]>
Commit | Line | Data |
---|---|---|
db1a4972 PB |
1 | /* |
2 | * QEMU System Emulator | |
3 | * | |
4 | * Copyright (c) 2003-2008 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
25 | #include "sysemu.h" | |
26 | #include "net.h" | |
27 | #include "monitor.h" | |
28 | #include "console.h" | |
29 | ||
30 | #include "hw/hw.h" | |
31 | ||
32 | #include <unistd.h> | |
33 | #include <fcntl.h> | |
34 | #include <time.h> | |
35 | #include <errno.h> | |
36 | #include <sys/time.h> | |
37 | #include <signal.h> | |
44459349 JL |
38 | #ifdef __FreeBSD__ |
39 | #include <sys/param.h> | |
40 | #endif | |
db1a4972 PB |
41 | |
42 | #ifdef __linux__ | |
43 | #include <sys/ioctl.h> | |
44 | #include <linux/rtc.h> | |
45 | /* For the benefit of older linux systems which don't supply it, | |
46 | we use a local copy of hpet.h. */ | |
47 | /* #include <linux/hpet.h> */ | |
48 | #include "hpet.h" | |
49 | #endif | |
50 | ||
51 | #ifdef _WIN32 | |
52 | #include <windows.h> | |
53 | #include <mmsystem.h> | |
54 | #endif | |
55 | ||
56 | #include "cpu-defs.h" | |
57 | #include "qemu-timer.h" | |
58 | #include "exec-all.h" | |
59 | ||
60 | /* Conversion factor from emulated instructions to virtual clock ticks. */ | |
61 | static int icount_time_shift; | |
62 | /* Arbitrarily pick 1MIPS as the minimum allowable speed. */ | |
63 | #define MAX_ICOUNT_SHIFT 10 | |
64 | /* Compensate for varying guest execution speed. */ | |
65 | static int64_t qemu_icount_bias; | |
66 | static QEMUTimer *icount_rt_timer; | |
67 | static QEMUTimer *icount_vm_timer; | |
68 | ||
69 | ||
70 | /***********************************************************/ | |
71 | /* real time host monotonic timer */ | |
72 | ||
73 | ||
74 | static int64_t get_clock_realtime(void) | |
75 | { | |
76 | struct timeval tv; | |
77 | ||
78 | gettimeofday(&tv, NULL); | |
79 | return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000); | |
80 | } | |
81 | ||
82 | #ifdef WIN32 | |
83 | ||
84 | static int64_t clock_freq; | |
85 | ||
86 | static void init_get_clock(void) | |
87 | { | |
88 | LARGE_INTEGER freq; | |
89 | int ret; | |
90 | ret = QueryPerformanceFrequency(&freq); | |
91 | if (ret == 0) { | |
92 | fprintf(stderr, "Could not calibrate ticks\n"); | |
93 | exit(1); | |
94 | } | |
95 | clock_freq = freq.QuadPart; | |
96 | } | |
97 | ||
98 | static int64_t get_clock(void) | |
99 | { | |
100 | LARGE_INTEGER ti; | |
101 | QueryPerformanceCounter(&ti); | |
102 | return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq); | |
103 | } | |
104 | ||
105 | #else | |
106 | ||
107 | static int use_rt_clock; | |
108 | ||
109 | static void init_get_clock(void) | |
110 | { | |
111 | use_rt_clock = 0; | |
112 | #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \ | |
113 | || defined(__DragonFly__) || defined(__FreeBSD_kernel__) | |
114 | { | |
115 | struct timespec ts; | |
116 | if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) { | |
117 | use_rt_clock = 1; | |
118 | } | |
119 | } | |
120 | #endif | |
121 | } | |
122 | ||
123 | static int64_t get_clock(void) | |
124 | { | |
125 | #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \ | |
126 | || defined(__DragonFly__) || defined(__FreeBSD_kernel__) | |
127 | if (use_rt_clock) { | |
128 | struct timespec ts; | |
129 | clock_gettime(CLOCK_MONOTONIC, &ts); | |
130 | return ts.tv_sec * 1000000000LL + ts.tv_nsec; | |
131 | } else | |
132 | #endif | |
133 | { | |
134 | /* XXX: using gettimeofday leads to problems if the date | |
135 | changes, so it should be avoided. */ | |
136 | return get_clock_realtime(); | |
137 | } | |
138 | } | |
139 | #endif | |
140 | ||
141 | /* Return the virtual CPU time, based on the instruction counter. */ | |
142 | static int64_t cpu_get_icount(void) | |
143 | { | |
144 | int64_t icount; | |
145 | CPUState *env = cpu_single_env;; | |
146 | icount = qemu_icount; | |
147 | if (env) { | |
148 | if (!can_do_io(env)) | |
149 | fprintf(stderr, "Bad clock read\n"); | |
150 | icount -= (env->icount_decr.u16.low + env->icount_extra); | |
151 | } | |
152 | return qemu_icount_bias + (icount << icount_time_shift); | |
153 | } | |
154 | ||
155 | /***********************************************************/ | |
156 | /* guest cycle counter */ | |
157 | ||
158 | typedef struct TimersState { | |
159 | int64_t cpu_ticks_prev; | |
160 | int64_t cpu_ticks_offset; | |
161 | int64_t cpu_clock_offset; | |
162 | int32_t cpu_ticks_enabled; | |
163 | int64_t dummy; | |
164 | } TimersState; | |
165 | ||
166 | TimersState timers_state; | |
167 | ||
