]>
Commit | Line | Data |
---|---|---|
bdd6a90a FZ |
1 | /* |
2 | * NVMe block driver based on vfio | |
3 | * | |
4 | * Copyright 2016 - 2018 Red Hat, Inc. | |
5 | * | |
6 | * Authors: | |
7 | * Fam Zheng <[email protected]> | |
8 | * Paolo Bonzini <[email protected]> | |
9 | * | |
10 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
11 | * See the COPYING file in the top-level directory. | |
12 | */ | |
13 | ||
14 | #include "qemu/osdep.h" | |
15 | #include <linux/vfio.h> | |
16 | #include "qapi/error.h" | |
17 | #include "qapi/qmp/qdict.h" | |
18 | #include "qapi/qmp/qstring.h" | |
19 | #include "qemu/error-report.h" | |
db725815 | 20 | #include "qemu/main-loop.h" |
0b8fa32f | 21 | #include "qemu/module.h" |
bdd6a90a | 22 | #include "qemu/cutils.h" |
922a01a0 | 23 | #include "qemu/option.h" |
bdd6a90a FZ |
24 | #include "qemu/vfio-helpers.h" |
25 | #include "block/block_int.h" | |
26 | #include "trace.h" | |
27 | ||
a3d9a352 | 28 | #include "block/nvme.h" |
bdd6a90a FZ |
29 | |
30 | #define NVME_SQ_ENTRY_BYTES 64 | |
31 | #define NVME_CQ_ENTRY_BYTES 16 | |
32 | #define NVME_QUEUE_SIZE 128 | |
33 | #define NVME_BAR_SIZE 8192 | |
34 | ||
35 | typedef struct { | |
36 | int32_t head, tail; | |
37 | uint8_t *queue; | |
38 | uint64_t iova; | |
39 | /* Hardware MMIO register */ | |
40 | volatile uint32_t *doorbell; | |
41 | } NVMeQueue; | |
42 | ||
43 | typedef struct { | |
44 | BlockCompletionFunc *cb; | |
45 | void *opaque; | |
46 | int cid; | |
47 | void *prp_list_page; | |
48 | uint64_t prp_list_iova; | |
49 | bool busy; | |
50 | } NVMeRequest; | |
51 | ||
52 | typedef struct { | |
53 | CoQueue free_req_queue; | |
54 | QemuMutex lock; | |
55 | ||
56 | /* Fields protected by BQL */ | |
57 | int index; | |
58 | uint8_t *prp_list_pages; | |
59 | ||
60 | /* Fields protected by @lock */ | |
61 | NVMeQueue sq, cq; | |
62 | int cq_phase; | |
63 | NVMeRequest reqs[NVME_QUEUE_SIZE]; | |
64 | bool busy; | |
65 | int need_kick; | |
66 | int inflight; | |
67 | } NVMeQueuePair; | |
68 | ||
69 | /* Memory mapped registers */ | |
70 | typedef volatile struct { | |
71 | uint64_t cap; | |
72 | uint32_t vs; | |
73 | uint32_t intms; | |
74 | uint32_t intmc; | |
75 | uint32_t cc; | |
76 | uint32_t reserved0; | |
77 | uint32_t csts; | |
78 | uint32_t nssr; | |
79 | uint32_t aqa; | |
80 | uint64_t asq; | |
81 | uint64_t acq; | |
82 | uint32_t cmbloc; | |
83 | uint32_t cmbsz; | |
84 | uint8_t reserved1[0xec0]; | |
85 | uint8_t cmd_set_specfic[0x100]; | |
86 | uint32_t doorbells[]; | |
83c68e14 | 87 | } NVMeRegs; |
bdd6a90a FZ |
88 | |
89 | QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000); | |
90 | ||
91 | typedef struct { | |
92 | AioContext *aio_context; | |
93 | QEMUVFIOState *vfio; | |
94 | NVMeRegs *regs; | |
95 | /* The submission/completion queue pairs. | |
96 | * [0]: admin queue. | |
97 | * [1..]: io queues. | |
98 | */ | |
99 | NVMeQueuePair **queues; | |
100 | int nr_queues; | |
101 | size_t page_size; | |
102 | /* How many uint32_t elements does each doorbell entry take. */ | |
103 | size_t doorbell_scale; | |
104 | bool write_cache_supported; | |
105 | EventNotifier irq_notifier; | |
118d1b6a | 106 | |
bdd6a90a FZ |
107 | uint64_t nsze; /* Namespace size reported by identify command */ |
108 | int nsid; /* The namespace id to read/write data. */ | |
1120407b | 109 | int blkshift; |
118d1b6a | 110 | |
bdd6a90a | 111 | uint64_t max_transfer; |
2f0d8947 | 112 | bool plugged; |
bdd6a90a FZ |
113 | |
114 | CoMutex dma_map_lock; | |
115 | CoQueue dma_flush_queue; | |
116 | ||
117 | /* Total size of mapped qiov, accessed under dma_map_lock */ | |
118 | int dma_map_count; | |
cc61b074 HR |
119 | |
120 | /* PCI address (required for nvme_refresh_filename()) */ | |
121 | char *device; | |
bdd6a90a FZ |
122 | } BDRVNVMeState; |
123 | ||
124 | #define NVME_BLOCK_OPT_DEVICE "device" | |
125 | #define NVME_BLOCK_OPT_NAMESPACE "namespace" | |
126 | ||
127 | static QemuOptsList runtime_opts = { | |
128 | .name = "nvme", | |
129 | .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head), | |
130 | .desc = { | |
131 | { | |
132 | .name = NVME_BLOCK_OPT_DEVICE, | |
133 | .type = QEMU_OPT_STRING, | |
134 | .help = "NVMe PCI device address", | |
135 | }, | |
136 | { | |
137 | .name = NVME_BLOCK_OPT_NAMESPACE, | |
138 | .type = QEMU_OPT_NUMBER, | |
139 | .help = "NVMe namespace", | |
140 | }, | |
141 | { /* end of list */ } | |
142 | }, | |
143 | }; | |
144 | ||
145 | static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q, | |
146 | int nentries, int entry_bytes, Error **errp) | |
147 | { | |
148 | BDRVNVMeState *s = bs->opaque; | |
149 | size_t bytes; | |
150 | int r; | |
151 | ||
152 | bytes = ROUND_UP(nentries * entry_bytes, s->page_size); | |
153 | q->head = q->tail = 0; | |
154 | q->queue = qemu_try_blockalign0(bs, bytes); | |
155 | ||
156 | if (!q->queue) { | |
157 | error_setg(errp, "Cannot allocate queue"); | |
158 | return; | |
159 | } | |
160 | r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova); | |
161 | if (r) { | |
162 | error_setg(errp, "Cannot map queue"); | |
163 | } | |
164 | } | |
165 | ||
166 | static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q) | |
167 | { | |
168 | qemu_vfree(q->prp_list_pages); | |
