
2da776db MH |
1577 | struct ibv_send_wr *bad_wr; |
1578 | struct ibv_sge sge = { | |
fbce8c25 | 1579 | .addr = (uintptr_t)(wr->control), |
2da776db MH |
1580 | .length = head->len + sizeof(RDMAControlHeader), |
1581 | .lkey = wr->control_mr->lkey, | |
1582 | }; | |
1583 | struct ibv_send_wr send_wr = { | |
1584 | .wr_id = RDMA_WRID_SEND_CONTROL, | |
1585 | .opcode = IBV_WR_SEND, | |
1586 | .send_flags = IBV_SEND_SIGNALED, | |
1587 | .sg_list = &sge, | |
1588 | .num_sge = 1, | |
1589 | }; | |
1590 | ||
733252de | 1591 | trace_qemu_rdma_post_send_control(control_desc[head->type]); |
2da776db MH |
1592 | |
1593 | /* | |
1594 | * We don't actually need to do a memcpy() in here if we used | |
1595 | * the "sge" properly, but since we're only sending control messages | |
1596 | * (not RAM in a performance-critical path), then its OK for now. | |
1597 | * | |
1598 | * The copy makes the RDMAControlHeader simpler to manipulate | |
1599 | * for the time being. | |
1600 | */ | |
6f1484ed | 1601 | assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head)); |
2da776db MH |
1602 | memcpy(wr->control, head, sizeof(RDMAControlHeader)); |
1603 | control_to_network((void *) wr->control); | |
1604 | ||
1605 | if (buf) { | |
1606 | memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len); | |
1607 | } | |
1608 | ||
1609 | ||
e325b49a | 1610 | ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); |
2da776db | 1611 | |
e325b49a | 1612 | if (ret > 0) { |
733252de | 1613 | error_report("Failed to use post IB SEND for control"); |
e325b49a | 1614 | return -ret; |
2da776db MH |
1615 | } |
1616 | ||
88571882 | 1617 | ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL); |
2da776db | 1618 | if (ret < 0) { |
733252de | 1619 | error_report("rdma migration: send polling control error"); |
2da776db MH |
1620 | } |
1621 | ||
1622 | return ret; | |
1623 | } | |
1624 | ||
1625 | /* | |
1626 | * Post a RECV work request in anticipation of some future receipt | |
1627 | * of data on the control channel. | |
1628 | */ | |
1629 | static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx) | |
1630 | { | |
1631 | struct ibv_recv_wr *bad_wr; | |
1632 | struct ibv_sge sge = { | |
fbce8c25 | 1633 | .addr = (uintptr_t)(rdma->wr_data[idx].control), |
2da776db MH |
1634 | .length = RDMA_CONTROL_MAX_BUFFER, |
1635 | .lkey = rdma->wr_data[idx].control_mr->lkey, | |
1636 | }; | |
1637 | ||
1638 | struct ibv_recv_wr recv_wr = { | |
1639 | .wr_id = RDMA_WRID_RECV_CONTROL + idx, | |
1640 | .sg_list = &sge, | |
1641 | .num_sge = 1, | |
1642 | }; | |
1643 | ||
1644 | ||
1645 | if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) { | |
1646 | return -1; | |
1647 | } | |
1648 | ||
1649 | return 0; | |
1650 | } | |
1651 | ||
1652 | /* | |
1653 | * Block and wait for a RECV control channel message to arrive. | |
1654 | */ | |
1655 | static int qemu_rdma_exchange_get_response(RDMAContext *rdma, | |
1656 | RDMAControlHeader *head, int expecting, int idx) | |
1657 | { | |
88571882 IY |
1658 | uint32_t byte_len; |
1659 | int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx, | |
1660 | &byte_len); | |
2da776db MH |
1661 | |
1662 | if (ret < 0) { | |
733252de | 1663 | error_report("rdma migration: recv polling control error!"); |
2da776db MH |
1664 | return ret; |
1665 | } | |
1666 | ||
1667 | network_to_control((void *) rdma->wr_data[idx].control); | |
1668 | memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader)); | |
1669 | ||
733252de | 1670 | trace_qemu_rdma_exchange_get_response_start(control_desc[expecting]); |
2da776db MH |
1671 | |
1672 | if (expecting == RDMA_CONTROL_NONE) { | |
733252de DDAG |
1673 | trace_qemu_rdma_exchange_get_response_none(control_desc[head->type], |
1674 | head->type); | |
2da776db | 1675 | } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) { |
733252de DDAG |
1676 | error_report("Was expecting a %s (%d) control message" |
1677 | ", but got: %s (%d), length: %d", | |
2da776db MH |
1678 | control_desc[expecting], expecting, |
1679 | control_desc[head->type], head->type, head->len); | |
cd5ea070 DDAG |
1680 | if (head->type == RDMA_CONTROL_ERROR) { |
1681 | rdma->received_error = true; | |
1682 | } | |
2da776db MH |
1683 | return -EIO; |
1684 | } | |
6f1484ed | 1685 | if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) { |
81b07353 | 1686 | error_report("too long length: %d", head->len); |
6f1484ed IY |
1687 | return -EINVAL; |
1688 | } | |
88571882 | 1689 | if (sizeof(*head) + head->len != byte_len) { |
733252de | 1690 | error_report("Malformed length: %d byte_len %d", head->len, byte_len); |
88571882 IY |
1691 | return -EINVAL; |
1692 | } | |
2da776db MH |
1693 | |
1694 | return 0; | |
1695 | } | |
1696 | ||
1697 | /* | |
1698 | * When a RECV work request has completed, the work request's | |
1699 | * buffer is pointed at the header. | |
1700 | * | |
1701 | * This will advance the pointer to the data portion | |
1702 | * of the control message of the work request's buffer that | |
1703 | * was populated after the work request finished. | |
1704 | */ | |
1705 | static void qemu_rdma_move_header(RDMAContext *rdma, int idx, | |
1706 | RDMAControlHeader *head) | |
1707 | { | |
1708 | rdma->wr_data[idx].control_len = head->len; | |
1709 | rdma->wr_data[idx].control_curr = | |
1710 | rdma->wr_data[idx].control + sizeof(RDMAControlHeader); | |
1711 | } | |
1712 | ||
1713 | /* | |
1714 | * This is an 'atomic' high-level operation to deliver a single, unified | |
1715 | * control-channel message. | |
1716 | * | |
1717 | * Additionally, if the user is expecting some kind of reply to this message, | |
1718 | * they can request a 'resp' response message be filled in by posting an | |
1719 | * additional work request on behalf of the user and waiting for an additional | |
1720 | * completion. | |
1721 | * | |
1722 | * The extra (optional) response is used during registration to us from having | |
1723 | * to perform an *additional* exchange of message just to provide a response by | |
1724 | * instead piggy-backing on the acknowledgement. | |
1725 | */ | |
1726 | static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, | |
1727 | uint8_t *data, RDMAControlHeader *resp, | |
1728 | int *resp_idx, | |
1729 | int (*callback)(RDMAContext *rdma)) | |
1730 | { | |
1731 | int ret = 0; | |
1732 | ||
1733 | /* | |
1734 | * Wait until the dest is ready before attempting to deliver the message | |
1735 | * by waiting for a READY message. | |
1736 | */ | |
1737 | if (rdma->control_ready_expected) { | |
1738 | RDMAControlHeader resp; | |
1739 | ret = qemu_rdma_exchange_get_response(rdma, | |
1740 | &resp, RDMA_CONTROL_READY, RDMA_WRID_READY); | |
1741 | if (ret < 0) { | |
1742 | return ret; | |
1743 | } | |
1744 | } | |
1745 | ||
1746 | /* | |
1747 | * If the user is expecting a response, post a WR in anticipation of it. | |
1748 | */ | |
1749 | if (resp) { | |
1750 | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA); | |
1751 | if (ret) { | |
733252de | 1752 | error_report("rdma migration: error posting" |
2da776db MH |
1753 | " extra control recv for anticipated result!"); |
1754 | return ret; | |
1755 | } | |
1756 | } | |
1757 | ||
1758 | /* | |
1759 | * Post a WR to replace the one we just consumed for the READY message. | |
1760 | */ | |
1761 | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); | |
1762 | if (ret) { | |
733252de | 1763 | error_report("rdma migration: error posting first control recv!"); |
2da776db MH |
1764 | return ret; |
1765 | } | |
1766 | ||
1767 | /* | |
1768 | * Deliver the control message that was requested. | |
1769 | */ | |
1770 | ret = qemu_rdma_post_send_control(rdma, data, head); | |
1771 | ||
1772 | if (ret < 0) { | |
733252de | 1773 | error_report("Failed to send control buffer!"); |
2da776db MH |
1774 | return ret; |
1775 | } | |
1776 | ||
1777 | /* | |
1778 | * If we're expecting a response, block and wait for it. | |
1779 | */ | |
1780 | if (resp) { | |
1781 | if (callback) { | |
733252de | 1782 | trace_qemu_rdma_exchange_send_issue_callback(); |
2da776db MH |
1783 | ret = callback(rdma); |
1784 | if (ret < 0) { | |
1785 | return ret; | |
1786 | } | |
1787 | } | |
1788 | ||
733252de | 1789 | trace_qemu_rdma_exchange_send_waiting(control_desc[resp->type]); |
2da776db MH |
1790 | ret = qemu_rdma_exchange_get_response(rdma, resp, |
1791 | resp->type, RDMA_WRID_DATA); | |
1792 | ||
1793 | if (ret < 0) { | |
1794 | return ret; | |
1795 | } | |
1796 | ||
1797 | qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp); | |
1798 | if (resp_idx) { | |
1799 | *resp_idx = RDMA_WRID_DATA; | |
1800 | } | |
733252de | 1801 | trace_qemu_rdma_exchange_send_received(control_desc[resp->type]); |
2da776db MH |
1802 | } |
1803 | ||
1804 | rdma->control_ready_expected = 1; | |
1805 | ||
1806 | return 0; | |
1807 | } | |
1808 | ||
1809 | /* | |
1810 | * This is an 'atomic' high-level operation to receive a single, unified | |
1811 | * control-channel message. | |
1812 | */ | |
1813 | static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head, | |
1814 | int expecting) | |
1815 | { | |
1816 | RDMAControlHeader ready = { | |
1817 | .len = 0, | |
1818 | .type = RDMA_CONTROL_READY, | |
1819 | .repeat = 1, | |
1820 | }; | |
1821 | int ret; | |
1822 | ||
1823 | /* | |
1824 | * Inform the source that we're ready to receive a message. | |
1825 | */ | |
1826 | ret = qemu_rdma_post_send_control(rdma, NULL, &ready); | |
1827 | ||
1828 | if (ret < 0) { | |
733252de | 1829 | error_report("Failed to send control buffer!"); |
2da776db MH |
1830 | return ret; |
1831 | } | |
1832 | ||
1833 | /* | |
1834 | * Block and wait for the message. | |
1835 | */ | |
1836 | ret = qemu_rdma_exchange_get_response(rdma, head, | |
