]>
Commit | Line | Data |
---|---|---|
5fe141fd FB |
1 | static void glue(bswap_ehdr, SZ)(struct elfhdr *ehdr) |
2 | { | |
3 | bswap16s(&ehdr->e_type); /* Object file type */ | |
4 | bswap16s(&ehdr->e_machine); /* Architecture */ | |
5 | bswap32s(&ehdr->e_version); /* Object file version */ | |
6 | bswapSZs(&ehdr->e_entry); /* Entry point virtual address */ | |
7 | bswapSZs(&ehdr->e_phoff); /* Program header table file offset */ | |
8 | bswapSZs(&ehdr->e_shoff); /* Section header table file offset */ | |
9 | bswap32s(&ehdr->e_flags); /* Processor-specific flags */ | |
10 | bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ | |
11 | bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ | |
12 | bswap16s(&ehdr->e_phnum); /* Program header table entry count */ | |
13 | bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ | |
14 | bswap16s(&ehdr->e_shnum); /* Section header table entry count */ | |
15 | bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ | |
16 | } | |
17 | ||
18 | static void glue(bswap_phdr, SZ)(struct elf_phdr *phdr) | |
19 | { | |
20 | bswap32s(&phdr->p_type); /* Segment type */ | |
21 | bswapSZs(&phdr->p_offset); /* Segment file offset */ | |
22 | bswapSZs(&phdr->p_vaddr); /* Segment virtual address */ | |
23 | bswapSZs(&phdr->p_paddr); /* Segment physical address */ | |
24 | bswapSZs(&phdr->p_filesz); /* Segment size in file */ | |
25 | bswapSZs(&phdr->p_memsz); /* Segment size in memory */ | |
26 | bswap32s(&phdr->p_flags); /* Segment flags */ | |
27 | bswapSZs(&phdr->p_align); /* Segment alignment */ | |
28 | } | |
29 | ||
30 | static void glue(bswap_shdr, SZ)(struct elf_shdr *shdr) | |
31 | { | |
32 | bswap32s(&shdr->sh_name); | |
33 | bswap32s(&shdr->sh_type); | |
34 | bswapSZs(&shdr->sh_flags); | |
35 | bswapSZs(&shdr->sh_addr); | |
36 | bswapSZs(&shdr->sh_offset); | |
37 | bswapSZs(&shdr->sh_size); | |
38 | bswap32s(&shdr->sh_link); | |
39 | bswap32s(&shdr->sh_info); | |
40 | bswapSZs(&shdr->sh_addralign); | |
41 | bswapSZs(&shdr->sh_entsize); | |
42 | } | |
43 | ||
44 | static void glue(bswap_sym, SZ)(struct elf_sym *sym) | |
45 | { | |
46 | bswap32s(&sym->st_name); | |
47 | bswapSZs(&sym->st_value); | |
48 | bswapSZs(&sym->st_size); | |
49 | bswap16s(&sym->st_shndx); | |
50 | } | |
51 | ||
5dce07e1 TH |
52 | static void glue(bswap_rela, SZ)(struct elf_rela *rela) |
53 | { | |
54 | bswapSZs(&rela->r_offset); | |
55 | bswapSZs(&rela->r_info); | |
56 | bswapSZs((elf_word *)&rela->r_addend); | |
57 | } | |
58 | ||
5fafdf24 | 59 | static struct elf_shdr *glue(find_section, SZ)(struct elf_shdr *shdr_table, |
5fe141fd FB |
60 | int n, int type) |
61 | { | |
62 | int i; | |
63 | for(i=0;i<n;i++) { | |
64 | if (shdr_table[i].sh_type == type) | |
65 | return shdr_table + i; | |
66 | } | |
67 | return NULL; | |
68 | } | |
69 | ||
49918a75 PB |
70 | static int glue(symfind, SZ)(const void *s0, const void *s1) |
71 | { | |
a8170e5e | 72 | hwaddr addr = *(hwaddr *)s0; |
49918a75 PB |
73 | struct elf_sym *sym = (struct elf_sym *)s1; |
74 | int result = 0; | |
c7c530cd | 75 | if (addr < sym->st_value) { |
49918a75 | 76 | result = -1; |
c7c530cd | 77 | } else if (addr >= sym->st_value + sym->st_size) { |
49918a75 PB |
