]>
Commit | Line | Data |
---|---|---|
7d13299d FB |
1 | /* |
2 | * i386 emulator main execution loop | |
5fafdf24 | 3 | * |
66321a11 | 4 | * Copyright (c) 2003-2005 Fabrice Bellard |
7d13299d | 5 | * |
3ef693a0 FB |
6 | * This library is free software; you can redistribute it and/or |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
7d13299d | 10 | * |
3ef693a0 FB |
11 | * This library is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
7d13299d | 15 | * |
3ef693a0 FB |
16 | * You should have received a copy of the GNU Lesser General Public |
17 | * License along with this library; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
7d13299d | 19 | */ |
e4533c7a | 20 | #include "config.h" |
7cb69cae | 21 | #define CPU_NO_GLOBAL_REGS |
93ac68bc | 22 | #include "exec.h" |
956034d7 | 23 | #include "disas.h" |
7cb69cae | 24 | #include "tcg.h" |
7d13299d | 25 | |
fbf9eeb3 FB |
26 | #if !defined(CONFIG_SOFTMMU) |
27 | #undef EAX | |
28 | #undef ECX | |
29 | #undef EDX | |
30 | #undef EBX | |
31 | #undef ESP | |
32 | #undef EBP | |
33 | #undef ESI | |
34 | #undef EDI | |
35 | #undef EIP | |
36 | #include <signal.h> | |
37 | #include <sys/ucontext.h> | |
38 | #endif | |
39 | ||
572a9d4a BS |
40 | #if defined(__sparc__) && !defined(HOST_SOLARIS) |
41 | // Work around ugly bugs in glibc that mangle global register contents | |
42 | #undef env | |
43 | #define env cpu_single_env | |
44 | #endif | |
45 | ||
36bdbe54 FB |
46 | int tb_invalidated_flag; |
47 | ||
dc99065b | 48 | //#define DEBUG_EXEC |
9de5e440 | 49 | //#define DEBUG_SIGNAL |
7d13299d | 50 | |
e4533c7a FB |
51 | void cpu_loop_exit(void) |
52 | { | |
bfed01fc TS |
53 | /* NOTE: the register at this point must be saved by hand because |
54 | longjmp restore them */ | |
55 | regs_to_env(); | |
e4533c7a FB |
56 | longjmp(env->jmp_env, 1); |
57 | } | |
bfed01fc | 58 | |
e6e5906b | 59 | #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K)) |
3475187d FB |
60 | #define reg_T2 |
61 | #endif | |
e4533c7a | 62 | |
fbf9eeb3 FB |
63 | /* exit the current TB from a signal handler. The host registers are |
64 | restored in a state compatible with the CPU emulator | |
65 | */ | |
5fafdf24 | 66 | void cpu_resume_from_signal(CPUState *env1, void *puc) |
fbf9eeb3 FB |
67 | { |
68 | #if !defined(CONFIG_SOFTMMU) | |
69 | struct ucontext *uc = puc; | |
70 | #endif | |
71 | ||
72 | env = env1; | |
73 | ||
74 | /* XXX: restore cpu registers saved in host registers */ | |
75 | ||
76 | #if !defined(CONFIG_SOFTMMU) | |
77 | if (puc) { | |
78 | /* XXX: use siglongjmp ? */ | |
79 | sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); | |
80 | } | |
81 | #endif | |
82 | longjmp(env->jmp_env, 1); | |
83 | } | |
84 | ||
2e70f6ef PB |
85 | /* Execute the code without caching the generated code. An interpreter |
86 | could be used if available. */ | |
87 | static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb) | |
88 | { | |
89 | unsigned long next_tb; | |
90 | TranslationBlock *tb; | |
91 | ||
92 | /* Should never happen. | |
93 | We only end up here when an existing TB is too long. */ | |
94 | if (max_cycles > CF_COUNT_MASK) | |
95 | max_cycles = CF_COUNT_MASK; | |
96 | ||
97 | tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags, | |
98 | max_cycles); | |
99 | env->current_tb = tb; | |
100 | /* execute the generated code */ | |
101 | next_tb = tcg_qemu_tb_exec(tb->tc_ptr); | |
102 | ||
103 | if ((next_tb & 3) == 2) { | |
104 | /* Restore PC. This may happen if async event occurs before | |
105 | the TB starts executing. */ | |
106 | CPU_PC_FROM_TB(env, tb); | |
107 | } | |
108 | tb_phys_invalidate(tb, -1); | |
109 | tb_free(tb); | |
110 | } | |
111 | ||
8a40a180 FB |
112 | static TranslationBlock *tb_find_slow(target_ulong pc, |
113 | target_ulong cs_base, | |
c068688b | 114 | uint64_t flags) |
8a40a180 FB |
115 | { |
116 | TranslationBlock *tb, **ptb1; | |
8a40a180 FB |
117 | unsigned int h; |
118 | target_ulong phys_pc, phys_page1, phys_page2, virt_page2; | |
3b46e624 | 119 | |
8a40a180 | 120 | tb_invalidated_flag = 0; |
3b46e624 | 121 | |
8a40a180 | 122 | regs_to_env(); /* XXX: do it just before cpu_gen_code() */ |
3b46e624 | 123 | |
8a40a180 FB |
124 | /* find translated block using physical mappings */ |
125 | phys_pc = get_phys_addr_code(env, pc); | |
126 | phys_page1 = phys_pc & TARGET_PAGE_MASK; | |
127 | phys_page2 = -1; | |
128 | h = tb_phys_hash_func(phys_pc); | |
129 | ptb1 = &tb_phys_hash[h]; | |
130 | for(;;) { | |
131 | tb = *ptb1; | |
132 | if (!tb) | |
133 | goto not_found; | |
5fafdf24 | 134 | if (tb->pc == pc && |
8a40a180 | 135 | tb->page_addr[0] == phys_page1 && |
5fafdf24 | 136 | tb->cs_base == cs_base && |
8a40a180 FB |
137 | tb->flags == flags) { |
138 | /* check next page if needed */ | |
139 | if (tb->page_addr[1] != -1) { | |
5fafdf24 | 140 | virt_page2 = (pc & TARGET_PAGE_MASK) + |
8a40a180 FB |
141 | TARGET_PAGE_SIZE; |
142 | phys_page2 = get_phys_addr_code(env, virt_page2); | |
143 | if (tb->page_addr[1] == phys_page2) | |
144 | goto found; | |
145 | } else { | |
146 | goto found; | |
147 | } | |
148 | } | |
149 | ptb1 = &tb->phys_hash_next; | |
150 | } | |
151 | not_found: | |
2e70f6ef PB |
152 | /* if no translated code available, then translate it now */ |
153 | tb = tb_gen_code(env, pc, cs_base, flags, 0); | |
3b46e624 | 154 | |
8a40a180 | 155 | found: |
8a40a180 FB |
156 | /* we add the TB in the virtual pc hash table */ |
157 | env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; | |
8a40a180 FB |
158 | return tb; |
159 | } | |
160 | ||
161 | static inline TranslationBlock *tb_find_fast(void) | |
162 | { | |
163 | TranslationBlock *tb; | |
164 | target_ulong cs_base, pc; | |
c068688b | 165 | uint64_t flags; |
8a40a180 FB |
166 | |
167 | /* we record a subset of the CPU state. It will | |
168 | always be the same before a given translated block | |
169 | is executed. */ | |
170 | #if defined(TARGET_I386) | |
171 | flags = env->hflags; | |
172 | flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)); | |
173 | cs_base = env->segs[R_CS].base; | |
174 | pc = cs_base + env->eip; | |
175 | #elif defined(TARGET_ARM) | |
176 | flags = env->thumb | (env->vfp.vec_len << 1) | |
b5ff1b31 FB |
177 | | (env->vfp.vec_stride << 4); |
178 | if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) | |
179 | flags |= (1 << 6); | |
40f137e1 PB |
180 | if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) |
181 | flags |= (1 << 7); | |
9ee6e8bb | 182 | flags |= (env->condexec_bits << 8); |
8a40a180 FB |
183 | cs_base = 0; |
184 | pc = env->regs[15]; | |
185 | #elif defined(TARGET_SPARC) | |
186 | #ifdef TARGET_SPARC64 | |
2cade6a3 BS |
187 | // AM . Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled |
188 | flags = ((env->pstate & PS_AM) << 2) | |
189 | | (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2)) | |
a80dde08 | 190 | | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2); |
8a40a180 | 191 | #else |
6d5f237a BS |
192 | // FPU enable . Supervisor |
193 | flags = (env->psref << 4) | env->psrs; | |
8a40a180 FB |
194 | #endif |
195 | cs_base = env->npc; | |
196 | pc = env->pc; | |
197 | #elif defined(TARGET_PPC) | |
1527c87e | 198 | flags = env->hflags; |
8a40a180 FB |
199 | cs_base = 0; |
200 | pc = env->nip; | |
201 | #elif defined(TARGET_MIPS) | |
56b19403 | 202 | flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK); |
cc9442b9 | 203 | cs_base = 0; |