1837 | expecting, RDMA_WRID_READY); | |
1838 | ||
1839 | if (ret < 0) { | |
1840 | return ret; | |
1841 | } | |
1842 | ||
1843 | qemu_rdma_move_header(rdma, RDMA_WRID_READY, head); | |
1844 | ||
1845 | /* | |
1846 | * Post a new RECV work request to replace the one we just consumed. | |
1847 | */ | |
1848 | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); | |
1849 | if (ret) { | |
733252de | 1850 | error_report("rdma migration: error posting second control recv!"); |
2da776db MH |
1851 | return ret; |
1852 | } | |
1853 | ||
1854 | return 0; | |
1855 | } | |
1856 | ||
1857 | /* | |
1858 | * Write an actual chunk of memory using RDMA. | |
1859 | * | |
1860 | * If we're using dynamic registration on the dest-side, we have to | |
1861 | * send a registration command first. | |
1862 | */ | |
1863 | static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma, | |
1864 | int current_index, uint64_t current_addr, | |
1865 | uint64_t length) | |
1866 | { | |
1867 | struct ibv_sge sge; | |
1868 | struct ibv_send_wr send_wr = { 0 }; | |
1869 | struct ibv_send_wr *bad_wr; | |
1870 | int reg_result_idx, ret, count = 0; | |
1871 | uint64_t chunk, chunks; | |
1872 | uint8_t *chunk_start, *chunk_end; | |
1873 | RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]); | |
1874 | RDMARegister reg; | |
1875 | RDMARegisterResult *reg_result; | |
1876 | RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT }; | |
1877 | RDMAControlHeader head = { .len = sizeof(RDMARegister), | |
1878 | .type = RDMA_CONTROL_REGISTER_REQUEST, | |
1879 | .repeat = 1, | |
1880 | }; | |
1881 | ||
1882 | retry: | |
fbce8c25 | 1883 | sge.addr = (uintptr_t)(block->local_host_addr + |
2da776db MH |
1884 | (current_addr - block->offset)); |
1885 | sge.length = length; | |
1886 | ||
fbce8c25 SW |
1887 | chunk = ram_chunk_index(block->local_host_addr, |
1888 | (uint8_t *)(uintptr_t)sge.addr); | |
2da776db MH |
1889 | chunk_start = ram_chunk_start(block, chunk); |
1890 | ||
1891 | if (block->is_ram_block) { | |
1892 | chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT); | |
1893 | ||
1894 | if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { | |
1895 | chunks--; | |
1896 | } | |
1897 | } else { | |
1898 | chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT); | |
1899 | ||
1900 | if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { | |
1901 | chunks--; | |
1902 | } | |
1903 | } | |
1904 | ||
733252de DDAG |
1905 | trace_qemu_rdma_write_one_top(chunks + 1, |
1906 | (chunks + 1) * | |
1907 | (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024); | |
2da776db MH |
1908 | |
1909 | chunk_end = ram_chunk_end(block, chunk + chunks); | |
1910 | ||
1911 | if (!rdma->pin_all) { | |
1912 | #ifdef RDMA_UNREGISTRATION_EXAMPLE | |
1913 | qemu_rdma_unregister_waiting(rdma); | |
1914 | #endif | |
1915 | } | |
1916 | ||
1917 | while (test_bit(chunk, block->transit_bitmap)) { | |
1918 | (void)count; | |
733252de | 1919 | trace_qemu_rdma_write_one_block(count++, current_index, chunk, |
2da776db MH |
1920 | sge.addr, length, rdma->nb_sent, block->nb_chunks); |
1921 | ||
88571882 | 1922 | ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); |
2da776db MH |
1923 | |
1924 | if (ret < 0) { | |
733252de | 1925 | error_report("Failed to Wait for previous write to complete " |
2da776db | 1926 | "block %d chunk %" PRIu64 |
733252de | 1927 | " current %" PRIu64 " len %" PRIu64 " %d", |
2da776db MH |
1928 | current_index, chunk, sge.addr, length, rdma->nb_sent); |
1929 | return ret; | |
1930 | } | |
1931 | } | |
1932 | ||
1933 | if (!rdma->pin_all || !block->is_ram_block) { | |
1934 | if (!block->remote_keys[chunk]) { | |
1935 | /* | |
1936 | * This chunk has not yet been registered, so first check to see | |
1937 | * if the entire chunk is zero. If so, tell the other size to | |
1938 | * memset() + madvise() the entire chunk without RDMA. | |
1939 | */ | |
1940 | ||
a1febc49 | 1941 | if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) { |
2da776db MH |
1942 | RDMACompress comp = { |
1943 | .offset = current_addr, | |
1944 | .value = 0, | |
1945 | .block_idx = current_index, | |
1946 | .length = length, | |
1947 | }; | |
1948 | ||
1949 | head.len = sizeof(comp); | |
1950 | head.type = RDMA_CONTROL_COMPRESS; | |
1951 | ||
733252de DDAG |
1952 | trace_qemu_rdma_write_one_zero(chunk, sge.length, |
1953 | current_index, current_addr); | |
2da776db | 1954 | |
b12f7777 | 1955 | compress_to_network(rdma, &comp); |
2da776db MH |
1956 | ret = qemu_rdma_exchange_send(rdma, &head, |
1957 | (uint8_t *) &comp, NULL, NULL, NULL); | |
1958 | ||
1959 | if (ret < 0) { | |
1960 | return -EIO; | |
1961 | } | |
1962 | ||
1963 | acct_update_position(f, sge.length, true); | |
1964 | ||
1965 | return 1; | |
1966 | } | |
1967 | ||
1968 | /* | |
1969 | * Otherwise, tell other side to register. | |
1970 | */ | |
1971 | reg.current_index = current_index; | |
1972 | if (block->is_ram_block) { | |
1973 | reg.key.current_addr = current_addr; | |
1974 | } else { | |
1975 | reg.key.chunk = chunk; | |
1976 | } | |
1977 | reg.chunks = chunks; | |
1978 | ||
733252de DDAG |
1979 | trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index, |
1980 | current_addr); | |
2da776db | 1981 | |
b12f7777 | 1982 | register_to_network(rdma, ®); |
2da776db MH |
1983 | ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, |
1984 | &resp, ®_result_idx, NULL); | |
1985 | if (ret < 0) { | |
1986 | return ret; | |
1987 | } | |
1988 | ||
1989 | /* try to overlap this single registration with the one we sent. */ | |
3ac040c0 | 1990 | if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr, |
2da776db MH |
1991 | &sge.lkey, NULL, chunk, |
1992 | chunk_start, chunk_end)) { | |
733252de | 1993 | error_report("cannot get lkey"); |
2da776db MH |
1994 | return -EINVAL; |
1995 | } | |
1996 | ||
1997 | reg_result = (RDMARegisterResult *) | |
1998 | rdma->wr_data[reg_result_idx].control_curr; | |
1999 | ||
2000 | network_to_result(reg_result); | |
2001 | ||
733252de DDAG |
2002 | trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk], |
2003 | reg_result->rkey, chunk); | |
2da776db MH |
2004 | |
2005 | block->remote_keys[chunk] = reg_result->rkey; | |
2006 | block->remote_host_addr = reg_result->host_addr; | |
2007 | } else { | |
2008 | /* already registered before */ | |
3ac040c0 | 2009 | if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr, |
2da776db MH |
2010 | &sge.lkey, NULL, chunk, |
2011 | chunk_start, chunk_end)) { | |
733252de | 2012 | error_report("cannot get lkey!"); |
2da776db MH |
2013 | return -EINVAL; |
2014 | } | |
2015 | } | |
2016 | ||
2017 | send_wr.wr.rdma.rkey = block->remote_keys[chunk]; | |
2018 | } else { | |
2019 | send_wr.wr.rdma.rkey = block->remote_rkey; | |
2020 | ||
3ac040c0 | 2021 | if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr, |
2da776db MH |
2022 | &sge.lkey, NULL, chunk, |
2023 | chunk_start, chunk_end)) { | |
733252de | 2024 | error_report("cannot get lkey!"); |
2da776db MH |
2025 | return -EINVAL; |
2026 | } | |
2027 | } | |
2028 | ||
2029 | /* | |
2030 | * Encode the ram block index and chunk within this wrid. | |
2031 | * We will use this information at the time of completion | |
2032 | * to figure out which bitmap to check against and then which | |
2033 | * chunk in the bitmap to look for. | |
2034 | */ | |
2035 | send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE, | |
2036 | current_index, chunk); | |
2037 | ||
2038 | send_wr.opcode = IBV_WR_RDMA_WRITE; | |
2039 | send_wr.send_flags = IBV_SEND_SIGNALED; | |
2040 | send_wr.sg_list = &sge; | |
2041 | send_wr.num_sge = 1; | |
2042 | send_wr.wr.rdma.remote_addr = block->remote_host_addr + | |
2043 | (current_addr - block->offset); | |
2044 | ||
733252de DDAG |
2045 | trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr, |
2046 | sge.length); | |
2da776db MH |
2047 | |
2048 | /* | |
2049 | * ibv_post_send() does not return negative error numbers, | |
2050 | * per the specification they are positive - no idea why. | |
2051 | */ | |
2052 | ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); | |
2053 | ||
2054 | if (ret == ENOMEM) { | |
733252de | 2055 | trace_qemu_rdma_write_one_queue_full(); |
88571882 | 2056 | ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); |
2da776db | 2057 | if (ret < 0) { |
733252de DDAG |
2058 | error_report("rdma migration: failed to make " |
2059 | "room in full send queue! %d", ret); | |
2da776db MH |
2060 | return ret; |
2061 | } | |
2062 | ||
2063 | goto retry; | |
2064 | ||
2065 | } else if (ret > 0) { | |
2066 | perror("rdma migration: post rdma write failed"); | |
2067 | return -ret; | |
2068 | } | |
2069 | ||
2070 | set_bit(chunk, block->transit_bitmap); | |
2071 | acct_update_position(f, sge.length, false); | |
2072 | rdma->total_writes++; | |
2073 | ||
2074 | return 0; | |
2075 | } | |
2076 | ||
2077 | /* | |
2078 | * Push out any unwritten RDMA operations. | |
2079 | * | |
2080 | * We support sending out multiple chunks at the same time. | |
2081 | * Not all of them need to get signaled in the completion queue. | |
2082 | */ | |
2083 | static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma) | |
2084 | { | |
2085 | int ret; | |
2086 | ||
2087 | if (!rdma->current_length) { | |
2088 | return 0; | |
2089 | } | |
2090 | ||
2091 | ret = qemu_rdma_write_one(f, rdma, | |
2092 | rdma->current_index, rdma->current_addr, rdma->current_length); | |
2093 | ||
2094 | if (ret < 0) { | |
2095 | return ret; | |
2096 | } | |
2097 | ||
2098 | if (ret == 0) { | |
2099 | rdma->nb_sent++; | |
733252de | 2100 | trace_qemu_rdma_write_flush(rdma->nb_sent); |
2da776db MH |
2101 | } |
2102 | ||
2103 | rdma->current_length = 0; | |
2104 | rdma->current_addr = 0; | |
2105 | ||