169 | qemu_vfree(q->sq.queue); | |
170 | qemu_vfree(q->cq.queue); | |
171 | qemu_mutex_destroy(&q->lock); | |
172 | g_free(q); | |
173 | } | |
174 | ||
175 | static void nvme_free_req_queue_cb(void *opaque) | |
176 | { | |
177 | NVMeQueuePair *q = opaque; | |
178 | ||
179 | qemu_mutex_lock(&q->lock); | |
180 | while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) { | |
181 | /* Retry all pending requests */ | |
182 | } | |
183 | qemu_mutex_unlock(&q->lock); | |
184 | } | |
185 | ||
186 | static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs, | |
187 | int idx, int size, | |
188 | Error **errp) | |
189 | { | |
190 | int i, r; | |
191 | BDRVNVMeState *s = bs->opaque; | |
192 | Error *local_err = NULL; | |
193 | NVMeQueuePair *q = g_new0(NVMeQueuePair, 1); | |
194 | uint64_t prp_list_iova; | |
195 | ||
196 | qemu_mutex_init(&q->lock); | |
197 | q->index = idx; | |
198 | qemu_co_queue_init(&q->free_req_queue); | |
199 | q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE); | |
200 | r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, | |
201 | s->page_size * NVME_QUEUE_SIZE, | |
202 | false, &prp_list_iova); | |
203 | if (r) { | |
204 | goto fail; | |
205 | } | |
206 | for (i = 0; i < NVME_QUEUE_SIZE; i++) { | |
207 | NVMeRequest *req = &q->reqs[i]; | |
208 | req->cid = i + 1; | |
209 | req->prp_list_page = q->prp_list_pages + i * s->page_size; | |
210 | req->prp_list_iova = prp_list_iova + i * s->page_size; | |
211 | } | |
212 | nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err); | |
213 | if (local_err) { | |
214 | error_propagate(errp, local_err); | |
215 | goto fail; | |
216 | } | |
217 | q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale]; | |
218 | ||
219 | nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err); | |
220 | if (local_err) { | |
221 | error_propagate(errp, local_err); | |
222 | goto fail; | |
223 | } | |
461bba04 | 224 | q->cq.doorbell = &s->regs->doorbells[(idx * 2 + 1) * s->doorbell_scale]; |
bdd6a90a FZ |
225 | |
226 | return q; | |
227 | fail: | |
228 | nvme_free_queue_pair(bs, q); | |
229 | return NULL; | |
230 | } | |
231 | ||
232 | /* With q->lock */ | |
233 | static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q) | |
234 | { | |
235 | if (s->plugged || !q->need_kick) { | |
236 | return; | |
237 | } | |
238 | trace_nvme_kick(s, q->index); | |
239 | assert(!(q->sq.tail & 0xFF00)); | |
240 | /* Fence the write to submission queue entry before notifying the device. */ | |
241 | smp_wmb(); | |
242 | *q->sq.doorbell = cpu_to_le32(q->sq.tail); | |
243 | q->inflight += q->need_kick; | |
244 | q->need_kick = 0; | |
245 | } | |
246 | ||
247 | /* Find a free request element if any, otherwise: | |
248 | * a) if in coroutine context, try to wait for one to become available; | |
249 | * b) if not in coroutine, return NULL; | |
250 | */ | |
251 | static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q) | |
252 | { | |
253 | int i; | |
254 | NVMeRequest *req = NULL; | |
255 | ||
256 | qemu_mutex_lock(&q->lock); | |
257 | while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) { | |
258 | /* We have to leave one slot empty as that is the full queue case (head | |
259 | * == tail + 1). */ | |
260 | if (qemu_in_coroutine()) { | |
261 | trace_nvme_free_req_queue_wait(q); | |
262 | qemu_co_queue_wait(&q->free_req_queue, &q->lock); | |
263 | } else { | |
264 | qemu_mutex_unlock(&q->lock); | |
265 | return NULL; | |
266 | } | |
267 | } | |
268 | for (i = 0; i < NVME_QUEUE_SIZE; i++) { | |
269 | if (!q->reqs[i].busy) { | |
270 | q->reqs[i].busy = true; | |
271 | req = &q->reqs[i]; | |
272 | break; | |
273 | } | |
274 | } | |
275 | /* We have checked inflight and need_kick while holding q->lock, so one | |
276 | * free req must be available. */ | |
277 | assert(req); | |
278 | qemu_mutex_unlock(&q->lock); | |
279 | return req; | |
280 | } | |
281 | ||
282 | static inline int nvme_translate_error(const NvmeCqe *c) | |
283 | { | |
284 | uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF; | |
285 | if (status) { | |
286 | trace_nvme_error(le32_to_cpu(c->result), | |
287 | le16_to_cpu(c->sq_head), | |
288 | le16_to_cpu(c->sq_id), | |
289 | le16_to_cpu(c->cid), | |
290 | le16_to_cpu(status)); | |
291 | } | |
292 | switch (status) { | |
293 | case 0: | |
294 | return 0; | |
295 | case 1: | |
296 | return -ENOSYS; | |
297 | case 2: | |
298 | return -EINVAL; | |
299 | default: | |
300 | return -EIO; | |
301 | } | |
302 | } | |
303 | ||
304 | /* With q->lock */ | |
305 | static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q) | |
306 | { | |
307 | bool progress = false; | |
308 | NVMeRequest *preq; | |
309 | NVMeRequest req; | |
310 | NvmeCqe *c; | |
311 | ||
312 | trace_nvme_process_completion(s, q->index, q->inflight); | |
313 | if (q->busy || s->plugged) { | |
314 | trace_nvme_process_completion_queue_busy(s, q->index); | |
315 | return false; | |
316 | } | |
317 | q->busy = true; | |
318 | assert(q->inflight >= 0); | |
319 | while (q->inflight) { | |
320 | int16_t cid; | |
321 | c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES]; | |
258867d1 | 322 | if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) { |
bdd6a90a FZ |