168 | /* return the host CPU cycle counter and handle stop/restart */ | |
169 | int64_t cpu_get_ticks(void) | |
170 | { | |
171 | if (use_icount) { | |
172 | return cpu_get_icount(); | |
173 | } | |
174 | if (!timers_state.cpu_ticks_enabled) { | |
175 | return timers_state.cpu_ticks_offset; | |
176 | } else { | |
177 | int64_t ticks; | |
178 | ticks = cpu_get_real_ticks(); | |
179 | if (timers_state.cpu_ticks_prev > ticks) { | |
180 | /* Note: non increasing ticks may happen if the host uses | |
181 | software suspend */ | |
182 | timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks; | |
183 | } | |
184 | timers_state.cpu_ticks_prev = ticks; | |
185 | return ticks + timers_state.cpu_ticks_offset; | |
186 | } | |
187 | } | |
188 | ||
189 | /* return the host CPU monotonic timer and handle stop/restart */ | |
190 | static int64_t cpu_get_clock(void) | |
191 | { | |
192 | int64_t ti; | |
193 | if (!timers_state.cpu_ticks_enabled) { | |
194 | return timers_state.cpu_clock_offset; | |
195 | } else { | |
196 | ti = get_clock(); | |
197 | return ti + timers_state.cpu_clock_offset; | |
198 | } | |
199 | } | |
200 | ||
201 | #ifndef CONFIG_IOTHREAD | |
202 | static int64_t qemu_icount_delta(void) | |
203 | { | |
204 | if (!use_icount) { | |
205 | return 5000 * (int64_t) 1000000; | |
206 | } else if (use_icount == 1) { | |
207 | /* When not using an adaptive execution frequency | |
208 | we tend to get badly out of sync with real time, | |
209 | so just delay for a reasonable amount of time. */ | |
210 | return 0; | |
211 | } else { | |
212 | return cpu_get_icount() - cpu_get_clock(); | |
213 | } | |
214 | } | |
215 | #endif | |
216 | ||
217 | /* enable cpu_get_ticks() */ | |
218 | void cpu_enable_ticks(void) | |
219 | { | |
220 | if (!timers_state.cpu_ticks_enabled) { | |
221 | timers_state.cpu_ticks_offset -= cpu_get_real_ticks(); | |
222 | timers_state.cpu_clock_offset -= get_clock(); | |
223 | timers_state.cpu_ticks_enabled = 1; | |
224 | } | |
225 | } | |
226 | ||
227 | /* disable cpu_get_ticks() : the clock is stopped. You must not call | |
228 | cpu_get_ticks() after that. */ | |
229 | void cpu_disable_ticks(void) | |
230 | { | |
231 | if (timers_state.cpu_ticks_enabled) { | |
232 | timers_state.cpu_ticks_offset = cpu_get_ticks(); | |
233 | timers_state.cpu_clock_offset = cpu_get_clock(); | |
234 | timers_state.cpu_ticks_enabled = 0; | |
235 | } | |
236 | } | |
237 | ||
238 | /***********************************************************/ | |
239 | /* timers */ | |
240 | ||
241 | #define QEMU_CLOCK_REALTIME 0 | |
242 | #define QEMU_CLOCK_VIRTUAL 1 | |
243 | #define QEMU_CLOCK_HOST 2 | |
244 | ||
245 | struct QEMUClock { | |
246 | int type; | |
247 | int enabled; | |
248 | /* XXX: add frequency */ | |
249 | }; | |
250 | ||
251 | struct QEMUTimer { | |
252 | QEMUClock *clock; | |
253 | int64_t expire_time; | |
254 | QEMUTimerCB *cb; | |
255 | void *opaque; | |
256 | struct QEMUTimer *next; | |
257 | }; | |
258 | ||
259 | struct qemu_alarm_timer { | |
260 | char const *name; | |
261 | int (*start)(struct qemu_alarm_timer *t); | |
262 | void (*stop)(struct qemu_alarm_timer *t); | |
263 | void (*rearm)(struct qemu_alarm_timer *t); | |
264 | void *priv; | |
265 | ||
266 | char expired; | |
267 | char pending; | |
268 | }; | |
269 | ||
270 | static struct qemu_alarm_timer *alarm_timer; | |
271 | ||
272 | int qemu_alarm_pending(void) | |
273 | { | |
274 | return alarm_timer->pending; | |
275 | } | |
276 | ||
277 | static inline int alarm_has_dynticks(struct qemu_alarm_timer *t) | |
278 | { | |
279 | return !!t->rearm; | |
280 | } | |
281 | ||
282 | static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t) | |
283 | { | |
284 | if (!alarm_has_dynticks(t)) | |
285 | return; | |
286 | ||
287 | t->rearm(t); | |
288 | } | |
289 | ||
290 | /* TODO: MIN_TIMER_REARM_US should be optimized */ | |
291 | #define MIN_TIMER_REARM_US 250 | |
292 | ||
293 | #ifdef _WIN32 | |
294 | ||
295 | struct qemu_alarm_win32 { | |
296 | MMRESULT timerId; | |
297 | unsigned int period; | |
298 | } alarm_win32_data = {0, 0}; | |
299 | ||
300 | static int win32_start_timer(struct qemu_alarm_timer *t); | |
301 | static void win32_stop_timer(struct qemu_alarm_timer *t); | |
302 | static void win32_rearm_timer(struct qemu_alarm_timer *t); | |
303 | ||
304 | #else | |
305 | ||
306 | static int unix_start_timer(struct qemu_alarm_timer *t); | |
307 | static void unix_stop_timer(struct qemu_alarm_timer *t); | |
308 | ||
309 | #ifdef __linux__ | |
310 | ||
311 | static int dynticks_start_timer(struct qemu_alarm_timer *t); | |