b5dc7732 | 204 | pc = env->active_tc.PC; |
e6e5906b | 205 | #elif defined(TARGET_M68K) |
acf930aa PB |
206 | flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */ |
207 | | (env->sr & SR_S) /* Bit 13 */ | |
208 | | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */ | |
e6e5906b PB |
209 | cs_base = 0; |
210 | pc = env->pc; | |
fdf9b3e8 | 211 | #elif defined(TARGET_SH4) |
fe25591e AJ |
212 | flags = (env->flags & (DELAY_SLOT | DELAY_SLOT_CONDITIONAL |
213 | | DELAY_SLOT_TRUE | DELAY_SLOT_CLEARME)) /* Bits 0- 3 */ | |
214 | | (env->fpscr & (FPSCR_FR | FPSCR_SZ | FPSCR_PR)) /* Bits 19-21 */ | |
215 | | (env->sr & (SR_MD | SR_RB)); /* Bits 29-30 */ | |
823029f9 | 216 | cs_base = 0; |
fdf9b3e8 | 217 | pc = env->pc; |
eddf68a6 JM |
218 | #elif defined(TARGET_ALPHA) |
219 | flags = env->ps; | |
220 | cs_base = 0; | |
221 | pc = env->pc; | |
f1ccf904 | 222 | #elif defined(TARGET_CRIS) |
7e15e603 | 223 | flags = env->pregs[PR_CCS] & (P_FLAG | U_FLAG | X_FLAG); |
cf1d97f0 | 224 | flags |= env->dslot; |
f1ccf904 TS |
225 | cs_base = 0; |
226 | pc = env->pc; | |
8a40a180 FB |
227 | #else |
228 | #error unsupported CPU | |
229 | #endif | |
bce61846 | 230 | tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; |
551bd27f TS |
231 | if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base || |
232 | tb->flags != flags)) { | |
8a40a180 FB |
233 | tb = tb_find_slow(pc, cs_base, flags); |
234 | } | |
235 | return tb; | |
236 | } | |
237 | ||
7d13299d FB |
238 | /* main execution loop */ |
239 | ||
e4533c7a | 240 | int cpu_exec(CPUState *env1) |
7d13299d | 241 | { |
1057eaa7 PB |
242 | #define DECLARE_HOST_REGS 1 |
243 | #include "hostregs_helper.h" | |
8a40a180 | 244 | int ret, interrupt_request; |
8a40a180 | 245 | TranslationBlock *tb; |
c27004ec | 246 | uint8_t *tc_ptr; |
d5975363 | 247 | unsigned long next_tb; |
8c6939c0 | 248 | |
bfed01fc TS |
249 | if (cpu_halted(env1) == EXCP_HALTED) |
250 | return EXCP_HALTED; | |
5a1e3cfc | 251 | |
5fafdf24 | 252 | cpu_single_env = env1; |
6a00d601 | 253 | |
7d13299d | 254 | /* first we save global registers */ |
1057eaa7 PB |
255 | #define SAVE_HOST_REGS 1 |
256 | #include "hostregs_helper.h" | |
c27004ec | 257 | env = env1; |
e4533c7a | 258 | |
0d1a29f9 | 259 | env_to_regs(); |
ecb644f4 | 260 | #if defined(TARGET_I386) |
9de5e440 | 261 | /* put eflags in CPU temporary format */ |
fc2b4c48 FB |
262 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
263 | DF = 1 - (2 * ((env->eflags >> 10) & 1)); | |
9de5e440 | 264 | CC_OP = CC_OP_EFLAGS; |
fc2b4c48 | 265 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
93ac68bc | 266 | #elif defined(TARGET_SPARC) |
e6e5906b PB |
267 | #elif defined(TARGET_M68K) |
268 | env->cc_op = CC_OP_FLAGS; | |
269 | env->cc_dest = env->sr & 0xf; | |
270 | env->cc_x = (env->sr >> 4) & 1; | |
ecb644f4 TS |
271 | #elif defined(TARGET_ALPHA) |
272 | #elif defined(TARGET_ARM) | |
273 | #elif defined(TARGET_PPC) | |
6af0bf9c | 274 | #elif defined(TARGET_MIPS) |
fdf9b3e8 | 275 | #elif defined(TARGET_SH4) |
f1ccf904 | 276 | #elif defined(TARGET_CRIS) |
fdf9b3e8 | 277 | /* XXXXX */ |
e4533c7a FB |
278 | #else |
279 | #error unsupported target CPU | |
280 | #endif | |
3fb2ded1 | 281 | env->exception_index = -1; |
9d27abd9 | 282 | |
7d13299d | 283 | /* prepare setjmp context for exception handling */ |
3fb2ded1 FB |
284 | for(;;) { |
285 | if (setjmp(env->jmp_env) == 0) { | |
ee8b7021 | 286 | env->current_tb = NULL; |
3fb2ded1 FB |
287 | /* if an exception is pending, we execute it here */ |
288 | if (env->exception_index >= 0) { | |
289 | if (env->exception_index >= EXCP_INTERRUPT) { | |
290 | /* exit request from the cpu execution loop */ | |
291 | ret = env->exception_index; | |
292 | break; | |
293 | } else if (env->user_mode_only) { | |
294 | /* if user mode only, we simulate a fake exception | |
9f083493 | 295 | which will be handled outside the cpu execution |
3fb2ded1 | 296 | loop */ |
83479e77 | 297 | #if defined(TARGET_I386) |
5fafdf24 TS |
298 | do_interrupt_user(env->exception_index, |
299 | env->exception_is_int, | |
300 | env->error_code, | |
3fb2ded1 | 301 | env->exception_next_eip); |
eba01623 FB |
302 | /* successfully delivered */ |
303 | env->old_exception = -1; | |
83479e77 | 304 | #endif |
3fb2ded1 FB |
305 | ret = env->exception_index; |
306 | break; | |
307 | } else { | |
83479e77 | 308 | #if defined(TARGET_I386) |
3fb2ded1 FB |
309 | /* simulate a real cpu exception. On i386, it can |
310 | trigger new exceptions, but we do not handle | |
311 | double or triple faults yet. */ | |
5fafdf24 TS |
312 | do_interrupt(env->exception_index, |
313 | env->exception_is_int, | |
314 | env->error_code, | |
d05e66d2 | 315 | env->exception_next_eip, 0); |
678dde13 TS |
316 | /* successfully delivered */ |
317 | env->old_exception = -1; | |
ce09776b FB |
318 | #elif defined(TARGET_PPC) |
319 | do_interrupt(env); | |
6af0bf9c FB |
320 | #elif defined(TARGET_MIPS) |
321 | do_interrupt(env); | |
e95c8d51 | 322 | #elif defined(TARGET_SPARC) |
f2bc7e7f | 323 | do_interrupt(env); |
b5ff1b31 FB |
324 | #elif defined(TARGET_ARM) |
325 | do_interrupt(env); | |
fdf9b3e8 FB |
326 | #elif defined(TARGET_SH4) |
327 | do_interrupt(env); | |
eddf68a6 JM |
328 | #elif defined(TARGET_ALPHA) |
329 | do_interrupt(env); | |
f1ccf904 TS |
330 | #elif defined(TARGET_CRIS) |
331 | do_interrupt(env); | |
0633879f PB |
332 | #elif defined(TARGET_M68K) |
333 | do_interrupt(0); | |
83479e77 | 334 | #endif |
3fb2ded1 FB |
335 | } |
336 | env->exception_index = -1; | |
5fafdf24 | 337 | } |
9df217a3 FB |
338 | #ifdef USE_KQEMU |
339 | if (kqemu_is_ok(env) && env->interrupt_request == 0) { | |
340 | int ret; | |
341 | env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); | |
342 | ret = kqemu_cpu_exec(env); | |
343 | /* put eflags in CPU temporary format */ | |
344 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
345 | DF = 1 - (2 * ((env->eflags >> 10) & 1)); | |
346 | CC_OP = CC_OP_EFLAGS; | |
347 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); | |
348 | if (ret == 1) { | |
349 | /* exception */ | |
350 | longjmp(env->jmp_env, 1); | |
351 | } else if (ret == 2) { | |
352 | /* softmmu execution needed */ | |
353 | } else { | |
354 | if (env->interrupt_request != 0) { | |
355 | /* hardware interrupt will be executed just after */ | |
356 | } else { | |
357 | /* otherwise, we restart */ | |
358 | longjmp(env->jmp_env, 1); | |
359 | } | |
360 | } | |
3fb2ded1 | 361 | } |
9df217a3 FB |
362 | #endif |
363 | ||
b5fc09ae | 364 | next_tb = 0; /* force lookup of first TB */ |
3fb2ded1 | 365 | for(;;) { |
68a79315 | 366 | interrupt_request = env->interrupt_request; |
551bd27f | 367 | if (unlikely(interrupt_request) && |
db620f46 | 368 | likely(!(env->singlestep_enabled & SSTEP_NOIRQ))) { |
6658ffb8 PB |
369 | if (interrupt_request & CPU_INTERRUPT_DEBUG) { |
370 | env->interrupt_request &= ~CPU_INTERRUPT_DEBUG; | |
371 | env->exception_index = EXCP_DEBUG; | |
372 | cpu_loop_exit(); | |
373 | } | |
a90b7318 | 374 | #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \ |
f1ccf904 | 375 | defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) |
a90b7318 AZ |
376 | if (interrupt_request & CPU_INTERRUPT_HALT) { |
377 | env->interrupt_request &= ~CPU_INTERRUPT_HALT; | |
378 | env->halted = 1; | |
379 | env->exception_index = EXCP_HLT; | |
380 | cpu_loop_exit(); | |
381 | } | |
382 | #endif | |