323 | break; |
324 | } | |
325 | q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE; | |
326 | if (!q->cq.head) { | |
327 | q->cq_phase = !q->cq_phase; | |
328 | } | |
329 | cid = le16_to_cpu(c->cid); | |
330 | if (cid == 0 || cid > NVME_QUEUE_SIZE) { | |
331 | fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n", | |
332 | cid); | |
333 | continue; | |
334 | } | |
335 | assert(cid <= NVME_QUEUE_SIZE); | |
336 | trace_nvme_complete_command(s, q->index, cid); | |
337 | preq = &q->reqs[cid - 1]; | |
338 | req = *preq; | |
339 | assert(req.cid == cid); | |
340 | assert(req.cb); | |
341 | preq->busy = false; | |
342 | preq->cb = preq->opaque = NULL; | |
343 | qemu_mutex_unlock(&q->lock); | |
344 | req.cb(req.opaque, nvme_translate_error(c)); | |
345 | qemu_mutex_lock(&q->lock); | |
bdd6a90a | 346 | q->inflight--; |
bdd6a90a FZ |
347 | progress = true; |
348 | } | |
349 | if (progress) { | |
350 | /* Notify the device so it can post more completions. */ | |
351 | smp_mb_release(); | |
352 | *q->cq.doorbell = cpu_to_le32(q->cq.head); | |
353 | if (!qemu_co_queue_empty(&q->free_req_queue)) { | |
354 | aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q); | |
355 | } | |
356 | } | |
357 | q->busy = false; | |
358 | return progress; | |
359 | } | |
360 | ||
361 | static void nvme_trace_command(const NvmeCmd *cmd) | |
362 | { | |
363 | int i; | |
364 | ||
365 | for (i = 0; i < 8; ++i) { | |
366 | uint8_t *cmdp = (uint8_t *)cmd + i * 8; | |
367 | trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3], | |
368 | cmdp[4], cmdp[5], cmdp[6], cmdp[7]); | |
369 | } | |
370 | } | |
371 | ||
372 | static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q, | |
373 | NVMeRequest *req, | |
374 | NvmeCmd *cmd, BlockCompletionFunc cb, | |
375 | void *opaque) | |
376 | { | |
377 | assert(!req->cb); | |
378 | req->cb = cb; | |
379 | req->opaque = opaque; | |
380 | cmd->cid = cpu_to_le32(req->cid); | |
381 | ||
382 | trace_nvme_submit_command(s, q->index, req->cid); | |
383 | nvme_trace_command(cmd); | |
384 | qemu_mutex_lock(&q->lock); | |
385 | memcpy((uint8_t *)q->sq.queue + | |
386 | q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd)); | |
387 | q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE; | |
388 | q->need_kick++; | |
389 | nvme_kick(s, q); | |
390 | nvme_process_completion(s, q); | |
391 | qemu_mutex_unlock(&q->lock); | |
392 | } | |
393 | ||
394 | static void nvme_cmd_sync_cb(void *opaque, int ret) | |
395 | { | |
396 | int *pret = opaque; | |
397 | *pret = ret; | |
4720cbee | 398 | aio_wait_kick(); |
bdd6a90a FZ |
399 | } |
400 | ||
401 | static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q, | |
402 | NvmeCmd *cmd) | |
403 | { | |
404 | NVMeRequest *req; | |
405 | BDRVNVMeState *s = bs->opaque; | |
406 | int ret = -EINPROGRESS; | |
407 | req = nvme_get_free_req(q); | |
408 | if (!req) { | |
409 | return -EBUSY; | |
410 | } | |
411 | nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret); | |
412 | ||
413 | BDRV_POLL_WHILE(bs, ret == -EINPROGRESS); | |
414 | return ret; | |
415 | } | |
416 | ||
417 | static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp) | |
418 | { | |
419 | BDRVNVMeState *s = bs->opaque; | |
420 | NvmeIdCtrl *idctrl; | |
421 | NvmeIdNs *idns; | |
118d1b6a | 422 | NvmeLBAF *lbaf; |
bdd6a90a | 423 | uint8_t *resp; |
1120407b | 424 | int r; |
bdd6a90a FZ |
425 | uint64_t iova; |
426 | NvmeCmd cmd = { | |
427 | .opcode = NVME_ADM_CMD_IDENTIFY, | |
428 | .cdw10 = cpu_to_le32(0x1), | |
429 | }; | |
430 | ||
431 | resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl)); | |
432 | if (!resp) { | |
433 | error_setg(errp, "Cannot allocate buffer for identify response"); | |
434 | goto out; | |
435 | } | |
436 | idctrl = (NvmeIdCtrl *)resp; | |
437 | idns = (NvmeIdNs *)resp; | |
438 | r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova); | |
439 | if (r) { | |
440 | error_setg(errp, "Cannot map buffer for DMA"); | |
441 | goto out; | |
442 | } | |
443 | cmd.prp1 = cpu_to_le64(iova); | |
444 | ||
445 | if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { | |
446 | error_setg(errp, "Failed to identify controller"); | |
447 | goto out; | |
448 | } | |
449 | ||
450 | if (le32_to_cpu(idctrl->nn) < namespace) { | |
451 | error_setg(errp, "Invalid namespace"); | |
452 | goto out; | |
453 | } | |
454 | s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1; | |
455 | s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size; | |
456 | /* For now the page list buffer per command is one page, to hold at most | |
457 | * s->page_size / sizeof(uint64_t) entries. */ | |
458 | s->max_transfer = MIN_NON_ZERO(s->max_transfer, | |
459 | s->page_size / sizeof(uint64_t) * s->page_size); | |
460 | ||
461 | memset(resp, 0, 4096); | |
462 | ||
463 | cmd.cdw10 = 0; | |
464 | cmd.nsid = cpu_to_le32(namespace); | |
465 | if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { | |
466 | error_setg(errp, "Failed to identify namespace"); | |
467 | goto out; | |
468 | } | |
469 | ||
470 | s->nsze = le64_to_cpu(idns->nsze); | |
118d1b6a ML |
471 | lbaf = &idns->lbaf[NVME_ID_NS_FLBAS_INDEX(idns->flbas)]; |
472 | ||
473 | if (lbaf->ms) { | |
474 | error_setg(errp, "Namespaces with metadata are not yet supported"); | |
