]> Git Repo - qemu.git/blame - hw/arm/virt.c
hw: Fix qemu_allocate_irqs() leaks
[qemu.git] / hw / arm / virt.c
CommitLineData
f5fdcd6e
PM
1/*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31#include "hw/sysbus.h"
32#include "hw/arm/arm.h"
33#include "hw/arm/primecell.h"
34#include "hw/devices.h"
35#include "net/net.h"
36#include "sysemu/device_tree.h"
37#include "sysemu/sysemu.h"
38#include "sysemu/kvm.h"
39#include "hw/boards.h"
40#include "exec/address-spaces.h"
41#include "qemu/bitops.h"
42#include "qemu/error-report.h"
43
44#define NUM_VIRTIO_TRANSPORTS 32
45
46/* Number of external interrupt lines to configure the GIC with */
47#define NUM_IRQS 128
48
49#define GIC_FDT_IRQ_TYPE_SPI 0
50#define GIC_FDT_IRQ_TYPE_PPI 1
51
52#define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
53#define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
54#define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
55#define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
56
57#define GIC_FDT_IRQ_PPI_CPU_START 8
58#define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
59
60enum {
61 VIRT_FLASH,
62 VIRT_MEM,
63 VIRT_CPUPERIPHS,
64 VIRT_GIC_DIST,
65 VIRT_GIC_CPU,
66 VIRT_UART,
67 VIRT_MMIO,
6e411af9 68 VIRT_RTC,
f5fdcd6e
PM
69};
70
71typedef struct MemMapEntry {
72 hwaddr base;
73 hwaddr size;
74} MemMapEntry;
75
76typedef struct VirtBoardInfo {
77 struct arm_boot_info bootinfo;
78 const char *cpu_model;
f5fdcd6e
PM
79 const MemMapEntry *memmap;
80 const int *irqmap;
81 int smp_cpus;
82 void *fdt;
83 int fdt_size;
84 uint32_t clock_phandle;
85} VirtBoardInfo;
86
87/* Addresses and sizes of our components.
88 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
89 * 128MB..256MB is used for miscellaneous device I/O.
90 * 256MB..1GB is reserved for possible future PCI support (ie where the
91 * PCI memory window will go if we add a PCI host controller).
92 * 1GB and up is RAM (which may happily spill over into the
93 * high memory region beyond 4GB).
94 * This represents a compromise between how much RAM can be given to
95 * a 32 bit VM and leaving space for expansion and in particular for PCI.
6e411af9
PM
96 * Note that devices should generally be placed at multiples of 0x10000,
97 * to accommodate guests using 64K pages.
f5fdcd6e
PM
98 */
99static const MemMapEntry a15memmap[] = {
100 /* Space up to 0x8000000 is reserved for a boot ROM */
101 [VIRT_FLASH] = { 0, 0x8000000 },
3078e848 102 [VIRT_CPUPERIPHS] = { 0x8000000, 0x20000 },
f5fdcd6e 103 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
3078e848
PM
104 [VIRT_GIC_DIST] = { 0x8000000, 0x10000 },
105 [VIRT_GIC_CPU] = { 0x8010000, 0x10000 },
f5fdcd6e 106 [VIRT_UART] = { 0x9000000, 0x1000 },
6e411af9 107 [VIRT_RTC] = { 0x90010000, 0x1000 },
f5fdcd6e
PM
108 [VIRT_MMIO] = { 0xa000000, 0x200 },
109 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
110 /* 0x10000000 .. 0x40000000 reserved for PCI */
111 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
112};
113
114static const int a15irqmap[] = {
115 [VIRT_UART] = 1,
6e411af9 116 [VIRT_RTC] = 2,
f5fdcd6e
PM
117 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
118};
119
120static VirtBoardInfo machines[] = {
121 {
122 .cpu_model = "cortex-a15",
f5fdcd6e
PM
123 .memmap = a15memmap,
124 .irqmap = a15irqmap,
125 },
f42c5c8e
PM
126 {
127 .cpu_model = "cortex-a57",
128 .memmap = a15memmap,
129 .irqmap = a15irqmap,
130 },
198aa064
PM
131 {
132 .cpu_model = "host",
198aa064
PM
133 .memmap = a15memmap,
134 .irqmap = a15irqmap,
135 },
f5fdcd6e
PM
136};
137
138static VirtBoardInfo *find_machine_info(const char *cpu)
139{
140 int i;
141
142 for (i = 0; i < ARRAY_SIZE(machines); i++) {
143 if (strcmp(cpu, machines[i].cpu_model) == 0) {
144 return &machines[i];
145 }
146 }
147 return NULL;
148}
149
150static void create_fdt(VirtBoardInfo *vbi)
151{
152 void *fdt = create_device_tree(&vbi->fdt_size);
153
154 if (!fdt) {
155 error_report("create_device_tree() failed");
156 exit(1);
157 }
158
159 vbi->fdt = fdt;
160
161 /* Header */
5a4348d1
PC
162 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
163 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
164 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
f5fdcd6e
PM
165
166 /*
167 * /chosen and /memory nodes must exist for load_dtb
168 * to fill in necessary properties later
169 */
5a4348d1
PC
170 qemu_fdt_add_subnode(fdt, "/chosen");
171 qemu_fdt_add_subnode(fdt, "/memory");
172 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
f5fdcd6e
PM
173
174 /* Clock node, for the benefit of the UART. The kernel device tree
175 * binding documentation claims the PL011 node clock properties are
176 * optional but in practice if you omit them the kernel refuses to
177 * probe for the device.