68a79315 | 383 | #if defined(TARGET_I386) |
db620f46 FB |
384 | if (env->hflags2 & HF2_GIF_MASK) { |
385 | if ((interrupt_request & CPU_INTERRUPT_SMI) && | |
386 | !(env->hflags & HF_SMM_MASK)) { | |
387 | svm_check_intercept(SVM_EXIT_SMI); | |
388 | env->interrupt_request &= ~CPU_INTERRUPT_SMI; | |
389 | do_smm_enter(); | |
390 | next_tb = 0; | |
391 | } else if ((interrupt_request & CPU_INTERRUPT_NMI) && | |
392 | !(env->hflags2 & HF2_NMI_MASK)) { | |
393 | env->interrupt_request &= ~CPU_INTERRUPT_NMI; | |
394 | env->hflags2 |= HF2_NMI_MASK; | |
395 | do_interrupt(EXCP02_NMI, 0, 0, 0, 1); | |
396 | next_tb = 0; | |
397 | } else if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
398 | (((env->hflags2 & HF2_VINTR_MASK) && | |
399 | (env->hflags2 & HF2_HIF_MASK)) || | |
400 | (!(env->hflags2 & HF2_VINTR_MASK) && | |
401 | (env->eflags & IF_MASK && | |
402 | !(env->hflags & HF_INHIBIT_IRQ_MASK))))) { | |
403 | int intno; | |
404 | svm_check_intercept(SVM_EXIT_INTR); | |
405 | env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ); | |
406 | intno = cpu_get_pic_interrupt(env); | |
407 | if (loglevel & CPU_LOG_TB_IN_ASM) { | |
408 | fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno); | |
409 | } | |
410 | do_interrupt(intno, 0, 0, 0, 1); | |
411 | /* ensure that no TB jump will be modified as | |
412 | the program flow was changed */ | |
413 | next_tb = 0; | |
0573fbfc | 414 | #if !defined(CONFIG_USER_ONLY) |
db620f46 FB |
415 | } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) && |
416 | (env->eflags & IF_MASK) && | |
417 | !(env->hflags & HF_INHIBIT_IRQ_MASK)) { | |
418 | int intno; | |
419 | /* FIXME: this should respect TPR */ | |
420 | svm_check_intercept(SVM_EXIT_VINTR); | |
421 | env->interrupt_request &= ~CPU_INTERRUPT_VIRQ; | |
422 | intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector)); | |
423 | if (loglevel & CPU_LOG_TB_IN_ASM) | |
424 | fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno); | |
425 | do_interrupt(intno, 0, 0, 0, 1); | |
426 | next_tb = 0; | |
907a5b26 | 427 | #endif |
db620f46 | 428 | } |
68a79315 | 429 | } |
ce09776b | 430 | #elif defined(TARGET_PPC) |
9fddaa0c FB |
431 | #if 0 |
432 | if ((interrupt_request & CPU_INTERRUPT_RESET)) { | |
433 | cpu_ppc_reset(env); | |
434 | } | |
435 | #endif | |
47103572 | 436 | if (interrupt_request & CPU_INTERRUPT_HARD) { |
e9df014c JM |
437 | ppc_hw_interrupt(env); |
438 | if (env->pending_interrupts == 0) | |
439 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
b5fc09ae | 440 | next_tb = 0; |
ce09776b | 441 | } |
6af0bf9c FB |
442 | #elif defined(TARGET_MIPS) |
443 | if ((interrupt_request & CPU_INTERRUPT_HARD) && | |
24c7b0e3 | 444 | (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) && |
6af0bf9c | 445 | (env->CP0_Status & (1 << CP0St_IE)) && |
24c7b0e3 TS |
446 | !(env->CP0_Status & (1 << CP0St_EXL)) && |
447 | !(env->CP0_Status & (1 << CP0St_ERL)) && | |
6af0bf9c FB |
448 | !(env->hflags & MIPS_HFLAG_DM)) { |
449 | /* Raise it */ | |
450 | env->exception_index = EXCP_EXT_INTERRUPT; | |
451 | env->error_code = 0; | |
452 | do_interrupt(env); | |
b5fc09ae | 453 | next_tb = 0; |
6af0bf9c | 454 | } |
e95c8d51 | 455 | #elif defined(TARGET_SPARC) |
66321a11 FB |
456 | if ((interrupt_request & CPU_INTERRUPT_HARD) && |
457 | (env->psret != 0)) { | |
458 | int pil = env->interrupt_index & 15; | |
459 | int type = env->interrupt_index & 0xf0; | |
460 | ||
461 | if (((type == TT_EXTINT) && | |
462 | (pil == 15 || pil > env->psrpil)) || | |
463 | type != TT_EXTINT) { | |
464 | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
f2bc7e7f BS |
465 | env->exception_index = env->interrupt_index; |
466 | do_interrupt(env); | |
66321a11 | 467 | env->interrupt_index = 0; |
327ac2e7 BS |
468 | #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) |
469 | cpu_check_irqs(env); | |
470 | #endif | |
b5fc09ae | 471 | next_tb = 0; |
66321a11 | 472 | } |
e95c8d51 FB |
473 | } else if (interrupt_request & CPU_INTERRUPT_TIMER) { |
474 | //do_interrupt(0, 0, 0, 0, 0); | |
475 | env->interrupt_request &= ~CPU_INTERRUPT_TIMER; | |
a90b7318 | 476 | } |
b5ff1b31 FB |
477 | #elif defined(TARGET_ARM) |
478 | if (interrupt_request & CPU_INTERRUPT_FIQ | |
479 | && !(env->uncached_cpsr & CPSR_F)) { | |
480 | env->exception_index = EXCP_FIQ; | |
481 | do_interrupt(env); | |
b5fc09ae | 482 | next_tb = 0; |
b5ff1b31 | 483 | } |
9ee6e8bb PB |
484 | /* ARMv7-M interrupt return works by loading a magic value |
485 | into the PC. On real hardware the load causes the | |
486 | return to occur. The qemu implementation performs the | |
487 | jump normally, then does the exception return when the | |
488 | CPU tries to execute code at the magic address. | |
489 | This will cause the magic PC value to be pushed to | |
490 | the stack if an interrupt occured at the wrong time. | |
491 | We avoid this by disabling interrupts when | |
492 | pc contains a magic address. */ | |
b5ff1b31 | 493 | if (interrupt_request & CPU_INTERRUPT_HARD |
9ee6e8bb PB |
494 | && ((IS_M(env) && env->regs[15] < 0xfffffff0) |
495 | || !(env->uncached_cpsr & CPSR_I))) { | |
b5ff1b31 FB |
496 | env->exception_index = EXCP_IRQ; |
497 | do_interrupt(env); | |
b5fc09ae | 498 | next_tb = 0; |
b5ff1b31 | 499 | } |
fdf9b3e8 | 500 | #elif defined(TARGET_SH4) |
e96e2044 TS |
501 | if (interrupt_request & CPU_INTERRUPT_HARD) { |
502 | do_interrupt(env); | |
b5fc09ae | 503 | next_tb = 0; |
e96e2044 | 504 | } |
eddf68a6 JM |
505 | #elif defined(TARGET_ALPHA) |
506 | if (interrupt_request & CPU_INTERRUPT_HARD) { | |
507 | do_interrupt(env); | |
b5fc09ae | 508 | next_tb = 0; |
eddf68a6 | 509 | } |
f1ccf904 | 510 | #elif defined(TARGET_CRIS) |
1b1a38b0 EI |
511 | if (interrupt_request & CPU_INTERRUPT_HARD |
512 | && (env->pregs[PR_CCS] & I_FLAG)) { | |
513 | env->exception_index = EXCP_IRQ; | |
514 | do_interrupt(env); | |
515 | next_tb = 0; | |
516 | } | |
517 | if (interrupt_request & CPU_INTERRUPT_NMI | |
518 | && (env->pregs[PR_CCS] & M_FLAG)) { | |
519 | env->exception_index = EXCP_NMI; | |
f1ccf904 | 520 | do_interrupt(env); |
b5fc09ae | 521 | next_tb = 0; |
f1ccf904 | 522 | } |
0633879f PB |
523 | #elif defined(TARGET_M68K) |
524 | if (interrupt_request & CPU_INTERRUPT_HARD | |
525 | && ((env->sr & SR_I) >> SR_I_SHIFT) | |
526 | < env->pending_level) { | |
527 | /* Real hardware gets the interrupt vector via an | |
528 | IACK cycle at this point. Current emulated | |
529 | hardware doesn't rely on this, so we | |
530 | provide/save the vector when the interrupt is | |
531 | first signalled. */ | |
532 | env->exception_index = env->pending_vector; | |
533 | do_interrupt(1); | |
b5fc09ae | 534 | next_tb = 0; |
0633879f | 535 | } |
68a79315 | 536 | #endif |
9d05095e FB |
537 | /* Don't use the cached interupt_request value, |
538 | do_interrupt may have updated the EXITTB flag. */ | |
b5ff1b31 | 539 | if (env->interrupt_request & CPU_INTERRUPT_EXITTB) { |
bf3e8bf1 FB |
540 | env->interrupt_request &= ~CPU_INTERRUPT_EXITTB; |
541 | /* ensure that no TB jump will be modified as | |
542 | the program flow was changed */ | |
b5fc09ae | 543 | next_tb = 0; |
bf3e8bf1 | 544 | } |
68a79315 FB |
545 | if (interrupt_request & CPU_INTERRUPT_EXIT) { |
546 | env->interrupt_request &= ~CPU_INTERRUPT_EXIT; | |
547 | env->exception_index = EXCP_INTERRUPT; | |
548 | cpu_loop_exit(); | |
549 | } | |
3fb2ded1 | 550 | } |
7d13299d | 551 | #ifdef DEBUG_EXEC |