475 | goto out; | |
476 | } | |
477 | ||
1120407b HR |
478 | if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 || |
479 | (1 << lbaf->ds) > s->page_size) | |
480 | { | |
481 | error_setg(errp, "Namespace has unsupported block size (2^%d)", | |
482 | lbaf->ds); | |
118d1b6a ML |
483 | goto out; |
484 | } | |
bdd6a90a | 485 | |
118d1b6a | 486 | s->blkshift = lbaf->ds; |
bdd6a90a FZ |
487 | out: |
488 | qemu_vfio_dma_unmap(s->vfio, resp); | |
489 | qemu_vfree(resp); | |
490 | } | |
491 | ||
492 | static bool nvme_poll_queues(BDRVNVMeState *s) | |
493 | { | |
494 | bool progress = false; | |
495 | int i; | |
496 | ||
497 | for (i = 0; i < s->nr_queues; i++) { | |
498 | NVMeQueuePair *q = s->queues[i]; | |
499 | qemu_mutex_lock(&q->lock); | |
500 | while (nvme_process_completion(s, q)) { | |
501 | /* Keep polling */ | |
502 | progress = true; | |
503 | } | |
504 | qemu_mutex_unlock(&q->lock); | |
505 | } | |
506 | return progress; | |
507 | } | |
508 | ||
509 | static void nvme_handle_event(EventNotifier *n) | |
510 | { | |
511 | BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier); | |
512 | ||
513 | trace_nvme_handle_event(s); | |
bdd6a90a FZ |
514 | event_notifier_test_and_clear(n); |
515 | nvme_poll_queues(s); | |
bdd6a90a FZ |
516 | } |
517 | ||
518 | static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) | |
519 | { | |
520 | BDRVNVMeState *s = bs->opaque; | |
521 | int n = s->nr_queues; | |
522 | NVMeQueuePair *q; | |
523 | NvmeCmd cmd; | |
524 | int queue_size = NVME_QUEUE_SIZE; | |
525 | ||
526 | q = nvme_create_queue_pair(bs, n, queue_size, errp); | |
527 | if (!q) { | |
528 | return false; | |
529 | } | |
530 | cmd = (NvmeCmd) { | |
531 | .opcode = NVME_ADM_CMD_CREATE_CQ, | |
532 | .prp1 = cpu_to_le64(q->cq.iova), | |
533 | .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), | |
534 | .cdw11 = cpu_to_le32(0x3), | |
535 | }; | |
536 | if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { | |
537 | error_setg(errp, "Failed to create io queue [%d]", n); | |
538 | nvme_free_queue_pair(bs, q); | |
539 | return false; | |
540 | } | |
541 | cmd = (NvmeCmd) { | |
542 | .opcode = NVME_ADM_CMD_CREATE_SQ, | |
543 | .prp1 = cpu_to_le64(q->sq.iova), | |
544 | .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), | |
545 | .cdw11 = cpu_to_le32(0x1 | (n << 16)), | |
546 | }; | |
547 | if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { | |
548 | error_setg(errp, "Failed to create io queue [%d]", n); | |
549 | nvme_free_queue_pair(bs, q); | |
550 | return false; | |
551 | } | |
552 | s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1); | |
553 | s->queues[n] = q; | |
554 | s->nr_queues++; | |
555 | return true; | |
556 | } | |
557 | ||
558 | static bool nvme_poll_cb(void *opaque) | |
559 | { | |
560 | EventNotifier *e = opaque; | |
561 | BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier); | |
562 | bool progress = false; | |
563 | ||
564 | trace_nvme_poll_cb(s); | |
565 | progress = nvme_poll_queues(s); | |
566 | return progress; | |
567 | } | |
568 | ||
569 | static int nvme_init(BlockDriverState *bs, const char *device, int namespace, | |
570 | Error **errp) | |
571 | { | |
572 | BDRVNVMeState *s = bs->opaque; | |
573 | int ret; | |
574 | uint64_t cap; | |
575 | uint64_t timeout_ms; | |
576 | uint64_t deadline, now; | |
577 | Error *local_err = NULL; | |
578 | ||
579 | qemu_co_mutex_init(&s->dma_map_lock); | |
580 | qemu_co_queue_init(&s->dma_flush_queue); | |
cc61b074 | 581 | s->device = g_strdup(device); |
bdd6a90a FZ |
582 | s->nsid = namespace; |
583 | s->aio_context = bdrv_get_aio_context(bs); | |
584 | ret = event_notifier_init(&s->irq_notifier, 0); | |
585 | if (ret) { | |
586 | error_setg(errp, "Failed to init event notifier"); | |
587 | return ret; | |
588 | } | |
589 | ||
590 | s->vfio = qemu_vfio_open_pci(device, errp); | |
591 | if (!s->vfio) { | |
592 | ret = -EINVAL; | |
9582f357 | 593 | goto out; |
bdd6a90a FZ |
594 | } |
595 | ||
596 | s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp); | |
597 | if (!s->regs) { | |
598 | ret = -EINVAL; | |
9582f357 | 599 | goto out; |
bdd6a90a FZ |
600 | } |
601 | ||
602 | /* Perform initialize sequence as described in NVMe spec "7.6.1 | |
603 | * Initialization". */ | |
604 | ||
605 | cap = le64_to_cpu(s->regs->cap); | |
606 | if (!(cap & (1ULL << 37))) { | |
607 | error_setg(errp, "Device doesn't support NVMe command set"); | |
608 | ret = -EINVAL; | |
9582f357 | 609 | goto out; |
bdd6a90a FZ |
610 | } |
611 | ||
612 | s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF))); | |
613 | s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t); | |
614 | bs->bl.opt_mem_alignment = s->page_size; | |
615 | timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000); | |
616 | ||
617 | /* Reset device to get a clean state. */ | |
618 | s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE); | |
619 | /* Wait for CSTS.RDY = 0. */ | |
620 | deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL; | |
621 | while (le32_to_cpu(s->regs->csts) & 0x1) { | |
622 | if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { | |
623 | error_setg(errp, "Timeout while waiting for device to reset (%" | |