2106 | return 0; | |
2107 | } | |
2108 | ||
2109 | static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma, | |
2110 | uint64_t offset, uint64_t len) | |
2111 | { | |
44b59494 IY |
2112 | RDMALocalBlock *block; |
2113 | uint8_t *host_addr; | |
2114 | uint8_t *chunk_end; | |
2115 | ||
2116 | if (rdma->current_index < 0) { | |
2117 | return 0; | |
2118 | } | |
2119 | ||
2120 | if (rdma->current_chunk < 0) { | |
2121 | return 0; | |
2122 | } | |
2123 | ||
2124 | block = &(rdma->local_ram_blocks.block[rdma->current_index]); | |
2125 | host_addr = block->local_host_addr + (offset - block->offset); | |
2126 | chunk_end = ram_chunk_end(block, rdma->current_chunk); | |
2da776db MH |
2127 | |
2128 | if (rdma->current_length == 0) { | |
2129 | return 0; | |
2130 | } | |
2131 | ||
2132 | /* | |
2133 | * Only merge into chunk sequentially. | |
2134 | */ | |
2135 | if (offset != (rdma->current_addr + rdma->current_length)) { | |
2136 | return 0; | |
2137 | } | |
2138 | ||
2da776db MH |
2139 | if (offset < block->offset) { |
2140 | return 0; | |
2141 | } | |
2142 | ||
2143 | if ((offset + len) > (block->offset + block->length)) { | |
2144 | return 0; | |
2145 | } | |
2146 | ||
2da776db MH |
2147 | if ((host_addr + len) > chunk_end) { |
2148 | return 0; | |
2149 | } | |
2150 | ||
2151 | return 1; | |
2152 | } | |
2153 | ||
2154 | /* | |
2155 | * We're not actually writing here, but doing three things: | |
2156 | * | |
2157 | * 1. Identify the chunk the buffer belongs to. | |
2158 | * 2. If the chunk is full or the buffer doesn't belong to the current | |
2159 | * chunk, then start a new chunk and flush() the old chunk. | |
2160 | * 3. To keep the hardware busy, we also group chunks into batches | |
2161 | * and only require that a batch gets acknowledged in the completion | |
2162 | * qeueue instead of each individual chunk. | |
2163 | */ | |
2164 | static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma, | |
2165 | uint64_t block_offset, uint64_t offset, | |
2166 | uint64_t len) | |
2167 | { | |
2168 | uint64_t current_addr = block_offset + offset; | |
2169 | uint64_t index = rdma->current_index; | |
2170 | uint64_t chunk = rdma->current_chunk; | |
2171 | int ret; | |
2172 | ||
2173 | /* If we cannot merge it, we flush the current buffer first. */ | |
2174 | if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) { | |
2175 | ret = qemu_rdma_write_flush(f, rdma); | |
2176 | if (ret) { | |
2177 | return ret; | |
2178 | } | |
2179 | rdma->current_length = 0; | |
2180 | rdma->current_addr = current_addr; | |
2181 | ||
2182 | ret = qemu_rdma_search_ram_block(rdma, block_offset, | |
2183 | offset, len, &index, &chunk); | |
2184 | if (ret) { | |
733252de | 2185 | error_report("ram block search failed"); |
2da776db MH |
2186 | return ret; |
2187 | } | |
2188 | rdma->current_index = index; | |
2189 | rdma->current_chunk = chunk; | |
2190 | } | |
2191 | ||
2192 | /* merge it */ | |
2193 | rdma->current_length += len; | |
2194 | ||
2195 | /* flush it if buffer is too large */ | |
2196 | if (rdma->current_length >= RDMA_MERGE_MAX) { | |
2197 | return qemu_rdma_write_flush(f, rdma); | |
2198 | } | |
2199 | ||
2200 | return 0; | |
2201 | } | |
2202 | ||
2203 | static void qemu_rdma_cleanup(RDMAContext *rdma) | |
2204 | { | |
2205 | struct rdma_cm_event *cm_event; | |
2206 | int ret, idx; | |
2207 | ||
5a91337c | 2208 | if (rdma->cm_id && rdma->connected) { |
cd5ea070 | 2209 | if (rdma->error_state && !rdma->received_error) { |
2da776db MH |
2210 | RDMAControlHeader head = { .len = 0, |
2211 | .type = RDMA_CONTROL_ERROR, | |
2212 | .repeat = 1, | |
2213 | }; | |
733252de | 2214 | error_report("Early error. Sending error."); |
2da776db MH |
2215 | qemu_rdma_post_send_control(rdma, NULL, &head); |
2216 | } | |
2217 | ||
2218 | ret = rdma_disconnect(rdma->cm_id); | |
2219 | if (!ret) { | |
733252de | 2220 | trace_qemu_rdma_cleanup_waiting_for_disconnect(); |
2da776db MH |
2221 | ret = rdma_get_cm_event(rdma->channel, &cm_event); |
2222 | if (!ret) { | |
2223 | rdma_ack_cm_event(cm_event); | |
2224 | } | |
2225 | } | |
733252de | 2226 | trace_qemu_rdma_cleanup_disconnect(); |
5a91337c | 2227 | rdma->connected = false; |
2da776db MH |
2228 | } |
2229 | ||
a97270ad DDAG |
2230 | g_free(rdma->dest_blocks); |
2231 | rdma->dest_blocks = NULL; | |
2da776db | 2232 | |
1f22364b | 2233 | for (idx = 0; idx < RDMA_WRID_MAX; idx++) { |
2da776db MH |
2234 | if (rdma->wr_data[idx].control_mr) { |
2235 | rdma->total_registrations--; | |
2236 | ibv_dereg_mr(rdma->wr_data[idx].control_mr); | |
2237 | } | |
2238 | rdma->wr_data[idx].control_mr = NULL; | |
2239 | } | |
2240 | ||
2241 | if (rdma->local_ram_blocks.block) { | |
2242 | while (rdma->local_ram_blocks.nb_blocks) { | |
03fcab38 | 2243 | rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]); |
2da776db MH |
2244 | } |
2245 | } | |
2246 | ||
80b262e1 PR |
2247 | if (rdma->qp) { |
2248 | rdma_destroy_qp(rdma->cm_id); | |
2249 | rdma->qp = NULL; | |
2250 | } | |
2da776db MH |
2251 | if (rdma->cq) { |
2252 | ibv_destroy_cq(rdma->cq); | |
2253 | rdma->cq = NULL; | |
2254 | } | |
2255 | if (rdma->comp_channel) { | |
2256 | ibv_destroy_comp_channel(rdma->comp_channel); | |
2257 | rdma->comp_channel = NULL; | |
2258 | } | |
2259 | if (rdma->pd) { | |
2260 | ibv_dealloc_pd(rdma->pd); | |
2261 | rdma->pd = NULL; | |
2262 | } | |
2da776db MH |
2263 | if (rdma->cm_id) { |
2264 | rdma_destroy_id(rdma->cm_id); | |
2265 | rdma->cm_id = NULL; | |
2266 | } | |
80b262e1 PR |
2267 | if (rdma->listen_id) { |
2268 | rdma_destroy_id(rdma->listen_id); | |
2269 | rdma->listen_id = NULL; | |
2270 | } | |
2da776db MH |
2271 | if (rdma->channel) { |
2272 | rdma_destroy_event_channel(rdma->channel); | |
2273 | rdma->channel = NULL; | |
2274 | } | |
e1d0fb37 IY |
2275 | g_free(rdma->host); |
2276 | rdma->host = NULL; | |
2da776db MH |
2277 | } |
2278 | ||
2279 | ||
bbfb89e3 | 2280 | static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp) |
2da776db MH |
2281 | { |
2282 | int ret, idx; | |
2283 | Error *local_err = NULL, **temp = &local_err; | |
2284 | ||
2285 | /* | |
2286 | * Will be validated against destination's actual capabilities | |
2287 | * after the connect() completes. | |
2288 | */ | |
2289 | rdma->pin_all = pin_all; | |
2290 | ||
2291 | ret = qemu_rdma_resolve_host(rdma, temp); | |
2292 | if (ret) { | |
2293 | goto err_rdma_source_init; | |
2294 | } | |
2295 | ||
2296 | ret = qemu_rdma_alloc_pd_cq(rdma); | |
2297 | if (ret) { | |
2298 | ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()" | |
2299 | " limits may be too low. Please check $ ulimit -a # and " | |
66988941 | 2300 | "search for 'ulimit -l' in the output"); |
2da776db MH |
2301 | goto err_rdma_source_init; |
2302 | } | |
2303 | ||
2304 | ret = qemu_rdma_alloc_qp(rdma); | |
2305 | if (ret) { | |
66988941 | 2306 | ERROR(temp, "rdma migration: error allocating qp!"); |
2da776db MH |
2307 | goto err_rdma_source_init; |
2308 | } | |
2309 | ||
2310 | ret = qemu_rdma_init_ram_blocks(rdma); | |
2311 | if (ret) { | |
66988941 | 2312 | ERROR(temp, "rdma migration: error initializing ram blocks!"); |
2da776db MH |
2313 | goto err_rdma_source_init; |
2314 | } | |
2315 | ||
760ff4be DDAG |
2316 | /* Build the hash that maps from offset to RAMBlock */ |
2317 | rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal); | |
2318 | for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) { | |
2319 | g_hash_table_insert(rdma->blockmap, | |
2320 | (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset, | |
2321 | &rdma->local_ram_blocks.block[idx]); | |
2322 | } | |
2323 | ||
1f22364b | 2324 | for (idx = 0; idx < RDMA_WRID_MAX; idx++) { |
2da776db MH |
2325 | ret = qemu_rdma_reg_control(rdma, idx); |
2326 | if (ret) { | |
66988941 | 2327 | ERROR(temp, "rdma migration: error registering %d control!", |
2da776db MH |
2328 | idx); |
2329 | goto err_rdma_source_init; | |
2330 | } | |
2331 | } | |
2332 | ||
2333 | return 0; | |
2334 | ||
2335 | err_rdma_source_init: | |
2336 | error_propagate(errp, local_err); | |
2337 | qemu_rdma_cleanup(rdma); | |
2338 | return -1; | |
2339 | } | |
2340 | ||
2341 | static int qemu_rdma_connect(RDMAContext *rdma, Error **errp) | |
2342 | { | |
2343 | RDMACapabilities cap = { | |
2344 | .version = RDMA_CONTROL_VERSION_CURRENT, | |
2345 | .flags = 0, | |
2346 | }; | |
2347 | struct rdma_conn_param conn_param = { .initiator_depth = 2, | |
2348 | .retry_count = 5, | |
2349 | .private_data = &cap, | |
2350 | .private_data_len = sizeof(cap), | |
2351 | }; | |
2352 | struct rdma_cm_event *cm_event; | |
2353 | int ret; | |
2354 | ||
2355 | /* | |
2356 | * Only negotiate the capability with destination if the user | |
2357 | * on the source first requested the capability. | |
2358 | */ | |
2359 | if (rdma->pin_all) { | |
733252de | 2360 | trace_qemu_rdma_connect_pin_all_requested(); |
2da776db MH |
2361 | cap.flags |= RDMA_CAPABILITY_PIN_ALL; |
2362 | } | |
2363 | ||
2364 | caps_to_network(&cap); | |
2365 | ||
2366 | ret = rdma_connect(rdma->cm_id, &conn_param); | |
2367 | if (ret) { | |
2368 | perror("rdma_connect"); | |
66988941 | 2369 | ERROR(errp, "connecting to destination!"); |
2da776db MH |
2370 | goto err_rdma_source_connect; |
2371 | } | |
2372 | ||
2373 | ret = rdma_get_cm_event(rdma->channel, &cm_event); | |
2374 | if (ret) { | |
2375 | perror("rdma_get_cm_event after rdma_connect"); | |
66988941 | 2376 | ERROR(errp, "connecting to destination!"); |
2da776db | 2377 | rdma_ack_cm_event(cm_event); |
2da776db MH |
2378 | goto err_rdma_source_connect; |
2379 | } | |
2380 | ||
2381 | if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { | |
2382 | perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect"); | |