312 | static void dynticks_stop_timer(struct qemu_alarm_timer *t); | |
313 | static void dynticks_rearm_timer(struct qemu_alarm_timer *t); | |
314 | ||
315 | static int hpet_start_timer(struct qemu_alarm_timer *t); | |
316 | static void hpet_stop_timer(struct qemu_alarm_timer *t); | |
317 | ||
318 | static int rtc_start_timer(struct qemu_alarm_timer *t); | |
319 | static void rtc_stop_timer(struct qemu_alarm_timer *t); | |
320 | ||
321 | #endif /* __linux__ */ | |
322 | ||
323 | #endif /* _WIN32 */ | |
324 | ||
325 | /* Correlation between real and virtual time is always going to be | |
326 | fairly approximate, so ignore small variation. | |
327 | When the guest is idle real and virtual time will be aligned in | |
328 | the IO wait loop. */ | |
329 | #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10) | |
330 | ||
331 | static void icount_adjust(void) | |
332 | { | |
333 | int64_t cur_time; | |
334 | int64_t cur_icount; | |
335 | int64_t delta; | |
336 | static int64_t last_delta; | |
337 | /* If the VM is not running, then do nothing. */ | |
338 | if (!vm_running) | |
339 | return; | |
340 | ||
341 | cur_time = cpu_get_clock(); | |
342 | cur_icount = qemu_get_clock(vm_clock); | |
343 | delta = cur_icount - cur_time; | |
344 | /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */ | |
345 | if (delta > 0 | |
346 | && last_delta + ICOUNT_WOBBLE < delta * 2 | |
347 | && icount_time_shift > 0) { | |
348 | /* The guest is getting too far ahead. Slow time down. */ | |
349 | icount_time_shift--; | |
350 | } | |
351 | if (delta < 0 | |
352 | && last_delta - ICOUNT_WOBBLE > delta * 2 | |
353 | && icount_time_shift < MAX_ICOUNT_SHIFT) { | |
354 | /* The guest is getting too far behind. Speed time up. */ | |
355 | icount_time_shift++; | |
356 | } | |
357 | last_delta = delta; | |
358 | qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift); | |
359 | } | |
360 | ||
361 | static void icount_adjust_rt(void * opaque) | |
362 | { | |
363 | qemu_mod_timer(icount_rt_timer, | |
364 | qemu_get_clock(rt_clock) + 1000); | |
365 | icount_adjust(); | |
366 | } | |
367 | ||
368 | static void icount_adjust_vm(void * opaque) | |
369 | { | |
370 | qemu_mod_timer(icount_vm_timer, | |
371 | qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10); | |
372 | icount_adjust(); | |
373 | } | |
374 | ||
375 | int64_t qemu_icount_round(int64_t count) | |
376 | { | |
377 | return (count + (1 << icount_time_shift) - 1) >> icount_time_shift; | |
378 | } | |
379 | ||
380 | static struct qemu_alarm_timer alarm_timers[] = { | |
381 | #ifndef _WIN32 | |
382 | #ifdef __linux__ | |
383 | {"dynticks", dynticks_start_timer, | |
384 | dynticks_stop_timer, dynticks_rearm_timer, NULL}, | |
385 | /* HPET - if available - is preferred */ | |
386 | {"hpet", hpet_start_timer, hpet_stop_timer, NULL, NULL}, | |
387 | /* ...otherwise try RTC */ | |
388 | {"rtc", rtc_start_timer, rtc_stop_timer, NULL, NULL}, | |
389 | #endif | |
390 | {"unix", unix_start_timer, unix_stop_timer, NULL, NULL}, | |
391 | #else | |
392 | {"dynticks", win32_start_timer, | |
393 | win32_stop_timer, win32_rearm_timer, &alarm_win32_data}, | |
394 | {"win32", win32_start_timer, | |
395 | win32_stop_timer, NULL, &alarm_win32_data}, | |
396 | #endif | |
397 | {NULL, } | |
398 | }; | |
399 | ||
400 | static void show_available_alarms(void) | |
401 | { | |
402 | int i; | |
403 | ||
404 | printf("Available alarm timers, in order of precedence:\n"); | |
405 | for (i = 0; alarm_timers[i].name; i++) | |
406 | printf("%s\n", alarm_timers[i].name); | |
407 | } | |
408 | ||
409 | void configure_alarms(char const *opt) | |
410 | { | |
411 | int i; | |
412 | int cur = 0; | |
413 | int count = ARRAY_SIZE(alarm_timers) - 1; | |
414 | char *arg; | |
415 | char *name; | |
416 | struct qemu_alarm_timer tmp; | |
417 | ||
418 | if (!strcmp(opt, "?")) { | |
419 | show_available_alarms(); | |
420 | exit(0); | |
421 | } | |
422 | ||
423 | arg = qemu_strdup(opt); | |
424 | ||
425 | /* Reorder the array */ | |
426 | name = strtok(arg, ","); | |
427 | while (name) { | |
428 | for (i = 0; i < count && alarm_timers[i].name; i++) { | |
429 | if (!strcmp(alarm_timers[i].name, name)) | |
430 | break; | |
431 | } | |
432 | ||
433 | if (i == count) { | |
434 | fprintf(stderr, "Unknown clock %s\n", name); | |
435 | goto next; | |
436 | } | |
437 | ||
438 | if (i < cur) | |
439 | /* Ignore */ | |
440 | goto next; | |
441 | ||
442 | /* Swap */ | |
443 | tmp = alarm_timers[i]; | |
444 | alarm_timers[i] = alarm_timers[cur]; | |
445 | alarm_timers[cur] = tmp; | |
446 | ||
447 | cur++; | |
448 | next: | |
