]>
Commit | Line | Data |
---|---|---|
158142c2 FB |
1 | |
2 | /*============================================================================ | |
3 | ||
4 | This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic | |
5 | Package, Release 2b. | |
6 | ||
7 | Written by John R. Hauser. This work was made possible in part by the | |
8 | International Computer Science Institute, located at Suite 600, 1947 Center | |
9 | Street, Berkeley, California 94704. Funding was partially provided by the | |
10 | National Science Foundation under grant MIP-9311980. The original version | |
11 | of this code was written as part of a project to build a fixed-point vector | |
12 | processor in collaboration with the University of California at Berkeley, | |
13 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
14 | is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ | |
15 | arithmetic/SoftFloat.html'. | |
16 | ||
17 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has | |
18 | been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES | |
19 | RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS | |
20 | AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, | |
21 | COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE | |
22 | EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE | |
23 | INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR | |
24 | OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. | |
25 | ||
26 | Derivative works are acceptable, even for commercial purposes, so long as | |
27 | (1) the source code for the derivative work includes prominent notice that | |
28 | the work is derivative, and (2) the source code includes prominent notice with | |
29 | these four paragraphs for those parts of this code that are retained. | |
30 | ||
31 | =============================================================================*/ | |
32 | ||
fe76d976 PB |
33 | /* FIXME: Flush-To-Zero only effects results. Denormal inputs should also |
34 | be flushed to zero. */ | |
158142c2 FB |
35 | #include "softfloat.h" |
36 | ||
37 | /*---------------------------------------------------------------------------- | |
38 | | Primitive arithmetic functions, including multi-word arithmetic, and | |
39 | | division and square root approximations. (Can be specialized to target if | |
40 | | desired.) | |
41 | *----------------------------------------------------------------------------*/ | |
42 | #include "softfloat-macros.h" | |
43 | ||
44 | /*---------------------------------------------------------------------------- | |
45 | | Functions and definitions to determine: (1) whether tininess for underflow | |
46 | | is detected before or after rounding by default, (2) what (if anything) | |
47 | | happens when exceptions are raised, (3) how signaling NaNs are distinguished | |
48 | | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs | |
49 | | are propagated from function inputs to output. These details are target- | |
50 | | specific. | |
51 | *----------------------------------------------------------------------------*/ | |
52 | #include "softfloat-specialize.h" | |
53 | ||
54 | void set_float_rounding_mode(int val STATUS_PARAM) | |
55 | { | |
56 | STATUS(float_rounding_mode) = val; | |
57 | } | |
58 | ||
1d6bda35 FB |
59 | void set_float_exception_flags(int val STATUS_PARAM) |
60 | { | |
61 | STATUS(float_exception_flags) = val; | |
62 | } | |
63 | ||
158142c2 FB |
64 | #ifdef FLOATX80 |
65 | void set_floatx80_rounding_precision(int val STATUS_PARAM) | |
66 | { | |
67 | STATUS(floatx80_rounding_precision) = val; | |
68 | } | |
69 | #endif | |
70 | ||
71 | /*---------------------------------------------------------------------------- | |
72 | | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 | |
73 | | and 7, and returns the properly rounded 32-bit integer corresponding to the | |
74 | | input. If `zSign' is 1, the input is negated before being converted to an | |
75 | | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input | |
76 | | is simply rounded to an integer, with the inexact exception raised if the | |
77 | | input cannot be represented exactly as an integer. However, if the fixed- | |
78 | | point input is too large, the invalid exception is raised and the largest | |
79 | | positive or negative integer is returned. | |
80 | *----------------------------------------------------------------------------*/ | |
81 | ||
82 | static int32 roundAndPackInt32( flag zSign, bits64 absZ STATUS_PARAM) | |
83 | { | |
84 | int8 roundingMode; | |
85 | flag roundNearestEven; | |
86 | int8 roundIncrement, roundBits; | |
87 | int32 z; | |
88 | ||
89 | roundingMode = STATUS(float_rounding_mode); | |
90 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
91 | roundIncrement = 0x40; | |
92 | if ( ! roundNearestEven ) { | |
93 | if ( roundingMode == float_round_to_zero ) { | |
94 | roundIncrement = 0; | |