66988941 | 2383 | ERROR(errp, "connecting to destination!"); |
2da776db | 2384 | rdma_ack_cm_event(cm_event); |
2da776db MH |
2385 | goto err_rdma_source_connect; |
2386 | } | |
5a91337c | 2387 | rdma->connected = true; |
2da776db MH |
2388 | |
2389 | memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); | |
2390 | network_to_caps(&cap); | |
2391 | ||
2392 | /* | |
2393 | * Verify that the *requested* capabilities are supported by the destination | |
2394 | * and disable them otherwise. | |
2395 | */ | |
2396 | if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) { | |
2397 | ERROR(errp, "Server cannot support pinning all memory. " | |
66988941 | 2398 | "Will register memory dynamically."); |
2da776db MH |
2399 | rdma->pin_all = false; |
2400 | } | |
2401 | ||
733252de | 2402 | trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all); |
2da776db MH |
2403 | |
2404 | rdma_ack_cm_event(cm_event); | |
2405 | ||
87772639 | 2406 | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); |
2da776db | 2407 | if (ret) { |
66988941 | 2408 | ERROR(errp, "posting second control recv!"); |
2da776db MH |
2409 | goto err_rdma_source_connect; |
2410 | } | |
2411 | ||
2412 | rdma->control_ready_expected = 1; | |
2413 | rdma->nb_sent = 0; | |
2414 | return 0; | |
2415 | ||
2416 | err_rdma_source_connect: | |
2417 | qemu_rdma_cleanup(rdma); | |
2418 | return -1; | |
2419 | } | |
2420 | ||
2421 | static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp) | |
2422 | { | |
1dbd2fd9 | 2423 | int ret, idx; |
2da776db MH |
2424 | struct rdma_cm_id *listen_id; |
2425 | char ip[40] = "unknown"; | |
1dbd2fd9 | 2426 | struct rdma_addrinfo *res, *e; |
b58c8552 | 2427 | char port_str[16]; |
2da776db | 2428 | |
1f22364b | 2429 | for (idx = 0; idx < RDMA_WRID_MAX; idx++) { |
2da776db MH |
2430 | rdma->wr_data[idx].control_len = 0; |
2431 | rdma->wr_data[idx].control_curr = NULL; | |
2432 | } | |
2433 | ||
1dbd2fd9 | 2434 | if (!rdma->host || !rdma->host[0]) { |
66988941 | 2435 | ERROR(errp, "RDMA host is not set!"); |
2da776db MH |
2436 | rdma->error_state = -EINVAL; |
2437 | return -1; | |
2438 | } | |
2439 | /* create CM channel */ | |
2440 | rdma->channel = rdma_create_event_channel(); | |
2441 | if (!rdma->channel) { | |
66988941 | 2442 | ERROR(errp, "could not create rdma event channel"); |
2da776db MH |
2443 | rdma->error_state = -EINVAL; |
2444 | return -1; | |
2445 | } | |
2446 | ||
2447 | /* create CM id */ | |
2448 | ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP); | |
2449 | if (ret) { | |
66988941 | 2450 | ERROR(errp, "could not create cm_id!"); |
2da776db MH |
2451 | goto err_dest_init_create_listen_id; |
2452 | } | |
2453 | ||
b58c8552 MH |
2454 | snprintf(port_str, 16, "%d", rdma->port); |
2455 | port_str[15] = '\0'; | |
2da776db | 2456 | |
1dbd2fd9 MT |
2457 | ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); |
2458 | if (ret < 0) { | |
2459 | ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); | |
2460 | goto err_dest_init_bind_addr; | |
2461 | } | |
6470215b | 2462 | |
1dbd2fd9 MT |
2463 | for (e = res; e != NULL; e = e->ai_next) { |
2464 | inet_ntop(e->ai_family, | |
2465 | &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); | |
2466 | trace_qemu_rdma_dest_init_trying(rdma->host, ip); | |
2467 | ret = rdma_bind_addr(listen_id, e->ai_dst_addr); | |
2468 | if (ret) { | |
2469 | continue; | |
2da776db | 2470 | } |
1dbd2fd9 | 2471 | if (e->ai_family == AF_INET6) { |
bbfb89e3 | 2472 | ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp); |
1dbd2fd9 MT |
2473 | if (ret) { |
2474 | continue; | |
6470215b MH |
2475 | } |
2476 | } | |
1dbd2fd9 MT |
2477 | break; |
2478 | } | |
b58c8552 | 2479 | |
1dbd2fd9 | 2480 | if (!e) { |
6470215b MH |
2481 | ERROR(errp, "Error: could not rdma_bind_addr!"); |
2482 | goto err_dest_init_bind_addr; | |
2da776db | 2483 | } |
2da776db MH |
2484 | |
2485 | rdma->listen_id = listen_id; | |
2486 | qemu_rdma_dump_gid("dest_init", listen_id); | |
2487 | return 0; | |
2488 | ||
2489 | err_dest_init_bind_addr: | |
2490 | rdma_destroy_id(listen_id); | |
2491 | err_dest_init_create_listen_id: | |
2492 | rdma_destroy_event_channel(rdma->channel); | |
2493 | rdma->channel = NULL; | |
2494 | rdma->error_state = ret; | |
2495 | return ret; | |
2496 | ||
2497 | } | |
2498 | ||
2499 | static void *qemu_rdma_data_init(const char *host_port, Error **errp) | |
2500 | { | |
2501 | RDMAContext *rdma = NULL; | |
2502 | InetSocketAddress *addr; | |
2503 | ||
2504 | if (host_port) { | |
97f3ad35 | 2505 | rdma = g_new0(RDMAContext, 1); |
2da776db MH |
2506 | rdma->current_index = -1; |
2507 | rdma->current_chunk = -1; | |
2508 | ||
2509 | addr = inet_parse(host_port, NULL); | |
2510 | if (addr != NULL) { | |
2511 | rdma->port = atoi(addr->port); | |
2512 | rdma->host = g_strdup(addr->host); | |
2513 | } else { | |
2514 | ERROR(errp, "bad RDMA migration address '%s'", host_port); | |
2515 | g_free(rdma); | |
e325b49a | 2516 | rdma = NULL; |
2da776db | 2517 | } |
e325b49a MH |
2518 | |
2519 | qapi_free_InetSocketAddress(addr); | |
2da776db MH |
2520 | } |
2521 | ||
2522 | return rdma; | |
2523 | } | |
2524 | ||
2525 | /* | |
2526 | * QEMUFile interface to the control channel. | |
2527 | * SEND messages for control only. | |
971ae6ef | 2528 | * VM's ram is handled with regular RDMA messages. |
2da776db | 2529 | */ |
6ddd2d76 DB |
2530 | static ssize_t qio_channel_rdma_writev(QIOChannel *ioc, |
2531 | const struct iovec *iov, | |
2532 | size_t niov, | |
2533 | int *fds, | |
2534 | size_t nfds, | |
2535 | Error **errp) | |
2536 | { | |
2537 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc); | |
2538 | QEMUFile *f = rioc->file; | |
2539 | RDMAContext *rdma = rioc->rdma; | |
2da776db | 2540 | int ret; |
6ddd2d76 DB |
2541 | ssize_t done = 0; |
2542 | size_t i; | |
2da776db MH |
2543 | |
2544 | CHECK_ERROR_STATE(); | |
2545 | ||
2546 | /* | |
2547 | * Push out any writes that | |
971ae6ef | 2548 | * we're queued up for VM's ram. |
2da776db MH |
2549 | */ |
2550 | ret = qemu_rdma_write_flush(f, rdma); | |
2551 | if (ret < 0) { | |
2552 | rdma->error_state = ret; | |
2553 | return ret; | |
2554 | } | |
2555 | ||
6ddd2d76 DB |
2556 | for (i = 0; i < niov; i++) { |
2557 | size_t remaining = iov[i].iov_len; | |
2558 | uint8_t * data = (void *)iov[i].iov_base; | |
2559 | while (remaining) { | |
2560 | RDMAControlHeader head; | |
2da776db | 2561 | |
6ddd2d76 DB |
2562 | rioc->len = MIN(remaining, RDMA_SEND_INCREMENT); |
2563 | remaining -= rioc->len; | |
2da776db | 2564 | |
6ddd2d76 DB |
2565 | head.len = rioc->len; |
2566 | head.type = RDMA_CONTROL_QEMU_FILE; | |
2da776db | 2567 | |
6ddd2d76 | 2568 | ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL); |
2da776db | 2569 | |
6ddd2d76 DB |
2570 | if (ret < 0) { |
2571 | rdma->error_state = ret; | |
2572 | return ret; | |
2573 | } | |
2da776db | 2574 | |
6ddd2d76 DB |
2575 | data += rioc->len; |
2576 | done += rioc->len; | |
2577 | } | |
2da776db MH |
2578 | } |
2579 | ||
6ddd2d76 | 2580 | return done; |
2da776db MH |
2581 | } |
2582 | ||
2583 | static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf, | |
a202a4c0 | 2584 | size_t size, int idx) |
2da776db MH |
2585 | { |
2586 | size_t len = 0; | |
2587 | ||
2588 | if (rdma->wr_data[idx].control_len) { | |
733252de | 2589 | trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size); |
2da776db MH |
2590 | |
2591 | len = MIN(size, rdma->wr_data[idx].control_len); | |
2592 | memcpy(buf, rdma->wr_data[idx].control_curr, len); | |
2593 | rdma->wr_data[idx].control_curr += len; | |
2594 | rdma->wr_data[idx].control_len -= len; | |
2595 | } | |
2596 | ||
2597 | return len; | |
2598 | } | |
2599 | ||
2600 | /* | |
2601 | * QEMUFile interface to the control channel. | |
2602 | * RDMA links don't use bytestreams, so we have to | |
2603 | * return bytes to QEMUFile opportunistically. | |
2604 | */ | |
6ddd2d76 DB |
2605 | static ssize_t qio_channel_rdma_readv(QIOChannel *ioc, |
2606 | const struct iovec *iov, | |
2607 | size_t niov, | |
2608 | int **fds, | |
2609 | size_t *nfds, | |
2610 | Error **errp) | |
2611 | { | |
2612 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc); | |
2613 | RDMAContext *rdma = rioc->rdma; | |
2da776db MH |
2614 | RDMAControlHeader head; |
2615 | int ret = 0; | |
6ddd2d76 DB |
2616 | ssize_t i; |
2617 | size_t done = 0; | |
2da776db MH |
2618 | |
2619 | CHECK_ERROR_STATE(); | |
2620 | ||
6ddd2d76 DB |
2621 | for (i = 0; i < niov; i++) { |
2622 | size_t want = iov[i].iov_len; | |
2623 | uint8_t *data = (void *)iov[i].iov_base; | |
2da776db | 2624 | |
6ddd2d76 DB |
2625 | /* |
2626 | * First, we hold on to the last SEND message we | |
2627 | * were given and dish out the bytes until we run | |
2628 | * out of bytes. | |
2629 | */ | |
2630 | ret = qemu_rdma_fill(rioc->rdma, data, want, 0); | |
2631 | done += ret; | |
2632 | want -= ret; | |
2633 | /* Got what we needed, so go to next iovec */ | |
2634 | if (want == 0) { | |
2635 | continue; | |
2636 | } | |
2da776db | 2637 | |
6ddd2d76 DB |
2638 | /* If we got any data so far, then don't wait |
2639 | * for more, just return what we have */ | |
2640 | if (done > 0) { | |
2641 | break; | |
2642 | } | |
2da776db | 2643 | |
6ddd2d76 DB |
2644 | |
2645 | /* We've got nothing at all, so lets wait for | |
2646 | * more to arrive | |
2647 | */ | |
2648 | ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE); | |
2649 | ||
2650 | if (ret < 0) { | |
2651 | rdma->error_state = ret; | |
2652 | return ret; | |
2653 | } | |
2654 | ||
2655 | /* | |
2656 | * SEND was received with new bytes, now try again. | |
2657 | */ | |
2658 | ret = qemu_rdma_fill(rioc->rdma, data, want, 0); | |
2659 | done += ret; | |
2660 | want -= ret; | |
2661 | ||
