]>
Commit | Line | Data |
---|---|---|
386405f7 | 1 | \input texinfo @c -*- texinfo -*- |
debc7065 FB |
2 | @c %**start of header |
3 | @setfilename qemu-doc.info | |
8f40c388 | 4 | @settitle QEMU Emulator User Documentation |
debc7065 FB |
5 | @exampleindent 0 |
6 | @paragraphindent 0 | |
7 | @c %**end of header | |
386405f7 | 8 | |
0806e3f6 | 9 | @iftex |
386405f7 FB |
10 | @titlepage |
11 | @sp 7 | |
8f40c388 | 12 | @center @titlefont{QEMU Emulator} |
debc7065 FB |
13 | @sp 1 |
14 | @center @titlefont{User Documentation} | |
386405f7 FB |
15 | @sp 3 |
16 | @end titlepage | |
0806e3f6 | 17 | @end iftex |
386405f7 | 18 | |
debc7065 FB |
19 | @ifnottex |
20 | @node Top | |
21 | @top | |
22 | ||
23 | @menu | |
24 | * Introduction:: | |
25 | * Installation:: | |
26 | * QEMU PC System emulator:: | |
27 | * QEMU System emulator for non PC targets:: | |
83195237 | 28 | * QEMU User space emulator:: |
debc7065 FB |
29 | * compilation:: Compilation from the sources |
30 | * Index:: | |
31 | @end menu | |
32 | @end ifnottex | |
33 | ||
34 | @contents | |
35 | ||
36 | @node Introduction | |
386405f7 FB |
37 | @chapter Introduction |
38 | ||
debc7065 FB |
39 | @menu |
40 | * intro_features:: Features | |
41 | @end menu | |
42 | ||
43 | @node intro_features | |
322d0c66 | 44 | @section Features |
386405f7 | 45 | |
1f673135 FB |
46 | QEMU is a FAST! processor emulator using dynamic translation to |
47 | achieve good emulation speed. | |
1eb20527 FB |
48 | |
49 | QEMU has two operating modes: | |
0806e3f6 FB |
50 | |
51 | @itemize @minus | |
52 | ||
5fafdf24 | 53 | @item |
1f673135 | 54 | Full system emulation. In this mode, QEMU emulates a full system (for |
3f9f3aa1 FB |
55 | example a PC), including one or several processors and various |
56 | peripherals. It can be used to launch different Operating Systems | |
57 | without rebooting the PC or to debug system code. | |
1eb20527 | 58 | |
5fafdf24 | 59 | @item |
83195237 FB |
60 | User mode emulation. In this mode, QEMU can launch |
61 | processes compiled for one CPU on another CPU. It can be used to | |
1f673135 FB |
62 | launch the Wine Windows API emulator (@url{http://www.winehq.org}) or |
63 | to ease cross-compilation and cross-debugging. | |
1eb20527 FB |
64 | |
65 | @end itemize | |
66 | ||
7c3fc84d | 67 | QEMU can run without an host kernel driver and yet gives acceptable |
5fafdf24 | 68 | performance. |
322d0c66 | 69 | |
52c00a5f FB |
70 | For system emulation, the following hardware targets are supported: |
71 | @itemize | |
9d0a8e6f | 72 | @item PC (x86 or x86_64 processor) |
3f9f3aa1 | 73 | @item ISA PC (old style PC without PCI bus) |
52c00a5f | 74 | @item PREP (PowerPC processor) |
d45952a0 | 75 | @item G3 Beige PowerMac (PowerPC processor) |
9d0a8e6f | 76 | @item Mac99 PowerMac (PowerPC processor, in progress) |
ee76f82e | 77 | @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor) |
c7ba218d | 78 | @item Sun4u/Sun4v (64-bit Sparc processor, in progress) |
d9aedc32 | 79 | @item Malta board (32-bit and 64-bit MIPS processors) |
88cb0a02 | 80 | @item MIPS Magnum (64-bit MIPS processor) |
9ee6e8bb PB |
81 | @item ARM Integrator/CP (ARM) |
82 | @item ARM Versatile baseboard (ARM) | |
83 | @item ARM RealView Emulation baseboard (ARM) | |
ef4c3856 | 84 | @item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor) |
9ee6e8bb PB |
85 | @item Luminary Micro LM3S811EVB (ARM Cortex-M3) |
86 | @item Luminary Micro LM3S6965EVB (ARM Cortex-M3) | |
707e011b | 87 | @item Freescale MCF5208EVB (ColdFire V2). |
209a4e69 | 88 | @item Arnewsh MCF5206 evaluation board (ColdFire V2). |
02645926 | 89 | @item Palm Tungsten|E PDA (OMAP310 processor) |
c30bb264 | 90 | @item N800 and N810 tablets (OMAP2420 processor) |
57cd6e97 | 91 | @item MusicPal (MV88W8618 ARM processor) |
ef4c3856 AZ |
92 | @item Gumstix "Connex" and "Verdex" motherboards (PXA255/270). |
93 | @item Siemens SX1 smartphone (OMAP310 processor) | |
4af39611 | 94 | @item Syborg SVP base model (ARM Cortex-A8). |
48c50a62 EI |
95 | @item AXIS-Devboard88 (CRISv32 ETRAX-FS). |
96 | @item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze). | |
52c00a5f | 97 | @end itemize |
386405f7 | 98 | |
48c50a62 | 99 | For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported. |
0806e3f6 | 100 | |
debc7065 | 101 | @node Installation |
5b9f457a FB |
102 | @chapter Installation |
103 | ||
15a34c63 FB |
104 | If you want to compile QEMU yourself, see @ref{compilation}. |
105 | ||
debc7065 FB |
106 | @menu |
107 | * install_linux:: Linux | |
108 | * install_windows:: Windows | |
109 | * install_mac:: Macintosh | |
110 | @end menu | |
111 | ||
112 | @node install_linux | |
1f673135 FB |
113 | @section Linux |
114 | ||
7c3fc84d FB |
115 | If a precompiled package is available for your distribution - you just |
116 | have to install it. Otherwise, see @ref{compilation}. | |
5b9f457a | 117 | |
debc7065 | 118 | @node install_windows |
1f673135 | 119 | @section Windows |
8cd0ac2f | 120 | |
15a34c63 | 121 | Download the experimental binary installer at |
debc7065 | 122 | @url{http://www.free.oszoo.org/@/download.html}. |
d691f669 | 123 | |
debc7065 | 124 | @node install_mac |
1f673135 | 125 | @section Mac OS X |
d691f669 | 126 | |
15a34c63 | 127 | Download the experimental binary installer at |
debc7065 | 128 | @url{http://www.free.oszoo.org/@/download.html}. |
df0f11a0 | 129 | |
debc7065 | 130 | @node QEMU PC System emulator |
3f9f3aa1 | 131 | @chapter QEMU PC System emulator |
1eb20527 | 132 | |
debc7065 FB |
133 | @menu |
134 | * pcsys_introduction:: Introduction | |
135 | * pcsys_quickstart:: Quick Start | |
136 | * sec_invocation:: Invocation | |
137 | * pcsys_keys:: Keys | |
138 | * pcsys_monitor:: QEMU Monitor | |
139 | * disk_images:: Disk Images | |
140 | * pcsys_network:: Network emulation | |
141 | * direct_linux_boot:: Direct Linux Boot | |
142 | * pcsys_usb:: USB emulation | |
f858dcae | 143 | * vnc_security:: VNC security |
debc7065 FB |
144 | * gdb_usage:: GDB usage |
145 | * pcsys_os_specific:: Target OS specific information | |
146 | @end menu | |
147 | ||
148 | @node pcsys_introduction | |
0806e3f6 FB |
149 | @section Introduction |
150 | ||
151 | @c man begin DESCRIPTION | |
152 | ||
3f9f3aa1 FB |
153 | The QEMU PC System emulator simulates the |
154 | following peripherals: | |
0806e3f6 FB |
155 | |
156 | @itemize @minus | |
5fafdf24 | 157 | @item |
15a34c63 | 158 | i440FX host PCI bridge and PIIX3 PCI to ISA bridge |
0806e3f6 | 159 | @item |
15a34c63 FB |
160 | Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA |
161 | extensions (hardware level, including all non standard modes). | |
0806e3f6 FB |
162 | @item |
163 | PS/2 mouse and keyboard | |
5fafdf24 | 164 | @item |
15a34c63 | 165 | 2 PCI IDE interfaces with hard disk and CD-ROM support |
1f673135 FB |
166 | @item |
167 | Floppy disk | |
5fafdf24 | 168 | @item |
3a2eeac0 | 169 | PCI and ISA network adapters |
0806e3f6 | 170 | @item |
05d5818c FB |
171 | Serial ports |
172 | @item | |
c0fe3827 FB |
173 | Creative SoundBlaster 16 sound card |
174 | @item | |
175 | ENSONIQ AudioPCI ES1370 sound card | |
176 | @item | |
e5c9a13e AZ |
177 | Intel 82801AA AC97 Audio compatible sound card |
178 | @item | |
c0fe3827 | 179 | Adlib(OPL2) - Yamaha YM3812 compatible chip |
b389dbfb | 180 | @item |
26463dbc AZ |
181 | Gravis Ultrasound GF1 sound card |
182 | @item | |
cc53d26d | 183 | CS4231A compatible sound card |
184 | @item | |
b389dbfb | 185 | PCI UHCI USB controller and a virtual USB hub. |
0806e3f6 FB |
186 | @end itemize |
187 | ||
3f9f3aa1 FB |
188 | SMP is supported with up to 255 CPUs. |
189 | ||
1d1f8c33 | 190 | Note that adlib, gus and cs4231a are only available when QEMU was |
191 | configured with --audio-card-list option containing the name(s) of | |
e5178e8d | 192 | required card(s). |
c0fe3827 | 193 | |
15a34c63 FB |
194 | QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL |
195 | VGA BIOS. | |
196 | ||
c0fe3827 FB |
197 | QEMU uses YM3812 emulation by Tatsuyuki Satoh. |
198 | ||
26463dbc AZ |
199 | QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/}) |
200 | by Tibor "TS" Schütz. | |
423d65f4 | 201 | |
cc53d26d | 202 | CS4231A is the chip used in Windows Sound System and GUSMAX products |
203 | ||
0806e3f6 FB |
204 | @c man end |
205 | ||
debc7065 | 206 | @node pcsys_quickstart |
1eb20527 FB |
207 | @section Quick Start |
208 | ||
285dc330 | 209 | Download and uncompress the linux image (@file{linux.img}) and type: |
0806e3f6 FB |
210 | |
211 | @example | |
285dc330 | 212 | qemu linux.img |
0806e3f6 FB |
213 | @end example |
214 | ||
215 | Linux should boot and give you a prompt. | |
216 | ||
6cc721cf | 217 | @node sec_invocation |
ec410fc9 FB |
218 | @section Invocation |
219 | ||
220 | @example | |
0806e3f6 | 221 | @c man begin SYNOPSIS |
89dfe898 | 222 | usage: qemu [options] [@var{disk_image}] |
0806e3f6 | 223 | @c man end |
ec410fc9 FB |
224 | @end example |
225 | ||
0806e3f6 | 226 | @c man begin OPTIONS |
d2c639d6 BS |
227 | @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some |
228 | targets do not need a disk image. | |
ec410fc9 | 229 | |
5824d651 | 230 | @include qemu-options.texi |
ec410fc9 | 231 | |
3e11db9a FB |
232 | @c man end |
233 | ||
debc7065 | 234 | @node pcsys_keys |
3e11db9a FB |
235 | @section Keys |
236 | ||
237 | @c man begin OPTIONS | |
238 | ||
a1b74fe8 FB |
239 | During the graphical emulation, you can use the following keys: |
240 | @table @key | |
f9859310 | 241 | @item Ctrl-Alt-f |
a1b74fe8 | 242 | Toggle full screen |