b5ff1b31 | 552 | if ((loglevel & CPU_LOG_TB_CPU)) { |
3fb2ded1 | 553 | /* restore flags in standard format */ |
ecb644f4 TS |
554 | regs_to_env(); |
555 | #if defined(TARGET_I386) | |
3fb2ded1 | 556 | env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); |
7fe48483 | 557 | cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP); |
3fb2ded1 | 558 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
e4533c7a | 559 | #elif defined(TARGET_ARM) |
7fe48483 | 560 | cpu_dump_state(env, logfile, fprintf, 0); |
93ac68bc | 561 | #elif defined(TARGET_SPARC) |
3475187d | 562 | cpu_dump_state(env, logfile, fprintf, 0); |
67867308 | 563 | #elif defined(TARGET_PPC) |
7fe48483 | 564 | cpu_dump_state(env, logfile, fprintf, 0); |
e6e5906b PB |
565 | #elif defined(TARGET_M68K) |
566 | cpu_m68k_flush_flags(env, env->cc_op); | |
567 | env->cc_op = CC_OP_FLAGS; | |
568 | env->sr = (env->sr & 0xffe0) | |
569 | | env->cc_dest | (env->cc_x << 4); | |
570 | cpu_dump_state(env, logfile, fprintf, 0); | |
6af0bf9c FB |
571 | #elif defined(TARGET_MIPS) |
572 | cpu_dump_state(env, logfile, fprintf, 0); | |
fdf9b3e8 FB |
573 | #elif defined(TARGET_SH4) |
574 | cpu_dump_state(env, logfile, fprintf, 0); | |
eddf68a6 JM |
575 | #elif defined(TARGET_ALPHA) |
576 | cpu_dump_state(env, logfile, fprintf, 0); | |
f1ccf904 TS |
577 | #elif defined(TARGET_CRIS) |
578 | cpu_dump_state(env, logfile, fprintf, 0); | |
e4533c7a | 579 | #else |
5fafdf24 | 580 | #error unsupported target CPU |
e4533c7a | 581 | #endif |
3fb2ded1 | 582 | } |
7d13299d | 583 | #endif |
d5975363 | 584 | spin_lock(&tb_lock); |
8a40a180 | 585 | tb = tb_find_fast(); |
d5975363 PB |
586 | /* Note: we do it here to avoid a gcc bug on Mac OS X when |
587 | doing it in tb_find_slow */ | |
588 | if (tb_invalidated_flag) { | |
589 | /* as some TB could have been invalidated because | |
590 | of memory exceptions while generating the code, we | |
591 | must recompute the hash index here */ | |
592 | next_tb = 0; | |
2e70f6ef | 593 | tb_invalidated_flag = 0; |
d5975363 | 594 | } |
9d27abd9 | 595 | #ifdef DEBUG_EXEC |
c1135f61 | 596 | if ((loglevel & CPU_LOG_EXEC)) { |
c27004ec FB |
597 | fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n", |
598 | (long)tb->tc_ptr, tb->pc, | |
599 | lookup_symbol(tb->pc)); | |
3fb2ded1 | 600 | } |
9d27abd9 | 601 | #endif |
8a40a180 FB |
602 | /* see if we can patch the calling TB. When the TB |
603 | spans two pages, we cannot safely do a direct | |
604 | jump. */ | |
c27004ec | 605 | { |
b5fc09ae | 606 | if (next_tb != 0 && |
4d7a0880 | 607 | #ifdef USE_KQEMU |
f32fc648 FB |
608 | (env->kqemu_enabled != 2) && |
609 | #endif | |
ec6338ba | 610 | tb->page_addr[1] == -1) { |
b5fc09ae | 611 | tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb); |
3fb2ded1 | 612 | } |
c27004ec | 613 | } |
d5975363 | 614 | spin_unlock(&tb_lock); |
83479e77 | 615 | env->current_tb = tb; |
2e70f6ef PB |
616 | while (env->current_tb) { |
617 | tc_ptr = tb->tc_ptr; | |
3fb2ded1 | 618 | /* execute the generated code */ |
572a9d4a BS |
619 | #if defined(__sparc__) && !defined(HOST_SOLARIS) |
620 | #undef env | |
2e70f6ef | 621 | env = cpu_single_env; |
572a9d4a BS |
622 | #define env cpu_single_env |
623 | #endif | |
2e70f6ef PB |
624 | next_tb = tcg_qemu_tb_exec(tc_ptr); |
625 | env->current_tb = NULL; | |
626 | if ((next_tb & 3) == 2) { | |
bf20dc07 | 627 | /* Instruction counter expired. */ |
2e70f6ef PB |
628 | int insns_left; |
629 | tb = (TranslationBlock *)(long)(next_tb & ~3); | |
630 | /* Restore PC. */ | |
631 | CPU_PC_FROM_TB(env, tb); | |
632 | insns_left = env->icount_decr.u32; | |
633 | if (env->icount_extra && insns_left >= 0) { | |
634 | /* Refill decrementer and continue execution. */ | |
635 | env->icount_extra += insns_left; | |
636 | if (env->icount_extra > 0xffff) { | |
637 | insns_left = 0xffff; | |
638 | } else { | |
639 | insns_left = env->icount_extra; | |
640 | } | |
641 | env->icount_extra -= insns_left; | |
642 | env->icount_decr.u16.low = insns_left; | |
643 | } else { | |
644 | if (insns_left > 0) { | |
645 | /* Execute remaining instructions. */ | |
646 | cpu_exec_nocache(insns_left, tb); | |
647 | } | |
648 | env->exception_index = EXCP_INTERRUPT; | |
649 | next_tb = 0; | |
650 | cpu_loop_exit(); | |
651 | } | |
652 | } | |
653 | } | |
4cbf74b6 FB |
654 | /* reset soft MMU for next block (it can currently |
655 | only be set by a memory fault) */ | |
f32fc648 FB |
656 | #if defined(USE_KQEMU) |
657 | #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000) | |
658 | if (kqemu_is_ok(env) && | |
659 | (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) { | |
660 | cpu_loop_exit(); | |
661 | } | |
4cbf74b6 | 662 | #endif |
50a518e3 | 663 | } /* for(;;) */ |
3fb2ded1 | 664 | } else { |
0d1a29f9 | 665 | env_to_regs(); |
7d13299d | 666 | } |
3fb2ded1 FB |
667 | } /* for(;;) */ |
668 | ||
7d13299d | 669 | |
e4533c7a | 670 | #if defined(TARGET_I386) |
9de5e440 | 671 | /* restore flags in standard format */ |
fc2b4c48 | 672 | env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); |
e4533c7a | 673 | #elif defined(TARGET_ARM) |
b7bcbe95 | 674 | /* XXX: Save/restore host fpu exception state?. */ |
93ac68bc | 675 | #elif defined(TARGET_SPARC) |
67867308 | 676 | #elif defined(TARGET_PPC) |
e6e5906b PB |
677 | #elif defined(TARGET_M68K) |
678 | cpu_m68k_flush_flags(env, env->cc_op); | |
679 | env->cc_op = CC_OP_FLAGS; | |
680 | env->sr = (env->sr & 0xffe0) | |
681 | | env->cc_dest | (env->cc_x << 4); | |
6af0bf9c | 682 | #elif defined(TARGET_MIPS) |
fdf9b3e8 | 683 | #elif defined(TARGET_SH4) |
eddf68a6 | 684 | #elif defined(TARGET_ALPHA) |
f1ccf904 | 685 | #elif defined(TARGET_CRIS) |
fdf9b3e8 | 686 | /* XXXXX */ |
e4533c7a FB |
687 | #else |
688 | #error unsupported target CPU | |
689 | #endif | |
1057eaa7 PB |
690 | |
691 | /* restore global registers */ | |
1057eaa7 PB |
692 | #include "hostregs_helper.h" |
693 | ||
6a00d601 | 694 | /* fail safe : never use cpu_single_env outside cpu_exec() */ |
5fafdf24 | 695 | cpu_single_env = NULL; |
7d13299d FB |
696 | return ret; |
697 | } | |
6dbad63e | 698 | |
fbf9eeb3 FB |
699 | /* must only be called from the generated code as an exception can be |
700 | generated */ | |
701 | void tb_invalidate_page_range(target_ulong start, target_ulong end) | |
702 | { | |
dc5d0b3d FB |
703 | /* XXX: cannot enable it yet because it yields to MMU exception |
704 | where NIP != read address on PowerPC */ | |
705 | #if 0 | |
fbf9eeb3 FB |
706 | target_ulong phys_addr; |
707 | phys_addr = get_phys_addr_code(env, start); | |
708 | tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0); | |
dc5d0b3d | 709 | #endif |
fbf9eeb3 FB |
710 | } |
711 | ||
1a18c71b | 712 | #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY) |
e4533c7a | 713 | |
6dbad63e FB |
714 | void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector) |
715 | { | |
716 | CPUX86State *saved_env; | |
717 | ||
718 | saved_env = env; | |
719 | env = s; | |
a412ac57 | 720 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { |
a513fe19 | 721 | selector &= 0xffff; |
5fafdf24 | 722 | cpu_x86_load_seg_cache(env, seg_reg, selector, |
c27004ec | 723 | (selector << 4), 0xffff, 0); |
a513fe19 | 724 | } else { |
5d97559d | 725 | helper_load_seg(seg_reg, selector); |
a513fe19 | 726 | } |
6dbad63e FB |
727 | env = saved_env; |
728 | } | |
9de5e440 | 729 | |
6f12a2a6 | 730 | void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32) |