624 | PRId64 " ms)", | |
625 | timeout_ms); | |
626 | ret = -ETIMEDOUT; | |
9582f357 | 627 | goto out; |
bdd6a90a FZ |
628 | } |
629 | } | |
630 | ||
631 | /* Set up admin queue. */ | |
632 | s->queues = g_new(NVMeQueuePair *, 1); | |
bdd6a90a FZ |
633 | s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp); |
634 | if (!s->queues[0]) { | |
635 | ret = -EINVAL; | |
9582f357 | 636 | goto out; |
bdd6a90a | 637 | } |
95667c3b | 638 | s->nr_queues = 1; |
bdd6a90a FZ |
639 | QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000); |
640 | s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE); | |
641 | s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova); | |
642 | s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova); | |
643 | ||
644 | /* After setting up all control registers we can enable device now. */ | |
645 | s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) | | |
646 | (ctz32(NVME_SQ_ENTRY_BYTES) << 16) | | |
647 | 0x1); | |
648 | /* Wait for CSTS.RDY = 1. */ | |
649 | now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | |
650 | deadline = now + timeout_ms * 1000000; | |
651 | while (!(le32_to_cpu(s->regs->csts) & 0x1)) { | |
652 | if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { | |
653 | error_setg(errp, "Timeout while waiting for device to start (%" | |
654 | PRId64 " ms)", | |
655 | timeout_ms); | |
656 | ret = -ETIMEDOUT; | |
9582f357 | 657 | goto out; |
bdd6a90a FZ |
658 | } |
659 | } | |
660 | ||
661 | ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier, | |
662 | VFIO_PCI_MSIX_IRQ_INDEX, errp); | |
663 | if (ret) { | |
9582f357 | 664 | goto out; |
bdd6a90a FZ |
665 | } |
666 | aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, | |
667 | false, nvme_handle_event, nvme_poll_cb); | |
668 | ||
78d8c99e | 669 | nvme_identify(bs, namespace, &local_err); |
bdd6a90a FZ |
670 | if (local_err) { |
671 | error_propagate(errp, local_err); | |
672 | ret = -EIO; | |
9582f357 | 673 | goto out; |
bdd6a90a FZ |
674 | } |
675 | ||
676 | /* Set up command queues. */ | |
677 | if (!nvme_add_io_queue(bs, errp)) { | |
678 | ret = -EIO; | |
bdd6a90a | 679 | } |
9582f357 FZ |
680 | out: |
681 | /* Cleaning up is done in nvme_file_open() upon error. */ | |
bdd6a90a FZ |
682 | return ret; |
683 | } | |
684 | ||
685 | /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example: | |
686 | * | |
687 | * nvme://0000:44:00.0/1 | |
688 | * | |
689 | * where the "nvme://" is a fixed form of the protocol prefix, the middle part | |
690 | * is the PCI address, and the last part is the namespace number starting from | |
691 | * 1 according to the NVMe spec. */ | |
692 | static void nvme_parse_filename(const char *filename, QDict *options, | |
693 | Error **errp) | |
694 | { | |
695 | int pref = strlen("nvme://"); | |
696 | ||
697 | if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) { | |
698 | const char *tmp = filename + pref; | |
699 | char *device; | |
700 | const char *namespace; | |
701 | unsigned long ns; | |
702 | const char *slash = strchr(tmp, '/'); | |
703 | if (!slash) { | |
625eaca9 | 704 | qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp); |
bdd6a90a FZ |
705 | return; |
706 | } | |
707 | device = g_strndup(tmp, slash - tmp); | |
625eaca9 | 708 | qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device); |
bdd6a90a FZ |
709 | g_free(device); |
710 | namespace = slash + 1; | |
711 | if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) { | |
712 | error_setg(errp, "Invalid namespace '%s', positive number expected", | |
713 | namespace); | |
714 | return; | |
715 | } | |
625eaca9 LV |
716 | qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE, |
717 | *namespace ? namespace : "1"); | |
bdd6a90a FZ |
718 | } |
719 | } | |
720 | ||
721 | static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable, | |
722 | Error **errp) | |
723 | { | |
724 | int ret; | |
725 | BDRVNVMeState *s = bs->opaque; | |
726 | NvmeCmd cmd = { | |
727 | .opcode = NVME_ADM_CMD_SET_FEATURES, | |
728 | .nsid = cpu_to_le32(s->nsid), | |
729 | .cdw10 = cpu_to_le32(0x06), | |
730 | .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00), | |
731 | }; | |
732 | ||
733 | ret = nvme_cmd_sync(bs, s->queues[0], &cmd); | |
734 | if (ret) { | |
735 | error_setg(errp, "Failed to configure NVMe write cache"); | |
736 | } | |
737 | return ret; | |
738 | } | |
739 | ||
740 | static void nvme_close(BlockDriverState *bs) | |
741 | { | |
742 | int i; | |
743 | BDRVNVMeState *s = bs->opaque; | |
744 | ||
745 | for (i = 0; i < s->nr_queues; ++i) { | |
746 | nvme_free_queue_pair(bs, s->queues[i]); | |
747 | } | |
9582f357 | 748 | g_free(s->queues); |
bdd6a90a FZ |
749 | aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, |
750 | false, NULL, NULL); | |
9582f357 | 751 | event_notifier_cleanup(&s->irq_notifier); |
bdd6a90a FZ |
752 | qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE); |
753 | qemu_vfio_close(s->vfio); | |
cc61b074 HR |
754 | |
755 | g_free(s->device); | |
bdd6a90a FZ |
756 | } |
757 | ||
758 | static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags, | |
759 | Error **errp) | |
760 | { | |
761 | const char *device; | |
762 | QemuOpts *opts; | |
763 | int namespace; | |