a0a821a4 | 243 | |
f9859310 | 244 | @item Ctrl-Alt-n |
a0a821a4 FB |
245 | Switch to virtual console 'n'. Standard console mappings are: |
246 | @table @emph | |
247 | @item 1 | |
248 | Target system display | |
249 | @item 2 | |
250 | Monitor | |
251 | @item 3 | |
252 | Serial port | |
a1b74fe8 FB |
253 | @end table |
254 | ||
f9859310 | 255 | @item Ctrl-Alt |
a0a821a4 FB |
256 | Toggle mouse and keyboard grab. |
257 | @end table | |
258 | ||
3e11db9a FB |
259 | In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down}, |
260 | @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log. | |
261 | ||
a0a821a4 FB |
262 | During emulation, if you are using the @option{-nographic} option, use |
263 | @key{Ctrl-a h} to get terminal commands: | |
ec410fc9 FB |
264 | |
265 | @table @key | |
a1b74fe8 | 266 | @item Ctrl-a h |
d2c639d6 | 267 | @item Ctrl-a ? |
ec410fc9 | 268 | Print this help |
3b46e624 | 269 | @item Ctrl-a x |
366dfc52 | 270 | Exit emulator |
3b46e624 | 271 | @item Ctrl-a s |
1f47a922 | 272 | Save disk data back to file (if -snapshot) |
20d8a3ed | 273 | @item Ctrl-a t |
d2c639d6 | 274 | Toggle console timestamps |
a1b74fe8 | 275 | @item Ctrl-a b |
1f673135 | 276 | Send break (magic sysrq in Linux) |
a1b74fe8 | 277 | @item Ctrl-a c |
1f673135 | 278 | Switch between console and monitor |
a1b74fe8 FB |
279 | @item Ctrl-a Ctrl-a |
280 | Send Ctrl-a | |
ec410fc9 | 281 | @end table |
0806e3f6 FB |
282 | @c man end |
283 | ||
284 | @ignore | |
285 | ||
1f673135 FB |
286 | @c man begin SEEALSO |
287 | The HTML documentation of QEMU for more precise information and Linux | |
288 | user mode emulator invocation. | |
289 | @c man end | |
290 | ||
291 | @c man begin AUTHOR | |
292 | Fabrice Bellard | |
293 | @c man end | |
294 | ||
295 | @end ignore | |
296 | ||
debc7065 | 297 | @node pcsys_monitor |
1f673135 FB |
298 | @section QEMU Monitor |
299 | ||
300 | The QEMU monitor is used to give complex commands to the QEMU | |
301 | emulator. You can use it to: | |
302 | ||
303 | @itemize @minus | |
304 | ||
305 | @item | |
e598752a | 306 | Remove or insert removable media images |
89dfe898 | 307 | (such as CD-ROM or floppies). |
1f673135 | 308 | |
5fafdf24 | 309 | @item |
1f673135 FB |
310 | Freeze/unfreeze the Virtual Machine (VM) and save or restore its state |
311 | from a disk file. | |
312 | ||
313 | @item Inspect the VM state without an external debugger. | |
314 | ||
315 | @end itemize | |
316 | ||
317 | @subsection Commands | |
318 | ||
319 | The following commands are available: | |
320 | ||
2313086a | 321 | @include qemu-monitor.texi |
0806e3f6 | 322 | |
1f673135 FB |
323 | @subsection Integer expressions |
324 | ||
325 | The monitor understands integers expressions for every integer | |
326 | argument. You can use register names to get the value of specifics | |
327 | CPU registers by prefixing them with @emph{$}. | |
ec410fc9 | 328 | |
1f47a922 FB |
329 | @node disk_images |
330 | @section Disk Images | |
331 | ||
acd935ef FB |
332 | Since version 0.6.1, QEMU supports many disk image formats, including |
333 | growable disk images (their size increase as non empty sectors are | |
13a2e80f FB |
334 | written), compressed and encrypted disk images. Version 0.8.3 added |
335 | the new qcow2 disk image format which is essential to support VM | |
336 | snapshots. | |
1f47a922 | 337 | |
debc7065 FB |
338 | @menu |
339 | * disk_images_quickstart:: Quick start for disk image creation | |
340 | * disk_images_snapshot_mode:: Snapshot mode | |
13a2e80f | 341 | * vm_snapshots:: VM snapshots |
debc7065 | 342 | * qemu_img_invocation:: qemu-img Invocation |
975b092b | 343 | * qemu_nbd_invocation:: qemu-nbd Invocation |
19cb3738 | 344 | * host_drives:: Using host drives |
debc7065 | 345 | * disk_images_fat_images:: Virtual FAT disk images |
75818250 | 346 | * disk_images_nbd:: NBD access |
debc7065 FB |
347 | @end menu |
348 | ||
349 | @node disk_images_quickstart | |
acd935ef FB |
350 | @subsection Quick start for disk image creation |
351 | ||
352 | You can create a disk image with the command: | |
1f47a922 | 353 | @example |
acd935ef | 354 | qemu-img create myimage.img mysize |
1f47a922 | 355 | @end example |
acd935ef FB |
356 | where @var{myimage.img} is the disk image filename and @var{mysize} is its |
357 | size in kilobytes. You can add an @code{M} suffix to give the size in | |
358 | megabytes and a @code{G} suffix for gigabytes. | |
359 | ||
debc7065 | 360 | See @ref{qemu_img_invocation} for more information. |
1f47a922 | 361 | |
debc7065 | 362 | @node disk_images_snapshot_mode |
1f47a922 FB |
363 | @subsection Snapshot mode |
364 | ||
365 | If you use the option @option{-snapshot}, all disk images are | |
366 | considered as read only. When sectors in written, they are written in | |
367 | a temporary file created in @file{/tmp}. You can however force the | |
acd935ef FB |
368 | write back to the raw disk images by using the @code{commit} monitor |
369 | command (or @key{C-a s} in the serial console). | |
1f47a922 | 370 | |
13a2e80f FB |
371 | @node vm_snapshots |
372 | @subsection VM snapshots | |
373 | ||
374 | VM snapshots are snapshots of the complete virtual machine including | |
375 | CPU state, RAM, device state and the content of all the writable | |
376 | disks. In order to use VM snapshots, you must have at least one non | |
377 | removable and writable block device using the @code{qcow2} disk image | |
378 | format. Normally this device is the first virtual hard drive. | |
379 | ||
380 | Use the monitor command @code{savevm} to create a new VM snapshot or | |
381 | replace an existing one. A human readable name can be assigned to each | |
19d36792 | 382 | snapshot in addition to its numerical ID. |
13a2e80f FB |
383 | |
384 | Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove | |
385 | a VM snapshot. @code{info snapshots} lists the available snapshots | |
386 | with their associated information: | |
387 | ||
388 | @example | |
389 | (qemu) info snapshots | |
390 | Snapshot devices: hda | |
391 | Snapshot list (from hda): | |
392 | ID TAG VM SIZE DATE VM CLOCK | |
393 | 1 start 41M 2006-08-06 12:38:02 00:00:14.954 | |
394 | 2 40M 2006-08-06 12:43:29 00:00:18.633 | |
395 | 3 msys 40M 2006-08-06 12:44:04 00:00:23.514 | |
396 | @end example | |
397 | ||
398 | A VM snapshot is made of a VM state info (its size is shown in | |
399 | @code{info snapshots}) and a snapshot of every writable disk image. | |
400 | The VM state info is stored in the first @code{qcow2} non removable | |
401 | and writable block device. The disk image snapshots are stored in | |
402 | every disk image. The size of a snapshot in a disk image is difficult | |
403 | to evaluate and is not shown by @code{info snapshots} because the | |
404 | associated disk sectors are shared among all the snapshots to save | |
19d36792 FB |
405 | disk space (otherwise each snapshot would need a full copy of all the |
406 | disk images). | |
13a2e80f FB |
407 | |
408 | When using the (unrelated) @code{-snapshot} option | |
409 | (@ref{disk_images_snapshot_mode}), you can always make VM snapshots, | |
410 | but they are deleted as soon as you exit QEMU. | |
411 | ||
412 | VM snapshots currently have the following known limitations: | |
413 | @itemize | |
5fafdf24 | 414 | @item |
13a2e80f FB |
415 | They cannot cope with removable devices if they are removed or |
416 | inserted after a snapshot is done. | |
5fafdf24 | 417 | @item |
13a2e80f FB |
418 | A few device drivers still have incomplete snapshot support so their |
419 | state is not saved or restored properly (in particular USB). | |
420 | @end itemize | |
421 | ||
acd935ef FB |
422 | @node qemu_img_invocation |
423 | @subsection @code{qemu-img} Invocation | |
1f47a922 | 424 | |
acd935ef | 425 | @include qemu-img.texi |
05efe46e | 426 | |
975b092b TS |
427 | @node qemu_nbd_invocation |
428 | @subsection @code{qemu-nbd} Invocation | |
429 | ||
430 | @include qemu-nbd.texi | |
431 | ||
19cb3738 FB |
432 | @node host_drives |
433 | @subsection Using host drives | |
434 | ||
435 | In addition to disk image files, QEMU can directly access host | |
436 | devices. We describe here the usage for QEMU version >= 0.8.3. | |
437 | ||
438 | @subsubsection Linux | |
439 | ||
440 | On Linux, you can directly use the host device filename instead of a | |
4be456f1 | 441 | disk image filename provided you have enough privileges to access |
19cb3738 FB |
442 | it. For example, use @file{/dev/cdrom} to access to the CDROM or |
443 | @file{/dev/fd0} for the floppy. | |
444 | ||
f542086d | 445 | @table @code |
19cb3738 FB |
446 | @item CD |
447 | You can specify a CDROM device even if no CDROM is loaded. QEMU has | |
448 | specific code to detect CDROM insertion or removal. CDROM ejection by | |
449 | the guest OS is supported. Currently only data CDs are supported. | |
450 | @item Floppy | |
451 | You can specify a floppy device even if no floppy is loaded. Floppy | |
452 | removal is currently not detected accurately (if you change floppy | |
453 | without doing floppy access while the floppy is not loaded, the guest | |
454 | OS will think that the same floppy is loaded). | |
455 | @item Hard disks | |
456 | Hard disks can be used. Normally you must specify the whole disk | |
457 | (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can | |
458 | see it as a partitioned disk. WARNING: unless you know what you do, it | |
459 | is better to only make READ-ONLY accesses to the hard disk otherwise | |