78 | result = 1; |
79 | } | |
80 | return result; | |
81 | } | |
82 | ||
ca20cf32 | 83 | static const char *glue(lookup_symbol, SZ)(struct syminfo *s, |
a8170e5e | 84 | hwaddr orig_addr) |
49918a75 PB |
85 | { |
86 | struct elf_sym *syms = glue(s->disas_symtab.elf, SZ); | |
49918a75 PB |
87 | struct elf_sym *sym; |
88 | ||
c7c530cd SW |
89 | sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), |
90 | glue(symfind, SZ)); | |
660f11be | 91 | if (sym != NULL) { |
49918a75 PB |
92 | return s->disas_strtab + sym->st_name; |
93 | } | |
94 | ||
95 | return ""; | |
96 | } | |
97 | ||
98 | static int glue(symcmp, SZ)(const void *s0, const void *s1) | |
99 | { | |
100 | struct elf_sym *sym0 = (struct elf_sym *)s0; | |
101 | struct elf_sym *sym1 = (struct elf_sym *)s1; | |
102 | return (sym0->st_value < sym1->st_value) | |
103 | ? -1 | |
104 | : ((sym0->st_value > sym1->st_value) ? 1 : 0); | |
105 | } | |
106 | ||
ca20cf32 | 107 | static int glue(load_symbols, SZ)(struct elfhdr *ehdr, int fd, int must_swab, |
a2480ffa | 108 | int clear_lsb, symbol_fn_t sym_cb) |
5fe141fd FB |
109 | { |
110 | struct elf_shdr *symtab, *strtab, *shdr_table = NULL; | |
111 | struct elf_sym *syms = NULL; | |
5fe141fd FB |
112 | struct syminfo *s; |
113 | int nsyms, i; | |
114 | char *str = NULL; | |
115 | ||
5fafdf24 | 116 | shdr_table = load_at(fd, ehdr->e_shoff, |
5fe141fd FB |
117 | sizeof(struct elf_shdr) * ehdr->e_shnum); |
118 | if (!shdr_table) | |
119 | return -1; | |
3b46e624 | 120 | |
5fe141fd FB |
121 | if (must_swab) { |
122 | for (i = 0; i < ehdr->e_shnum; i++) { | |
123 | glue(bswap_shdr, SZ)(shdr_table + i); | |
124 | } | |
125 | } | |
3b46e624 | 126 | |
5fe141fd FB |
127 | symtab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_SYMTAB); |
128 | if (!symtab) | |
129 | goto fail; | |
130 | syms = load_at(fd, symtab->sh_offset, symtab->sh_size); | |
131 | if (!syms) | |
132 | goto fail; | |
133 | ||
134 | nsyms = symtab->sh_size / sizeof(struct elf_sym); | |
49918a75 | 135 | |
a2480ffa MC |
136 | /* String table */ |
137 | if (symtab->sh_link >= ehdr->e_shnum) { | |
138 | goto fail; | |
139 | } | |
140 | strtab = &shdr_table[symtab->sh_link]; | |
141 | ||
142 | str = load_at(fd, strtab->sh_offset, strtab->sh_size); | |
143 | if (!str) { | |
144 | goto fail; | |
145 | } | |
146 | ||
49918a75 PB |
147 | i = 0; |
148 | while (i < nsyms) { | |
a2480ffa | 149 | if (must_swab) { |
5fe141fd | 150 | glue(bswap_sym, SZ)(&syms[i]); |
a2480ffa MC |
151 | } |
152 | if (sym_cb) { | |
153 | sym_cb(str + syms[i].st_name, syms[i].st_info, | |
154 | syms[i].st_value, syms[i].st_size); | |
155 | } | |
49918a75 PB |
156 | /* We are only interested in function symbols. |
157 | Throw everything else away. */ | |
158 | if (syms[i].st_shndx == SHN_UNDEF || | |
159 | syms[i].st_shndx >= SHN_LORESERVE || | |
160 | ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { | |
161 | nsyms--; | |
162 | if (i < nsyms) { | |
163 | syms[i] = syms[nsyms]; | |
164 | } | |
165 | continue; | |
166 | } | |
ca20cf32 BS |
167 | if (clear_lsb) { |
168 | /* The bottom address bit marks a Thumb or MIPS16 symbol. */ | |
169 | syms[i].st_value &= ~(glue(glue(Elf, SZ), _Addr))1; | |
170 | } | |