178 */
5a4348d1
PC
179 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
180 qemu_fdt_add_subnode(fdt, "/apb-pclk");
181 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
182 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
183 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
184 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
f5fdcd6e 185 "clk24mhz");
5a4348d1 186 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
f5fdcd6e 187
06955739
PS
188}
189
190static void fdt_add_psci_node(const VirtBoardInfo *vbi)
191{
192 void *fdt = vbi->fdt;
193 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
194
f5fdcd6e
PM
195 /* No PSCI for TCG yet */
196 if (kvm_enabled()) {
5a4348d1 197 qemu_fdt_add_subnode(fdt, "/psci");
06955739
PS
198 if (armcpu->psci_version == 2) {
199 const char comp[] = "arm,psci-0.2\0arm,psci";
200 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
201 } else {
202 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
203 }
204
5a4348d1
PC
205 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
206 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend",
f5fdcd6e 207 PSCI_FN_CPU_SUSPEND);
5a4348d1
PC
208 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", PSCI_FN_CPU_OFF);
209 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", PSCI_FN_CPU_ON);
210 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", PSCI_FN_MIGRATE);
f5fdcd6e
PM
211 }
212}
213
214static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
215{
216 /* Note that on A15 h/w these interrupts are level-triggered,
217 * but for the GIC implementation provided by both QEMU and KVM
218 * they are edge-triggered.
219 */
220 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
221
222 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
223 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
224
5a4348d1
PC
225 qemu_fdt_add_subnode(vbi->fdt, "/timer");
226 qemu_fdt_setprop_string(vbi->fdt, "/timer",
f5fdcd6e 227 "compatible", "arm,armv7-timer");
5a4348d1 228 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
f5fdcd6e
PM
229 GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
230 GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
231 GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
232 GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
233}
234
235static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
236{
237 int cpu;
238
5a4348d1
PC
239 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
240 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
241 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
f5fdcd6e
PM
242
243 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
244 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
245 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
246
5a4348d1
PC
247 qemu_fdt_add_subnode(vbi->fdt, nodename);
248 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
249 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
f5fdcd6e
PM
250 armcpu->dtb_compatible);
251
252 if (vbi->smp_cpus > 1) {
5a4348d1 253 qemu_fdt_setprop_string(vbi->fdt, nodename,
f5fdcd6e
PM
254 "enable-method", "psci");
255 }
256
5a4348d1 257 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
f5fdcd6e
PM
258 g_free(nodename);
259 }
260}
261
262static void fdt_add_gic_node(const VirtBoardInfo *vbi)
263{
264 uint32_t gic_phandle;
265
5a4348d1
PC
266 gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
267 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
f5fdcd6e 268
5a4348d1 269 qemu_fdt_add_subnode(vbi->fdt, "/intc");
64204743 270 /* 'cortex-a15-gic' means 'GIC v2' */
5a4348d1 271 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
64204743 272 "arm,cortex-a15-gic");
5a4348d1
PC
273 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
274 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
275 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
f5fdcd6e
PM
276 2, vbi->memmap[VIRT_GIC_DIST].base,
277 2, vbi->memmap[VIRT_GIC_DIST].size,
278 2, vbi->memmap[VIRT_GIC_CPU].base,
279 2, vbi->memmap[VIRT_GIC_CPU].size);
5a4348d1 280 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
f5fdcd6e
PM
281}
282
64204743
PM
283static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
284{
285 /* We create a standalone GIC v2 */
286 DeviceState *gicdev;
287 SysBusDevice *gicbusdev;
288 const char *gictype = "arm_gic";
289 int i;
290
291 if (kvm_irqchip_in_kernel()) {
292 gictype = "kvm-arm-gic";
293 }
294
295 gicdev = qdev_create(NULL, gictype);
296 qdev_prop_set_uint32(gicdev, "revision", 2);
297 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
298 /* Note that the num-irq property counts both internal and external
299 * interrupts; there are always 32 of the former (mandated by GIC spec).