460 | you may corrupt your host data (use the @option{-snapshot} command | |
461 | line option or modify the device permissions accordingly). | |
462 | @end table | |
463 | ||
464 | @subsubsection Windows | |
465 | ||
01781963 FB |
466 | @table @code |
467 | @item CD | |
4be456f1 | 468 | The preferred syntax is the drive letter (e.g. @file{d:}). The |
01781963 FB |
469 | alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is |
470 | supported as an alias to the first CDROM drive. | |
19cb3738 | 471 | |
e598752a | 472 | Currently there is no specific code to handle removable media, so it |
19cb3738 FB |
473 | is better to use the @code{change} or @code{eject} monitor commands to |
474 | change or eject media. | |
01781963 | 475 | @item Hard disks |
89dfe898 | 476 | Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}} |
01781963 FB |
477 | where @var{N} is the drive number (0 is the first hard disk). |
478 | ||
479 | WARNING: unless you know what you do, it is better to only make | |
480 | READ-ONLY accesses to the hard disk otherwise you may corrupt your | |
481 | host data (use the @option{-snapshot} command line so that the | |
482 | modifications are written in a temporary file). | |
483 | @end table | |
484 | ||
19cb3738 FB |
485 | |
486 | @subsubsection Mac OS X | |
487 | ||
5fafdf24 | 488 | @file{/dev/cdrom} is an alias to the first CDROM. |
19cb3738 | 489 | |
e598752a | 490 | Currently there is no specific code to handle removable media, so it |
19cb3738 FB |
491 | is better to use the @code{change} or @code{eject} monitor commands to |
492 | change or eject media. | |
493 | ||
debc7065 | 494 | @node disk_images_fat_images |
2c6cadd4 FB |
495 | @subsection Virtual FAT disk images |
496 | ||
497 | QEMU can automatically create a virtual FAT disk image from a | |
498 | directory tree. In order to use it, just type: | |
499 | ||
5fafdf24 | 500 | @example |
2c6cadd4 FB |
501 | qemu linux.img -hdb fat:/my_directory |
502 | @end example | |
503 | ||
504 | Then you access access to all the files in the @file{/my_directory} | |
505 | directory without having to copy them in a disk image or to export | |
506 | them via SAMBA or NFS. The default access is @emph{read-only}. | |
507 | ||
508 | Floppies can be emulated with the @code{:floppy:} option: | |
509 | ||
5fafdf24 | 510 | @example |
2c6cadd4 FB |
511 | qemu linux.img -fda fat:floppy:/my_directory |
512 | @end example | |
513 | ||
514 | A read/write support is available for testing (beta stage) with the | |
515 | @code{:rw:} option: | |
516 | ||
5fafdf24 | 517 | @example |
2c6cadd4 FB |
518 | qemu linux.img -fda fat:floppy:rw:/my_directory |
519 | @end example | |
520 | ||
521 | What you should @emph{never} do: | |
522 | @itemize | |
523 | @item use non-ASCII filenames ; | |
524 | @item use "-snapshot" together with ":rw:" ; | |
85b2c688 FB |
525 | @item expect it to work when loadvm'ing ; |
526 | @item write to the FAT directory on the host system while accessing it with the guest system. | |
2c6cadd4 FB |
527 | @end itemize |
528 | ||
75818250 TS |
529 | @node disk_images_nbd |
530 | @subsection NBD access | |
531 | ||
532 | QEMU can access directly to block device exported using the Network Block Device | |
533 | protocol. | |
534 | ||
535 | @example | |
536 | qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024 | |
537 | @end example | |
538 | ||
539 | If the NBD server is located on the same host, you can use an unix socket instead | |
540 | of an inet socket: | |
541 | ||
542 | @example | |
543 | qemu linux.img -hdb nbd:unix:/tmp/my_socket | |
544 | @end example | |
545 | ||
546 | In this case, the block device must be exported using qemu-nbd: | |
547 | ||
548 | @example | |
549 | qemu-nbd --socket=/tmp/my_socket my_disk.qcow2 | |
550 | @end example | |
551 | ||
552 | The use of qemu-nbd allows to share a disk between several guests: | |
553 | @example | |
554 | qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2 | |
555 | @end example | |
556 | ||
557 | and then you can use it with two guests: | |
558 | @example | |
559 | qemu linux1.img -hdb nbd:unix:/tmp/my_socket | |
560 | qemu linux2.img -hdb nbd:unix:/tmp/my_socket | |
561 | @end example | |
562 | ||
debc7065 | 563 | @node pcsys_network |
9d4fb82e FB |
564 | @section Network emulation |
565 | ||
4be456f1 | 566 | QEMU can simulate several network cards (PCI or ISA cards on the PC |
41d03949 FB |
567 | target) and can connect them to an arbitrary number of Virtual Local |
568 | Area Networks (VLANs). Host TAP devices can be connected to any QEMU | |
569 | VLAN. VLAN can be connected between separate instances of QEMU to | |
4be456f1 | 570 | simulate large networks. For simpler usage, a non privileged user mode |
41d03949 FB |
571 | network stack can replace the TAP device to have a basic network |
572 | connection. | |
573 | ||
574 | @subsection VLANs | |
9d4fb82e | 575 | |
41d03949 FB |
576 | QEMU simulates several VLANs. A VLAN can be symbolised as a virtual |
577 | connection between several network devices. These devices can be for | |
578 | example QEMU virtual Ethernet cards or virtual Host ethernet devices | |
579 | (TAP devices). | |
9d4fb82e | 580 | |
41d03949 FB |
581 | @subsection Using TAP network interfaces |
582 | ||
583 | This is the standard way to connect QEMU to a real network. QEMU adds | |
584 | a virtual network device on your host (called @code{tapN}), and you | |
585 | can then configure it as if it was a real ethernet card. | |
9d4fb82e | 586 | |
8f40c388 FB |
587 | @subsubsection Linux host |
588 | ||
9d4fb82e FB |
589 | As an example, you can download the @file{linux-test-xxx.tar.gz} |
590 | archive and copy the script @file{qemu-ifup} in @file{/etc} and | |
591 | configure properly @code{sudo} so that the command @code{ifconfig} | |
592 | contained in @file{qemu-ifup} can be executed as root. You must verify | |
41d03949 | 593 | that your host kernel supports the TAP network interfaces: the |
9d4fb82e FB |
594 | device @file{/dev/net/tun} must be present. |
595 | ||
ee0f4751 FB |
596 | See @ref{sec_invocation} to have examples of command lines using the |
597 | TAP network interfaces. | |
9d4fb82e | 598 | |
8f40c388 FB |
599 | @subsubsection Windows host |
600 | ||
601 | There is a virtual ethernet driver for Windows 2000/XP systems, called | |
602 | TAP-Win32. But it is not included in standard QEMU for Windows, | |
603 | so you will need to get it separately. It is part of OpenVPN package, | |
604 | so download OpenVPN from : @url{http://openvpn.net/}. | |
605 | ||
9d4fb82e FB |
606 | @subsection Using the user mode network stack |
607 | ||
41d03949 FB |
608 | By using the option @option{-net user} (default configuration if no |
609 | @option{-net} option is specified), QEMU uses a completely user mode | |
4be456f1 | 610 | network stack (you don't need root privilege to use the virtual |
41d03949 | 611 | network). The virtual network configuration is the following: |
9d4fb82e FB |
612 | |
613 | @example | |
614 | ||
41d03949 FB |
615 | QEMU VLAN <------> Firewall/DHCP server <-----> Internet |
616 | | (10.0.2.2) | |
9d4fb82e | 617 | | |
2518bd0d | 618 | ----> DNS server (10.0.2.3) |
3b46e624 | 619 | | |
2518bd0d | 620 | ----> SMB server (10.0.2.4) |
9d4fb82e FB |
621 | @end example |
622 | ||
623 | The QEMU VM behaves as if it was behind a firewall which blocks all | |
624 | incoming connections. You can use a DHCP client to automatically | |
41d03949 FB |
625 | configure the network in the QEMU VM. The DHCP server assign addresses |
626 | to the hosts starting from 10.0.2.15. | |
9d4fb82e FB |
627 | |
628 | In order to check that the user mode network is working, you can ping | |
629 | the address 10.0.2.2 and verify that you got an address in the range | |
630 | 10.0.2.x from the QEMU virtual DHCP server. | |
631 | ||
b415a407 | 632 | Note that @code{ping} is not supported reliably to the internet as it |
4be456f1 | 633 | would require root privileges. It means you can only ping the local |
b415a407 FB |
634 | router (10.0.2.2). |
635 | ||
9bf05444 FB |
636 | When using the built-in TFTP server, the router is also the TFTP |
637 | server. | |
638 | ||
639 | When using the @option{-redir} option, TCP or UDP connections can be | |
640 | redirected from the host to the guest. It allows for example to | |
641 | redirect X11, telnet or SSH connections. | |
443f1376 | 642 | |
41d03949 FB |
643 | @subsection Connecting VLANs between QEMU instances |
644 | ||
645 | Using the @option{-net socket} option, it is possible to make VLANs | |
646 | that span several QEMU instances. See @ref{sec_invocation} to have a | |
647 | basic example. | |
648 | ||
9d4fb82e FB |
649 | @node direct_linux_boot |
650 | @section Direct Linux Boot | |
1f673135 FB |
651 | |
652 | This section explains how to launch a Linux kernel inside QEMU without | |
653 | having to make a full bootable image. It is very useful for fast Linux | |
ee0f4751 | 654 | kernel testing. |
1f673135 | 655 | |
ee0f4751 | 656 | The syntax is: |
1f673135 | 657 | @example |
ee0f4751 | 658 | qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda" |
1f673135 FB |
659 | @end example |
660 | ||
ee0f4751 FB |
661 | Use @option{-kernel} to provide the Linux kernel image and |
662 | @option{-append} to give the kernel command line arguments. The | |
663 | @option{-initrd} option can be used to provide an INITRD image. | |
1f673135 | 664 | |
ee0f4751 FB |
665 | When using the direct Linux boot, a disk image for the first hard disk |
666 | @file{hda} is required because its boot sector is used to launch the | |