49918a75 | 171 | i++; |
5fe141fd | 172 | } |
8ce3c44c | 173 | syms = g_realloc(syms, nsyms * sizeof(*syms)); |
49918a75 | 174 | |
8ce3c44c MA |
175 | qsort(syms, nsyms, sizeof(*syms), glue(symcmp, SZ)); |
176 | for (i = 0; i < nsyms - 1; i++) { | |
177 | if (syms[i].st_size == 0) { | |
178 | syms[i].st_size = syms[i + 1].st_value - syms[i].st_value; | |
e403e433 | 179 | } |
3e372cf8 | 180 | } |
49918a75 | 181 | |
5fe141fd | 182 | /* Commit */ |
7267c094 | 183 | s = g_malloc0(sizeof(*s)); |
49918a75 PB |
184 | s->lookup_symbol = glue(lookup_symbol, SZ); |
185 | glue(s->disas_symtab.elf, SZ) = syms; | |
5fe141fd FB |
186 | s->disas_num_syms = nsyms; |
187 | s->disas_strtab = str; | |
188 | s->next = syminfos; | |
189 | syminfos = s; | |
7267c094 | 190 | g_free(shdr_table); |
5fe141fd FB |
191 | return 0; |
192 | fail: | |
7267c094 AL |
193 | g_free(syms); |
194 | g_free(str); | |
195 | g_free(shdr_table); | |
5fe141fd FB |
196 | return -1; |
197 | } | |
198 | ||
5dce07e1 TH |
199 | static int glue(elf_reloc, SZ)(struct elfhdr *ehdr, int fd, int must_swab, |
200 | uint64_t (*translate_fn)(void *, uint64_t), | |
201 | void *translate_opaque, uint8_t *data, | |
202 | struct elf_phdr *ph, int elf_machine) | |
203 | { | |
204 | struct elf_shdr *reltab, *shdr_table = NULL; | |
205 | struct elf_rela *rels = NULL; | |
206 | int nrels, i, ret = -1; | |
207 | elf_word wordval; | |
208 | void *addr; | |
209 | ||
210 | shdr_table = load_at(fd, ehdr->e_shoff, | |
211 | sizeof(struct elf_shdr) * ehdr->e_shnum); | |
212 | if (!shdr_table) { | |
213 | return -1; | |
214 | } | |
215 | if (must_swab) { | |
216 | for (i = 0; i < ehdr->e_shnum; i++) { | |
217 | glue(bswap_shdr, SZ)(&shdr_table[i]); | |
218 | } | |
219 | } | |
220 | ||
221 | reltab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_RELA); | |
222 | if (!reltab) { | |
223 | goto fail; | |
224 | } | |
225 | rels = load_at(fd, reltab->sh_offset, reltab->sh_size); | |
226 | if (!rels) { | |
227 | goto fail; | |
228 | } | |
229 | nrels = reltab->sh_size / sizeof(struct elf_rela); | |
230 | ||
231 | for (i = 0; i < nrels; i++) { | |
232 | if (must_swab) { | |
233 | glue(bswap_rela, SZ)(&rels[i]); | |
234 | } | |
235 | if (rels[i].r_offset < ph->p_vaddr || | |
236 | rels[i].r_offset >= ph->p_vaddr + ph->p_filesz) { | |
237 | continue; | |
238 | } | |
239 | addr = &data[rels[i].r_offset - ph->p_vaddr]; | |
240 | switch (elf_machine) { | |
241 | case EM_S390: | |
242 | switch (rels[i].r_info) { | |
243 | case R_390_RELATIVE: | |
244 | wordval = *(elf_word *)addr; | |
245 | if (must_swab) { | |
246 | bswapSZs(&wordval); | |
247 | } | |
248 | wordval = translate_fn(translate_opaque, wordval); | |
249 | if (must_swab) { | |
250 | bswapSZs(&wordval); | |
251 | } | |
252 | *(elf_word *)addr = wordval; | |
253 | break; | |
254 | default: | |
255 | fprintf(stderr, "Unsupported relocation type %i!\n", | |
256 | (int)rels[i].r_info); | |
257 | } | |
258 | } | |
259 | } | |
260 | ||
261 | ret = 0; | |
262 | fail: | |
263 | g_free(rels); | |
264 | g_free(shdr_table); | |
265 | return ret; | |
266 | } | |
267 | ||
696aa04c LM |
268 | /* |
269 | * Given 'nhdr', a pointer to a range of ELF Notes, search through them | |