95 | } | |
96 | else { | |
97 | roundIncrement = 0x7F; | |
98 | if ( zSign ) { | |
99 | if ( roundingMode == float_round_up ) roundIncrement = 0; | |
100 | } | |
101 | else { | |
102 | if ( roundingMode == float_round_down ) roundIncrement = 0; | |
103 | } | |
104 | } | |
105 | } | |
106 | roundBits = absZ & 0x7F; | |
107 | absZ = ( absZ + roundIncrement )>>7; | |
108 | absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
109 | z = absZ; | |
110 | if ( zSign ) z = - z; | |
111 | if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { | |
112 | float_raise( float_flag_invalid STATUS_VAR); | |
113 | return zSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; | |
114 | } | |
115 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
116 | return z; | |
117 | ||
118 | } | |
119 | ||
120 | /*---------------------------------------------------------------------------- | |
121 | | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and | |
122 | | `absZ1', with binary point between bits 63 and 64 (between the input words), | |
123 | | and returns the properly rounded 64-bit integer corresponding to the input. | |
124 | | If `zSign' is 1, the input is negated before being converted to an integer. | |
125 | | Ordinarily, the fixed-point input is simply rounded to an integer, with | |
126 | | the inexact exception raised if the input cannot be represented exactly as | |
127 | | an integer. However, if the fixed-point input is too large, the invalid | |
128 | | exception is raised and the largest positive or negative integer is | |
129 | | returned. | |
130 | *----------------------------------------------------------------------------*/ | |
131 | ||
132 | static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 STATUS_PARAM) | |
133 | { | |
134 | int8 roundingMode; | |
135 | flag roundNearestEven, increment; | |
136 | int64 z; | |
137 | ||
138 | roundingMode = STATUS(float_rounding_mode); | |
139 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
140 | increment = ( (sbits64) absZ1 < 0 ); | |
141 | if ( ! roundNearestEven ) { | |
142 | if ( roundingMode == float_round_to_zero ) { | |
143 | increment = 0; | |
144 | } | |
145 | else { | |
146 | if ( zSign ) { | |
147 | increment = ( roundingMode == float_round_down ) && absZ1; | |
148 | } | |
149 | else { | |
150 | increment = ( roundingMode == float_round_up ) && absZ1; | |
151 | } | |
152 | } | |
153 | } | |
154 | if ( increment ) { | |
155 | ++absZ0; | |
156 | if ( absZ0 == 0 ) goto overflow; | |
157 | absZ0 &= ~ ( ( (bits64) ( absZ1<<1 ) == 0 ) & roundNearestEven ); | |
158 | } | |
159 | z = absZ0; | |
160 | if ( zSign ) z = - z; | |
161 | if ( z && ( ( z < 0 ) ^ zSign ) ) { | |
162 | overflow: | |
163 | float_raise( float_flag_invalid STATUS_VAR); | |
164 | return | |
165 | zSign ? (sbits64) LIT64( 0x8000000000000000 ) | |
166 | : LIT64( 0x7FFFFFFFFFFFFFFF ); | |
167 | } | |
168 | if ( absZ1 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
169 | return z; | |
170 | ||
171 | } | |
172 | ||
173 | /*---------------------------------------------------------------------------- | |
174 | | Returns the fraction bits of the single-precision floating-point value `a'. | |
175 | *----------------------------------------------------------------------------*/ | |
176 | ||
177 | INLINE bits32 extractFloat32Frac( float32 a ) | |
178 | { | |
179 | ||
f090c9d4 | 180 | return float32_val(a) & 0x007FFFFF; |
158142c2 FB |
181 | |
182 | } | |
183 | ||
184 | /*---------------------------------------------------------------------------- | |
185 | | Returns the exponent bits of the single-precision floating-point value `a'. | |
186 | *----------------------------------------------------------------------------*/ | |
187 | ||
188 | INLINE int16 extractFloat32Exp( float32 a ) | |
189 | { | |
190 | ||
f090c9d4 | 191 | return ( float32_val(a)>>23 ) & 0xFF; |
158142c2 FB |
192 | |
193 | } | |
194 | ||
195 | /*---------------------------------------------------------------------------- | |
196 | | Returns the sign bit of the single-precision floating-point value `a'. | |
197 | *----------------------------------------------------------------------------*/ | |
198 | ||
199 | INLINE flag extractFloat32Sign( float32 a ) | |
200 | { | |
201 | ||
f090c9d4 | 202 | return float32_val(a)>>31; |
158142c2 FB |
203 | |
204 | } | |
205 | ||
206 | /*---------------------------------------------------------------------------- | |
207 | | Normalizes the subnormal single-precision floating-point value represented | |
208 | | by the denormalized significand `aSig'. The normalized exponent and | |
209 | | significand are stored at the locations pointed to by `zExpPtr' and | |
210 | | `zSigPtr', respectively. | |
211 | *----------------------------------------------------------------------------*/ | |
212 | ||
213 | static void | |
214 | normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr ) | |