667 | Linux kernel. | |
1f673135 | 668 | |
ee0f4751 FB |
669 | If you do not need graphical output, you can disable it and redirect |
670 | the virtual serial port and the QEMU monitor to the console with the | |
671 | @option{-nographic} option. The typical command line is: | |
1f673135 | 672 | @example |
ee0f4751 FB |
673 | qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \ |
674 | -append "root=/dev/hda console=ttyS0" -nographic | |
1f673135 FB |
675 | @end example |
676 | ||
ee0f4751 FB |
677 | Use @key{Ctrl-a c} to switch between the serial console and the |
678 | monitor (@pxref{pcsys_keys}). | |
1f673135 | 679 | |
debc7065 | 680 | @node pcsys_usb |
b389dbfb FB |
681 | @section USB emulation |
682 | ||
0aff66b5 PB |
683 | QEMU emulates a PCI UHCI USB controller. You can virtually plug |
684 | virtual USB devices or real host USB devices (experimental, works only | |
685 | on Linux hosts). Qemu will automatically create and connect virtual USB hubs | |
f542086d | 686 | as necessary to connect multiple USB devices. |
b389dbfb | 687 | |
0aff66b5 PB |
688 | @menu |
689 | * usb_devices:: | |
690 | * host_usb_devices:: | |
691 | @end menu | |
692 | @node usb_devices | |
693 | @subsection Connecting USB devices | |
b389dbfb | 694 | |
0aff66b5 PB |
695 | USB devices can be connected with the @option{-usbdevice} commandline option |
696 | or the @code{usb_add} monitor command. Available devices are: | |
b389dbfb | 697 | |
db380c06 AZ |
698 | @table @code |
699 | @item mouse | |
0aff66b5 | 700 | Virtual Mouse. This will override the PS/2 mouse emulation when activated. |
db380c06 | 701 | @item tablet |
c6d46c20 | 702 | Pointer device that uses absolute coordinates (like a touchscreen). |
0aff66b5 PB |
703 | This means qemu is able to report the mouse position without having |
704 | to grab the mouse. Also overrides the PS/2 mouse emulation when activated. | |
db380c06 | 705 | @item disk:@var{file} |
0aff66b5 | 706 | Mass storage device based on @var{file} (@pxref{disk_images}) |
db380c06 | 707 | @item host:@var{bus.addr} |
0aff66b5 PB |
708 | Pass through the host device identified by @var{bus.addr} |
709 | (Linux only) | |
db380c06 | 710 | @item host:@var{vendor_id:product_id} |
0aff66b5 PB |
711 | Pass through the host device identified by @var{vendor_id:product_id} |
712 | (Linux only) | |
db380c06 | 713 | @item wacom-tablet |
f6d2a316 AZ |
714 | Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet} |
715 | above but it can be used with the tslib library because in addition to touch | |
716 | coordinates it reports touch pressure. | |
db380c06 | 717 | @item keyboard |
47b2d338 | 718 | Standard USB keyboard. Will override the PS/2 keyboard (if present). |
db380c06 AZ |
719 | @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev} |
720 | Serial converter. This emulates an FTDI FT232BM chip connected to host character | |
721 | device @var{dev}. The available character devices are the same as for the | |
722 | @code{-serial} option. The @code{vendorid} and @code{productid} options can be | |
a11d070e | 723 | used to override the default 0403:6001. For instance, |
db380c06 AZ |
724 | @example |
725 | usb_add serial:productid=FA00:tcp:192.168.0.2:4444 | |
726 | @end example | |
727 | will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual | |
728 | serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00). | |
2e4d9fb1 AJ |
729 | @item braille |
730 | Braille device. This will use BrlAPI to display the braille output on a real | |
731 | or fake device. | |
9ad97e65 AZ |
732 | @item net:@var{options} |
733 | Network adapter that supports CDC ethernet and RNDIS protocols. @var{options} | |
734 | specifies NIC options as with @code{-net nic,}@var{options} (see description). | |
735 | For instance, user-mode networking can be used with | |
6c9f886c | 736 | @example |
9ad97e65 | 737 | qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0 |
6c9f886c AZ |
738 | @end example |
739 | Currently this cannot be used in machines that support PCI NICs. | |
2d564691 AZ |
740 | @item bt[:@var{hci-type}] |
741 | Bluetooth dongle whose type is specified in the same format as with | |
742 | the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If | |
743 | no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}. | |
744 | This USB device implements the USB Transport Layer of HCI. Example | |
745 | usage: | |
746 | @example | |
747 | qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3 | |
748 | @end example | |
0aff66b5 | 749 | @end table |
b389dbfb | 750 | |
0aff66b5 | 751 | @node host_usb_devices |
b389dbfb FB |
752 | @subsection Using host USB devices on a Linux host |
753 | ||
754 | WARNING: this is an experimental feature. QEMU will slow down when | |
755 | using it. USB devices requiring real time streaming (i.e. USB Video | |
756 | Cameras) are not supported yet. | |
757 | ||
758 | @enumerate | |
5fafdf24 | 759 | @item If you use an early Linux 2.4 kernel, verify that no Linux driver |
b389dbfb FB |
760 | is actually using the USB device. A simple way to do that is simply to |
761 | disable the corresponding kernel module by renaming it from @file{mydriver.o} | |
762 | to @file{mydriver.o.disabled}. | |
763 | ||
764 | @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that: | |
765 | @example | |
766 | ls /proc/bus/usb | |
767 | 001 devices drivers | |
768 | @end example | |
769 | ||
770 | @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices: | |
771 | @example | |
772 | chown -R myuid /proc/bus/usb | |
773 | @end example | |
774 | ||
775 | @item Launch QEMU and do in the monitor: | |
5fafdf24 | 776 | @example |
b389dbfb FB |
777 | info usbhost |
778 | Device 1.2, speed 480 Mb/s | |
779 | Class 00: USB device 1234:5678, USB DISK | |
780 | @end example | |
781 | You should see the list of the devices you can use (Never try to use | |
782 | hubs, it won't work). | |
783 | ||
784 | @item Add the device in QEMU by using: | |
5fafdf24 | 785 | @example |
b389dbfb FB |
786 | usb_add host:1234:5678 |
787 | @end example | |
788 | ||
789 | Normally the guest OS should report that a new USB device is | |
790 | plugged. You can use the option @option{-usbdevice} to do the same. | |
791 | ||
792 | @item Now you can try to use the host USB device in QEMU. | |
793 | ||
794 | @end enumerate | |
795 | ||
796 | When relaunching QEMU, you may have to unplug and plug again the USB | |
797 | device to make it work again (this is a bug). | |
798 | ||
f858dcae TS |
799 | @node vnc_security |
800 | @section VNC security | |
801 | ||
802 | The VNC server capability provides access to the graphical console | |
803 | of the guest VM across the network. This has a number of security | |
804 | considerations depending on the deployment scenarios. | |
805 | ||
806 | @menu | |
807 | * vnc_sec_none:: | |
808 | * vnc_sec_password:: | |
809 | * vnc_sec_certificate:: | |
810 | * vnc_sec_certificate_verify:: | |
811 | * vnc_sec_certificate_pw:: | |
2f9606b3 AL |
812 | * vnc_sec_sasl:: |
813 | * vnc_sec_certificate_sasl:: | |
f858dcae | 814 | * vnc_generate_cert:: |
2f9606b3 | 815 | * vnc_setup_sasl:: |
f858dcae TS |
816 | @end menu |
817 | @node vnc_sec_none | |
818 | @subsection Without passwords | |
819 | ||
820 | The simplest VNC server setup does not include any form of authentication. | |
821 | For this setup it is recommended to restrict it to listen on a UNIX domain | |
822 | socket only. For example | |
823 | ||
824 | @example | |
825 | qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc | |
826 | @end example | |
827 | ||
828 | This ensures that only users on local box with read/write access to that | |
829 | path can access the VNC server. To securely access the VNC server from a | |
830 | remote machine, a combination of netcat+ssh can be used to provide a secure | |
831 | tunnel. | |
832 | ||
833 | @node vnc_sec_password | |
834 | @subsection With passwords | |
835 | ||
836 | The VNC protocol has limited support for password based authentication. Since | |
837 | the protocol limits passwords to 8 characters it should not be considered | |
838 | to provide high security. The password can be fairly easily brute-forced by | |
839 | a client making repeat connections. For this reason, a VNC server using password | |
840 | authentication should be restricted to only listen on the loopback interface | |
34a3d239 | 841 | or UNIX domain sockets. Password authentication is requested with the @code{password} |
f858dcae TS |
842 | option, and then once QEMU is running the password is set with the monitor. Until |
843 | the monitor is used to set the password all clients will be rejected. | |
844 | ||
845 | @example | |
846 | qemu [...OPTIONS...] -vnc :1,password -monitor stdio | |
847 | (qemu) change vnc password | |
848 | Password: ******** | |
849 | (qemu) | |
850 | @end example | |
851 | ||
852 | @node vnc_sec_certificate | |
853 | @subsection With x509 certificates | |
854 | ||
855 | The QEMU VNC server also implements the VeNCrypt extension allowing use of | |
856 | TLS for encryption of the session, and x509 certificates for authentication. | |
857 | The use of x509 certificates is strongly recommended, because TLS on its | |
858 | own is susceptible to man-in-the-middle attacks. Basic x509 certificate | |
859 | support provides a secure session, but no authentication. This allows any | |
860 | client to connect, and provides an encrypted session. | |
861 | ||
862 | @example | |
863 | qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio | |
864 | @end example | |
865 | ||
866 | In the above example @code{/etc/pki/qemu} should contain at least three files, | |
867 | @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged | |
868 | users will want to use a private directory, for example @code{$HOME/.pki/qemu}. | |
869 | NB the @code{server-key.pem} file should be protected with file mode 0600 to | |
870 | only be readable by the user owning it. | |
871 | ||
872 | @node vnc_sec_certificate_verify | |
873 | @subsection With x509 certificates and client verification | |
874 | ||
875 | Certificates can also provide a means to authenticate the client connecting. | |
876 | The server will request that the client provide a certificate, which it will | |
877 | then validate against the CA certificate. This is a good choice if deploying | |
878 | in an environment with a private internal certificate authority. | |
879 | ||
880 | @example | |
881 | qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio | |
882 | @end example | |
883 | ||
884 | ||
885 | @node vnc_sec_certificate_pw | |
886 | @subsection With x509 certificates, client verification and passwords | |
887 | ||
888 | Finally, the previous method can be combined with VNC password authentication | |
889 | to provide two layers of authentication for clients. | |
890 | ||
891 | @example | |
892 | qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio | |
893 | (qemu) change vnc password | |
894 | Password: ******** | |
895 | (qemu) | |
896 | @end example | |
897 | ||
2f9606b3 AL |
898 | |
899 | @node vnc_sec_sasl | |
900 | @subsection With SASL authentication | |
901 | ||
902 | The SASL authentication method is a VNC extension, that provides an | |
903 | easily extendable, pluggable authentication method. This allows for | |
904 | integration with a wide range of authentication mechanisms, such as | |
905 | PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more. | |
906 | The strength of the authentication depends on the exact mechanism | |
907 | configured. If the chosen mechanism also provides a SSF layer, then | |
908 | it will encrypt the datastream as well. | |
909 | ||
910 | Refer to the later docs on how to choose the exact SASL mechanism | |
911 | used for authentication, but assuming use of one supporting SSF, | |
912 | then QEMU can be launched with: | |
913 | ||
914 | @example | |
915 | qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio | |
916 | @end example | |
917 | ||
918 | @node vnc_sec_certificate_sasl | |
919 | @subsection With x509 certificates and SASL authentication | |
920 | ||
921 | If the desired SASL authentication mechanism does not supported | |
922 | SSF layers, then it is strongly advised to run it in combination | |
923 | with TLS and x509 certificates. This provides securely encrypted | |
924 | data stream, avoiding risk of compromising of the security | |
925 | credentials. This can be enabled, by combining the 'sasl' option | |
926 | with the aforementioned TLS + x509 options: | |
927 | ||
928 | @example | |
929 | qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio | |
930 | @end example | |
931 | ||
932 | ||
f858dcae TS |
933 | @node vnc_generate_cert |
934 | @subsection Generating certificates for VNC | |
935 | ||
936 | The GNU TLS packages provides a command called @code{certtool} which can | |
937 | be used to generate certificates and keys in PEM format. At a minimum it | |
938 | is neccessary to setup a certificate authority, and issue certificates to | |
939 | each server. If using certificates for authentication, then each client | |
940 | will also need to be issued a certificate. The recommendation is for the | |
941 | server to keep its certificates in either @code{/etc/pki/qemu} or for | |
942 | unprivileged users in @code{$HOME/.pki/qemu}. | |
943 | ||
944 | @menu | |
945 | * vnc_generate_ca:: | |
946 | * vnc_generate_server:: | |
947 | * vnc_generate_client:: | |
948 | @end menu | |
949 | @node vnc_generate_ca | |
950 | @subsubsection Setup the Certificate Authority | |
951 | ||
952 | This step only needs to be performed once per organization / organizational | |
953 | unit. First the CA needs a private key. This key must be kept VERY secret | |
954 | and secure. If this key is compromised the entire trust chain of the certificates | |
955 | issued with it is lost. | |
956 | ||
957 | @example | |
958 | # certtool --generate-privkey > ca-key.pem | |
959 | @end example | |
960 | ||
961 | A CA needs to have a public certificate. For simplicity it can be a self-signed | |
962 | certificate, or one issue by a commercial certificate issuing authority. To | |
963 | generate a self-signed certificate requires one core piece of information, the | |
964 | name of the organization. | |
965 | ||
966 | @example | |
967 | # cat > ca.info <<EOF | |
968 | cn = Name of your organization | |
969 | ca | |
970 | cert_signing_key | |
971 | EOF | |
972 | # certtool --generate-self-signed \ | |
973 | --load-privkey ca-key.pem | |
974 | --template ca.info \ | |
975 | --outfile ca-cert.pem | |
976 | @end example | |
977 | ||
978 | The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize | |
979 | TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all. | |
980 | ||
981 | @node vnc_generate_server | |
982 | @subsubsection Issuing server certificates | |
983 | ||
984 | Each server (or host) needs to be issued with a key and certificate. When connecting | |
985 | the certificate is sent to the client which validates it against the CA certificate. | |
986 | The core piece of information for a server certificate is the hostname. This should | |
987 | be the fully qualified hostname that the client will connect with, since the client | |
988 | will typically also verify the hostname in the certificate. On the host holding the | |
989 | secure CA private key: | |
990 | ||
991 | @example | |
992 | # cat > server.info <<EOF | |
993 | organization = Name of your organization | |
994 | cn = server.foo.example.com | |
995 | tls_www_server | |
996 | encryption_key | |
997 | signing_key | |
998 | EOF | |
999 | # certtool --generate-privkey > server-key.pem | |
1000 | # certtool --generate-certificate \ | |
1001 | --load-ca-certificate ca-cert.pem \ | |
1002 | --load-ca-privkey ca-key.pem \ | |
1003 | --load-privkey server server-key.pem \ | |
1004 | --template server.info \ | |
1005 | --outfile server-cert.pem | |
1006 | @end example | |
1007 | ||
1008 | The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied | |
1009 | to the server for which they were generated. The @code{server-key.pem} is security | |
1010 | sensitive and should be kept protected with file mode 0600 to prevent disclosure. | |
1011 | ||
1012 | @node vnc_generate_client | |
1013 | @subsubsection Issuing client certificates | |
1014 | ||
1015 | If the QEMU VNC server is to use the @code{x509verify} option to validate client | |
1016 | certificates as its authentication mechanism, each client also needs to be issued | |
1017 | a certificate. The client certificate contains enough metadata to uniquely identify | |
1018 | the client, typically organization, state, city, building, etc. On the host holding | |
1019 | the secure CA private key: | |
1020 | ||
1021 | @example | |
1022 | # cat > client.info <<EOF | |
1023 | country = GB | |
1024 | state = London | |
1025 | locality = London | |
1026 | organiazation = Name of your organization | |
1027 | cn = client.foo.example.com | |
1028 | tls_www_client | |
1029 | encryption_key | |
1030 | signing_key | |
1031 | EOF | |
1032 | # certtool --generate-privkey > client-key.pem | |
1033 | # certtool --generate-certificate \ | |
1034 | --load-ca-certificate ca-cert.pem \ | |
1035 | --load-ca-privkey ca-key.pem \ | |
1036 | --load-privkey client-key.pem \ | |
1037 | --template client.info \ | |
1038 | --outfile client-cert.pem | |
1039 | @end example | |
1040 | ||
1041 | The @code{client-key.pem} and @code{client-cert.pem} files should now be securely | |
1042 | copied to the client for which they were generated. | |
1043 | ||
2f9606b3 AL |
1044 | |
1045 | @node vnc_setup_sasl | |
1046 | ||
1047 | @subsection Configuring SASL mechanisms | |
1048 | ||
1049 | The following documentation assumes use of the Cyrus SASL implementation on a | |
1050 | Linux host, but the principals should apply to any other SASL impl. When SASL | |
1051 | is enabled, the mechanism configuration will be loaded from system default | |
1052 | SASL service config /etc/sasl2/qemu.conf. If running QEMU as an | |
1053 | unprivileged user, an environment variable SASL_CONF_PATH can be used | |
1054 | to make it search alternate locations for the service config. | |
1055 | ||
1056 | The default configuration might contain | |
1057 | ||
1058 | @example | |
1059 | mech_list: digest-md5 | |
1060 | sasldb_path: /etc/qemu/passwd.db | |
1061 | @end example | |
1062 | ||
1063 | This says to use the 'Digest MD5' mechanism, which is similar to the HTTP | |
1064 | Digest-MD5 mechanism. The list of valid usernames & passwords is maintained | |
1065 | in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2 | |
1066 | command. While this mechanism is easy to configure and use, it is not | |
1067 | considered secure by modern standards, so only suitable for developers / | |
1068 | ad-hoc testing. | |
1069 | ||
1070 | A more serious deployment might use Kerberos, which is done with the 'gssapi' | |
1071 | mechanism | |
1072 | ||
1073 | @example | |
1074 | mech_list: gssapi | |
1075 | keytab: /etc/qemu/krb5.tab | |