449 | name = strtok(NULL, ","); | |
450 | } | |
451 | ||
452 | qemu_free(arg); | |
453 | ||
454 | if (cur) { | |
455 | /* Disable remaining timers */ | |
456 | for (i = cur; i < count; i++) | |
457 | alarm_timers[i].name = NULL; | |
458 | } else { | |
459 | show_available_alarms(); | |
460 | exit(1); | |
461 | } | |
462 | } | |
463 | ||
464 | #define QEMU_NUM_CLOCKS 3 | |
465 | ||
466 | QEMUClock *rt_clock; | |
467 | QEMUClock *vm_clock; | |
468 | QEMUClock *host_clock; | |
469 | ||
470 | static QEMUTimer *active_timers[QEMU_NUM_CLOCKS]; | |
471 | ||
472 | static QEMUClock *qemu_new_clock(int type) | |
473 | { | |
474 | QEMUClock *clock; | |
475 | clock = qemu_mallocz(sizeof(QEMUClock)); | |
476 | clock->type = type; | |
477 | clock->enabled = 1; | |
478 | return clock; | |
479 | } | |
480 | ||
481 | void qemu_clock_enable(QEMUClock *clock, int enabled) | |
482 | { | |
483 | clock->enabled = enabled; | |
484 | } | |
485 | ||
486 | QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque) | |
487 | { | |
488 | QEMUTimer *ts; | |
489 | ||
490 | ts = qemu_mallocz(sizeof(QEMUTimer)); | |
491 | ts->clock = clock; | |
492 | ts->cb = cb; | |
493 | ts->opaque = opaque; | |
494 | return ts; | |
495 | } | |
496 | ||
497 | void qemu_free_timer(QEMUTimer *ts) | |
498 | { | |
499 | qemu_free(ts); | |
500 | } | |
501 | ||
502 | /* stop a timer, but do not dealloc it */ | |
503 | void qemu_del_timer(QEMUTimer *ts) | |
504 | { | |
505 | QEMUTimer **pt, *t; | |
506 | ||
507 | /* NOTE: this code must be signal safe because | |
508 | qemu_timer_expired() can be called from a signal. */ | |
509 | pt = &active_timers[ts->clock->type]; | |
510 | for(;;) { | |
511 | t = *pt; | |
512 | if (!t) | |
513 | break; | |
514 | if (t == ts) { | |
515 | *pt = t->next; | |
516 | break; | |
517 | } | |
518 | pt = &t->next; | |
519 | } | |
520 | } | |
521 | ||
522 | /* modify the current timer so that it will be fired when current_time | |
523 | >= expire_time. The corresponding callback will be called. */ | |
524 | void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time) | |
525 | { | |
526 | QEMUTimer **pt, *t; | |
527 | ||
528 | qemu_del_timer(ts); | |
529 | ||
530 | /* add the timer in the sorted list */ | |
531 | /* NOTE: this code must be signal safe because | |
532 | qemu_timer_expired() can be called from a signal. */ | |
533 | pt = &active_timers[ts->clock->type]; | |
534 | for(;;) { | |
535 | t = *pt; | |
536 | if (!t) | |
537 | break; | |
538 | if (t->expire_time > expire_time) | |
539 | break; | |
540 | pt = &t->next; | |
541 | } | |
542 | ts->expire_time = expire_time; | |
543 | ts->next = *pt; | |
544 | *pt = ts; | |
545 | ||
546 | /* Rearm if necessary */ | |
547 | if (pt == &active_timers[ts->clock->type]) { | |
548 | if (!alarm_timer->pending) { | |
549 | qemu_rearm_alarm_timer(alarm_timer); | |
550 | } | |
551 | /* Interrupt execution to force deadline recalculation. */ | |
552 | if (use_icount) | |
553 | qemu_notify_event(); | |
554 | } | |
555 | } | |
556 | ||
557 | int qemu_timer_pending(QEMUTimer *ts) | |
558 | { | |
559 | QEMUTimer *t; | |
560 | for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) { | |
561 | if (t == ts) | |
562 | return 1; | |
563 | } | |
564 | return 0; | |
565 | } | |
566 | ||
567 | int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time) | |
568 | { | |
569 | if (!timer_head) | |
570 | return 0; | |
571 | return (timer_head->expire_time <= current_time); | |
572 | } | |
573 | ||
574 | static void qemu_run_timers(QEMUClock *clock) | |
575 | { | |
576 | QEMUTimer **ptimer_head, *ts; | |
577 | int64_t current_time; | |
578 | ||
579 | if (!clock->enabled) | |
580 | return; | |
581 | ||
582 | current_time = qemu_get_clock (clock); | |
583 | ptimer_head = &active_timers[clock->type]; | |
584 | for(;;) { | |
585 | ts = *ptimer_head; | |
586 | if (!ts || ts->expire_time > current_time) | |
587 | break; | |
588 | /* remove timer from the list before calling the callback */ | |
589 | *ptimer_head = ts->next; | |
590 | ts->next = NULL; | |
591 | ||
592 | /* run the callback (the timer list can be modified) */ | |
593 | ts->cb(ts->opaque); | |
594 | } | |
595 | } | |
596 | ||
597 | int64_t qemu_get_clock(QEMUClock *clock) | |
598 | { | |
599 | switch(clock->type) { | |
600 | case QEMU_CLOCK_REALTIME: | |
601 | return get_clock() / 1000000; | |
602 | default: | |
603 | case QEMU_CLOCK_VIRTUAL: | |
604 | if (use_icount) { | |
605 | return cpu_get_icount(); | |
606 | } else { | |
607 | return cpu_get_clock(); | |
608 | } | |
609 | case QEMU_CLOCK_HOST: | |