270 | * for a note matching type 'elf_note_type' and return a pointer to | |
271 | * the matching ELF note. | |
272 | */ | |
273 | static struct elf_note *glue(get_elf_note_type, SZ)(struct elf_note *nhdr, | |
274 | elf_word note_size, | |
275 | elf_word phdr_align, | |
276 | elf_word elf_note_type) | |
277 | { | |
278 | elf_word nhdr_size = sizeof(struct elf_note); | |
279 | elf_word elf_note_entry_offset = 0; | |
280 | elf_word note_type; | |
281 | elf_word nhdr_namesz; | |
282 | elf_word nhdr_descsz; | |
283 | ||
284 | if (nhdr == NULL) { | |
285 | return NULL; | |
286 | } | |
287 | ||
288 | note_type = nhdr->n_type; | |
289 | while (note_type != elf_note_type) { | |
290 | nhdr_namesz = nhdr->n_namesz; | |
291 | nhdr_descsz = nhdr->n_descsz; | |
292 | ||
293 | elf_note_entry_offset = nhdr_size + | |
294 | QEMU_ALIGN_UP(nhdr_namesz, phdr_align) + | |
295 | QEMU_ALIGN_UP(nhdr_descsz, phdr_align); | |
296 | ||
297 | /* | |
298 | * If the offset calculated in this iteration exceeds the | |
299 | * supplied size, we are done and no matching note was found. | |
300 | */ | |
301 | if (elf_note_entry_offset > note_size) { | |
302 | return NULL; | |
303 | } | |
304 | ||
305 | /* skip to the next ELF Note entry */ | |
306 | nhdr = (void *)nhdr + elf_note_entry_offset; | |
307 | note_type = nhdr->n_type; | |
308 | } | |
309 | ||
310 | return nhdr; | |
311 | } | |
312 | ||
409dbce5 | 313 | static int glue(load_elf, SZ)(const char *name, int fd, |
4366e1db | 314 | uint64_t (*elf_note_fn)(void *, void *, bool), |
409dbce5 AJ |
315 | uint64_t (*translate_fn)(void *, uint64_t), |
316 | void *translate_opaque, | |
9596ebb7 | 317 | int must_swab, uint64_t *pentry, |
ca20cf32 | 318 | uint64_t *lowaddr, uint64_t *highaddr, |
70bb1d16 | 319 | int elf_machine, int clear_lsb, int data_swab, |
a2480ffa MC |
320 | AddressSpace *as, bool load_rom, |
321 | symbol_fn_t sym_cb) | |
5fe141fd FB |
322 | { |
323 | struct elfhdr ehdr; | |
324 | struct elf_phdr *phdr = NULL, *ph; | |
325 | int size, i, total_size; | |
816b9fe4 | 326 | elf_word mem_size, file_size, data_offset; |
fd93a799 | 327 | uint64_t addr, low = (uint64_t)-1, high = 0; |
816b9fe4 | 328 | GMappedFile *mapped_file = NULL; |
9ee3c029 | 329 | uint8_t *data = NULL; |
45a50b16 | 330 | char label[128]; |
18674b26 | 331 | int ret = ELF_LOAD_FAILED; |
5fe141fd FB |
332 | |
333 | if (read(fd, &ehdr, sizeof(ehdr)) != sizeof(ehdr)) | |
334 | goto fail; | |
335 | if (must_swab) { | |
336 | glue(bswap_ehdr, SZ)(&ehdr); | |
337 | } | |
338 | ||
8cf6e9da AF |
339 | if (elf_machine <= EM_NONE) { |
340 | /* The caller didn't specify an ARCH, we can figure it out */ | |
341 | elf_machine = ehdr.e_machine; | |
342 | } | |
343 | ||
ca20cf32 | 344 | switch (elf_machine) { |
7f70c937 | 345 | case EM_PPC64: |
7cc47221 PC |
346 | if (ehdr.e_machine != EM_PPC64) { |
347 | if (ehdr.e_machine != EM_PPC) { | |
18674b26 | 348 | ret = ELF_LOAD_WRONG_ARCH; |
7f70c937 | 349 | goto fail; |
18674b26 | 350 | } |
7cc47221 | 351 | } |
7f70c937 BS |
352 | break; |
353 | case EM_X86_64: | |
7cc47221 PC |
354 | if (ehdr.e_machine != EM_X86_64) { |
355 | if (ehdr.e_machine != EM_386) { | |
18674b26 | 356 | ret = ELF_LOAD_WRONG_ARCH; |