d0a1ffc9 FB |
731 | { |
732 | CPUX86State *saved_env; | |
733 | ||
734 | saved_env = env; | |
735 | env = s; | |
3b46e624 | 736 | |
6f12a2a6 | 737 | helper_fsave(ptr, data32); |
d0a1ffc9 FB |
738 | |
739 | env = saved_env; | |
740 | } | |
741 | ||
6f12a2a6 | 742 | void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32) |
d0a1ffc9 FB |
743 | { |
744 | CPUX86State *saved_env; | |
745 | ||
746 | saved_env = env; | |
747 | env = s; | |
3b46e624 | 748 | |
6f12a2a6 | 749 | helper_frstor(ptr, data32); |
d0a1ffc9 FB |
750 | |
751 | env = saved_env; | |
752 | } | |
753 | ||
e4533c7a FB |
754 | #endif /* TARGET_I386 */ |
755 | ||
67b915a5 FB |
756 | #if !defined(CONFIG_SOFTMMU) |
757 | ||
3fb2ded1 FB |
758 | #if defined(TARGET_I386) |
759 | ||
b56dad1c | 760 | /* 'pc' is the host PC at which the exception was raised. 'address' is |
fd6ce8f6 FB |
761 | the effective address of the memory exception. 'is_write' is 1 if a |
762 | write caused the exception and otherwise 0'. 'old_set' is the | |
763 | signal set which should be restored */ | |
2b413144 | 764 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
5fafdf24 | 765 | int is_write, sigset_t *old_set, |
bf3e8bf1 | 766 | void *puc) |
9de5e440 | 767 | { |
a513fe19 FB |
768 | TranslationBlock *tb; |
769 | int ret; | |
68a79315 | 770 | |
83479e77 FB |
771 | if (cpu_single_env) |
772 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
fd6ce8f6 | 773 | #if defined(DEBUG_SIGNAL) |
5fafdf24 | 774 | qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
bf3e8bf1 | 775 | pc, address, is_write, *(unsigned long *)old_set); |
9de5e440 | 776 | #endif |
25eb4484 | 777 | /* XXX: locking issue */ |
53a5960a | 778 | if (is_write && page_unprotect(h2g(address), pc, puc)) { |
fd6ce8f6 FB |
779 | return 1; |
780 | } | |
fbf9eeb3 | 781 | |
3fb2ded1 | 782 | /* see if it is an MMU fault */ |
6ebbf390 | 783 | ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
3fb2ded1 FB |
784 | if (ret < 0) |
785 | return 0; /* not an MMU fault */ | |
786 | if (ret == 0) | |
787 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
788 | /* now we have a real cpu fault */ | |
a513fe19 FB |
789 | tb = tb_find_pc(pc); |
790 | if (tb) { | |
9de5e440 FB |
791 | /* the PC is inside the translated code. It means that we have |
792 | a virtual CPU fault */ | |
bf3e8bf1 | 793 | cpu_restore_state(tb, env, pc, puc); |
3fb2ded1 | 794 | } |
4cbf74b6 | 795 | if (ret == 1) { |
3fb2ded1 | 796 | #if 0 |
5fafdf24 | 797 | printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", |
4cbf74b6 | 798 | env->eip, env->cr[2], env->error_code); |
3fb2ded1 | 799 | #endif |
4cbf74b6 FB |
800 | /* we restore the process signal mask as the sigreturn should |
801 | do it (XXX: use sigsetjmp) */ | |
802 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
54ca9095 | 803 | raise_exception_err(env->exception_index, env->error_code); |
4cbf74b6 FB |
804 | } else { |
805 | /* activate soft MMU for this block */ | |
3f337316 | 806 | env->hflags |= HF_SOFTMMU_MASK; |
fbf9eeb3 | 807 | cpu_resume_from_signal(env, puc); |
4cbf74b6 | 808 | } |
3fb2ded1 FB |
809 | /* never comes here */ |
810 | return 1; | |
811 | } | |
812 | ||
e4533c7a | 813 | #elif defined(TARGET_ARM) |
3fb2ded1 | 814 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
bf3e8bf1 FB |
815 | int is_write, sigset_t *old_set, |
816 | void *puc) | |
3fb2ded1 | 817 | { |
68016c62 FB |
818 | TranslationBlock *tb; |
819 | int ret; | |
820 | ||
821 | if (cpu_single_env) | |
822 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
823 | #if defined(DEBUG_SIGNAL) | |
5fafdf24 | 824 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
68016c62 FB |
825 | pc, address, is_write, *(unsigned long *)old_set); |
826 | #endif | |
9f0777ed | 827 | /* XXX: locking issue */ |
53a5960a | 828 | if (is_write && page_unprotect(h2g(address), pc, puc)) { |
9f0777ed FB |
829 | return 1; |
830 | } | |
68016c62 | 831 | /* see if it is an MMU fault */ |
6ebbf390 | 832 | ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
68016c62 FB |
833 | if (ret < 0) |
834 | return 0; /* not an MMU fault */ | |
835 | if (ret == 0) | |
836 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
837 | /* now we have a real cpu fault */ | |
838 | tb = tb_find_pc(pc); | |
839 | if (tb) { | |
840 | /* the PC is inside the translated code. It means that we have | |
841 | a virtual CPU fault */ | |
842 | cpu_restore_state(tb, env, pc, puc); | |
843 | } | |
844 | /* we restore the process signal mask as the sigreturn should | |
845 | do it (XXX: use sigsetjmp) */ | |
846 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
847 | cpu_loop_exit(); | |
968c74da AJ |
848 | /* never comes here */ |
849 | return 1; | |
3fb2ded1 | 850 | } |
93ac68bc FB |
851 | #elif defined(TARGET_SPARC) |
852 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
bf3e8bf1 FB |
853 | int is_write, sigset_t *old_set, |
854 | void *puc) | |
93ac68bc | 855 | { |
68016c62 FB |
856 | TranslationBlock *tb; |
857 | int ret; | |
858 | ||
859 | if (cpu_single_env) | |
860 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
861 | #if defined(DEBUG_SIGNAL) | |
5fafdf24 | 862 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
68016c62 FB |
863 | pc, address, is_write, *(unsigned long *)old_set); |
864 | #endif | |
b453b70b | 865 | /* XXX: locking issue */ |
53a5960a | 866 | if (is_write && page_unprotect(h2g(address), pc, puc)) { |
b453b70b FB |
867 | return 1; |
868 | } | |
68016c62 | 869 | /* see if it is an MMU fault */ |
6ebbf390 | 870 | ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
68016c62 FB |
871 | if (ret < 0) |
872 | return 0; /* not an MMU fault */ | |
873 | if (ret == 0) | |
874 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
875 | /* now we have a real cpu fault */ | |
876 | tb = tb_find_pc(pc); | |
877 | if (tb) { | |
878 | /* the PC is inside the translated code. It means that we have | |
879 | a virtual CPU fault */ | |
880 | cpu_restore_state(tb, env, pc, puc); | |
881 | } | |
882 | /* we restore the process signal mask as the sigreturn should | |
883 | do it (XXX: use sigsetjmp) */ | |
884 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
885 | cpu_loop_exit(); | |
968c74da AJ |
886 | /* never comes here */ |
887 | return 1; | |
93ac68bc | 888 | } |
67867308 FB |
889 | #elif defined (TARGET_PPC) |
890 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
bf3e8bf1 FB |
891 | int is_write, sigset_t *old_set, |
892 | void *puc) | |
67867308 FB |
893 | { |
894 | TranslationBlock *tb; | |
ce09776b | 895 | int ret; |
3b46e624 | 896 | |
67867308 FB |
897 | if (cpu_single_env) |
898 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
67867308 | 899 | #if defined(DEBUG_SIGNAL) |
5fafdf24 | 900 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
67867308 FB |
901 | pc, address, is_write, *(unsigned long *)old_set); |
902 | #endif | |
903 | /* XXX: locking issue */ | |
53a5960a | 904 | if (is_write && page_unprotect(h2g(address), pc, puc)) { |
67867308 FB |
905 | return 1; |
906 | } | |
907 | ||
ce09776b | 908 | /* see if it is an MMU fault */ |
6ebbf390 | 909 | ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
ce09776b FB |
910 | if (ret < 0) |
911 | return 0; /* not an MMU fault */ | |
912 | if (ret == 0) | |
913 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
914 | ||
67867308 FB |
915 | /* now we have a real cpu fault */ |