300 */
301 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
302 qdev_init_nofail(gicdev);
303 gicbusdev = SYS_BUS_DEVICE(gicdev);
304 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
305 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
306
307 /* Wire the outputs from each CPU's generic timer to the
308 * appropriate GIC PPI inputs, and the GIC's IRQ output to
309 * the CPU's IRQ input.
310 */
311 for (i = 0; i < smp_cpus; i++) {
312 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
313 int ppibase = NUM_IRQS + i * 32;
314 /* physical timer; we wire it up to the non-secure timer's ID,
315 * since a real A15 always has TrustZone but QEMU doesn't.
316 */
317 qdev_connect_gpio_out(cpudev, 0,
318 qdev_get_gpio_in(gicdev, ppibase + 30));
319 /* virtual timer */
320 qdev_connect_gpio_out(cpudev, 1,
321 qdev_get_gpio_in(gicdev, ppibase + 27));
322
323 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
324 }
325
326 for (i = 0; i < NUM_IRQS; i++) {
327 pic[i] = qdev_get_gpio_in(gicdev, i);
328 }
329
330 fdt_add_gic_node(vbi);
331}
332
f5fdcd6e
PM
333static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
334{
335 char *nodename;
336 hwaddr base = vbi->memmap[VIRT_UART].base;
337 hwaddr size = vbi->memmap[VIRT_UART].size;
338 int irq = vbi->irqmap[VIRT_UART];
339 const char compat[] = "arm,pl011\0arm,primecell";
340 const char clocknames[] = "uartclk\0apb_pclk";
341
342 sysbus_create_simple("pl011", base, pic[irq]);
343
344 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
5a4348d1 345 qemu_fdt_add_subnode(vbi->fdt, nodename);
f5fdcd6e 346 /* Note that we can't use setprop_string because of the embedded NUL */
5a4348d1 347 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
f5fdcd6e 348 compat, sizeof(compat));
5a4348d1 349 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
f5fdcd6e 350 2, base, 2, size);
5a4348d1 351 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
f5fdcd6e
PM
352 GIC_FDT_IRQ_TYPE_SPI, irq,
353 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
5a4348d1 354 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
f5fdcd6e 355 vbi->clock_phandle, vbi->clock_phandle);
5a4348d1 356 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
f5fdcd6e
PM
357 clocknames, sizeof(clocknames));
358 g_free(nodename);
359}
360
6e411af9
PM
361static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
362{
363 char *nodename;
364 hwaddr base = vbi->memmap[VIRT_RTC].base;
365 hwaddr size = vbi->memmap[VIRT_RTC].size;
366 int irq = vbi->irqmap[VIRT_RTC];
367 const char compat[] = "arm,pl031\0arm,primecell";
368
369 sysbus_create_simple("pl031", base, pic[irq]);
370
371 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
372 qemu_fdt_add_subnode(vbi->fdt, nodename);
373 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
374 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
375 2, base, 2, size);
376 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
377 GIC_FDT_IRQ_TYPE_SPI, irq,
378 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
379 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
380 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
381 g_free(nodename);
382}
383
f5fdcd6e
PM
384static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
385{
386 int i;
387 hwaddr size = vbi->memmap[VIRT_MMIO].size;
388
389 /* Note that we have to create the transports in forwards order
390 * so that command line devices are inserted lowest address first,
391 * and then add dtb nodes in reverse order so that they appear in
392 * the finished device tree lowest address first.