2662 | /* Still didn't get enough, so lets just return */ | |
2663 | if (want) { | |
2664 | if (done == 0) { | |
2665 | return QIO_CHANNEL_ERR_BLOCK; | |
2666 | } else { | |
2667 | break; | |
2668 | } | |
2669 | } | |
2670 | } | |
2671 | rioc->len = done; | |
2672 | return rioc->len; | |
2da776db MH |
2673 | } |
2674 | ||
2675 | /* | |
2676 | * Block until all the outstanding chunks have been delivered by the hardware. | |
2677 | */ | |
2678 | static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma) | |
2679 | { | |
2680 | int ret; | |
2681 | ||
2682 | if (qemu_rdma_write_flush(f, rdma) < 0) { | |
2683 | return -EIO; | |
2684 | } | |
2685 | ||
2686 | while (rdma->nb_sent) { | |
88571882 | 2687 | ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); |
2da776db | 2688 | if (ret < 0) { |
733252de | 2689 | error_report("rdma migration: complete polling error!"); |
2da776db MH |
2690 | return -EIO; |
2691 | } | |
2692 | } | |
2693 | ||
2694 | qemu_rdma_unregister_waiting(rdma); | |
2695 | ||
2696 | return 0; | |
2697 | } | |
2698 | ||
6ddd2d76 DB |
2699 | |
2700 | static int qio_channel_rdma_set_blocking(QIOChannel *ioc, | |
2701 | bool blocking, | |
2702 | Error **errp) | |
2703 | { | |
2704 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc); | |
2705 | /* XXX we should make readv/writev actually honour this :-) */ | |
2706 | rioc->blocking = blocking; | |
2707 | return 0; | |
2708 | } | |
2709 | ||
2710 | ||
2711 | typedef struct QIOChannelRDMASource QIOChannelRDMASource; | |
2712 | struct QIOChannelRDMASource { | |
2713 | GSource parent; | |
2714 | QIOChannelRDMA *rioc; | |
2715 | GIOCondition condition; | |
2716 | }; | |
2717 | ||
2718 | static gboolean | |
2719 | qio_channel_rdma_source_prepare(GSource *source, | |
2720 | gint *timeout) | |
2721 | { | |
2722 | QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source; | |
2723 | RDMAContext *rdma = rsource->rioc->rdma; | |
2724 | GIOCondition cond = 0; | |
2725 | *timeout = -1; | |
2726 | ||
2727 | if (rdma->wr_data[0].control_len) { | |
2728 | cond |= G_IO_IN; | |
2729 | } | |
2730 | cond |= G_IO_OUT; | |
2731 | ||
2732 | return cond & rsource->condition; | |
2733 | } | |
2734 | ||
2735 | static gboolean | |
2736 | qio_channel_rdma_source_check(GSource *source) | |
2737 | { | |
2738 | QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source; | |
2739 | RDMAContext *rdma = rsource->rioc->rdma; | |
2740 | GIOCondition cond = 0; | |
2741 | ||
2742 | if (rdma->wr_data[0].control_len) { | |
2743 | cond |= G_IO_IN; | |
2744 | } | |
2745 | cond |= G_IO_OUT; | |
2746 | ||
2747 | return cond & rsource->condition; | |
2748 | } | |
2749 | ||
2750 | static gboolean | |
2751 | qio_channel_rdma_source_dispatch(GSource *source, | |
2752 | GSourceFunc callback, | |
2753 | gpointer user_data) | |
2754 | { | |
2755 | QIOChannelFunc func = (QIOChannelFunc)callback; | |
2756 | QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source; | |
2757 | RDMAContext *rdma = rsource->rioc->rdma; | |
2758 | GIOCondition cond = 0; | |
2759 | ||
2760 | if (rdma->wr_data[0].control_len) { | |
2761 | cond |= G_IO_IN; | |
2762 | } | |
2763 | cond |= G_IO_OUT; | |
2764 | ||
2765 | return (*func)(QIO_CHANNEL(rsource->rioc), | |
2766 | (cond & rsource->condition), | |
2767 | user_data); | |
2768 | } | |
2769 | ||
2770 | static void | |
2771 | qio_channel_rdma_source_finalize(GSource *source) | |
2772 | { | |
2773 | QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source; | |
2774 | ||
2775 | object_unref(OBJECT(ssource->rioc)); | |
2776 | } | |
2777 | ||
2778 | GSourceFuncs qio_channel_rdma_source_funcs = { | |
2779 | qio_channel_rdma_source_prepare, | |
2780 | qio_channel_rdma_source_check, | |
2781 | qio_channel_rdma_source_dispatch, | |
2782 | qio_channel_rdma_source_finalize | |
2783 | }; | |
2784 | ||
2785 | static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc, | |
2786 | GIOCondition condition) | |
2da776db | 2787 | { |
6ddd2d76 DB |
2788 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc); |
2789 | QIOChannelRDMASource *ssource; | |
2790 | GSource *source; | |
2791 | ||
2792 | source = g_source_new(&qio_channel_rdma_source_funcs, | |
2793 | sizeof(QIOChannelRDMASource)); | |
2794 | ssource = (QIOChannelRDMASource *)source; | |
2795 | ||
2796 | ssource->rioc = rioc; | |
2797 | object_ref(OBJECT(rioc)); | |
2798 | ||
2799 | ssource->condition = condition; | |
2800 | ||
2801 | return source; | |
2802 | } | |
2803 | ||
2804 | ||
2805 | static int qio_channel_rdma_close(QIOChannel *ioc, | |
2806 | Error **errp) | |
2807 | { | |
2808 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc); | |
733252de | 2809 | trace_qemu_rdma_close(); |
6ddd2d76 | 2810 | if (rioc->rdma) { |
12c67ffb DDAG |
2811 | if (!rioc->rdma->error_state) { |
2812 | rioc->rdma->error_state = qemu_file_get_error(rioc->file); | |
2813 | } | |
6ddd2d76 DB |
2814 | qemu_rdma_cleanup(rioc->rdma); |
2815 | g_free(rioc->rdma); | |
2816 | rioc->rdma = NULL; | |
2da776db | 2817 | } |
2da776db MH |
2818 | return 0; |
2819 | } | |
2820 | ||
2821 | /* | |
2822 | * Parameters: | |
2823 | * @offset == 0 : | |
2824 | * This means that 'block_offset' is a full virtual address that does not | |
2825 | * belong to a RAMBlock of the virtual machine and instead | |
2826 | * represents a private malloc'd memory area that the caller wishes to | |
2827 | * transfer. | |
2828 | * | |
2829 | * @offset != 0 : | |
2830 | * Offset is an offset to be added to block_offset and used | |
2831 | * to also lookup the corresponding RAMBlock. | |
2832 | * | |
2833 | * @size > 0 : | |
2834 | * Initiate an transfer this size. | |
2835 | * | |
2836 | * @size == 0 : | |
2837 | * A 'hint' or 'advice' that means that we wish to speculatively | |
2838 | * and asynchronously unregister this memory. In this case, there is no | |
52f35022 | 2839 | * guarantee that the unregister will actually happen, for example, |
2da776db MH |
2840 | * if the memory is being actively transmitted. Additionally, the memory |
2841 | * may be re-registered at any future time if a write within the same | |
2842 | * chunk was requested again, even if you attempted to unregister it | |
2843 | * here. | |
2844 | * | |
2845 | * @size < 0 : TODO, not yet supported | |
2846 | * Unregister the memory NOW. This means that the caller does not | |
2847 | * expect there to be any future RDMA transfers and we just want to clean | |
2848 | * things up. This is used in case the upper layer owns the memory and | |
2849 | * cannot wait for qemu_fclose() to occur. | |
2850 | * | |
2851 | * @bytes_sent : User-specificed pointer to indicate how many bytes were | |
2852 | * sent. Usually, this will not be more than a few bytes of | |
2853 | * the protocol because most transfers are sent asynchronously. | |
2854 | */ | |
2855 | static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque, | |
2856 | ram_addr_t block_offset, ram_addr_t offset, | |
6e1dea46 | 2857 | size_t size, uint64_t *bytes_sent) |
2da776db | 2858 | { |
6ddd2d76 DB |
2859 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque); |
2860 | RDMAContext *rdma = rioc->rdma; | |
2da776db MH |
2861 | int ret; |
2862 | ||
2863 | CHECK_ERROR_STATE(); | |
2864 | ||
2865 | qemu_fflush(f); | |
2866 | ||
2867 | if (size > 0) { | |
2868 | /* | |
2869 | * Add this page to the current 'chunk'. If the chunk | |
2870 | * is full, or the page doen't belong to the current chunk, | |
2871 | * an actual RDMA write will occur and a new chunk will be formed. | |
2872 | */ | |
2873 | ret = qemu_rdma_write(f, rdma, block_offset, offset, size); | |
2874 | if (ret < 0) { | |
733252de | 2875 | error_report("rdma migration: write error! %d", ret); |
2da776db MH |
2876 | goto err; |
2877 | } | |
2878 | ||
2879 | /* | |
2880 | * We always return 1 bytes because the RDMA | |
2881 | * protocol is completely asynchronous. We do not yet know | |
2882 | * whether an identified chunk is zero or not because we're | |
2883 | * waiting for other pages to potentially be merged with | |
2884 | * the current chunk. So, we have to call qemu_update_position() | |
2885 | * later on when the actual write occurs. | |
2886 | */ | |
2887 | if (bytes_sent) { | |
2888 | *bytes_sent = 1; | |
2889 | } | |
2890 | } else { | |
2891 | uint64_t index, chunk; | |
2892 | ||
2893 | /* TODO: Change QEMUFileOps prototype to be signed: size_t => long | |
2894 | if (size < 0) { | |
2895 | ret = qemu_rdma_drain_cq(f, rdma); | |
2896 | if (ret < 0) { | |
2897 | fprintf(stderr, "rdma: failed to synchronously drain" | |
2898 | " completion queue before unregistration.\n"); | |
2899 | goto err; | |
2900 | } | |
2901 | } | |
2902 | */ | |
2903 | ||
2904 | ret = qemu_rdma_search_ram_block(rdma, block_offset, | |
2905 | offset, size, &index, &chunk); | |
2906 | ||
2907 | if (ret) { | |
733252de | 2908 | error_report("ram block search failed"); |
2da776db MH |
2909 | goto err; |
2910 | } | |
2911 | ||
2912 | qemu_rdma_signal_unregister(rdma, index, chunk, 0); | |
2913 | ||
2914 | /* | |
52f35022 | 2915 | * TODO: Synchronous, guaranteed unregistration (should not occur during |
2da776db MH |
2916 | * fast-path). Otherwise, unregisters will process on the next call to |
2917 | * qemu_rdma_drain_cq() | |
2918 | if (size < 0) { | |
2919 | qemu_rdma_unregister_waiting(rdma); | |
2920 | } | |
2921 | */ | |
2922 | } | |
2923 | ||
2924 | /* | |
2925 | * Drain the Completion Queue if possible, but do not block, | |
2926 | * just poll. | |
2927 | * | |
2928 | * If nothing to poll, the end of the iteration will do this | |
2929 | * again to make sure we don't overflow the request queue. | |
2930 | */ | |
2931 | while (1) { | |
2932 | uint64_t wr_id, wr_id_in; | |