1076 | @end example | |
1077 | ||
1078 | For this to work the administrator of your KDC must generate a Kerberos | |
1079 | principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' | |
1080 | replacing 'somehost.example.com' with the fully qualified host name of the | |
1081 | machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm. | |
1082 | ||
1083 | Other configurations will be left as an exercise for the reader. It should | |
1084 | be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data | |
1085 | encryption. For all other mechanisms, VNC should always be configured to | |
1086 | use TLS and x509 certificates to protect security credentials from snooping. | |
1087 | ||
0806e3f6 | 1088 | @node gdb_usage |
da415d54 FB |
1089 | @section GDB usage |
1090 | ||
1091 | QEMU has a primitive support to work with gdb, so that you can do | |
0806e3f6 | 1092 | 'Ctrl-C' while the virtual machine is running and inspect its state. |
da415d54 | 1093 | |
9d4520d0 | 1094 | In order to use gdb, launch qemu with the '-s' option. It will wait for a |
da415d54 FB |
1095 | gdb connection: |
1096 | @example | |
debc7065 FB |
1097 | > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \ |
1098 | -append "root=/dev/hda" | |
da415d54 FB |
1099 | Connected to host network interface: tun0 |
1100 | Waiting gdb connection on port 1234 | |
1101 | @end example | |
1102 | ||
1103 | Then launch gdb on the 'vmlinux' executable: | |
1104 | @example | |
1105 | > gdb vmlinux | |
1106 | @end example | |
1107 | ||
1108 | In gdb, connect to QEMU: | |
1109 | @example | |
6c9bf893 | 1110 | (gdb) target remote localhost:1234 |
da415d54 FB |
1111 | @end example |
1112 | ||
1113 | Then you can use gdb normally. For example, type 'c' to launch the kernel: | |
1114 | @example | |
1115 | (gdb) c | |
1116 | @end example | |
1117 | ||
0806e3f6 FB |
1118 | Here are some useful tips in order to use gdb on system code: |
1119 | ||
1120 | @enumerate | |
1121 | @item | |
1122 | Use @code{info reg} to display all the CPU registers. | |
1123 | @item | |
1124 | Use @code{x/10i $eip} to display the code at the PC position. | |
1125 | @item | |
1126 | Use @code{set architecture i8086} to dump 16 bit code. Then use | |
294e8637 | 1127 | @code{x/10i $cs*16+$eip} to dump the code at the PC position. |
0806e3f6 FB |
1128 | @end enumerate |
1129 | ||
60897d36 EI |
1130 | Advanced debugging options: |
1131 | ||
1132 | The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior: | |
94d45e44 | 1133 | @table @code |
60897d36 EI |
1134 | @item maintenance packet qqemu.sstepbits |
1135 | ||
1136 | This will display the MASK bits used to control the single stepping IE: | |
1137 | @example | |
1138 | (gdb) maintenance packet qqemu.sstepbits | |
1139 | sending: "qqemu.sstepbits" | |
1140 | received: "ENABLE=1,NOIRQ=2,NOTIMER=4" | |
1141 | @end example | |
1142 | @item maintenance packet qqemu.sstep | |
1143 | ||
1144 | This will display the current value of the mask used when single stepping IE: | |
1145 | @example | |
1146 | (gdb) maintenance packet qqemu.sstep | |
1147 | sending: "qqemu.sstep" | |
1148 | received: "0x7" | |
1149 | @end example | |
1150 | @item maintenance packet Qqemu.sstep=HEX_VALUE | |
1151 | ||
1152 | This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use: | |
1153 | @example | |
1154 | (gdb) maintenance packet Qqemu.sstep=0x5 | |
1155 | sending: "qemu.sstep=0x5" | |
1156 | received: "OK" | |
1157 | @end example | |
94d45e44 | 1158 | @end table |
60897d36 | 1159 | |
debc7065 | 1160 | @node pcsys_os_specific |
1a084f3d FB |
1161 | @section Target OS specific information |
1162 | ||
1163 | @subsection Linux | |
1164 | ||
15a34c63 FB |
1165 | To have access to SVGA graphic modes under X11, use the @code{vesa} or |
1166 | the @code{cirrus} X11 driver. For optimal performances, use 16 bit | |
1167 | color depth in the guest and the host OS. | |
1a084f3d | 1168 | |
e3371e62 FB |
1169 | When using a 2.6 guest Linux kernel, you should add the option |
1170 | @code{clock=pit} on the kernel command line because the 2.6 Linux | |
1171 | kernels make very strict real time clock checks by default that QEMU | |
1172 | cannot simulate exactly. | |
1173 | ||
7c3fc84d FB |
1174 | When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is |
1175 | not activated because QEMU is slower with this patch. The QEMU | |
1176 | Accelerator Module is also much slower in this case. Earlier Fedora | |
4be456f1 | 1177 | Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this |
7c3fc84d FB |
1178 | patch by default. Newer kernels don't have it. |
1179 | ||
1a084f3d FB |
1180 | @subsection Windows |
1181 | ||
1182 | If you have a slow host, using Windows 95 is better as it gives the | |
1183 | best speed. Windows 2000 is also a good choice. | |
1184 | ||
e3371e62 FB |
1185 | @subsubsection SVGA graphic modes support |
1186 | ||
1187 | QEMU emulates a Cirrus Logic GD5446 Video | |
15a34c63 FB |
1188 | card. All Windows versions starting from Windows 95 should recognize |
1189 | and use this graphic card. For optimal performances, use 16 bit color | |
1190 | depth in the guest and the host OS. | |
1a084f3d | 1191 | |
3cb0853a FB |
1192 | If you are using Windows XP as guest OS and if you want to use high |
1193 | resolution modes which the Cirrus Logic BIOS does not support (i.e. >= | |
1194 | 1280x1024x16), then you should use the VESA VBE virtual graphic card | |
1195 | (option @option{-std-vga}). | |
1196 | ||
e3371e62 FB |
1197 | @subsubsection CPU usage reduction |
1198 | ||
1199 | Windows 9x does not correctly use the CPU HLT | |
15a34c63 FB |
1200 | instruction. The result is that it takes host CPU cycles even when |
1201 | idle. You can install the utility from | |
1202 | @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this | |
1203 | problem. Note that no such tool is needed for NT, 2000 or XP. | |
1a084f3d | 1204 | |
9d0a8e6f | 1205 | @subsubsection Windows 2000 disk full problem |
e3371e62 | 1206 | |
9d0a8e6f FB |
1207 | Windows 2000 has a bug which gives a disk full problem during its |
1208 | installation. When installing it, use the @option{-win2k-hack} QEMU | |
1209 | option to enable a specific workaround. After Windows 2000 is | |
1210 | installed, you no longer need this option (this option slows down the | |
1211 | IDE transfers). | |
e3371e62 | 1212 | |
6cc721cf FB |
1213 | @subsubsection Windows 2000 shutdown |
1214 | ||
1215 | Windows 2000 cannot automatically shutdown in QEMU although Windows 98 | |
1216 | can. It comes from the fact that Windows 2000 does not automatically | |
1217 | use the APM driver provided by the BIOS. | |
1218 | ||
1219 | In order to correct that, do the following (thanks to Struan | |
1220 | Bartlett): go to the Control Panel => Add/Remove Hardware & Next => | |
1221 | Add/Troubleshoot a device => Add a new device & Next => No, select the | |
1222 | hardware from a list & Next => NT Apm/Legacy Support & Next => Next | |
1223 | (again) a few times. Now the driver is installed and Windows 2000 now | |
5fafdf24 | 1224 | correctly instructs QEMU to shutdown at the appropriate moment. |
6cc721cf FB |
1225 | |
1226 | @subsubsection Share a directory between Unix and Windows | |
1227 | ||
1228 | See @ref{sec_invocation} about the help of the option @option{-smb}. | |
1229 | ||
2192c332 | 1230 | @subsubsection Windows XP security problem |
e3371e62 FB |
1231 | |
1232 | Some releases of Windows XP install correctly but give a security | |
1233 | error when booting: | |
1234 | @example | |
1235 | A problem is preventing Windows from accurately checking the | |
1236 | license for this computer. Error code: 0x800703e6. | |
1237 | @end example | |
e3371e62 | 1238 | |
2192c332 FB |
1239 | The workaround is to install a service pack for XP after a boot in safe |
1240 | mode. Then reboot, and the problem should go away. Since there is no | |
1241 | network while in safe mode, its recommended to download the full | |
1242 | installation of SP1 or SP2 and transfer that via an ISO or using the | |
1243 | vvfat block device ("-hdb fat:directory_which_holds_the_SP"). | |
e3371e62 | 1244 | |
a0a821a4 FB |
1245 | @subsection MS-DOS and FreeDOS |
1246 | ||
1247 | @subsubsection CPU usage reduction | |
1248 | ||
1249 | DOS does not correctly use the CPU HLT instruction. The result is that | |
1250 | it takes host CPU cycles even when idle. You can install the utility | |
1251 | from @url{http://www.vmware.com/software/dosidle210.zip} to solve this | |
1252 | problem. | |
1253 | ||
debc7065 | 1254 | @node QEMU System emulator for non PC targets |
3f9f3aa1 FB |
1255 | @chapter QEMU System emulator for non PC targets |
1256 | ||
1257 | QEMU is a generic emulator and it emulates many non PC | |
1258 | machines. Most of the options are similar to the PC emulator. The | |
4be456f1 | 1259 | differences are mentioned in the following sections. |
3f9f3aa1 | 1260 | |
debc7065 FB |
1261 | @menu |
1262 | * QEMU PowerPC System emulator:: | |
24d4de45 TS |
1263 | * Sparc32 System emulator:: |
1264 | * Sparc64 System emulator:: | |
1265 | * MIPS System emulator:: | |
1266 | * ARM System emulator:: | |
1267 | * ColdFire System emulator:: | |
debc7065 FB |
1268 | @end menu |
1269 | ||
1270 | @node QEMU PowerPC System emulator | |
3f9f3aa1 | 1271 | @section QEMU PowerPC System emulator |
1a084f3d | 1272 | |
15a34c63 FB |
1273 | Use the executable @file{qemu-system-ppc} to simulate a complete PREP |
1274 | or PowerMac PowerPC system. | |
1a084f3d | 1275 | |