610 | return get_clock_realtime(); | |
611 | } | |
612 | } | |
613 | ||
614 | int64_t qemu_get_clock_ns(QEMUClock *clock) | |
615 | { | |
616 | switch(clock->type) { | |
617 | case QEMU_CLOCK_REALTIME: | |
618 | return get_clock(); | |
619 | default: | |
620 | case QEMU_CLOCK_VIRTUAL: | |
621 | if (use_icount) { | |
622 | return cpu_get_icount(); | |
623 | } else { | |
624 | return cpu_get_clock(); | |
625 | } | |
626 | case QEMU_CLOCK_HOST: | |
627 | return get_clock_realtime(); | |
628 | } | |
629 | } | |
630 | ||
631 | void init_clocks(void) | |
632 | { | |
633 | init_get_clock(); | |
634 | rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME); | |
635 | vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL); | |
636 | host_clock = qemu_new_clock(QEMU_CLOCK_HOST); | |
637 | ||
638 | rtc_clock = host_clock; | |
639 | } | |
640 | ||
641 | /* save a timer */ | |
642 | void qemu_put_timer(QEMUFile *f, QEMUTimer *ts) | |
643 | { | |
644 | uint64_t expire_time; | |
645 | ||
646 | if (qemu_timer_pending(ts)) { | |
647 | expire_time = ts->expire_time; | |
648 | } else { | |
649 | expire_time = -1; | |
650 | } | |
651 | qemu_put_be64(f, expire_time); | |
652 | } | |
653 | ||
654 | void qemu_get_timer(QEMUFile *f, QEMUTimer *ts) | |
655 | { | |
656 | uint64_t expire_time; | |
657 | ||
658 | expire_time = qemu_get_be64(f); | |
659 | if (expire_time != -1) { | |
660 | qemu_mod_timer(ts, expire_time); | |
661 | } else { | |
662 | qemu_del_timer(ts); | |
663 | } | |
664 | } | |
665 | ||
666 | static const VMStateDescription vmstate_timers = { | |
667 | .name = "timer", | |
668 | .version_id = 2, | |
669 | .minimum_version_id = 1, | |
670 | .minimum_version_id_old = 1, | |
671 | .fields = (VMStateField []) { | |
672 | VMSTATE_INT64(cpu_ticks_offset, TimersState), | |
673 | VMSTATE_INT64(dummy, TimersState), | |
674 | VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2), | |
675 | VMSTATE_END_OF_LIST() | |
676 | } | |
677 | }; | |
678 | ||
679 | void configure_icount(const char *option) | |
680 | { | |
681 | vmstate_register(0, &vmstate_timers, &timers_state); | |
682 | if (!option) | |
683 | return; | |
684 | ||
685 | if (strcmp(option, "auto") != 0) { | |
686 | icount_time_shift = strtol(option, NULL, 0); | |
687 | use_icount = 1; | |
688 | return; | |
689 | } | |
690 | ||
691 | use_icount = 2; | |
692 | ||
693 | /* 125MIPS seems a reasonable initial guess at the guest speed. | |
694 | It will be corrected fairly quickly anyway. */ | |
695 | icount_time_shift = 3; | |
696 | ||
697 | /* Have both realtime and virtual time triggers for speed adjustment. | |
698 | The realtime trigger catches emulated time passing too slowly, | |
699 | the virtual time trigger catches emulated time passing too fast. | |
700 | Realtime triggers occur even when idle, so use them less frequently | |
701 | than VM triggers. */ | |
702 | icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL); | |
703 | qemu_mod_timer(icount_rt_timer, | |
704 | qemu_get_clock(rt_clock) + 1000); | |
705 | icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL); | |
706 | qemu_mod_timer(icount_vm_timer, | |
707 | qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10); | |
708 | } | |
709 | ||
710 | void qemu_run_all_timers(void) | |
711 | { | |
ca5a2a4b PB |
712 | alarm_timer->pending = 0; |
713 | ||
db1a4972 PB |
714 | /* rearm timer, if not periodic */ |
715 | if (alarm_timer->expired) { | |
716 | alarm_timer->expired = 0; | |
717 | qemu_rearm_alarm_timer(alarm_timer); | |
718 | } | |
719 | ||
db1a4972 PB |
720 | /* vm time timers */ |
721 | if (vm_running) { | |
722 | qemu_run_timers(vm_clock); | |
723 | } | |
724 | ||
725 | qemu_run_timers(rt_clock); | |
726 | qemu_run_timers(host_clock); | |
727 | } | |
728 | ||
729 | #ifdef _WIN32 | |
730 | static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg, | |
731 | DWORD_PTR dwUser, DWORD_PTR dw1, | |
732 | DWORD_PTR dw2) | |
733 | #else | |
734 | static void host_alarm_handler(int host_signum) | |
735 | #endif | |
736 | { | |
737 | struct qemu_alarm_timer *t = alarm_timer; | |
738 | if (!t) | |
739 | return; | |
740 | ||
741 | #if 0 | |
742 | #define DISP_FREQ 1000 | |
743 | { | |
744 | static int64_t delta_min = INT64_MAX; | |
745 | static int64_t delta_max, delta_cum, last_clock, delta, ti; | |
746 | static int count; | |
747 | ti = qemu_get_clock(vm_clock); | |
748 | if (last_clock != 0) { | |
749 | delta = ti - last_clock; | |
750 | if (delta < delta_min) | |
751 | delta_min = delta; | |
752 | if (delta > delta_max) | |
753 | delta_max = delta; | |