7f70c937 | 357 | goto fail; |
18674b26 | 358 | } |
7cc47221 | 359 | } |
7f70c937 | 360 | break; |
16f04416 | 361 | case EM_MICROBLAZE: |
7cc47221 PC |
362 | if (ehdr.e_machine != EM_MICROBLAZE) { |
363 | if (ehdr.e_machine != EM_MICROBLAZE_OLD) { | |
18674b26 | 364 | ret = ELF_LOAD_WRONG_ARCH; |
16f04416 | 365 | goto fail; |
18674b26 | 366 | } |
7cc47221 | 367 | } |
16f04416 | 368 | break; |
98dbe5ac PC |
369 | case EM_MOXIE: |
370 | if (ehdr.e_machine != EM_MOXIE) { | |
371 | if (ehdr.e_machine != EM_MOXIE_OLD) { | |
372 | ret = ELF_LOAD_WRONG_ARCH; | |
373 | goto fail; | |
374 | } | |
375 | } | |
376 | break; | |
56f26045 AR |
377 | case EM_MIPS: |
378 | case EM_NANOMIPS: | |
379 | if ((ehdr.e_machine != EM_MIPS) && | |
380 | (ehdr.e_machine != EM_NANOMIPS)) { | |
381 | ret = ELF_LOAD_WRONG_ARCH; | |
382 | goto fail; | |
383 | } | |
384 | break; | |
7f70c937 | 385 | default: |
18674b26 AK |
386 | if (elf_machine != ehdr.e_machine) { |
387 | ret = ELF_LOAD_WRONG_ARCH; | |
7f70c937 | 388 | goto fail; |
18674b26 | 389 | } |
7f70c937 | 390 | } |
9042c0e2 | 391 | |
9ee3c029 | 392 | if (pentry) |
7d37435b | 393 | *pentry = (uint64_t)(elf_sword)ehdr.e_entry; |
9ee3c029 | 394 | |
a2480ffa | 395 | glue(load_symbols, SZ)(&ehdr, fd, must_swab, clear_lsb, sym_cb); |
5fe141fd FB |
396 | |
397 | size = ehdr.e_phnum * sizeof(phdr[0]); | |
23bf2e76 SW |
398 | if (lseek(fd, ehdr.e_phoff, SEEK_SET) != ehdr.e_phoff) { |
399 | goto fail; | |
400 | } | |
7267c094 | 401 | phdr = g_malloc0(size); |
5fe141fd FB |
402 | if (!phdr) |
403 | goto fail; | |
404 | if (read(fd, phdr, size) != size) | |
04d4b0c3 | 405 | goto fail; |
5fe141fd FB |
406 | if (must_swab) { |
407 | for(i = 0; i < ehdr.e_phnum; i++) { | |
408 | ph = &phdr[i]; | |
409 | glue(bswap_phdr, SZ)(ph); | |
410 | } | |
411 | } | |
3b46e624 | 412 | |
816b9fe4 SG |
413 | /* |
414 | * Since we want to be able to modify the mapped buffer, we set the | |
415 | * 'writeble' parameter to 'true'. Modifications to the buffer are not | |
416 | * written back to the file. | |
417 | */ | |
418 | mapped_file = g_mapped_file_new_from_fd(fd, true, NULL); | |
419 | if (!mapped_file) { | |
420 | goto fail; | |
421 | } | |
422 | ||
5fe141fd FB |
423 | total_size = 0; |
424 | for(i = 0; i < ehdr.e_phnum; i++) { | |
425 | ph = &phdr[i]; | |
426 | if (ph->p_type == PT_LOAD) { | |
d60fa42e FC |
427 | mem_size = ph->p_memsz; /* Size of the ROM */ |
428 | file_size = ph->p_filesz; /* Size of the allocated data */ | |
816b9fe4 SG |
429 | data_offset = ph->p_offset; /* Offset where the data is located */ |
430 | ||
431 | if (file_size > 0) { | |
432 | if (g_mapped_file_get_length(mapped_file) < | |
433 | file_size + data_offset) { | |
04d4b0c3 | 434 | goto fail; |
d60fa42e | 435 | } |
816b9fe4 SG |
436 | |
437 | data = (uint8_t *)g_mapped_file_get_contents(mapped_file); | |
438 | data += data_offset; | |
5fe141fd | 439 | } |
bf173339 PM |
440 | |
441 | /* The ELF spec is somewhat vague about the purpose of the | |
442 | * physical address field. One common use in the embedded world | |
443 | * is that physical address field specifies the load address | |
444 | * and the virtual address field specifies the execution address. | |