916 | tb = tb_find_pc(pc); | |
917 | if (tb) { | |
918 | /* the PC is inside the translated code. It means that we have | |
919 | a virtual CPU fault */ | |
bf3e8bf1 | 920 | cpu_restore_state(tb, env, pc, puc); |
67867308 | 921 | } |
ce09776b | 922 | if (ret == 1) { |
67867308 | 923 | #if 0 |
5fafdf24 | 924 | printf("PF exception: NIP=0x%08x error=0x%x %p\n", |
ce09776b | 925 | env->nip, env->error_code, tb); |
67867308 FB |
926 | #endif |
927 | /* we restore the process signal mask as the sigreturn should | |
928 | do it (XXX: use sigsetjmp) */ | |
bf3e8bf1 | 929 | sigprocmask(SIG_SETMASK, old_set, NULL); |
9fddaa0c | 930 | do_raise_exception_err(env->exception_index, env->error_code); |
ce09776b FB |
931 | } else { |
932 | /* activate soft MMU for this block */ | |
fbf9eeb3 | 933 | cpu_resume_from_signal(env, puc); |
ce09776b | 934 | } |
67867308 | 935 | /* never comes here */ |
e6e5906b PB |
936 | return 1; |
937 | } | |
938 | ||
939 | #elif defined(TARGET_M68K) | |
940 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
941 | int is_write, sigset_t *old_set, | |
942 | void *puc) | |
943 | { | |
944 | TranslationBlock *tb; | |
945 | int ret; | |
946 | ||
947 | if (cpu_single_env) | |
948 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
949 | #if defined(DEBUG_SIGNAL) | |
5fafdf24 | 950 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
e6e5906b PB |
951 | pc, address, is_write, *(unsigned long *)old_set); |
952 | #endif | |
953 | /* XXX: locking issue */ | |
954 | if (is_write && page_unprotect(address, pc, puc)) { | |
955 | return 1; | |
956 | } | |
957 | /* see if it is an MMU fault */ | |
6ebbf390 | 958 | ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
e6e5906b PB |
959 | if (ret < 0) |
960 | return 0; /* not an MMU fault */ | |
961 | if (ret == 0) | |
962 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
963 | /* now we have a real cpu fault */ | |
964 | tb = tb_find_pc(pc); | |
965 | if (tb) { | |
966 | /* the PC is inside the translated code. It means that we have | |
967 | a virtual CPU fault */ | |
968 | cpu_restore_state(tb, env, pc, puc); | |
969 | } | |
970 | /* we restore the process signal mask as the sigreturn should | |
971 | do it (XXX: use sigsetjmp) */ | |
972 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
973 | cpu_loop_exit(); | |
974 | /* never comes here */ | |
67867308 FB |
975 | return 1; |
976 | } | |
6af0bf9c FB |
977 | |
978 | #elif defined (TARGET_MIPS) | |
979 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
980 | int is_write, sigset_t *old_set, | |
981 | void *puc) | |
982 | { | |
983 | TranslationBlock *tb; | |
984 | int ret; | |
3b46e624 | 985 | |
6af0bf9c FB |
986 | if (cpu_single_env) |
987 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
988 | #if defined(DEBUG_SIGNAL) | |
5fafdf24 | 989 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
6af0bf9c FB |
990 | pc, address, is_write, *(unsigned long *)old_set); |
991 | #endif | |
992 | /* XXX: locking issue */ | |
53a5960a | 993 | if (is_write && page_unprotect(h2g(address), pc, puc)) { |
6af0bf9c FB |
994 | return 1; |
995 | } | |
996 | ||
997 | /* see if it is an MMU fault */ | |
6ebbf390 | 998 | ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
6af0bf9c FB |
999 | if (ret < 0) |
1000 | return 0; /* not an MMU fault */ | |
1001 | if (ret == 0) | |
1002 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1003 | ||
1004 | /* now we have a real cpu fault */ | |
1005 | tb = tb_find_pc(pc); | |
1006 | if (tb) { | |
1007 | /* the PC is inside the translated code. It means that we have | |
1008 | a virtual CPU fault */ | |
1009 | cpu_restore_state(tb, env, pc, puc); | |
1010 | } | |
1011 | if (ret == 1) { | |
1012 | #if 0 | |
5fafdf24 | 1013 | printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n", |
1eb5207b | 1014 | env->PC, env->error_code, tb); |
6af0bf9c FB |
1015 | #endif |
1016 | /* we restore the process signal mask as the sigreturn should | |
1017 | do it (XXX: use sigsetjmp) */ | |
1018 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1019 | do_raise_exception_err(env->exception_index, env->error_code); | |
1020 | } else { | |
1021 | /* activate soft MMU for this block */ | |
1022 | cpu_resume_from_signal(env, puc); | |
1023 | } | |
1024 | /* never comes here */ | |
1025 | return 1; | |
1026 | } | |
1027 | ||
fdf9b3e8 FB |
1028 | #elif defined (TARGET_SH4) |
1029 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1030 | int is_write, sigset_t *old_set, | |
1031 | void *puc) | |
1032 | { | |
1033 | TranslationBlock *tb; | |
1034 | int ret; | |
3b46e624 | 1035 | |
fdf9b3e8 FB |
1036 | if (cpu_single_env) |
1037 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1038 | #if defined(DEBUG_SIGNAL) | |
5fafdf24 | 1039 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
fdf9b3e8 FB |
1040 | pc, address, is_write, *(unsigned long *)old_set); |
1041 | #endif | |
1042 | /* XXX: locking issue */ | |
1043 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
1044 | return 1; | |
1045 | } | |
1046 | ||
1047 | /* see if it is an MMU fault */ | |
6ebbf390 | 1048 | ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
fdf9b3e8 FB |
1049 | if (ret < 0) |
1050 | return 0; /* not an MMU fault */ | |
1051 | if (ret == 0) | |
1052 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1053 | ||
1054 | /* now we have a real cpu fault */ | |
eddf68a6 JM |
1055 | tb = tb_find_pc(pc); |
1056 | if (tb) { | |
1057 | /* the PC is inside the translated code. It means that we have | |
1058 | a virtual CPU fault */ | |
1059 | cpu_restore_state(tb, env, pc, puc); | |
1060 | } | |
1061 | #if 0 | |
5fafdf24 | 1062 | printf("PF exception: NIP=0x%08x error=0x%x %p\n", |
eddf68a6 JM |
1063 | env->nip, env->error_code, tb); |
1064 | #endif | |
1065 | /* we restore the process signal mask as the sigreturn should | |
1066 | do it (XXX: use sigsetjmp) */ | |
1067 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1068 | cpu_loop_exit(); | |
1069 | /* never comes here */ | |
1070 | return 1; | |
1071 | } | |
1072 | ||
1073 | #elif defined (TARGET_ALPHA) | |
1074 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1075 | int is_write, sigset_t *old_set, | |
1076 | void *puc) | |
1077 | { | |
1078 | TranslationBlock *tb; | |
1079 | int ret; | |
3b46e624 | 1080 | |
eddf68a6 JM |
1081 | if (cpu_single_env) |
1082 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1083 | #if defined(DEBUG_SIGNAL) | |
5fafdf24 | 1084 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
eddf68a6 JM |
1085 | pc, address, is_write, *(unsigned long *)old_set); |
1086 | #endif | |
1087 | /* XXX: locking issue */ | |
1088 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
1089 | return 1; | |
1090 | } | |
1091 | ||
1092 | /* see if it is an MMU fault */ | |
6ebbf390 | 1093 | ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
eddf68a6 JM |
1094 | if (ret < 0) |
1095 | return 0; /* not an MMU fault */ | |
1096 | if (ret == 0) | |
1097 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1098 | ||
1099 | /* now we have a real cpu fault */ | |
fdf9b3e8 FB |
1100 | tb = tb_find_pc(pc); |
1101 | if (tb) { | |
1102 | /* the PC is inside the translated code. It means that we have | |
1103 | a virtual CPU fault */ | |
1104 | cpu_restore_state(tb, env, pc, puc); | |
1105 | } | |
fdf9b3e8 | 1106 | #if 0 |
5fafdf24 | 1107 | printf("PF exception: NIP=0x%08x error=0x%x %p\n", |