754 | delta_cum += delta; | |
755 | if (++count == DISP_FREQ) { | |
756 | printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n", | |
757 | muldiv64(delta_min, 1000000, get_ticks_per_sec()), | |
758 | muldiv64(delta_max, 1000000, get_ticks_per_sec()), | |
759 | muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()), | |
760 | (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ)); | |
761 | count = 0; | |
762 | delta_min = INT64_MAX; | |
763 | delta_max = 0; | |
764 | delta_cum = 0; | |
765 | } | |
766 | } | |
767 | last_clock = ti; | |
768 | } | |
769 | #endif | |
770 | if (alarm_has_dynticks(t) || | |
771 | (!use_icount && | |
772 | qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL], | |
773 | qemu_get_clock(vm_clock))) || | |
774 | qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME], | |
775 | qemu_get_clock(rt_clock)) || | |
776 | qemu_timer_expired(active_timers[QEMU_CLOCK_HOST], | |
777 | qemu_get_clock(host_clock))) { | |
778 | ||
779 | t->expired = alarm_has_dynticks(t); | |
780 | t->pending = 1; | |
781 | qemu_notify_event(); | |
782 | } | |
783 | } | |
784 | ||
785 | int64_t qemu_next_deadline(void) | |
786 | { | |
787 | /* To avoid problems with overflow limit this to 2^32. */ | |
788 | int64_t delta = INT32_MAX; | |
789 | ||
790 | if (active_timers[QEMU_CLOCK_VIRTUAL]) { | |
791 | delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time - | |
792 | qemu_get_clock(vm_clock); | |
793 | } | |
794 | if (active_timers[QEMU_CLOCK_HOST]) { | |
795 | int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time - | |
796 | qemu_get_clock(host_clock); | |
797 | if (hdelta < delta) | |
798 | delta = hdelta; | |
799 | } | |
800 | ||
801 | if (delta < 0) | |
802 | delta = 0; | |
803 | ||
804 | return delta; | |
805 | } | |
806 | ||
807 | #ifndef _WIN32 | |
808 | ||
809 | #if defined(__linux__) | |
810 | ||
811 | #define RTC_FREQ 1024 | |
812 | ||
813 | static uint64_t qemu_next_deadline_dyntick(void) | |
814 | { | |
815 | int64_t delta; | |
816 | int64_t rtdelta; | |
817 | ||
818 | if (use_icount) | |
819 | delta = INT32_MAX; | |
820 | else | |
821 | delta = (qemu_next_deadline() + 999) / 1000; | |
822 | ||
823 | if (active_timers[QEMU_CLOCK_REALTIME]) { | |
824 | rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time - | |
825 | qemu_get_clock(rt_clock))*1000; | |
826 | if (rtdelta < delta) | |
827 | delta = rtdelta; | |
828 | } | |
829 | ||
830 | if (delta < MIN_TIMER_REARM_US) | |
831 | delta = MIN_TIMER_REARM_US; | |
832 | ||
833 | return delta; | |
834 | } | |
835 | ||
836 | static void enable_sigio_timer(int fd) | |
837 | { | |
838 | struct sigaction act; | |
839 | ||
840 | /* timer signal */ | |
841 | sigfillset(&act.sa_mask); | |
842 | act.sa_flags = 0; | |
843 | act.sa_handler = host_alarm_handler; | |
844 | ||
845 | sigaction(SIGIO, &act, NULL); | |
846 | fcntl_setfl(fd, O_ASYNC); | |
847 | fcntl(fd, F_SETOWN, getpid()); | |
848 | } | |
849 | ||
850 | static int hpet_start_timer(struct qemu_alarm_timer *t) | |
851 | { | |
852 | struct hpet_info info; | |
853 | int r, fd; | |
854 | ||
855 | fd = qemu_open("/dev/hpet", O_RDONLY); | |
856 | if (fd < 0) | |
857 | return -1; | |
858 | ||
859 | /* Set frequency */ | |
860 | r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ); | |
861 | if (r < 0) { | |
862 | fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n" | |
863 | "error, but for better emulation accuracy type:\n" | |
864 | "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n"); | |
865 | goto fail; | |
866 | } | |
867 | ||
868 | /* Check capabilities */ | |
869 | r = ioctl(fd, HPET_INFO, &info); | |
870 | if (r < 0) | |
871 | goto fail; | |
872 | ||
873 | /* Enable periodic mode */ | |
874 | r = ioctl(fd, HPET_EPI, 0); | |
875 | if (info.hi_flags && (r < 0)) | |
876 | goto fail; | |
877 | ||
878 | /* Enable interrupt */ | |
879 | r = ioctl(fd, HPET_IE_ON, 0); | |
880 | if (r < 0) | |
881 | goto fail; | |
882 | ||
883 | enable_sigio_timer(fd); | |
884 | t->priv = (void *)(long)fd; | |
885 | ||
886 | return 0; | |
887 | fail: | |
888 | close(fd); | |
889 | return -1; | |
890 | } | |
891 | ||
892 | static void hpet_stop_timer(struct qemu_alarm_timer *t) | |
893 | { | |
894 | int fd = (long)t->priv; | |
895 | ||
896 | close(fd); | |
897 | } | |
898 | ||
899 | static int rtc_start_timer(struct qemu_alarm_timer *t) | |
900 | { | |
901 | int rtc_fd; | |
902 | unsigned long current_rtc_freq = 0; | |
903 | ||
904 | TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY)); | |
905 | if (rtc_fd < 0) | |
906 | return -1; | |