764 | int ret; | |
765 | BDRVNVMeState *s = bs->opaque; | |
766 | ||
767 | opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort); | |
768 | qemu_opts_absorb_qdict(opts, options, &error_abort); | |
769 | device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE); | |
770 | if (!device) { | |
771 | error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required"); | |
772 | qemu_opts_del(opts); | |
773 | return -EINVAL; | |
774 | } | |
775 | ||
776 | namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1); | |
777 | ret = nvme_init(bs, device, namespace, errp); | |
778 | qemu_opts_del(opts); | |
779 | if (ret) { | |
780 | goto fail; | |
781 | } | |
782 | if (flags & BDRV_O_NOCACHE) { | |
783 | if (!s->write_cache_supported) { | |
784 | error_setg(errp, | |
785 | "NVMe controller doesn't support write cache configuration"); | |
786 | ret = -EINVAL; | |
787 | } else { | |
788 | ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE), | |
789 | errp); | |
790 | } | |
791 | if (ret) { | |
792 | goto fail; | |
793 | } | |
794 | } | |
795 | bs->supported_write_flags = BDRV_REQ_FUA; | |
796 | return 0; | |
797 | fail: | |
798 | nvme_close(bs); | |
799 | return ret; | |
800 | } | |
801 | ||
802 | static int64_t nvme_getlength(BlockDriverState *bs) | |
803 | { | |
804 | BDRVNVMeState *s = bs->opaque; | |
118d1b6a ML |
805 | return s->nsze << s->blkshift; |
806 | } | |
bdd6a90a | 807 | |
1120407b | 808 | static uint32_t nvme_get_blocksize(BlockDriverState *bs) |
118d1b6a ML |
809 | { |
810 | BDRVNVMeState *s = bs->opaque; | |
1120407b HR |
811 | assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12); |
812 | return UINT32_C(1) << s->blkshift; | |
118d1b6a ML |
813 | } |
814 | ||
815 | static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz) | |
816 | { | |
1120407b | 817 | uint32_t blocksize = nvme_get_blocksize(bs); |
118d1b6a ML |
818 | bsz->phys = blocksize; |
819 | bsz->log = blocksize; | |
820 | return 0; | |
bdd6a90a FZ |
821 | } |
822 | ||
823 | /* Called with s->dma_map_lock */ | |
824 | static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs, | |
825 | QEMUIOVector *qiov) | |
826 | { | |
827 | int r = 0; | |
828 | BDRVNVMeState *s = bs->opaque; | |
829 | ||
830 | s->dma_map_count -= qiov->size; | |
831 | if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) { | |
832 | r = qemu_vfio_dma_reset_temporary(s->vfio); | |
833 | if (!r) { | |
834 | qemu_co_queue_restart_all(&s->dma_flush_queue); | |
835 | } | |
836 | } | |
837 | return r; | |
838 | } | |
839 | ||
840 | /* Called with s->dma_map_lock */ | |
841 | static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd, | |
842 | NVMeRequest *req, QEMUIOVector *qiov) | |
843 | { | |
844 | BDRVNVMeState *s = bs->opaque; | |
845 | uint64_t *pagelist = req->prp_list_page; | |
846 | int i, j, r; | |
847 | int entries = 0; | |
848 | ||
849 | assert(qiov->size); | |
850 | assert(QEMU_IS_ALIGNED(qiov->size, s->page_size)); | |
851 | assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t)); | |
852 | for (i = 0; i < qiov->niov; ++i) { | |
853 | bool retry = true; | |
854 | uint64_t iova; | |
855 | try_map: | |
856 | r = qemu_vfio_dma_map(s->vfio, | |
857 | qiov->iov[i].iov_base, | |
858 | qiov->iov[i].iov_len, | |
859 | true, &iova); | |
860 | if (r == -ENOMEM && retry) { | |
861 | retry = false; | |
862 | trace_nvme_dma_flush_queue_wait(s); | |
863 | if (s->dma_map_count) { | |
864 | trace_nvme_dma_map_flush(s); | |
865 | qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock); | |
866 | } else { | |
867 | r = qemu_vfio_dma_reset_temporary(s->vfio); | |
868 | if (r) { | |
869 | goto fail; | |
870 | } | |
871 | } | |
872 | goto try_map; | |
873 | } | |
874 | if (r) { | |
875 | goto fail; | |
876 | } | |
877 | ||
878 | for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) { | |
2916405a | 879 | pagelist[entries++] = cpu_to_le64(iova + j * s->page_size); |
bdd6a90a FZ |
880 | } |
881 | trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base, | |
882 | qiov->iov[i].iov_len / s->page_size); | |
883 | } | |
884 | ||
885 | s->dma_map_count += qiov->size; | |
886 | ||
887 | assert(entries <= s->page_size / sizeof(uint64_t)); | |
888 | switch (entries) { | |
889 | case 0: | |
890 | abort(); | |
891 | case 1: | |
2916405a | 892 | cmd->prp1 = pagelist[0]; |
bdd6a90a FZ |
893 | cmd->prp2 = 0; |
894 | break; | |
895 | case 2: | |
2916405a LF |
896 | cmd->prp1 = pagelist[0]; |
897 | cmd->prp2 = pagelist[1]; | |
bdd6a90a FZ |
898 | break; |
899 | default: | |
2916405a LF |
900 | cmd->prp1 = pagelist[0]; |
901 | cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t)); | |
bdd6a90a FZ |
902 | break; |
903 | } | |
904 | trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries); | |
905 | for (i = 0; i < entries; ++i) { | |
906 | trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]); | |
907 | } | |
908 | return 0; | |
909 | fail: | |
910 | /* No need to unmap [0 - i) iovs even if we've failed, since we don't | |
911 | * increment s->dma_map_count. This is okay for fixed mapping memory areas | |
912 | * because they are already mapped before calling this function; for | |
913 | * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by | |