b671f9ed | 1276 | QEMU emulates the following PowerMac peripherals: |
1a084f3d | 1277 | |
15a34c63 | 1278 | @itemize @minus |
5fafdf24 | 1279 | @item |
006f3a48 | 1280 | UniNorth or Grackle PCI Bridge |
15a34c63 FB |
1281 | @item |
1282 | PCI VGA compatible card with VESA Bochs Extensions | |
5fafdf24 | 1283 | @item |
15a34c63 | 1284 | 2 PMAC IDE interfaces with hard disk and CD-ROM support |
5fafdf24 | 1285 | @item |
15a34c63 FB |
1286 | NE2000 PCI adapters |
1287 | @item | |
1288 | Non Volatile RAM | |
1289 | @item | |
1290 | VIA-CUDA with ADB keyboard and mouse. | |
1a084f3d FB |
1291 | @end itemize |
1292 | ||
b671f9ed | 1293 | QEMU emulates the following PREP peripherals: |
52c00a5f FB |
1294 | |
1295 | @itemize @minus | |
5fafdf24 | 1296 | @item |
15a34c63 FB |
1297 | PCI Bridge |
1298 | @item | |
1299 | PCI VGA compatible card with VESA Bochs Extensions | |
5fafdf24 | 1300 | @item |
52c00a5f FB |
1301 | 2 IDE interfaces with hard disk and CD-ROM support |
1302 | @item | |
1303 | Floppy disk | |
5fafdf24 | 1304 | @item |
15a34c63 | 1305 | NE2000 network adapters |
52c00a5f FB |
1306 | @item |
1307 | Serial port | |
1308 | @item | |
1309 | PREP Non Volatile RAM | |
15a34c63 FB |
1310 | @item |
1311 | PC compatible keyboard and mouse. | |
52c00a5f FB |
1312 | @end itemize |
1313 | ||
15a34c63 | 1314 | QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at |
3f9f3aa1 | 1315 | @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}. |
52c00a5f | 1316 | |
992e5acd | 1317 | Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/} |
006f3a48 BS |
1318 | for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL |
1319 | v2) portable firmware implementation. The goal is to implement a 100% | |
1320 | IEEE 1275-1994 (referred to as Open Firmware) compliant firmware. | |
992e5acd | 1321 | |
15a34c63 FB |
1322 | @c man begin OPTIONS |
1323 | ||
1324 | The following options are specific to the PowerPC emulation: | |
1325 | ||
1326 | @table @option | |
1327 | ||
3b46e624 | 1328 | @item -g WxH[xDEPTH] |
15a34c63 FB |
1329 | |
1330 | Set the initial VGA graphic mode. The default is 800x600x15. | |
1331 | ||
95efd11c BS |
1332 | @item -prom-env string |
1333 | ||
1334 | Set OpenBIOS variables in NVRAM, for example: | |
1335 | ||
1336 | @example | |
1337 | qemu-system-ppc -prom-env 'auto-boot?=false' \ | |
1338 | -prom-env 'boot-device=hd:2,\yaboot' \ | |
1339 | -prom-env 'boot-args=conf=hd:2,\yaboot.conf' | |
1340 | @end example | |
1341 | ||
1342 | These variables are not used by Open Hack'Ware. | |
1343 | ||
15a34c63 FB |
1344 | @end table |
1345 | ||
5fafdf24 | 1346 | @c man end |
15a34c63 FB |
1347 | |
1348 | ||
52c00a5f | 1349 | More information is available at |
3f9f3aa1 | 1350 | @url{http://perso.magic.fr/l_indien/qemu-ppc/}. |
52c00a5f | 1351 | |
24d4de45 TS |
1352 | @node Sparc32 System emulator |
1353 | @section Sparc32 System emulator | |
e80cfcfc | 1354 | |
34a3d239 BS |
1355 | Use the executable @file{qemu-system-sparc} to simulate the following |
1356 | Sun4m architecture machines: | |
1357 | @itemize @minus | |
1358 | @item | |
1359 | SPARCstation 4 | |
1360 | @item | |
1361 | SPARCstation 5 | |
1362 | @item | |
1363 | SPARCstation 10 | |
1364 | @item | |
1365 | SPARCstation 20 | |
1366 | @item | |
1367 | SPARCserver 600MP | |
1368 | @item | |
1369 | SPARCstation LX | |
1370 | @item | |
1371 | SPARCstation Voyager | |
1372 | @item | |
1373 | SPARCclassic | |
1374 | @item | |
1375 | SPARCbook | |
1376 | @end itemize | |
1377 | ||
1378 | The emulation is somewhat complete. SMP up to 16 CPUs is supported, | |
1379 | but Linux limits the number of usable CPUs to 4. | |
e80cfcfc | 1380 | |
34a3d239 BS |
1381 | It's also possible to simulate a SPARCstation 2 (sun4c architecture), |
1382 | SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these | |
1383 | emulators are not usable yet. | |
1384 | ||
1385 | QEMU emulates the following sun4m/sun4c/sun4d peripherals: | |
e80cfcfc FB |
1386 | |
1387 | @itemize @minus | |
3475187d | 1388 | @item |
7d85892b | 1389 | IOMMU or IO-UNITs |
e80cfcfc FB |
1390 | @item |
1391 | TCX Frame buffer | |
5fafdf24 | 1392 | @item |
e80cfcfc FB |
1393 | Lance (Am7990) Ethernet |
1394 | @item | |
34a3d239 | 1395 | Non Volatile RAM M48T02/M48T08 |
e80cfcfc | 1396 | @item |
3475187d FB |
1397 | Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard |
1398 | and power/reset logic | |
1399 | @item | |
1400 | ESP SCSI controller with hard disk and CD-ROM support | |
1401 | @item | |
6a3b9cc9 | 1402 | Floppy drive (not on SS-600MP) |
a2502b58 BS |
1403 | @item |
1404 | CS4231 sound device (only on SS-5, not working yet) | |
e80cfcfc FB |
1405 | @end itemize |
1406 | ||
6a3b9cc9 BS |
1407 | The number of peripherals is fixed in the architecture. Maximum |
1408 | memory size depends on the machine type, for SS-5 it is 256MB and for | |
7d85892b | 1409 | others 2047MB. |
3475187d | 1410 | |
30a604f3 | 1411 | Since version 0.8.2, QEMU uses OpenBIOS |
0986ac3b FB |
1412 | @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable |
1413 | firmware implementation. The goal is to implement a 100% IEEE | |
1414 | 1275-1994 (referred to as Open Firmware) compliant firmware. | |
3475187d FB |
1415 | |
1416 | A sample Linux 2.6 series kernel and ram disk image are available on | |
34a3d239 BS |
1417 | the QEMU web site. There are still issues with NetBSD and OpenBSD, but |
1418 | some kernel versions work. Please note that currently Solaris kernels | |
1419 | don't work probably due to interface issues between OpenBIOS and | |
1420 | Solaris. | |
3475187d FB |
1421 | |
1422 | @c man begin OPTIONS | |
1423 | ||
a2502b58 | 1424 | The following options are specific to the Sparc32 emulation: |
3475187d FB |
1425 | |
1426 | @table @option | |
1427 | ||
a2502b58 | 1428 | @item -g WxHx[xDEPTH] |
3475187d | 1429 | |
a2502b58 BS |
1430 | Set the initial TCX graphic mode. The default is 1024x768x8, currently |
1431 | the only other possible mode is 1024x768x24. | |
3475187d | 1432 | |
66508601 BS |
1433 | @item -prom-env string |
1434 | ||
1435 | Set OpenBIOS variables in NVRAM, for example: | |
1436 | ||
1437 | @example | |
1438 | qemu-system-sparc -prom-env 'auto-boot?=false' \ | |
1439 | -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single' | |
1440 | @end example | |
1441 | ||
34a3d239 | 1442 | @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000] |
a2502b58 BS |
1443 | |
1444 | Set the emulated machine type. Default is SS-5. | |
1445 | ||
3475187d FB |
1446 | @end table |
1447 | ||
5fafdf24 | 1448 | @c man end |
3475187d | 1449 | |
24d4de45 TS |
1450 | @node Sparc64 System emulator |
1451 | @section Sparc64 System emulator | |
e80cfcfc | 1452 | |
34a3d239 BS |
1453 | Use the executable @file{qemu-system-sparc64} to simulate a Sun4u |
1454 | (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic | |
1455 | Niagara (T1) machine. The emulator is not usable for anything yet, but | |
1456 | it can launch some kernels. | |
b756921a | 1457 | |
c7ba218d | 1458 | QEMU emulates the following peripherals: |
83469015 FB |
1459 | |
1460 | @itemize @minus | |
1461 | @item | |
5fafdf24 | 1462 | UltraSparc IIi APB PCI Bridge |
83469015 FB |
1463 | @item |
1464 | PCI VGA compatible card with VESA Bochs Extensions | |
1465 | @item | |
34a3d239 BS |
1466 | PS/2 mouse and keyboard |
1467 | @item | |
83469015 FB |
1468 | Non Volatile RAM M48T59 |
1469 | @item | |
1470 | PC-compatible serial ports | |
c7ba218d BS |
1471 | @item |
1472 | 2 PCI IDE interfaces with hard disk and CD-ROM support | |
34a3d239 BS |
1473 | @item |
1474 | Floppy disk | |
83469015 FB |
1475 | @end itemize |
1476 | ||
c7ba218d BS |
1477 | @c man begin OPTIONS |
1478 | ||
1479 | The following options are specific to the Sparc64 emulation: | |
1480 | ||
1481 | @table @option | |
1482 | ||
34a3d239 BS |
1483 | @item -prom-env string |
1484 | ||
1485 | Set OpenBIOS variables in NVRAM, for example: | |
1486 | ||
1487 | @example | |
1488 | qemu-system-sparc64 -prom-env 'auto-boot?=false' | |
1489 | @end example | |
1490 | ||
1491 | @item -M [sun4u|sun4v|Niagara] | |
c7ba218d BS |
1492 | |
1493 | Set the emulated machine type. The default is sun4u. | |
1494 | ||
1495 | @end table | |
1496 | ||
1497 | @c man end | |
1498 | ||
24d4de45 TS |
1499 | @node MIPS System emulator |
1500 | @section MIPS System emulator | |
9d0a8e6f | 1501 | |
d9aedc32 TS |
1502 | Four executables cover simulation of 32 and 64-bit MIPS systems in |
1503 | both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel} | |
1504 | @file{qemu-system-mips64} and @file{qemu-system-mips64el}. | |
88cb0a02 | 1505 | Five different machine types are emulated: |
24d4de45 TS |
1506 | |
1507 | @itemize @minus | |
1508 | @item | |
1509 | A generic ISA PC-like machine "mips" | |
1510 | @item | |
1511 | The MIPS Malta prototype board "malta" | |
1512 | @item | |
d9aedc32 | 1513 | An ACER Pica "pica61". This machine needs the 64-bit emulator. |
6bf5b4e8 | 1514 | @item |
f0fc6f8f | 1515 | MIPS emulator pseudo board "mipssim" |
88cb0a02 AJ |
1516 | @item |
1517 | A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator. | |
24d4de45 TS |
1518 | @end itemize |
1519 | ||
1520 | The generic emulation is supported by Debian 'Etch' and is able to | |
1521 | install Debian into a virtual disk image. The following devices are | |
1522 | emulated: | |
3f9f3aa1 FB |
1523 | |
1524 | @itemize @minus | |
5fafdf24 | 1525 | @item |
6bf5b4e8 | 1526 | A range of MIPS CPUs, default is the 24Kf |
3f9f3aa1 FB |
1527 | @item |