445 | * Segments are packed into ROM or flash, and the relocation | |
446 | * and zero-initialization of data is done at runtime. This | |
447 | * means that the memsz header represents the runtime size of the | |
448 | * segment, but the filesz represents the loadtime size. If | |
449 | * we try to honour the memsz value for an ELF file like this | |
450 | * we will end up with overlapping segments (which the | |
451 | * loader.c code will later reject). | |
452 | * We support ELF files using this scheme by by checking whether | |
453 | * paddr + memsz for this segment would overlap with any other | |
454 | * segment. If so, then we assume it's using this scheme and | |
455 | * truncate the loaded segment to the filesz size. | |
456 | * If the segment considered as being memsz size doesn't overlap | |
457 | * then we use memsz for the segment length, to handle ELF files | |
458 | * which assume that the loader will do the zero-initialization. | |
459 | */ | |
460 | if (mem_size > file_size) { | |
461 | /* If this segment's zero-init portion overlaps another | |
462 | * segment's data or zero-init portion, then truncate this one. | |
463 | * Invalid ELF files where the segments overlap even when | |
464 | * only file_size bytes are loaded will be rejected by | |
465 | * the ROM overlap check in loader.c, so we don't try to | |
466 | * explicitly detect those here. | |
467 | */ | |
468 | int j; | |
469 | elf_word zero_start = ph->p_paddr + file_size; | |
470 | elf_word zero_end = ph->p_paddr + mem_size; | |
471 | ||
472 | for (j = 0; j < ehdr.e_phnum; j++) { | |
473 | struct elf_phdr *jph = &phdr[j]; | |
474 | ||
475 | if (i != j && jph->p_type == PT_LOAD) { | |
476 | elf_word other_start = jph->p_paddr; | |
477 | elf_word other_end = jph->p_paddr + jph->p_memsz; | |
478 | ||
479 | if (!(other_start >= zero_end || | |
480 | zero_start >= other_end)) { | |
481 | mem_size = file_size; | |
482 | break; | |
483 | } | |
484 | } | |
485 | } | |
486 | } | |
487 | ||
41a26351 SG |
488 | if (mem_size > INT_MAX - total_size) { |
489 | ret = ELF_LOAD_TOO_BIG; | |
490 | goto fail; | |
491 | } | |
492 | ||
83c1f87c PB |
493 | /* address_offset is hack for kernel images that are |
494 | linked at the wrong physical address. */ | |
409dbce5 AJ |
495 | if (translate_fn) { |
496 | addr = translate_fn(translate_opaque, ph->p_paddr); | |
5dce07e1 TH |
497 | glue(elf_reloc, SZ)(&ehdr, fd, must_swab, translate_fn, |
498 | translate_opaque, data, ph, elf_machine); | |
409dbce5 AJ |
499 | } else { |
500 | addr = ph->p_paddr; | |
501 | } | |
5fe141fd | 502 | |
7ef295ea PC |
503 | if (data_swab) { |
504 | int j; | |
505 | for (j = 0; j < file_size; j += (1 << data_swab)) { | |
506 | uint8_t *dp = data + j; | |
507 | switch (data_swab) { | |
508 | case (1): | |
509 | *(uint16_t *)dp = bswap16(*(uint16_t *)dp); | |
510 | break; | |
511 | case (2): | |
512 | *(uint32_t *)dp = bswap32(*(uint32_t *)dp); | |
513 | break; | |
514 | case (3): | |
515 | *(uint64_t *)dp = bswap64(*(uint64_t *)dp); | |
516 | break; | |
517 | default: | |
518 | g_assert_not_reached(); | |
519 | } | |
520 | } | |
521 | } | |
522 | ||
7e9c7ffe HS |