914 | * calling qemu_vfio_dma_reset_temporary when necessary. */ | |
915 | return r; | |
916 | } | |
917 | ||
918 | typedef struct { | |
919 | Coroutine *co; | |
920 | int ret; | |
921 | AioContext *ctx; | |
922 | } NVMeCoData; | |
923 | ||
924 | static void nvme_rw_cb_bh(void *opaque) | |
925 | { | |
926 | NVMeCoData *data = opaque; | |
927 | qemu_coroutine_enter(data->co); | |
928 | } | |
929 | ||
930 | static void nvme_rw_cb(void *opaque, int ret) | |
931 | { | |
932 | NVMeCoData *data = opaque; | |
933 | data->ret = ret; | |
934 | if (!data->co) { | |
935 | /* The rw coroutine hasn't yielded, don't try to enter. */ | |
936 | return; | |
937 | } | |
938 | aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data); | |
939 | } | |
940 | ||
941 | static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs, | |
942 | uint64_t offset, uint64_t bytes, | |
943 | QEMUIOVector *qiov, | |
944 | bool is_write, | |
945 | int flags) | |
946 | { | |
947 | int r; | |
948 | BDRVNVMeState *s = bs->opaque; | |
949 | NVMeQueuePair *ioq = s->queues[1]; | |
950 | NVMeRequest *req; | |
118d1b6a ML |
951 | |
952 | uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) | | |
bdd6a90a FZ |
953 | (flags & BDRV_REQ_FUA ? 1 << 30 : 0); |
954 | NvmeCmd cmd = { | |
955 | .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ, | |
956 | .nsid = cpu_to_le32(s->nsid), | |
118d1b6a ML |
957 | .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF), |
958 | .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF), | |
bdd6a90a FZ |
959 | .cdw12 = cpu_to_le32(cdw12), |
960 | }; | |
961 | NVMeCoData data = { | |
962 | .ctx = bdrv_get_aio_context(bs), | |
963 | .ret = -EINPROGRESS, | |
964 | }; | |
965 | ||
966 | trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov); | |
967 | assert(s->nr_queues > 1); | |
968 | req = nvme_get_free_req(ioq); | |
969 | assert(req); | |
970 | ||
971 | qemu_co_mutex_lock(&s->dma_map_lock); | |
972 | r = nvme_cmd_map_qiov(bs, &cmd, req, qiov); | |
973 | qemu_co_mutex_unlock(&s->dma_map_lock); | |
974 | if (r) { | |
975 | req->busy = false; | |
976 | return r; | |
977 | } | |
978 | nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); | |
979 | ||
980 | data.co = qemu_coroutine_self(); | |
981 | while (data.ret == -EINPROGRESS) { | |
982 | qemu_coroutine_yield(); | |
983 | } | |
984 | ||
985 | qemu_co_mutex_lock(&s->dma_map_lock); | |
986 | r = nvme_cmd_unmap_qiov(bs, qiov); | |
987 | qemu_co_mutex_unlock(&s->dma_map_lock); | |
988 | if (r) { | |
989 | return r; | |
990 | } | |
991 | ||
992 | trace_nvme_rw_done(s, is_write, offset, bytes, data.ret); | |
993 | return data.ret; | |
994 | } | |
995 | ||
996 | static inline bool nvme_qiov_aligned(BlockDriverState *bs, | |
997 | const QEMUIOVector *qiov) | |
998 | { | |
999 | int i; | |
1000 | BDRVNVMeState *s = bs->opaque; | |
1001 | ||
1002 | for (i = 0; i < qiov->niov; ++i) { | |
1003 | if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) || | |
1004 | !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) { | |
1005 | trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base, | |
1006 | qiov->iov[i].iov_len, s->page_size); | |
1007 | return false; | |
1008 | } | |
1009 | } | |
1010 | return true; | |
1011 | } | |
1012 | ||
1013 | static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes, | |
1014 | QEMUIOVector *qiov, bool is_write, int flags) | |
1015 | { | |
1016 | BDRVNVMeState *s = bs->opaque; | |
1017 | int r; | |
1018 | uint8_t *buf = NULL; | |
1019 | QEMUIOVector local_qiov; | |
1020 | ||
1021 | assert(QEMU_IS_ALIGNED(offset, s->page_size)); | |
1022 | assert(QEMU_IS_ALIGNED(bytes, s->page_size)); | |
1023 | assert(bytes <= s->max_transfer); | |
1024 | if (nvme_qiov_aligned(bs, qiov)) { | |
1025 | return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags); | |
1026 | } | |
1027 | trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write); | |
1028 | buf = qemu_try_blockalign(bs, bytes); | |
1029 | ||
1030 | if (!buf) { | |
1031 | return -ENOMEM; | |
1032 | } | |
1033 | qemu_iovec_init(&local_qiov, 1); | |
1034 | if (is_write) { | |
1035 | qemu_iovec_to_buf(qiov, 0, buf, bytes); | |
1036 | } | |
1037 | qemu_iovec_add(&local_qiov, buf, bytes); | |
1038 | r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags); | |
1039 | qemu_iovec_destroy(&local_qiov); | |
1040 | if (!r && !is_write) { | |
1041 | qemu_iovec_from_buf(qiov, 0, buf, bytes); | |
1042 | } | |
1043 | qemu_vfree(buf); | |
1044 | return r; | |
1045 | } | |
1046 | ||
1047 | static coroutine_fn int nvme_co_preadv(BlockDriverState *bs, | |
1048 | uint64_t offset, uint64_t bytes, | |
1049 | QEMUIOVector *qiov, int flags) | |
1050 | { | |
1051 | return nvme_co_prw(bs, offset, bytes, qiov, false, flags); | |
1052 | } | |
1053 | ||
1054 | static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs, | |
1055 | uint64_t offset, uint64_t bytes, | |
1056 | QEMUIOVector *qiov, int flags) | |
1057 | { | |
1058 | return nvme_co_prw(bs, offset, bytes, qiov, true, flags); | |
1059 | } | |
1060 | ||
1061 | static coroutine_fn int nvme_co_flush(BlockDriverState *bs) | |
1062 | { | |
1063 | BDRVNVMeState *s = bs->opaque; | |
1064 | NVMeQueuePair *ioq = s->queues[1]; | |