fdf9b3e8 FB |
1108 | env->nip, env->error_code, tb); |
1109 | #endif | |
1110 | /* we restore the process signal mask as the sigreturn should | |
1111 | do it (XXX: use sigsetjmp) */ | |
355fb23d PB |
1112 | sigprocmask(SIG_SETMASK, old_set, NULL); |
1113 | cpu_loop_exit(); | |
fdf9b3e8 FB |
1114 | /* never comes here */ |
1115 | return 1; | |
1116 | } | |
f1ccf904 TS |
1117 | #elif defined (TARGET_CRIS) |
1118 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address, | |
1119 | int is_write, sigset_t *old_set, | |
1120 | void *puc) | |
1121 | { | |
1122 | TranslationBlock *tb; | |
1123 | int ret; | |
1124 | ||
1125 | if (cpu_single_env) | |
1126 | env = cpu_single_env; /* XXX: find a correct solution for multithread */ | |
1127 | #if defined(DEBUG_SIGNAL) | |
1128 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", | |
1129 | pc, address, is_write, *(unsigned long *)old_set); | |
1130 | #endif | |
1131 | /* XXX: locking issue */ | |
1132 | if (is_write && page_unprotect(h2g(address), pc, puc)) { | |
1133 | return 1; | |
1134 | } | |
1135 | ||
1136 | /* see if it is an MMU fault */ | |
6ebbf390 | 1137 | ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
f1ccf904 TS |
1138 | if (ret < 0) |
1139 | return 0; /* not an MMU fault */ | |
1140 | if (ret == 0) | |
1141 | return 1; /* the MMU fault was handled without causing real CPU fault */ | |
1142 | ||
1143 | /* now we have a real cpu fault */ | |
1144 | tb = tb_find_pc(pc); | |
1145 | if (tb) { | |
1146 | /* the PC is inside the translated code. It means that we have | |
1147 | a virtual CPU fault */ | |
1148 | cpu_restore_state(tb, env, pc, puc); | |
1149 | } | |
f1ccf904 TS |
1150 | /* we restore the process signal mask as the sigreturn should |
1151 | do it (XXX: use sigsetjmp) */ | |
1152 | sigprocmask(SIG_SETMASK, old_set, NULL); | |
1153 | cpu_loop_exit(); | |
1154 | /* never comes here */ | |
1155 | return 1; | |
1156 | } | |
1157 | ||
e4533c7a FB |
1158 | #else |
1159 | #error unsupported target CPU | |
1160 | #endif | |
9de5e440 | 1161 | |
2b413144 FB |
1162 | #if defined(__i386__) |
1163 | ||
d8ecc0b9 FB |
1164 | #if defined(__APPLE__) |
1165 | # include <sys/ucontext.h> | |
1166 | ||
1167 | # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip)) | |
1168 | # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno) | |
1169 | # define ERROR_sig(context) ((context)->uc_mcontext->es.err) | |
1170 | #else | |
1171 | # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP]) | |
1172 | # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) | |
1173 | # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) | |
1174 | #endif | |
1175 | ||
5fafdf24 | 1176 | int cpu_signal_handler(int host_signum, void *pinfo, |
e4533c7a | 1177 | void *puc) |
9de5e440 | 1178 | { |
5a7b542b | 1179 | siginfo_t *info = pinfo; |
9de5e440 FB |
1180 | struct ucontext *uc = puc; |
1181 | unsigned long pc; | |
bf3e8bf1 | 1182 | int trapno; |
97eb5b14 | 1183 | |
d691f669 FB |
1184 | #ifndef REG_EIP |
1185 | /* for glibc 2.1 */ | |
fd6ce8f6 FB |
1186 | #define REG_EIP EIP |
1187 | #define REG_ERR ERR | |
1188 | #define REG_TRAPNO TRAPNO | |
d691f669 | 1189 | #endif |
d8ecc0b9 FB |
1190 | pc = EIP_sig(uc); |
1191 | trapno = TRAP_sig(uc); | |
ec6338ba FB |
1192 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
1193 | trapno == 0xe ? | |
1194 | (ERROR_sig(uc) >> 1) & 1 : 0, | |
1195 | &uc->uc_sigmask, puc); | |
2b413144 FB |
1196 | } |
1197 | ||
bc51c5c9 FB |
1198 | #elif defined(__x86_64__) |
1199 | ||
5a7b542b | 1200 | int cpu_signal_handler(int host_signum, void *pinfo, |
bc51c5c9 FB |
1201 | void *puc) |
1202 | { | |
5a7b542b | 1203 | siginfo_t *info = pinfo; |
bc51c5c9 FB |
1204 | struct ucontext *uc = puc; |
1205 | unsigned long pc; | |
1206 | ||
1207 | pc = uc->uc_mcontext.gregs[REG_RIP]; | |
5fafdf24 TS |
1208 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
1209 | uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? | |
bc51c5c9 FB |
1210 | (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0, |
1211 | &uc->uc_sigmask, puc); | |
1212 | } | |
1213 | ||
83fb7adf | 1214 | #elif defined(__powerpc__) |
2b413144 | 1215 | |
83fb7adf FB |
1216 | /*********************************************************************** |
1217 | * signal context platform-specific definitions | |
1218 | * From Wine | |
1219 | */ | |
1220 | #ifdef linux | |
1221 | /* All Registers access - only for local access */ | |
1222 | # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name) | |
1223 | /* Gpr Registers access */ | |
1224 | # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context) | |
1225 | # define IAR_sig(context) REG_sig(nip, context) /* Program counter */ | |
1226 | # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */ | |
1227 | # define CTR_sig(context) REG_sig(ctr, context) /* Count register */ | |
1228 | # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */ | |
1229 | # define LR_sig(context) REG_sig(link, context) /* Link register */ | |
1230 | # define CR_sig(context) REG_sig(ccr, context) /* Condition register */ | |
1231 | /* Float Registers access */ | |
1232 | # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num]) | |
1233 | # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4))) | |
1234 | /* Exception Registers access */ | |
1235 | # define DAR_sig(context) REG_sig(dar, context) | |
1236 | # define DSISR_sig(context) REG_sig(dsisr, context) | |
1237 | # define TRAP_sig(context) REG_sig(trap, context) | |
1238 | #endif /* linux */ | |
1239 | ||
1240 | #ifdef __APPLE__ | |
1241 | # include <sys/ucontext.h> | |
1242 | typedef struct ucontext SIGCONTEXT; | |
1243 | /* All Registers access - only for local access */ | |
1244 | # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name) | |
1245 | # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name) | |
1246 | # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name) | |
1247 | # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name) | |
1248 | /* Gpr Registers access */ | |
1249 | # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context) | |
1250 | # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */ | |
1251 | # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */ | |
1252 | # define CTR_sig(context) REG_sig(ctr, context) | |
1253 | # define XER_sig(context) REG_sig(xer, context) /* Link register */ | |
1254 | # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */ | |
1255 | # define CR_sig(context) REG_sig(cr, context) /* Condition register */ | |
1256 | /* Float Registers access */ | |
1257 | # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context) | |
1258 | # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context)) | |
1259 | /* Exception Registers access */ | |
1260 | # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */ | |
1261 | # define DSISR_sig(context) EXCEPREG_sig(dsisr, context) | |
1262 | # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */ | |
1263 | #endif /* __APPLE__ */ | |
1264 | ||
5fafdf24 | 1265 | int cpu_signal_handler(int host_signum, void *pinfo, |
e4533c7a | 1266 | void *puc) |
2b413144 | 1267 | { |
5a7b542b | 1268 | siginfo_t *info = pinfo; |
25eb4484 | 1269 | struct ucontext *uc = puc; |
25eb4484 | 1270 | unsigned long pc; |
25eb4484 FB |
1271 | int is_write; |
1272 | ||
83fb7adf | 1273 | pc = IAR_sig(uc); |
25eb4484 FB |
1274 | is_write = 0; |
1275 | #if 0 | |