907 | ioctl(rtc_fd, RTC_IRQP_READ, ¤t_rtc_freq); | |
908 | if (current_rtc_freq != RTC_FREQ && | |
909 | ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) { | |
910 | fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n" | |
911 | "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n" | |
912 | "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n"); | |
913 | goto fail; | |
914 | } | |
915 | if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) { | |
916 | fail: | |
917 | close(rtc_fd); | |
918 | return -1; | |
919 | } | |
920 | ||
921 | enable_sigio_timer(rtc_fd); | |
922 | ||
923 | t->priv = (void *)(long)rtc_fd; | |
924 | ||
925 | return 0; | |
926 | } | |
927 | ||
928 | static void rtc_stop_timer(struct qemu_alarm_timer *t) | |
929 | { | |
930 | int rtc_fd = (long)t->priv; | |
931 | ||
932 | close(rtc_fd); | |
933 | } | |
934 | ||
935 | static int dynticks_start_timer(struct qemu_alarm_timer *t) | |
936 | { | |
937 | struct sigevent ev; | |
938 | timer_t host_timer; | |
939 | struct sigaction act; | |
940 | ||
941 | sigfillset(&act.sa_mask); | |
942 | act.sa_flags = 0; | |
943 | act.sa_handler = host_alarm_handler; | |
944 | ||
945 | sigaction(SIGALRM, &act, NULL); | |
946 | ||
947 | /* | |
948 | * Initialize ev struct to 0 to avoid valgrind complaining | |
949 | * about uninitialized data in timer_create call | |
950 | */ | |
951 | memset(&ev, 0, sizeof(ev)); | |
952 | ev.sigev_value.sival_int = 0; | |
953 | ev.sigev_notify = SIGEV_SIGNAL; | |
954 | ev.sigev_signo = SIGALRM; | |
955 | ||
956 | if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) { | |
957 | perror("timer_create"); | |
958 | ||
959 | /* disable dynticks */ | |
960 | fprintf(stderr, "Dynamic Ticks disabled\n"); | |
961 | ||
962 | return -1; | |
963 | } | |
964 | ||
965 | t->priv = (void *)(long)host_timer; | |
966 | ||
967 | return 0; | |
968 | } | |
969 | ||
970 | static void dynticks_stop_timer(struct qemu_alarm_timer *t) | |
971 | { | |
972 | timer_t host_timer = (timer_t)(long)t->priv; | |
973 | ||
974 | timer_delete(host_timer); | |
975 | } | |
976 | ||
977 | static void dynticks_rearm_timer(struct qemu_alarm_timer *t) | |
978 | { | |
979 | timer_t host_timer = (timer_t)(long)t->priv; | |
980 | struct itimerspec timeout; | |
981 | int64_t nearest_delta_us = INT64_MAX; | |
982 | int64_t current_us; | |
983 | ||
984 | assert(alarm_has_dynticks(t)); | |
985 | if (!active_timers[QEMU_CLOCK_REALTIME] && | |
986 | !active_timers[QEMU_CLOCK_VIRTUAL] && | |
987 | !active_timers[QEMU_CLOCK_HOST]) | |
988 | return; | |
989 | ||
990 | nearest_delta_us = qemu_next_deadline_dyntick(); | |
991 | ||
992 | /* check whether a timer is already running */ | |
993 | if (timer_gettime(host_timer, &timeout)) { | |
994 | perror("gettime"); | |
995 | fprintf(stderr, "Internal timer error: aborting\n"); | |
996 | exit(1); | |
997 | } | |
998 | current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000; | |
999 | if (current_us && current_us <= nearest_delta_us) | |
1000 | return; | |
1001 | ||
1002 | timeout.it_interval.tv_sec = 0; | |
1003 | timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */ | |
1004 | timeout.it_value.tv_sec = nearest_delta_us / 1000000; | |
1005 | timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000; | |
1006 | if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) { | |
1007 | perror("settime"); | |
1008 | fprintf(stderr, "Internal timer error: aborting\n"); | |
1009 | exit(1); | |
1010 | } | |
1011 | } | |
1012 | ||
1013 | #endif /* defined(__linux__) */ | |
1014 | ||
1015 | static int unix_start_timer(struct qemu_alarm_timer *t) | |
1016 | { | |
1017 | struct sigaction act; | |
1018 | struct itimerval itv; | |
1019 | int err; | |
1020 | ||
1021 | /* timer signal */ | |
1022 | sigfillset(&act.sa_mask); | |
1023 | act.sa_flags = 0; | |
1024 | act.sa_handler = host_alarm_handler; | |
1025 | ||
1026 | sigaction(SIGALRM, &act, NULL); | |
1027 | ||
1028 | itv.it_interval.tv_sec = 0; | |
1029 | /* for i386 kernel 2.6 to get 1 ms */ | |
1030 | itv.it_interval.tv_usec = 999; | |
1031 | itv.it_value.tv_sec = 0; | |
1032 | itv.it_value.tv_usec = 10 * 1000; | |
1033 | ||
1034 | err = setitimer(ITIMER_REAL, &itv, NULL); | |
1035 | if (err) | |
1036 | return -1; | |
1037 | ||
1038 | return 0; | |
1039 | } | |
1040 | ||
1041 | static void unix_stop_timer(struct qemu_alarm_timer *t) | |
1042 | { | |
1043 | struct itimerval itv; | |
1044 | ||
1045 | memset(&itv, 0, sizeof(itv)); | |
1046 | setitimer(ITIMER_REAL, &itv, NULL); | |
1047 | } | |
1048 | ||
1049 | #endif /* !defined(_WIN32) */ | |