523 | /* the entry pointer in the ELF header is a virtual |
524 | * address, if the text segments paddr and vaddr differ | |
525 | * we need to adjust the entry */ | |
526 | if (pentry && !translate_fn && | |
527 | ph->p_vaddr != ph->p_paddr && | |
528 | ehdr.e_entry >= ph->p_vaddr && | |
529 | ehdr.e_entry < ph->p_vaddr + ph->p_filesz && | |
530 | ph->p_flags & PF_X) { | |
531 | *pentry = ehdr.e_entry - ph->p_vaddr + ph->p_paddr; | |
532 | } | |
533 | ||
816b9fe4 SG |
534 | /* Some ELF files really do have segments of zero size; |
535 | * just ignore them rather than trying to create empty | |
536 | * ROM blobs, because the zero-length blob can falsely | |
537 | * trigger the overlapping-ROM-blobs check. | |
538 | */ | |
539 | if (mem_size != 0) { | |
f33e5e62 PM |
540 | if (load_rom) { |
541 | snprintf(label, sizeof(label), "phdr #%d: %s", i, name); | |
542 | ||
816b9fe4 SG |
543 | /* |
544 | * rom_add_elf_program() takes its own reference to | |
545 | * 'mapped_file'. | |
546 | */ | |
547 | rom_add_elf_program(label, mapped_file, data, file_size, | |
548 | mem_size, addr, as); | |
f33e5e62 | 549 | } else { |
ed315040 PM |
550 | address_space_write(as ? as : &address_space_memory, |
551 | addr, MEMTXATTRS_UNSPECIFIED, | |
552 | data, file_size); | |
f33e5e62 | 553 | } |
34f1b23f | 554 | } |
5fe141fd FB |
555 | |
556 | total_size += mem_size; | |
fd93a799 | 557 | if (addr < low) |
74287114 | 558 | low = addr; |
fd93a799 | 559 | if ((addr + mem_size) > high) |
74287114 | 560 | high = addr + mem_size; |
5fe141fd | 561 | |
9ee3c029 | 562 | data = NULL; |
696aa04c LM |
563 | |
564 | } else if (ph->p_type == PT_NOTE && elf_note_fn) { | |
565 | struct elf_note *nhdr = NULL; | |
566 | ||
567 | file_size = ph->p_filesz; /* Size of the range of ELF notes */ | |
816b9fe4 SG |
568 | data_offset = ph->p_offset; /* Offset where the notes are located */ |
569 | ||
570 | if (file_size > 0) { | |
571 | if (g_mapped_file_get_length(mapped_file) < | |
572 | file_size + data_offset) { | |
696aa04c LM |
573 | goto fail; |
574 | } | |
816b9fe4 SG |
575 | |
576 | data = (uint8_t *)g_mapped_file_get_contents(mapped_file); | |
577 | data += data_offset; | |
696aa04c LM |
578 | } |
579 | ||
580 | /* | |
581 | * Search the ELF notes to find one with a type matching the | |
582 | * value passed in via 'translate_opaque' | |
583 | */ | |
584 | nhdr = (struct elf_note *)data; | |
585 | assert(translate_opaque != NULL); | |
586 | nhdr = glue(get_elf_note_type, SZ)(nhdr, file_size, ph->p_align, | |
587 | *(uint64_t *)translate_opaque); | |
588 | if (nhdr != NULL) { | |
589 | bool is64 = | |
590 | sizeof(struct elf_note) == sizeof(struct elf64_note); | |
591 | elf_note_fn((void *)nhdr, (void *)&ph->p_align, is64); | |
592 | } | |
696aa04c | 593 | data = NULL; |
5fe141fd FB |
594 | } |
595 | } | |
4366e1db | 596 | |
74287114 | 597 | if (lowaddr) |
82790064 | 598 | *lowaddr = (uint64_t)(elf_sword)low; |
74287114 | 599 | if (highaddr) |
82790064 | 600 | *highaddr = (uint64_t)(elf_sword)high; |
816b9fe4 | 601 | ret = total_size; |
04d4b0c3 | 602 | fail: |
816b9fe4 | 603 | g_mapped_file_unref(mapped_file); |
7267c094 | 604 | g_free(phdr); |
18674b26 | 605 | return ret; |
5fe141fd | 606 | } |