88571882 | 2933 | int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL); |
2da776db | 2934 | if (ret < 0) { |
733252de | 2935 | error_report("rdma migration: polling error! %d", ret); |
2da776db MH |
2936 | goto err; |
2937 | } | |
2938 | ||
2939 | wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; | |
2940 | ||
2941 | if (wr_id == RDMA_WRID_NONE) { | |
2942 | break; | |
2943 | } | |
2944 | } | |
2945 | ||
2946 | return RAM_SAVE_CONTROL_DELAYED; | |
2947 | err: | |
2948 | rdma->error_state = ret; | |
2949 | return ret; | |
2950 | } | |
2951 | ||
2952 | static int qemu_rdma_accept(RDMAContext *rdma) | |
2953 | { | |
2954 | RDMACapabilities cap; | |
2955 | struct rdma_conn_param conn_param = { | |
2956 | .responder_resources = 2, | |
2957 | .private_data = &cap, | |
2958 | .private_data_len = sizeof(cap), | |
2959 | }; | |
2960 | struct rdma_cm_event *cm_event; | |
2961 | struct ibv_context *verbs; | |
2962 | int ret = -EINVAL; | |
2963 | int idx; | |
2964 | ||
2965 | ret = rdma_get_cm_event(rdma->channel, &cm_event); | |
2966 | if (ret) { | |
2967 | goto err_rdma_dest_wait; | |
2968 | } | |
2969 | ||
2970 | if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) { | |
2971 | rdma_ack_cm_event(cm_event); | |
2972 | goto err_rdma_dest_wait; | |
2973 | } | |
2974 | ||
2975 | memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); | |
2976 | ||
2977 | network_to_caps(&cap); | |
2978 | ||
2979 | if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) { | |
733252de | 2980 | error_report("Unknown source RDMA version: %d, bailing...", |
2da776db MH |
2981 | cap.version); |
2982 | rdma_ack_cm_event(cm_event); | |
2983 | goto err_rdma_dest_wait; | |
2984 | } | |
2985 | ||
2986 | /* | |
2987 | * Respond with only the capabilities this version of QEMU knows about. | |
2988 | */ | |
2989 | cap.flags &= known_capabilities; | |
2990 | ||
2991 | /* | |
2992 | * Enable the ones that we do know about. | |
2993 | * Add other checks here as new ones are introduced. | |
2994 | */ | |
2995 | if (cap.flags & RDMA_CAPABILITY_PIN_ALL) { | |
2996 | rdma->pin_all = true; | |
2997 | } | |
2998 | ||
2999 | rdma->cm_id = cm_event->id; | |
3000 | verbs = cm_event->id->verbs; | |
3001 | ||
3002 | rdma_ack_cm_event(cm_event); | |
3003 | ||
733252de | 3004 | trace_qemu_rdma_accept_pin_state(rdma->pin_all); |
2da776db MH |
3005 | |
3006 | caps_to_network(&cap); | |
3007 | ||
733252de | 3008 | trace_qemu_rdma_accept_pin_verbsc(verbs); |
2da776db MH |
3009 | |
3010 | if (!rdma->verbs) { | |
3011 | rdma->verbs = verbs; | |
3012 | } else if (rdma->verbs != verbs) { | |
733252de DDAG |
3013 | error_report("ibv context not matching %p, %p!", rdma->verbs, |
3014 | verbs); | |
2da776db MH |
3015 | goto err_rdma_dest_wait; |
3016 | } | |
3017 | ||
3018 | qemu_rdma_dump_id("dest_init", verbs); | |
3019 | ||
3020 | ret = qemu_rdma_alloc_pd_cq(rdma); | |
3021 | if (ret) { | |
733252de | 3022 | error_report("rdma migration: error allocating pd and cq!"); |
2da776db MH |
3023 | goto err_rdma_dest_wait; |
3024 | } | |
3025 | ||
3026 | ret = qemu_rdma_alloc_qp(rdma); | |
3027 | if (ret) { | |
733252de | 3028 | error_report("rdma migration: error allocating qp!"); |
2da776db MH |
3029 | goto err_rdma_dest_wait; |
3030 | } | |
3031 | ||
3032 | ret = qemu_rdma_init_ram_blocks(rdma); | |
3033 | if (ret) { | |
733252de | 3034 | error_report("rdma migration: error initializing ram blocks!"); |
2da776db MH |
3035 | goto err_rdma_dest_wait; |
3036 | } | |
3037 | ||
1f22364b | 3038 | for (idx = 0; idx < RDMA_WRID_MAX; idx++) { |
2da776db MH |
3039 | ret = qemu_rdma_reg_control(rdma, idx); |
3040 | if (ret) { | |
733252de | 3041 | error_report("rdma: error registering %d control", idx); |
2da776db MH |
3042 | goto err_rdma_dest_wait; |
3043 | } | |
3044 | } | |
3045 | ||
82e1cc4b | 3046 | qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL); |
2da776db MH |
3047 | |
3048 | ret = rdma_accept(rdma->cm_id, &conn_param); | |
3049 | if (ret) { | |
733252de | 3050 | error_report("rdma_accept returns %d", ret); |
2da776db MH |
3051 | goto err_rdma_dest_wait; |
3052 | } | |
3053 | ||
3054 | ret = rdma_get_cm_event(rdma->channel, &cm_event); | |
3055 | if (ret) { | |
733252de | 3056 | error_report("rdma_accept get_cm_event failed %d", ret); |
2da776db MH |
3057 | goto err_rdma_dest_wait; |
3058 | } | |
3059 | ||
3060 | if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { | |
733252de | 3061 | error_report("rdma_accept not event established"); |
2da776db MH |
3062 | rdma_ack_cm_event(cm_event); |
3063 | goto err_rdma_dest_wait; | |
3064 | } | |
3065 | ||
3066 | rdma_ack_cm_event(cm_event); | |
5a91337c | 3067 | rdma->connected = true; |
2da776db | 3068 | |
87772639 | 3069 | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); |
2da776db | 3070 | if (ret) { |
733252de | 3071 | error_report("rdma migration: error posting second control recv"); |
2da776db MH |
3072 | goto err_rdma_dest_wait; |
3073 | } | |
3074 | ||
3075 | qemu_rdma_dump_gid("dest_connect", rdma->cm_id); | |
3076 | ||
3077 | return 0; | |
3078 | ||
3079 | err_rdma_dest_wait: | |
3080 | rdma->error_state = ret; | |
3081 | qemu_rdma_cleanup(rdma); | |
3082 | return ret; | |
3083 | } | |
3084 | ||
e4d63320 DDAG |
3085 | static int dest_ram_sort_func(const void *a, const void *b) |
3086 | { | |
3087 | unsigned int a_index = ((const RDMALocalBlock *)a)->src_index; | |
3088 | unsigned int b_index = ((const RDMALocalBlock *)b)->src_index; | |
3089 | ||
3090 | return (a_index < b_index) ? -1 : (a_index != b_index); | |
3091 | } | |
3092 | ||
2da776db MH |
3093 | /* |
3094 | * During each iteration of the migration, we listen for instructions | |
3095 | * by the source VM to perform dynamic page registrations before they | |
3096 | * can perform RDMA operations. | |
3097 | * | |
3098 | * We respond with the 'rkey'. | |
3099 | * | |
3100 | * Keep doing this until the source tells us to stop. | |
3101 | */ | |
632e3a5c | 3102 | static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque) |
2da776db MH |
3103 | { |
3104 | RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult), | |
3105 | .type = RDMA_CONTROL_REGISTER_RESULT, | |
3106 | .repeat = 0, | |
3107 | }; | |
3108 | RDMAControlHeader unreg_resp = { .len = 0, | |
3109 | .type = RDMA_CONTROL_UNREGISTER_FINISHED, | |
3110 | .repeat = 0, | |
3111 | }; | |
3112 | RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT, | |
3113 | .repeat = 1 }; | |
6ddd2d76 DB |
3114 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque); |
3115 | RDMAContext *rdma = rioc->rdma; | |
2da776db MH |
3116 | RDMALocalBlocks *local = &rdma->local_ram_blocks; |
3117 | RDMAControlHeader head; | |
3118 | RDMARegister *reg, *registers; | |
3119 | RDMACompress *comp; | |
3120 | RDMARegisterResult *reg_result; | |
3121 | static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE]; | |
3122 | RDMALocalBlock *block; | |
3123 | void *host_addr; | |
3124 | int ret = 0; | |
3125 | int idx = 0; | |
3126 | int count = 0; | |
3127 | int i = 0; | |
3128 | ||
3129 | CHECK_ERROR_STATE(); | |
3130 | ||
3131 | do { | |
632e3a5c | 3132 | trace_qemu_rdma_registration_handle_wait(); |
2da776db MH |
3133 | |
3134 | ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE); | |
3135 | ||
3136 | if (ret < 0) { | |
3137 | break; | |
3138 | } | |
3139 | ||
3140 | if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) { | |
733252de DDAG |
3141 | error_report("rdma: Too many requests in this message (%d)." |
3142 | "Bailing.", head.repeat); | |
2da776db MH |
3143 | ret = -EIO; |
3144 | break; | |
3145 | } | |
3146 | ||
3147 | switch (head.type) { | |
3148 | case RDMA_CONTROL_COMPRESS: | |
3149 | comp = (RDMACompress *) rdma->wr_data[idx].control_curr; | |
3150 | network_to_compress(comp); | |
3151 | ||
733252de DDAG |
3152 | trace_qemu_rdma_registration_handle_compress(comp->length, |
3153 | comp->block_idx, | |
3154 | comp->offset); | |
afcddefd DDAG |
3155 | if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) { |
3156 | error_report("rdma: 'compress' bad block index %u (vs %d)", | |
3157 | (unsigned int)comp->block_idx, | |
3158 | rdma->local_ram_blocks.nb_blocks); | |
3159 | ret = -EIO; | |
24b41d66 | 3160 | goto out; |
afcddefd | 3161 | } |
2da776db MH |
3162 | block = &(rdma->local_ram_blocks.block[comp->block_idx]); |
3163 | ||
3164 | host_addr = block->local_host_addr + | |
3165 | (comp->offset - block->offset); | |
3166 | ||
3167 | ram_handle_compressed(host_addr, comp->value, comp->length); | |
3168 | break; | |
3169 | ||
3170 | case RDMA_CONTROL_REGISTER_FINISHED: | |
733252de | 3171 | trace_qemu_rdma_registration_handle_finished(); |
2da776db MH |
3172 | goto out; |
3173 | ||
3174 | case RDMA_CONTROL_RAM_BLOCKS_REQUEST: | |
733252de | 3175 | trace_qemu_rdma_registration_handle_ram_blocks(); |
2da776db | 3176 | |
e4d63320 DDAG |
3177 | /* Sort our local RAM Block list so it's the same as the source, |
3178 | * we can do this since we've filled in a src_index in the list | |
3179 | * as we received the RAMBlock list earlier. | |
3180 | */ | |
3181 | qsort(rdma->local_ram_blocks.block, | |
3182 | rdma->local_ram_blocks.nb_blocks, | |
3183 | sizeof(RDMALocalBlock), dest_ram_sort_func); | |
2da776db MH |
3184 | if (rdma->pin_all) { |
3185 | ret = qemu_rdma_reg_whole_ram_blocks(rdma); | |
3186 | if (ret) { | |
733252de DDAG |
3187 | error_report("rdma migration: error dest " |
3188 | "registering ram blocks"); | |
2da776db MH |
3189 | goto out; |
3190 | } | |
3191 | } | |
3192 | ||
3193 | /* | |
3194 | * Dest uses this to prepare to transmit the RAMBlock descriptions | |
3195 | * to the source VM after connection setup. | |
3196 | * Both sides use the "remote" structure to communicate and update | |