215 | { | |
216 | int8 shiftCount; | |
217 | ||
218 | shiftCount = countLeadingZeros32( aSig ) - 8; | |
219 | *zSigPtr = aSig<<shiftCount; | |
220 | *zExpPtr = 1 - shiftCount; | |
221 | ||
222 | } | |
223 | ||
224 | /*---------------------------------------------------------------------------- | |
225 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
226 | | single-precision floating-point value, returning the result. After being | |
227 | | shifted into the proper positions, the three fields are simply added | |
228 | | together to form the result. This means that any integer portion of `zSig' | |
229 | | will be added into the exponent. Since a properly normalized significand | |
230 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
231 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
232 | | significand. | |
233 | *----------------------------------------------------------------------------*/ | |
234 | ||
235 | INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig ) | |
236 | { | |
237 | ||
f090c9d4 PB |
238 | return make_float32( |
239 | ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig); | |
158142c2 FB |
240 | |
241 | } | |
242 | ||
243 | /*---------------------------------------------------------------------------- | |
244 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
245 | | and significand `zSig', and returns the proper single-precision floating- | |
246 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
247 | | value is simply rounded and packed into the single-precision format, with | |
248 | | the inexact exception raised if the abstract input cannot be represented | |
249 | | exactly. However, if the abstract value is too large, the overflow and | |
250 | | inexact exceptions are raised and an infinity or maximal finite value is | |
251 | | returned. If the abstract value is too small, the input value is rounded to | |
252 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
253 | | the abstract input cannot be represented exactly as a subnormal single- | |
254 | | precision floating-point number. | |
255 | | The input significand `zSig' has its binary point between bits 30 | |
256 | | and 29, which is 7 bits to the left of the usual location. This shifted | |
257 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
258 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
259 | | and it must not require rounding. In the usual case that `zSig' is | |
260 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
261 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
262 | | Binary Floating-Point Arithmetic. | |
263 | *----------------------------------------------------------------------------*/ | |
264 | ||
265 | static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig STATUS_PARAM) | |
266 | { | |
267 | int8 roundingMode; | |
268 | flag roundNearestEven; | |
269 | int8 roundIncrement, roundBits; | |
270 | flag isTiny; | |
271 | ||
272 | roundingMode = STATUS(float_rounding_mode); | |
273 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
274 | roundIncrement = 0x40; | |
275 | if ( ! roundNearestEven ) { | |
276 | if ( roundingMode == float_round_to_zero ) { | |
277 | roundIncrement = 0; | |
278 | } | |
279 | else { | |
280 | roundIncrement = 0x7F; | |
281 | if ( zSign ) { | |
282 | if ( roundingMode == float_round_up ) roundIncrement = 0; | |
283 | } | |
284 | else { | |
285 | if ( roundingMode == float_round_down ) roundIncrement = 0; | |
286 | } | |
287 | } | |
288 | } | |
289 | roundBits = zSig & 0x7F; | |
290 | if ( 0xFD <= (bits16) zExp ) { | |
291 | if ( ( 0xFD < zExp ) | |
292 | || ( ( zExp == 0xFD ) | |
293 | && ( (sbits32) ( zSig + roundIncrement ) < 0 ) ) | |
294 | ) { | |
295 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | |
f090c9d4 | 296 | return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 )); |
158142c2 FB |
297 | } |
298 | if ( zExp < 0 ) { | |
fe76d976 | 299 | if ( STATUS(flush_to_zero) ) return packFloat32( zSign, 0, 0 ); |
158142c2 FB |
300 | isTiny = |
301 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
302 | || ( zExp < -1 ) | |
303 | || ( zSig + roundIncrement < 0x80000000 ); | |
304 | shift32RightJamming( zSig, - zExp, &zSig ); | |
305 | zExp = 0; | |
306 | roundBits = zSig & 0x7F; | |
307 | if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR); | |
308 | } | |
309 | } | |
310 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
311 | zSig = ( zSig + roundIncrement )>>7; | |
312 | zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | |
313 | if ( zSig == 0 ) zExp = 0; | |
314 | return packFloat32( zSign, zExp, zSig ); | |
315 | ||
316 | } | |
317 | ||
318 | /*---------------------------------------------------------------------------- | |
319 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
320 | | and significand `zSig', and returns the proper single-precision floating- | |