1276 | /* ppc 4xx case */ | |
83fb7adf | 1277 | if (DSISR_sig(uc) & 0x00800000) |
25eb4484 FB |
1278 | is_write = 1; |
1279 | #else | |
83fb7adf | 1280 | if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) |
25eb4484 FB |
1281 | is_write = 1; |
1282 | #endif | |
5fafdf24 | 1283 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
bf3e8bf1 | 1284 | is_write, &uc->uc_sigmask, puc); |
2b413144 FB |
1285 | } |
1286 | ||
2f87c607 FB |
1287 | #elif defined(__alpha__) |
1288 | ||
5fafdf24 | 1289 | int cpu_signal_handler(int host_signum, void *pinfo, |
2f87c607 FB |
1290 | void *puc) |
1291 | { | |
5a7b542b | 1292 | siginfo_t *info = pinfo; |
2f87c607 FB |
1293 | struct ucontext *uc = puc; |
1294 | uint32_t *pc = uc->uc_mcontext.sc_pc; | |
1295 | uint32_t insn = *pc; | |
1296 | int is_write = 0; | |
1297 | ||
8c6939c0 | 1298 | /* XXX: need kernel patch to get write flag faster */ |
2f87c607 FB |
1299 | switch (insn >> 26) { |
1300 | case 0x0d: // stw | |
1301 | case 0x0e: // stb | |
1302 | case 0x0f: // stq_u | |
1303 | case 0x24: // stf | |
1304 | case 0x25: // stg | |
1305 | case 0x26: // sts | |
1306 | case 0x27: // stt | |
1307 | case 0x2c: // stl | |
1308 | case 0x2d: // stq | |
1309 | case 0x2e: // stl_c | |
1310 | case 0x2f: // stq_c | |
1311 | is_write = 1; | |
1312 | } | |
1313 | ||
5fafdf24 | 1314 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
bf3e8bf1 | 1315 | is_write, &uc->uc_sigmask, puc); |
2f87c607 | 1316 | } |
8c6939c0 FB |
1317 | #elif defined(__sparc__) |
1318 | ||
5fafdf24 | 1319 | int cpu_signal_handler(int host_signum, void *pinfo, |
e4533c7a | 1320 | void *puc) |
8c6939c0 | 1321 | { |
5a7b542b | 1322 | siginfo_t *info = pinfo; |
8c6939c0 FB |
1323 | int is_write; |
1324 | uint32_t insn; | |
6b4c11cd | 1325 | #if !defined(__arch64__) || defined(HOST_SOLARIS) |
c9e1e2b0 BS |
1326 | uint32_t *regs = (uint32_t *)(info + 1); |
1327 | void *sigmask = (regs + 20); | |
8c6939c0 | 1328 | /* XXX: is there a standard glibc define ? */ |
c9e1e2b0 BS |
1329 | unsigned long pc = regs[1]; |
1330 | #else | |
1331 | struct sigcontext *sc = puc; | |
1332 | unsigned long pc = sc->sigc_regs.tpc; | |
1333 | void *sigmask = (void *)sc->sigc_mask; | |
1334 | #endif | |
1335 | ||
8c6939c0 FB |
1336 | /* XXX: need kernel patch to get write flag faster */ |
1337 | is_write = 0; | |
1338 | insn = *(uint32_t *)pc; | |
1339 | if ((insn >> 30) == 3) { | |
1340 | switch((insn >> 19) & 0x3f) { | |
1341 | case 0x05: // stb | |
1342 | case 0x06: // sth | |
1343 | case 0x04: // st | |
1344 | case 0x07: // std | |
1345 | case 0x24: // stf | |
1346 | case 0x27: // stdf | |
1347 | case 0x25: // stfsr | |
1348 | is_write = 1; | |
1349 | break; | |
1350 | } | |
1351 | } | |
5fafdf24 | 1352 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
bf3e8bf1 | 1353 | is_write, sigmask, NULL); |
8c6939c0 FB |
1354 | } |
1355 | ||
1356 | #elif defined(__arm__) | |
1357 | ||
5fafdf24 | 1358 | int cpu_signal_handler(int host_signum, void *pinfo, |
e4533c7a | 1359 | void *puc) |
8c6939c0 | 1360 | { |
5a7b542b | 1361 | siginfo_t *info = pinfo; |
8c6939c0 FB |
1362 | struct ucontext *uc = puc; |
1363 | unsigned long pc; | |
1364 | int is_write; | |
3b46e624 | 1365 | |
48bbf11b | 1366 | #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3)) |
5c49b363 AZ |
1367 | pc = uc->uc_mcontext.gregs[R15]; |
1368 | #else | |
4eee57f5 | 1369 | pc = uc->uc_mcontext.arm_pc; |
5c49b363 | 1370 | #endif |
8c6939c0 FB |
1371 | /* XXX: compute is_write */ |
1372 | is_write = 0; | |
5fafdf24 | 1373 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
8c6939c0 | 1374 | is_write, |
f3a9676a | 1375 | &uc->uc_sigmask, puc); |
8c6939c0 FB |
1376 | } |
1377 | ||
38e584a0 FB |
1378 | #elif defined(__mc68000) |
1379 | ||
5fafdf24 | 1380 | int cpu_signal_handler(int host_signum, void *pinfo, |
38e584a0 FB |
1381 | void *puc) |
1382 | { | |
5a7b542b | 1383 | siginfo_t *info = pinfo; |
38e584a0 FB |
1384 | struct ucontext *uc = puc; |
1385 | unsigned long pc; | |
1386 | int is_write; | |
3b46e624 | 1387 | |
38e584a0 FB |
1388 | pc = uc->uc_mcontext.gregs[16]; |
1389 | /* XXX: compute is_write */ | |
1390 | is_write = 0; | |
5fafdf24 | 1391 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
38e584a0 | 1392 | is_write, |
bf3e8bf1 | 1393 | &uc->uc_sigmask, puc); |
38e584a0 FB |
1394 | } |
1395 | ||
b8076a74 FB |
1396 | #elif defined(__ia64) |
1397 | ||
1398 | #ifndef __ISR_VALID | |
1399 | /* This ought to be in <bits/siginfo.h>... */ | |
1400 | # define __ISR_VALID 1 | |
b8076a74 FB |
1401 | #endif |
1402 | ||
5a7b542b | 1403 | int cpu_signal_handler(int host_signum, void *pinfo, void *puc) |
b8076a74 | 1404 | { |
5a7b542b | 1405 | siginfo_t *info = pinfo; |
b8076a74 FB |
1406 | struct ucontext *uc = puc; |
1407 | unsigned long ip; | |
1408 | int is_write = 0; | |
1409 | ||
1410 | ip = uc->uc_mcontext.sc_ip; | |
1411 | switch (host_signum) { | |
1412 | case SIGILL: | |
1413 | case SIGFPE: | |
1414 | case SIGSEGV: | |
1415 | case SIGBUS: | |
1416 | case SIGTRAP: | |
fd4a43e4 | 1417 | if (info->si_code && (info->si_segvflags & __ISR_VALID)) |
b8076a74 FB |
1418 | /* ISR.W (write-access) is bit 33: */ |
1419 | is_write = (info->si_isr >> 33) & 1; | |
1420 | break; | |
1421 | ||
1422 | default: | |
1423 | break; | |
1424 | } | |
1425 | return handle_cpu_signal(ip, (unsigned long)info->si_addr, | |
1426 | is_write, | |
1427 | &uc->uc_sigmask, puc); | |
1428 | } | |
1429 | ||
90cb9493 FB |
1430 | #elif defined(__s390__) |
1431 | ||
5fafdf24 | 1432 | int cpu_signal_handler(int host_signum, void *pinfo, |
90cb9493 FB |
1433 | void *puc) |
1434 | { | |
5a7b542b | 1435 | siginfo_t *info = pinfo; |
90cb9493 FB |
1436 | struct ucontext *uc = puc; |
1437 | unsigned long pc; | |
1438 | int is_write; | |
3b46e624 | 1439 | |
90cb9493 FB |
1440 | pc = uc->uc_mcontext.psw.addr; |
1441 | /* XXX: compute is_write */ | |
1442 | is_write = 0; | |
5fafdf24 | 1443 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
c4b89d18 TS |
1444 | is_write, &uc->uc_sigmask, puc); |
1445 | } | |
1446 | ||
1447 | #elif defined(__mips__) | |
1448 | ||
5fafdf24 | 1449 | int cpu_signal_handler(int host_signum, void *pinfo, |
c4b89d18 TS |
1450 | void *puc) |
1451 | { | |
9617efe8 | 1452 | siginfo_t *info = pinfo; |
c4b89d18 TS |
1453 | struct ucontext *uc = puc; |
1454 | greg_t pc = uc->uc_mcontext.pc; | |
1455 | int is_write; | |
3b46e624 | 1456 | |
c4b89d18 TS |
1457 | /* XXX: compute is_write */ |
1458 | is_write = 0; | |
5fafdf24 | 1459 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
c4b89d18 | 1460 | is_write, &uc->uc_sigmask, puc); |
90cb9493 FB |
1461 | } |
1462 | ||
f54b3f92 AJ |
1463 | #elif defined(__hppa__) |
1464 | ||
1465 | int cpu_signal_handler(int host_signum, void *pinfo, | |
1466 | void *puc) | |
1467 | { | |
1468 | struct siginfo *info = pinfo; | |
1469 | struct ucontext *uc = puc; | |
1470 | unsigned long pc; | |
1471 | int is_write; | |
1472 | ||
1473 | pc = uc->uc_mcontext.sc_iaoq[0]; | |
1474 | /* FIXME: compute is_write */ | |
1475 | is_write = 0; | |
1476 | return handle_cpu_signal(pc, (unsigned long)info->si_addr, | |
1477 | is_write, | |
1478 | &uc->uc_sigmask, puc); | |
1479 | } | |
1480 | ||
9de5e440 | 1481 | #else |
2b413144 | 1482 | |
3fb2ded1 | 1483 | #error host CPU specific signal handler needed |
2b413144 | 1484 | |
9de5e440 | 1485 | #endif |
67b915a5 FB |
1486 | |
1487 | #endif /* !defined(CONFIG_SOFTMMU) */ |