3197 | * their "local" descriptions with what was sent. | |
3198 | */ | |
3199 | for (i = 0; i < local->nb_blocks; i++) { | |
a97270ad | 3200 | rdma->dest_blocks[i].remote_host_addr = |
fbce8c25 | 3201 | (uintptr_t)(local->block[i].local_host_addr); |
2da776db MH |
3202 | |
3203 | if (rdma->pin_all) { | |
a97270ad | 3204 | rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey; |
2da776db MH |
3205 | } |
3206 | ||
a97270ad DDAG |
3207 | rdma->dest_blocks[i].offset = local->block[i].offset; |
3208 | rdma->dest_blocks[i].length = local->block[i].length; | |
2da776db | 3209 | |
a97270ad | 3210 | dest_block_to_network(&rdma->dest_blocks[i]); |
e4d63320 DDAG |
3211 | trace_qemu_rdma_registration_handle_ram_blocks_loop( |
3212 | local->block[i].block_name, | |
3213 | local->block[i].offset, | |
3214 | local->block[i].length, | |
3215 | local->block[i].local_host_addr, | |
3216 | local->block[i].src_index); | |
2da776db MH |
3217 | } |
3218 | ||
3219 | blocks.len = rdma->local_ram_blocks.nb_blocks | |
a97270ad | 3220 | * sizeof(RDMADestBlock); |
2da776db MH |
3221 | |
3222 | ||
3223 | ret = qemu_rdma_post_send_control(rdma, | |
a97270ad | 3224 | (uint8_t *) rdma->dest_blocks, &blocks); |
2da776db MH |
3225 | |
3226 | if (ret < 0) { | |
733252de | 3227 | error_report("rdma migration: error sending remote info"); |
2da776db MH |
3228 | goto out; |
3229 | } | |
3230 | ||
3231 | break; | |
3232 | case RDMA_CONTROL_REGISTER_REQUEST: | |
733252de | 3233 | trace_qemu_rdma_registration_handle_register(head.repeat); |
2da776db MH |
3234 | |
3235 | reg_resp.repeat = head.repeat; | |
3236 | registers = (RDMARegister *) rdma->wr_data[idx].control_curr; | |
3237 | ||
3238 | for (count = 0; count < head.repeat; count++) { | |
3239 | uint64_t chunk; | |
3240 | uint8_t *chunk_start, *chunk_end; | |
3241 | ||
3242 | reg = ®isters[count]; | |
3243 | network_to_register(reg); | |
3244 | ||
3245 | reg_result = &results[count]; | |
3246 | ||
733252de | 3247 | trace_qemu_rdma_registration_handle_register_loop(count, |
2da776db MH |
3248 | reg->current_index, reg->key.current_addr, reg->chunks); |
3249 | ||
afcddefd DDAG |
3250 | if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) { |
3251 | error_report("rdma: 'register' bad block index %u (vs %d)", | |
3252 | (unsigned int)reg->current_index, | |
3253 | rdma->local_ram_blocks.nb_blocks); | |
3254 | ret = -ENOENT; | |
24b41d66 | 3255 | goto out; |
afcddefd | 3256 | } |
2da776db MH |
3257 | block = &(rdma->local_ram_blocks.block[reg->current_index]); |
3258 | if (block->is_ram_block) { | |
afcddefd DDAG |
3259 | if (block->offset > reg->key.current_addr) { |
3260 | error_report("rdma: bad register address for block %s" | |
3261 | " offset: %" PRIx64 " current_addr: %" PRIx64, | |
3262 | block->block_name, block->offset, | |
3263 | reg->key.current_addr); | |
3264 | ret = -ERANGE; | |
24b41d66 | 3265 | goto out; |
afcddefd | 3266 | } |
2da776db MH |
3267 | host_addr = (block->local_host_addr + |
3268 | (reg->key.current_addr - block->offset)); | |
3269 | chunk = ram_chunk_index(block->local_host_addr, | |
3270 | (uint8_t *) host_addr); | |
3271 | } else { | |
3272 | chunk = reg->key.chunk; | |
3273 | host_addr = block->local_host_addr + | |
3274 | (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT)); | |
afcddefd DDAG |
3275 | /* Check for particularly bad chunk value */ |
3276 | if (host_addr < (void *)block->local_host_addr) { | |
3277 | error_report("rdma: bad chunk for block %s" | |
3278 | " chunk: %" PRIx64, | |
3279 | block->block_name, reg->key.chunk); | |
3280 | ret = -ERANGE; | |
24b41d66 | 3281 | goto out; |
afcddefd | 3282 | } |
2da776db MH |
3283 | } |
3284 | chunk_start = ram_chunk_start(block, chunk); | |
3285 | chunk_end = ram_chunk_end(block, chunk + reg->chunks); | |
3286 | if (qemu_rdma_register_and_get_keys(rdma, block, | |
3ac040c0 | 3287 | (uintptr_t)host_addr, NULL, ®_result->rkey, |
2da776db | 3288 | chunk, chunk_start, chunk_end)) { |
733252de | 3289 | error_report("cannot get rkey"); |
2da776db MH |
3290 | ret = -EINVAL; |
3291 | goto out; | |
3292 | } | |
3293 | ||
fbce8c25 | 3294 | reg_result->host_addr = (uintptr_t)block->local_host_addr; |
2da776db | 3295 | |
733252de DDAG |
3296 | trace_qemu_rdma_registration_handle_register_rkey( |
3297 | reg_result->rkey); | |
2da776db MH |
3298 | |
3299 | result_to_network(reg_result); | |
3300 | } | |
3301 | ||
3302 | ret = qemu_rdma_post_send_control(rdma, | |
3303 | (uint8_t *) results, ®_resp); | |
3304 | ||
3305 | if (ret < 0) { | |
733252de | 3306 | error_report("Failed to send control buffer"); |
2da776db MH |
3307 | goto out; |
3308 | } | |
3309 | break; | |
3310 | case RDMA_CONTROL_UNREGISTER_REQUEST: | |
733252de | 3311 | trace_qemu_rdma_registration_handle_unregister(head.repeat); |
2da776db MH |
3312 | unreg_resp.repeat = head.repeat; |
3313 | registers = (RDMARegister *) rdma->wr_data[idx].control_curr; | |
3314 | ||
3315 | for (count = 0; count < head.repeat; count++) { | |
3316 | reg = ®isters[count]; | |
3317 | network_to_register(reg); | |
3318 | ||
733252de DDAG |
3319 | trace_qemu_rdma_registration_handle_unregister_loop(count, |
3320 | reg->current_index, reg->key.chunk); | |
2da776db MH |
3321 | |
3322 | block = &(rdma->local_ram_blocks.block[reg->current_index]); | |
3323 | ||
3324 | ret = ibv_dereg_mr(block->pmr[reg->key.chunk]); | |
3325 | block->pmr[reg->key.chunk] = NULL; | |
3326 | ||
3327 | if (ret != 0) { | |
3328 | perror("rdma unregistration chunk failed"); | |
3329 | ret = -ret; | |
3330 | goto out; | |
3331 | } | |
3332 | ||
3333 | rdma->total_registrations--; | |
3334 | ||
733252de DDAG |
3335 | trace_qemu_rdma_registration_handle_unregister_success( |
3336 | reg->key.chunk); | |
2da776db MH |
3337 | } |
3338 | ||
3339 | ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp); | |
3340 | ||
3341 | if (ret < 0) { | |
733252de | 3342 | error_report("Failed to send control buffer"); |
2da776db MH |
3343 | goto out; |
3344 | } | |
3345 | break; | |
3346 | case RDMA_CONTROL_REGISTER_RESULT: | |
733252de | 3347 | error_report("Invalid RESULT message at dest."); |
2da776db MH |
3348 | ret = -EIO; |
3349 | goto out; | |
3350 | default: | |
733252de | 3351 | error_report("Unknown control message %s", control_desc[head.type]); |
2da776db MH |
3352 | ret = -EIO; |
3353 | goto out; | |
3354 | } | |
3355 | } while (1); | |
3356 | out: | |
3357 | if (ret < 0) { | |
3358 | rdma->error_state = ret; | |
3359 | } | |
3360 | return ret; | |
3361 | } | |
3362 | ||
e4d63320 DDAG |
3363 | /* Destination: |
3364 | * Called via a ram_control_load_hook during the initial RAM load section which | |
3365 | * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks | |
3366 | * on the source. | |
3367 | * We've already built our local RAMBlock list, but not yet sent the list to | |
3368 | * the source. | |
3369 | */ | |
6ddd2d76 DB |
3370 | static int |
3371 | rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name) | |
e4d63320 | 3372 | { |
6ddd2d76 | 3373 | RDMAContext *rdma = rioc->rdma; |
e4d63320 DDAG |
3374 | int curr; |
3375 | int found = -1; | |
3376 | ||
3377 | /* Find the matching RAMBlock in our local list */ | |
3378 | for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) { | |
3379 | if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) { | |
3380 | found = curr; | |
3381 | break; | |
3382 | } | |
3383 | } | |
3384 | ||
3385 | if (found == -1) { | |
3386 | error_report("RAMBlock '%s' not found on destination", name); | |
3387 | return -ENOENT; | |
3388 | } | |
3389 | ||
3390 | rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index; | |
3391 | trace_rdma_block_notification_handle(name, rdma->next_src_index); | |
3392 | rdma->next_src_index++; | |
3393 | ||
3394 | return 0; | |
3395 | } | |
3396 | ||
632e3a5c DDAG |
3397 | static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data) |
3398 | { | |
3399 | switch (flags) { | |
3400 | case RAM_CONTROL_BLOCK_REG: | |
e4d63320 | 3401 | return rdma_block_notification_handle(opaque, data); |
632e3a5c DDAG |
3402 | |
3403 | case RAM_CONTROL_HOOK: | |
3404 | return qemu_rdma_registration_handle(f, opaque); | |
3405 | ||
3406 | default: | |
3407 | /* Shouldn't be called with any other values */ | |
3408 | abort(); | |
3409 | } | |
3410 | } | |
3411 | ||
2da776db | 3412 | static int qemu_rdma_registration_start(QEMUFile *f, void *opaque, |
632e3a5c | 3413 | uint64_t flags, void *data) |
2da776db | 3414 | { |
6ddd2d76 DB |
3415 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque); |
3416 | RDMAContext *rdma = rioc->rdma; | |
2da776db MH |
3417 | |
3418 | CHECK_ERROR_STATE(); | |
3419 | ||
733252de | 3420 | trace_qemu_rdma_registration_start(flags); |
2da776db MH |
3421 | qemu_put_be64(f, RAM_SAVE_FLAG_HOOK); |
3422 | qemu_fflush(f); | |
3423 | ||
3424 | return 0; | |
3425 | } | |
3426 | ||
3427 | /* | |
3428 | * Inform dest that dynamic registrations are done for now. | |
3429 | * First, flush writes, if any. | |
3430 | */ | |
3431 | static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque, | |
632e3a5c | 3432 | uint64_t flags, void *data) |
2da776db MH |
3433 | { |
3434 | Error *local_err = NULL, **errp = &local_err; | |
6ddd2d76 DB |
3435 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque); |
3436 | RDMAContext *rdma = rioc->rdma; | |
2da776db MH |
3437 | RDMAControlHeader head = { .len = 0, .repeat = 1 }; |
3438 | int ret = 0; | |
3439 | ||
3440 | CHECK_ERROR_STATE(); | |
3441 | ||
3442 | qemu_fflush(f); | |
3443 | ret = qemu_rdma_drain_cq(f, rdma); | |
3444 | ||
3445 | if (ret < 0) { | |
3446 | goto err; | |
3447 | } | |
3448 | ||
3449 | if (flags == RAM_CONTROL_SETUP) { | |
3450 | RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT }; | |