393 */
394 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
395 int irq = vbi->irqmap[VIRT_MMIO] + i;
396 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
397
398 sysbus_create_simple("virtio-mmio", base, pic[irq]);
399 }
400
401 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
402 char *nodename;
403 int irq = vbi->irqmap[VIRT_MMIO] + i;
404 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
405
406 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
5a4348d1
PC
407 qemu_fdt_add_subnode(vbi->fdt, nodename);
408 qemu_fdt_setprop_string(vbi->fdt, nodename,
409 "compatible", "virtio,mmio");
410 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
411 2, base, 2, size);
412 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
413 GIC_FDT_IRQ_TYPE_SPI, irq,
414 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
f5fdcd6e
PM
415 g_free(nodename);
416 }
417}
418
419static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
420{
421 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
422
423 *fdt_size = board->fdt_size;
424 return board->fdt;
425}
426
3ef96221 427static void machvirt_init(MachineState *machine)
f5fdcd6e
PM
428{
429 qemu_irq pic[NUM_IRQS];
430 MemoryRegion *sysmem = get_system_memory();
431 int n;
432 MemoryRegion *ram = g_new(MemoryRegion, 1);
3ef96221 433 const char *cpu_model = machine->cpu_model;
f5fdcd6e
PM
434 VirtBoardInfo *vbi;
435
436 if (!cpu_model) {
437 cpu_model = "cortex-a15";
438 }
439
440 vbi = find_machine_info(cpu_model);
441
442 if (!vbi) {
443 error_report("mach-virt: CPU %s not supported", cpu_model);
444 exit(1);
445 }
446
447 vbi->smp_cpus = smp_cpus;
448
449 /*
450 * Only supported method of starting secondary CPUs is PSCI and
451 * PSCI is not yet supported with TCG, so limit smp_cpus to 1
452 * if we're not using KVM.
453 */
454 if (!kvm_enabled() && smp_cpus > 1) {
455 error_report("mach-virt: must enable KVM to use multiple CPUs");
456 exit(1);
457 }
458
3ef96221 459 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
f5fdcd6e
PM
460 error_report("mach-virt: cannot model more than 30GB RAM");
461 exit(1);
462 }
463
464 create_fdt(vbi);
465 fdt_add_timer_nodes(vbi);
466
467 for (n = 0; n < smp_cpus; n++) {
468 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
469 Object *cpuobj;
470
471 if (!oc) {
472 fprintf(stderr, "Unable to find CPU definition\n");
473 exit(1);
474 }
475 cpuobj = object_new(object_class_get_name(oc));
476
477 /* Secondary CPUs start in PSCI powered-down state */
478 if (n > 0) {
479 object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
480 }
ba750085
PM
481
482 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
483 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
484 "reset-cbar", &error_abort);
485 }
486
f5fdcd6e
PM
487 object_property_set_bool(cpuobj, true, "realized", NULL);
488 }
489 fdt_add_cpu_nodes(vbi);
06955739 490 fdt_add_psci_node(vbi);
f5fdcd6e 491
3ef96221 492 memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size);
f5fdcd6e
PM
493 vmstate_register_ram_global(ram);
494 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
495
64204743 496 create_gic(vbi, pic);
f5fdcd6e
PM
497
498 create_uart(vbi, pic);
499
6e411af9
PM
500 create_rtc(vbi, pic);
501
f5fdcd6e
PM
502 /* Create mmio transports, so the user can create virtio backends
503 * (which will be automatically plugged in to the transports). If
504 * no backend is created the transport will just sit harmlessly idle.
505 */
506 create_virtio_devices(vbi, pic);
507
3ef96221
MA
508 vbi->bootinfo.ram_size = machine->ram_size;
509 vbi->bootinfo.kernel_filename = machine->kernel_filename;
510 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
511 vbi->bootinfo.initrd_filename = machine->initrd_filename;
f5fdcd6e
PM
512 vbi->bootinfo.nb_cpus = smp_cpus;
513 vbi->bootinfo.board_id = -1;
514 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
515 vbi->bootinfo.get_dtb = machvirt_dtb;
516 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
517}
518
519static QEMUMachine machvirt_a15_machine = {
520 .name = "virt",
521 .desc = "ARM Virtual Machine",
522 .init = machvirt_init,
523 .max_cpus = 4,
524};
525
526static void machvirt_machine_init(void)
527{
528 qemu_register_machine(&machvirt_a15_machine);
529}
530
531machine_init(machvirt_machine_init);
This page took 0.125418 seconds and 4 git commands to generate.