1528 | PC style serial port | |
1529 | @item | |
24d4de45 TS |
1530 | PC style IDE disk |
1531 | @item | |
3f9f3aa1 FB |
1532 | NE2000 network card |
1533 | @end itemize | |
1534 | ||
24d4de45 TS |
1535 | The Malta emulation supports the following devices: |
1536 | ||
1537 | @itemize @minus | |
1538 | @item | |
0b64d008 | 1539 | Core board with MIPS 24Kf CPU and Galileo system controller |
24d4de45 TS |
1540 | @item |
1541 | PIIX4 PCI/USB/SMbus controller | |
1542 | @item | |
1543 | The Multi-I/O chip's serial device | |
1544 | @item | |
3a2eeac0 | 1545 | PCI network cards (PCnet32 and others) |
24d4de45 TS |
1546 | @item |
1547 | Malta FPGA serial device | |
1548 | @item | |
1f605a76 | 1549 | Cirrus (default) or any other PCI VGA graphics card |
24d4de45 TS |
1550 | @end itemize |
1551 | ||
1552 | The ACER Pica emulation supports: | |
1553 | ||
1554 | @itemize @minus | |
1555 | @item | |
1556 | MIPS R4000 CPU | |
1557 | @item | |
1558 | PC-style IRQ and DMA controllers | |
1559 | @item | |
1560 | PC Keyboard | |
1561 | @item | |
1562 | IDE controller | |
1563 | @end itemize | |
3f9f3aa1 | 1564 | |
f0fc6f8f TS |
1565 | The mipssim pseudo board emulation provides an environment similiar |
1566 | to what the proprietary MIPS emulator uses for running Linux. | |
1567 | It supports: | |
6bf5b4e8 TS |
1568 | |
1569 | @itemize @minus | |
1570 | @item | |
1571 | A range of MIPS CPUs, default is the 24Kf | |
1572 | @item | |
1573 | PC style serial port | |
1574 | @item | |
1575 | MIPSnet network emulation | |
1576 | @end itemize | |
1577 | ||
88cb0a02 AJ |
1578 | The MIPS Magnum R4000 emulation supports: |
1579 | ||
1580 | @itemize @minus | |
1581 | @item | |
1582 | MIPS R4000 CPU | |
1583 | @item | |
1584 | PC-style IRQ controller | |
1585 | @item | |
1586 | PC Keyboard | |
1587 | @item | |
1588 | SCSI controller | |
1589 | @item | |
1590 | G364 framebuffer | |
1591 | @end itemize | |
1592 | ||
1593 | ||
24d4de45 TS |
1594 | @node ARM System emulator |
1595 | @section ARM System emulator | |
3f9f3aa1 FB |
1596 | |
1597 | Use the executable @file{qemu-system-arm} to simulate a ARM | |
1598 | machine. The ARM Integrator/CP board is emulated with the following | |
1599 | devices: | |
1600 | ||
1601 | @itemize @minus | |
1602 | @item | |
9ee6e8bb | 1603 | ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU |
3f9f3aa1 FB |
1604 | @item |
1605 | Two PL011 UARTs | |
5fafdf24 | 1606 | @item |
3f9f3aa1 | 1607 | SMC 91c111 Ethernet adapter |
00a9bf19 PB |
1608 | @item |
1609 | PL110 LCD controller | |
1610 | @item | |
1611 | PL050 KMI with PS/2 keyboard and mouse. | |
a1bb27b1 PB |
1612 | @item |
1613 | PL181 MultiMedia Card Interface with SD card. | |
00a9bf19 PB |
1614 | @end itemize |
1615 | ||
1616 | The ARM Versatile baseboard is emulated with the following devices: | |
1617 | ||
1618 | @itemize @minus | |
1619 | @item | |
9ee6e8bb | 1620 | ARM926E, ARM1136 or Cortex-A8 CPU |
00a9bf19 PB |
1621 | @item |
1622 | PL190 Vectored Interrupt Controller | |
1623 | @item | |
1624 | Four PL011 UARTs | |
5fafdf24 | 1625 | @item |
00a9bf19 PB |
1626 | SMC 91c111 Ethernet adapter |
1627 | @item | |
1628 | PL110 LCD controller | |
1629 | @item | |
1630 | PL050 KMI with PS/2 keyboard and mouse. | |
1631 | @item | |
1632 | PCI host bridge. Note the emulated PCI bridge only provides access to | |
1633 | PCI memory space. It does not provide access to PCI IO space. | |
4be456f1 TS |
1634 | This means some devices (eg. ne2k_pci NIC) are not usable, and others |
1635 | (eg. rtl8139 NIC) are only usable when the guest drivers use the memory | |
00a9bf19 | 1636 | mapped control registers. |
e6de1bad PB |
1637 | @item |
1638 | PCI OHCI USB controller. | |
1639 | @item | |
1640 | LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices. | |
a1bb27b1 PB |
1641 | @item |
1642 | PL181 MultiMedia Card Interface with SD card. | |
3f9f3aa1 FB |
1643 | @end itemize |
1644 | ||
d7739d75 PB |
1645 | The ARM RealView Emulation baseboard is emulated with the following devices: |
1646 | ||
1647 | @itemize @minus | |
1648 | @item | |
9ee6e8bb | 1649 | ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU |
d7739d75 PB |
1650 | @item |
1651 | ARM AMBA Generic/Distributed Interrupt Controller | |
1652 | @item | |
1653 | Four PL011 UARTs | |
5fafdf24 | 1654 | @item |
d7739d75 PB |
1655 | SMC 91c111 Ethernet adapter |
1656 | @item | |
1657 | PL110 LCD controller | |
1658 | @item | |
1659 | PL050 KMI with PS/2 keyboard and mouse | |
1660 | @item | |
1661 | PCI host bridge | |
1662 | @item | |
1663 | PCI OHCI USB controller | |
1664 | @item | |
1665 | LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices | |
a1bb27b1 PB |
1666 | @item |
1667 | PL181 MultiMedia Card Interface with SD card. | |
d7739d75 PB |
1668 | @end itemize |
1669 | ||
b00052e4 AZ |
1670 | The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi" |
1671 | and "Terrier") emulation includes the following peripherals: | |
1672 | ||
1673 | @itemize @minus | |
1674 | @item | |
1675 | Intel PXA270 System-on-chip (ARM V5TE core) | |
1676 | @item | |
1677 | NAND Flash memory | |
1678 | @item | |
1679 | IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita" | |
1680 | @item | |
1681 | On-chip OHCI USB controller | |
1682 | @item | |
1683 | On-chip LCD controller | |
1684 | @item | |
1685 | On-chip Real Time Clock | |
1686 | @item | |
1687 | TI ADS7846 touchscreen controller on SSP bus | |
1688 | @item | |
1689 | Maxim MAX1111 analog-digital converter on I@math{^2}C bus | |
1690 | @item | |
1691 | GPIO-connected keyboard controller and LEDs | |
1692 | @item | |
549444e1 | 1693 | Secure Digital card connected to PXA MMC/SD host |
b00052e4 AZ |
1694 | @item |
1695 | Three on-chip UARTs | |
1696 | @item | |
1697 | WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses | |
1698 | @end itemize | |
1699 | ||
02645926 AZ |
1700 | The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the |
1701 | following elements: | |
1702 | ||
1703 | @itemize @minus | |
1704 | @item | |
1705 | Texas Instruments OMAP310 System-on-chip (ARM 925T core) | |
1706 | @item | |
1707 | ROM and RAM memories (ROM firmware image can be loaded with -option-rom) | |
1708 | @item | |
1709 | On-chip LCD controller | |
1710 | @item | |
1711 | On-chip Real Time Clock | |
1712 | @item | |
1713 | TI TSC2102i touchscreen controller / analog-digital converter / Audio | |
1714 | CODEC, connected through MicroWire and I@math{^2}S busses | |
1715 | @item | |
1716 | GPIO-connected matrix keypad | |
1717 | @item | |
1718 | Secure Digital card connected to OMAP MMC/SD host | |
1719 | @item | |
1720 | Three on-chip UARTs | |
1721 | @end itemize | |
1722 | ||
c30bb264 AZ |
1723 | Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48) |
1724 | emulation supports the following elements: | |
1725 | ||
1726 | @itemize @minus | |
1727 | @item | |
1728 | Texas Instruments OMAP2420 System-on-chip (ARM 1136 core) | |
1729 | @item | |
1730 | RAM and non-volatile OneNAND Flash memories | |
1731 | @item | |
1732 | Display connected to EPSON remote framebuffer chip and OMAP on-chip | |
1733 | display controller and a LS041y3 MIPI DBI-C controller | |
1734 | @item | |
1735 | TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers | |
1736 | driven through SPI bus | |
1737 | @item | |
1738 | National Semiconductor LM8323-controlled qwerty keyboard driven | |
1739 | through I@math{^2}C bus | |
1740 | @item | |
1741 | Secure Digital card connected to OMAP MMC/SD host | |
1742 | @item | |
1743 | Three OMAP on-chip UARTs and on-chip STI debugging console | |
1744 | @item | |
2d564691 AZ |
1745 | A Bluetooth(R) transciever and HCI connected to an UART |
1746 | @item | |
c30bb264 AZ |
1747 | Mentor Graphics "Inventra" dual-role USB controller embedded in a TI |
1748 | TUSB6010 chip - only USB host mode is supported | |
1749 | @item | |
1750 | TI TMP105 temperature sensor driven through I@math{^2}C bus | |
1751 | @item | |
1752 | TI TWL92230C power management companion with an RTC on I@math{^2}C bus | |
1753 | @item | |
1754 | Nokia RETU and TAHVO multi-purpose chips with an RTC, connected | |
1755 | through CBUS | |
1756 | @end itemize | |
1757 | ||
9ee6e8bb PB |
1758 | The Luminary Micro Stellaris LM3S811EVB emulation includes the following |
1759 | devices: | |
1760 | ||
1761 | @itemize @minus | |
1762 | @item | |
1763 | Cortex-M3 CPU core. | |
1764 | @item | |
1765 | 64k Flash and 8k SRAM. | |
1766 | @item | |
1767 | Timers, UARTs, ADC and I@math{^2}C interface. | |
1768 | @item | |
1769 | OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus. | |
1770 | @end itemize | |
1771 | ||
1772 | The Luminary Micro Stellaris LM3S6965EVB emulation includes the following | |
1773 | devices: | |
1774 | ||
1775 | @itemize @minus | |
1776 | @item | |
1777 | Cortex-M3 CPU core. | |
1778 | @item | |
1779 | 256k Flash and 64k SRAM. | |
1780 | @item | |
1781 | Timers, UARTs, ADC, I@math{^2}C and SSI interfaces. | |
1782 | @item | |
1783 | OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI. | |
1784 | @end itemize | |
1785 | ||
57cd6e97 AZ |
1786 | The Freecom MusicPal internet radio emulation includes the following |
1787 | elements: | |
1788 | ||
1789 | @itemize @minus | |
1790 | @item | |
1791 | Marvell MV88W8618 ARM core. | |
1792 | @item | |
1793 | 32 MB RAM, 256 KB SRAM, 8 MB flash. | |
1794 | @item | |
1795 | Up to 2 16550 UARTs | |
1796 | @item | |
1797 | MV88W8xx8 Ethernet controller | |
1798 | @item | |
1799 | MV88W8618 audio controller, WM8750 CODEC and mixer | |
1800 | @item | |
1801 |