1050 | ||
1051 | ||
1052 | #ifdef _WIN32 | |
1053 | ||
1054 | static int win32_start_timer(struct qemu_alarm_timer *t) | |
1055 | { | |
1056 | TIMECAPS tc; | |
1057 | struct qemu_alarm_win32 *data = t->priv; | |
1058 | UINT flags; | |
1059 | ||
1060 | memset(&tc, 0, sizeof(tc)); | |
1061 | timeGetDevCaps(&tc, sizeof(tc)); | |
1062 | ||
1063 | data->period = tc.wPeriodMin; | |
1064 | timeBeginPeriod(data->period); | |
1065 | ||
1066 | flags = TIME_CALLBACK_FUNCTION; | |
1067 | if (alarm_has_dynticks(t)) | |
1068 | flags |= TIME_ONESHOT; | |
1069 | else | |
1070 | flags |= TIME_PERIODIC; | |
1071 | ||
1072 | data->timerId = timeSetEvent(1, // interval (ms) | |
1073 | data->period, // resolution | |
1074 | host_alarm_handler, // function | |
1075 | (DWORD)t, // parameter | |
1076 | flags); | |
1077 | ||
1078 | if (!data->timerId) { | |
1079 | fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n", | |
1080 | GetLastError()); | |
1081 | timeEndPeriod(data->period); | |
1082 | return -1; | |
1083 | } | |
1084 | ||
1085 | return 0; | |
1086 | } | |
1087 | ||
1088 | static void win32_stop_timer(struct qemu_alarm_timer *t) | |
1089 | { | |
1090 | struct qemu_alarm_win32 *data = t->priv; | |
1091 | ||
1092 | timeKillEvent(data->timerId); | |
1093 | timeEndPeriod(data->period); | |
1094 | } | |
1095 | ||
1096 | static void win32_rearm_timer(struct qemu_alarm_timer *t) | |
1097 | { | |
1098 | struct qemu_alarm_win32 *data = t->priv; | |
1099 | ||
1100 | assert(alarm_has_dynticks(t)); | |
1101 | if (!active_timers[QEMU_CLOCK_REALTIME] && | |
1102 | !active_timers[QEMU_CLOCK_VIRTUAL] && | |
1103 | !active_timers[QEMU_CLOCK_HOST]) | |
1104 | return; | |
1105 | ||
1106 | timeKillEvent(data->timerId); | |
1107 | ||
1108 | data->timerId = timeSetEvent(1, | |
1109 | data->period, | |
1110 | host_alarm_handler, | |
1111 | (DWORD)t, | |
1112 | TIME_ONESHOT | TIME_CALLBACK_FUNCTION); | |
1113 | ||
1114 | if (!data->timerId) { | |
1115 | fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n", | |
1116 | GetLastError()); | |
1117 | ||
1118 | timeEndPeriod(data->period); | |
1119 | exit(1); | |
1120 | } | |
1121 | } | |
1122 | ||
1123 | #endif /* _WIN32 */ | |
1124 | ||
1125 | static void alarm_timer_on_change_state_rearm(void *opaque, int running, int reason) | |
1126 | { | |
1127 | if (running) | |
1128 | qemu_rearm_alarm_timer((struct qemu_alarm_timer *) opaque); | |
1129 | } | |
1130 | ||
1131 | int init_timer_alarm(void) | |
1132 | { | |
1133 | struct qemu_alarm_timer *t = NULL; | |
1134 | int i, err = -1; | |
1135 | ||
1136 | for (i = 0; alarm_timers[i].name; i++) { | |
1137 | t = &alarm_timers[i]; | |
1138 | ||
1139 | err = t->start(t); | |
1140 | if (!err) | |
1141 | break; | |
1142 | } | |
1143 | ||
1144 | if (err) { | |
1145 | err = -ENOENT; | |
1146 | goto fail; | |
1147 | } | |
1148 | ||
1149 | /* first event is at time 0 */ | |
1150 | t->pending = 1; | |
1151 | alarm_timer = t; | |
1152 | qemu_add_vm_change_state_handler(alarm_timer_on_change_state_rearm, t); | |
1153 | ||
1154 | return 0; | |
1155 | ||
1156 | fail: | |
1157 | return err; | |
1158 | } | |
1159 | ||
1160 | void quit_timers(void) | |
1161 | { | |
1162 | struct qemu_alarm_timer *t = alarm_timer; | |
1163 | alarm_timer = NULL; | |
1164 | t->stop(t); | |
1165 | } | |
1166 | ||
1167 | int qemu_calculate_timeout(void) | |
1168 | { | |
1169 | #ifndef CONFIG_IOTHREAD | |
1170 | int timeout; | |
1171 | ||
1172 | if (!vm_running) | |
1173 | timeout = 5000; | |
1174 | else { | |
1175 | /* XXX: use timeout computed from timers */ | |
1176 | int64_t add; | |
1177 | int64_t delta; | |
1178 | /* Advance virtual time to the next event. */ | |
1179 | delta = qemu_icount_delta(); | |
1180 | if (delta > 0) { | |
1181 | /* If virtual time is ahead of real time then just | |
1182 | wait for IO. */ | |
1183 | timeout = (delta + 999999) / 1000000; | |
1184 | } else { | |
1185 | /* Wait for either IO to occur or the next | |
1186 | timer event. */ | |
1187 | add = qemu_next_deadline(); | |
1188 | /* We advance the timer before checking for IO. | |
1189 | Limit the amount we advance so that early IO | |
1190 | activity won't get the guest too far ahead. */ | |
1191 | if (add > 10000000) | |
1192 | add = 10000000; | |
1193 | delta += add; | |
1194 | qemu_icount += qemu_icount_round (add); | |
1195 | timeout = delta / 1000000; | |
1196 | if (timeout < 0) | |
1197 | timeout = 0; | |
1198 | } | |
1199 | } | |
1200 | ||
1201 | return timeout; | |
1202 | #else /* CONFIG_IOTHREAD */ | |
1203 | return 1000; | |
1204 | #endif | |
1205 | } | |
1206 |