3451 | RDMALocalBlocks *local = &rdma->local_ram_blocks; | |
e4d63320 | 3452 | int reg_result_idx, i, nb_dest_blocks; |
2da776db MH |
3453 | |
3454 | head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST; | |
733252de | 3455 | trace_qemu_rdma_registration_stop_ram(); |
2da776db MH |
3456 | |
3457 | /* | |
3458 | * Make sure that we parallelize the pinning on both sides. | |
3459 | * For very large guests, doing this serially takes a really | |
3460 | * long time, so we have to 'interleave' the pinning locally | |
3461 | * with the control messages by performing the pinning on this | |
3462 | * side before we receive the control response from the other | |
3463 | * side that the pinning has completed. | |
3464 | */ | |
3465 | ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp, | |
3466 | ®_result_idx, rdma->pin_all ? | |
3467 | qemu_rdma_reg_whole_ram_blocks : NULL); | |
3468 | if (ret < 0) { | |
66988941 | 3469 | ERROR(errp, "receiving remote info!"); |
2da776db MH |
3470 | return ret; |
3471 | } | |
3472 | ||
a97270ad | 3473 | nb_dest_blocks = resp.len / sizeof(RDMADestBlock); |
2da776db MH |
3474 | |
3475 | /* | |
3476 | * The protocol uses two different sets of rkeys (mutually exclusive): | |
3477 | * 1. One key to represent the virtual address of the entire ram block. | |
3478 | * (dynamic chunk registration disabled - pin everything with one rkey.) | |
3479 | * 2. One to represent individual chunks within a ram block. | |
3480 | * (dynamic chunk registration enabled - pin individual chunks.) | |
3481 | * | |
3482 | * Once the capability is successfully negotiated, the destination transmits | |
3483 | * the keys to use (or sends them later) including the virtual addresses | |
3484 | * and then propagates the remote ram block descriptions to his local copy. | |
3485 | */ | |
3486 | ||
a97270ad | 3487 | if (local->nb_blocks != nb_dest_blocks) { |
e4d63320 | 3488 | ERROR(errp, "ram blocks mismatch (Number of blocks %d vs %d) " |
2da776db | 3489 | "Your QEMU command line parameters are probably " |
e4d63320 DDAG |
3490 | "not identical on both the source and destination.", |
3491 | local->nb_blocks, nb_dest_blocks); | |
ef4b722d | 3492 | rdma->error_state = -EINVAL; |
2da776db MH |
3493 | return -EINVAL; |
3494 | } | |
3495 | ||
885e8f98 | 3496 | qemu_rdma_move_header(rdma, reg_result_idx, &resp); |
a97270ad | 3497 | memcpy(rdma->dest_blocks, |
885e8f98 | 3498 | rdma->wr_data[reg_result_idx].control_curr, resp.len); |
a97270ad DDAG |
3499 | for (i = 0; i < nb_dest_blocks; i++) { |
3500 | network_to_dest_block(&rdma->dest_blocks[i]); | |
2da776db | 3501 | |
e4d63320 DDAG |
3502 | /* We require that the blocks are in the same order */ |
3503 | if (rdma->dest_blocks[i].length != local->block[i].length) { | |
3504 | ERROR(errp, "Block %s/%d has a different length %" PRIu64 | |
3505 | "vs %" PRIu64, local->block[i].block_name, i, | |
3506 | local->block[i].length, | |
3507 | rdma->dest_blocks[i].length); | |
ef4b722d | 3508 | rdma->error_state = -EINVAL; |
2da776db MH |
3509 | return -EINVAL; |
3510 | } | |
e4d63320 DDAG |
3511 | local->block[i].remote_host_addr = |
3512 | rdma->dest_blocks[i].remote_host_addr; | |
3513 | local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey; | |
2da776db MH |
3514 | } |
3515 | } | |
3516 | ||
733252de | 3517 | trace_qemu_rdma_registration_stop(flags); |
2da776db MH |
3518 | |
3519 | head.type = RDMA_CONTROL_REGISTER_FINISHED; | |
3520 | ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL); | |
3521 | ||
3522 | if (ret < 0) { | |
3523 | goto err; | |
3524 | } | |
3525 | ||
3526 | return 0; | |
3527 | err: | |
3528 | rdma->error_state = ret; | |
3529 | return ret; | |
3530 | } | |
3531 | ||
0436e09f | 3532 | static const QEMUFileHooks rdma_read_hooks = { |
632e3a5c | 3533 | .hook_ram_load = rdma_load_hook, |
2da776db MH |
3534 | }; |
3535 | ||
0436e09f | 3536 | static const QEMUFileHooks rdma_write_hooks = { |
2da776db MH |
3537 | .before_ram_iterate = qemu_rdma_registration_start, |
3538 | .after_ram_iterate = qemu_rdma_registration_stop, | |
3539 | .save_page = qemu_rdma_save_page, | |
3540 | }; | |
3541 | ||
6ddd2d76 DB |
3542 | |
3543 | static void qio_channel_rdma_finalize(Object *obj) | |
3544 | { | |
3545 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj); | |
3546 | if (rioc->rdma) { | |
3547 | qemu_rdma_cleanup(rioc->rdma); | |
3548 | g_free(rioc->rdma); | |
3549 | rioc->rdma = NULL; | |
3550 | } | |
3551 | } | |
3552 | ||
3553 | static void qio_channel_rdma_class_init(ObjectClass *klass, | |
3554 | void *class_data G_GNUC_UNUSED) | |
3555 | { | |
3556 | QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass); | |
3557 | ||
3558 | ioc_klass->io_writev = qio_channel_rdma_writev; | |
3559 | ioc_klass->io_readv = qio_channel_rdma_readv; | |
3560 | ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking; | |
3561 | ioc_klass->io_close = qio_channel_rdma_close; | |
3562 | ioc_klass->io_create_watch = qio_channel_rdma_create_watch; | |
3563 | } | |
3564 | ||
3565 | static const TypeInfo qio_channel_rdma_info = { | |
3566 | .parent = TYPE_QIO_CHANNEL, | |
3567 | .name = TYPE_QIO_CHANNEL_RDMA, | |
3568 | .instance_size = sizeof(QIOChannelRDMA), | |
3569 | .instance_finalize = qio_channel_rdma_finalize, | |
3570 | .class_init = qio_channel_rdma_class_init, | |
3571 | }; | |
3572 | ||
3573 | static void qio_channel_rdma_register_types(void) | |
3574 | { | |
3575 | type_register_static(&qio_channel_rdma_info); | |
3576 | } | |
3577 | ||
3578 | type_init(qio_channel_rdma_register_types); | |
3579 | ||
3580 | static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode) | |
2da776db | 3581 | { |
6ddd2d76 | 3582 | QIOChannelRDMA *rioc; |
2da776db MH |
3583 | |
3584 | if (qemu_file_mode_is_not_valid(mode)) { | |
3585 | return NULL; | |
3586 | } | |
3587 | ||
6ddd2d76 DB |
3588 | rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA)); |
3589 | rioc->rdma = rdma; | |
2da776db MH |
3590 | |
3591 | if (mode[0] == 'w') { | |
6ddd2d76 DB |
3592 | rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc)); |
3593 | qemu_file_set_hooks(rioc->file, &rdma_write_hooks); | |
2da776db | 3594 | } else { |
6ddd2d76 DB |
3595 | rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc)); |
3596 | qemu_file_set_hooks(rioc->file, &rdma_read_hooks); | |
2da776db MH |
3597 | } |
3598 | ||
6ddd2d76 | 3599 | return rioc->file; |
2da776db MH |
3600 | } |
3601 | ||
3602 | static void rdma_accept_incoming_migration(void *opaque) | |
3603 | { | |
3604 | RDMAContext *rdma = opaque; | |
3605 | int ret; | |
3606 | QEMUFile *f; | |
3607 | Error *local_err = NULL, **errp = &local_err; | |
3608 | ||
24ec68ef | 3609 | trace_qemu_rdma_accept_incoming_migration(); |
2da776db MH |
3610 | ret = qemu_rdma_accept(rdma); |
3611 | ||
3612 | if (ret) { | |
66988941 | 3613 | ERROR(errp, "RDMA Migration initialization failed!"); |
2da776db MH |
3614 | return; |
3615 | } | |
3616 | ||
24ec68ef | 3617 | trace_qemu_rdma_accept_incoming_migration_accepted(); |
2da776db MH |
3618 | |
3619 | f = qemu_fopen_rdma(rdma, "rb"); | |
3620 | if (f == NULL) { | |
66988941 | 3621 | ERROR(errp, "could not qemu_fopen_rdma!"); |
2da776db MH |
3622 | qemu_rdma_cleanup(rdma); |
3623 | return; | |
3624 | } | |
3625 | ||
3626 | rdma->migration_started_on_destination = 1; | |
22724f49 | 3627 | migration_fd_process_incoming(f); |
2da776db MH |
3628 | } |
3629 | ||
3630 | void rdma_start_incoming_migration(const char *host_port, Error **errp) | |
3631 | { | |
3632 | int ret; | |
3633 | RDMAContext *rdma; | |
3634 | Error *local_err = NULL; | |
3635 | ||
733252de | 3636 | trace_rdma_start_incoming_migration(); |
2da776db MH |
3637 | rdma = qemu_rdma_data_init(host_port, &local_err); |
3638 | ||
3639 | if (rdma == NULL) { | |
3640 | goto err; | |
3641 | } | |
3642 | ||
3643 | ret = qemu_rdma_dest_init(rdma, &local_err); | |
3644 | ||
3645 | if (ret) { | |
3646 | goto err; | |
3647 | } | |
3648 | ||
733252de | 3649 | trace_rdma_start_incoming_migration_after_dest_init(); |
2da776db MH |
3650 | |
3651 | ret = rdma_listen(rdma->listen_id, 5); | |
3652 | ||
3653 | if (ret) { | |
66988941 | 3654 | ERROR(errp, "listening on socket!"); |
2da776db MH |
3655 | goto err; |
3656 | } | |
3657 | ||
733252de | 3658 | trace_rdma_start_incoming_migration_after_rdma_listen(); |
2da776db | 3659 | |
82e1cc4b FZ |
3660 | qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration, |
3661 | NULL, (void *)(intptr_t)rdma); | |
2da776db MH |
3662 | return; |
3663 | err: | |
3664 | error_propagate(errp, local_err); | |
3665 | g_free(rdma); | |
3666 | } | |
3667 | ||
3668 | void rdma_start_outgoing_migration(void *opaque, | |
3669 | const char *host_port, Error **errp) | |
3670 | { | |
3671 | MigrationState *s = opaque; | |
d59ce6f3 | 3672 | RDMAContext *rdma = qemu_rdma_data_init(host_port, errp); |
2da776db MH |
3673 | int ret = 0; |
3674 | ||
3675 | if (rdma == NULL) { | |
2da776db MH |
3676 | goto err; |
3677 | } | |
3678 | ||
bbfb89e3 FZ |
3679 | ret = qemu_rdma_source_init(rdma, |
3680 | s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp); | |
2da776db MH |
3681 | |
3682 | if (ret) { | |
3683 | goto err; | |
3684 | } | |
3685 | ||
733252de | 3686 | trace_rdma_start_outgoing_migration_after_rdma_source_init(); |
d59ce6f3 | 3687 | ret = qemu_rdma_connect(rdma, errp); |
2da776db MH |
3688 | |
3689 | if (ret) { | |
3690 | goto err; | |
3691 | } | |
3692 | ||
733252de | 3693 | trace_rdma_start_outgoing_migration_after_rdma_connect(); |
2da776db | 3694 | |
89a02a9f | 3695 | s->to_dst_file = qemu_fopen_rdma(rdma, "wb"); |
2da776db MH |
3696 | migrate_fd_connect(s); |
3697 | return; | |
3698 | err: | |
2da776db | 3699 | g_free(rdma); |
2da776db | 3700 | } |