1065 | NVMeRequest *req; | |
1066 | NvmeCmd cmd = { | |
1067 | .opcode = NVME_CMD_FLUSH, | |
1068 | .nsid = cpu_to_le32(s->nsid), | |
1069 | }; | |
1070 | NVMeCoData data = { | |
1071 | .ctx = bdrv_get_aio_context(bs), | |
1072 | .ret = -EINPROGRESS, | |
1073 | }; | |
1074 | ||
1075 | assert(s->nr_queues > 1); | |
1076 | req = nvme_get_free_req(ioq); | |
1077 | assert(req); | |
1078 | nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); | |
1079 | ||
1080 | data.co = qemu_coroutine_self(); | |
1081 | if (data.ret == -EINPROGRESS) { | |
1082 | qemu_coroutine_yield(); | |
1083 | } | |
1084 | ||
1085 | return data.ret; | |
1086 | } | |
1087 | ||
1088 | ||
1089 | static int nvme_reopen_prepare(BDRVReopenState *reopen_state, | |
1090 | BlockReopenQueue *queue, Error **errp) | |
1091 | { | |
1092 | return 0; | |
1093 | } | |
1094 | ||
998b3a1e | 1095 | static void nvme_refresh_filename(BlockDriverState *bs) |
bdd6a90a | 1096 | { |
cc61b074 | 1097 | BDRVNVMeState *s = bs->opaque; |
bdd6a90a | 1098 | |
cc61b074 HR |
1099 | snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i", |
1100 | s->device, s->nsid); | |
bdd6a90a FZ |
1101 | } |
1102 | ||
1103 | static void nvme_refresh_limits(BlockDriverState *bs, Error **errp) | |
1104 | { | |
1105 | BDRVNVMeState *s = bs->opaque; | |
1106 | ||
1107 | bs->bl.opt_mem_alignment = s->page_size; | |
1108 | bs->bl.request_alignment = s->page_size; | |
1109 | bs->bl.max_transfer = s->max_transfer; | |
1110 | } | |
1111 | ||
1112 | static void nvme_detach_aio_context(BlockDriverState *bs) | |
1113 | { | |
1114 | BDRVNVMeState *s = bs->opaque; | |
1115 | ||
1116 | aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, | |
1117 | false, NULL, NULL); | |
1118 | } | |
1119 | ||
1120 | static void nvme_attach_aio_context(BlockDriverState *bs, | |
1121 | AioContext *new_context) | |
1122 | { | |
1123 | BDRVNVMeState *s = bs->opaque; | |
1124 | ||
1125 | s->aio_context = new_context; | |
1126 | aio_set_event_notifier(new_context, &s->irq_notifier, | |
1127 | false, nvme_handle_event, nvme_poll_cb); | |
1128 | } | |
1129 | ||
1130 | static void nvme_aio_plug(BlockDriverState *bs) | |
1131 | { | |
1132 | BDRVNVMeState *s = bs->opaque; | |
2f0d8947 PB |
1133 | assert(!s->plugged); |
1134 | s->plugged = true; | |
bdd6a90a FZ |
1135 | } |
1136 | ||
1137 | static void nvme_aio_unplug(BlockDriverState *bs) | |
1138 | { | |
1139 | int i; | |
1140 | BDRVNVMeState *s = bs->opaque; | |
1141 | assert(s->plugged); | |
2f0d8947 PB |
1142 | s->plugged = false; |
1143 | for (i = 1; i < s->nr_queues; i++) { | |
1144 | NVMeQueuePair *q = s->queues[i]; | |
1145 | qemu_mutex_lock(&q->lock); | |
1146 | nvme_kick(s, q); | |
1147 | nvme_process_completion(s, q); | |
1148 | qemu_mutex_unlock(&q->lock); | |
bdd6a90a FZ |
1149 | } |
1150 | } | |
1151 | ||
9ed61612 FZ |
1152 | static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size) |
1153 | { | |
1154 | int ret; | |
1155 | BDRVNVMeState *s = bs->opaque; | |
1156 | ||
1157 | ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL); | |
1158 | if (ret) { | |
1159 | /* FIXME: we may run out of IOVA addresses after repeated | |
1160 | * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap | |
1161 | * doesn't reclaim addresses for fixed mappings. */ | |
1162 | error_report("nvme_register_buf failed: %s", strerror(-ret)); | |
1163 | } | |
1164 | } | |
1165 | ||
1166 | static void nvme_unregister_buf(BlockDriverState *bs, void *host) | |
1167 | { | |
1168 | BDRVNVMeState *s = bs->opaque; | |
1169 | ||
1170 | qemu_vfio_dma_unmap(s->vfio, host); | |
1171 | } | |
1172 | ||
2654267c HR |
1173 | static const char *const nvme_strong_runtime_opts[] = { |
1174 | NVME_BLOCK_OPT_DEVICE, | |
1175 | NVME_BLOCK_OPT_NAMESPACE, | |
1176 | ||
1177 | NULL | |
1178 | }; | |
1179 | ||
bdd6a90a FZ |
1180 | static BlockDriver bdrv_nvme = { |
1181 | .format_name = "nvme", | |
1182 | .protocol_name = "nvme", | |
1183 | .instance_size = sizeof(BDRVNVMeState), | |
1184 | ||
1185 | .bdrv_parse_filename = nvme_parse_filename, | |
1186 | .bdrv_file_open = nvme_file_open, | |
1187 | .bdrv_close = nvme_close, | |
1188 | .bdrv_getlength = nvme_getlength, | |
118d1b6a | 1189 | .bdrv_probe_blocksizes = nvme_probe_blocksizes, |
bdd6a90a FZ |
1190 | |
1191 | .bdrv_co_preadv = nvme_co_preadv, | |
1192 | .bdrv_co_pwritev = nvme_co_pwritev, | |
1193 | .bdrv_co_flush_to_disk = nvme_co_flush, | |
1194 | .bdrv_reopen_prepare = nvme_reopen_prepare, | |
1195 | ||
bdd6a90a FZ |
1196 | .bdrv_refresh_filename = nvme_refresh_filename, |
1197 | .bdrv_refresh_limits = nvme_refresh_limits, | |
2654267c | 1198 | .strong_runtime_opts = nvme_strong_runtime_opts, |
bdd6a90a FZ |
1199 | |
1200 | .bdrv_detach_aio_context = nvme_detach_aio_context, | |
1201 | .bdrv_attach_aio_context = nvme_attach_aio_context, | |
1202 | ||
1203 | .bdrv_io_plug = nvme_aio_plug, | |
1204 | .bdrv_io_unplug = nvme_aio_unplug, | |
9ed61612 FZ |
1205 | |
1206 | .bdrv_register_buf = nvme_register_buf, | |
1207 | .bdrv_unregister_buf = nvme_unregister_buf, | |
bdd6a90a FZ |
1208 | }; |
1209 | ||
1210 | static void bdrv_nvme_init(void) | |
1211 | { | |
1212 | bdrv_register(&bdrv_nvme); | |
1213 | } | |
1214 | ||
1215 | block_init(bdrv_nvme_init); |