321 | | point value corresponding to the abstract input. This routine is just like | |
322 | | `roundAndPackFloat32' except that `zSig' does not have to be normalized. | |
323 | | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | |
324 | | floating-point exponent. | |
325 | *----------------------------------------------------------------------------*/ | |
326 | ||
327 | static float32 | |
328 | normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig STATUS_PARAM) | |
329 | { | |
330 | int8 shiftCount; | |
331 | ||
332 | shiftCount = countLeadingZeros32( zSig ) - 1; | |
333 | return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR); | |
334 | ||
335 | } | |
336 | ||
337 | /*---------------------------------------------------------------------------- | |
338 | | Returns the fraction bits of the double-precision floating-point value `a'. | |
339 | *----------------------------------------------------------------------------*/ | |
340 | ||
341 | INLINE bits64 extractFloat64Frac( float64 a ) | |
342 | { | |
343 | ||
f090c9d4 | 344 | return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF ); |
158142c2 FB |
345 | |
346 | } | |
347 | ||
348 | /*---------------------------------------------------------------------------- | |
349 | | Returns the exponent bits of the double-precision floating-point value `a'. | |
350 | *----------------------------------------------------------------------------*/ | |
351 | ||
352 | INLINE int16 extractFloat64Exp( float64 a ) | |
353 | { | |
354 | ||
f090c9d4 | 355 | return ( float64_val(a)>>52 ) & 0x7FF; |
158142c2 FB |
356 | |
357 | } | |
358 | ||
359 | /*---------------------------------------------------------------------------- | |
360 | | Returns the sign bit of the double-precision floating-point value `a'. | |
361 | *----------------------------------------------------------------------------*/ | |
362 | ||
363 | INLINE flag extractFloat64Sign( float64 a ) | |
364 | { | |
365 | ||
f090c9d4 | 366 | return float64_val(a)>>63; |
158142c2 FB |
367 | |
368 | } | |
369 | ||
370 | /*---------------------------------------------------------------------------- | |
371 | | Normalizes the subnormal double-precision floating-point value represented | |
372 | | by the denormalized significand `aSig'. The normalized exponent and | |
373 | | significand are stored at the locations pointed to by `zExpPtr' and | |
374 | | `zSigPtr', respectively. | |
375 | *----------------------------------------------------------------------------*/ | |
376 | ||
377 | static void | |
378 | normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr ) | |
379 | { | |
380 | int8 shiftCount; | |
381 | ||
382 | shiftCount = countLeadingZeros64( aSig ) - 11; | |
383 | *zSigPtr = aSig<<shiftCount; | |
384 | *zExpPtr = 1 - shiftCount; | |
385 | ||
386 | } | |
387 | ||
388 | /*---------------------------------------------------------------------------- | |
389 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | |
390 | | double-precision floating-point value, returning the result. After being | |
391 | | shifted into the proper positions, the three fields are simply added | |
392 | | together to form the result. This means that any integer portion of `zSig' | |
393 | | will be added into the exponent. Since a properly normalized significand | |
394 | | will have an integer portion equal to 1, the `zExp' input should be 1 less | |
395 | | than the desired result exponent whenever `zSig' is a complete, normalized | |
396 | | significand. | |
397 | *----------------------------------------------------------------------------*/ | |
398 | ||
399 | INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig ) | |
400 | { | |
401 | ||
f090c9d4 PB |
402 | return make_float64( |
403 | ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig); | |
158142c2 FB |
404 | |
405 | } | |
406 | ||
407 | /*---------------------------------------------------------------------------- | |
408 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
409 | | and significand `zSig', and returns the proper double-precision floating- | |
410 | | point value corresponding to the abstract input. Ordinarily, the abstract | |
411 | | value is simply rounded and packed into the double-precision format, with | |
412 | | the inexact exception raised if the abstract input cannot be represented | |
413 | | exactly. However, if the abstract value is too large, the overflow and | |
414 | | inexact exceptions are raised and an infinity or maximal finite value is | |
415 | | returned. If the abstract value is too small, the input value is rounded | |
416 | | to a subnormal number, and the underflow and inexact exceptions are raised | |
417 | | if the abstract input cannot be represented exactly as a subnormal double- | |
418 | | precision floating-point number. | |
419 | | The input significand `zSig' has its binary point between bits 62 | |
420 | | and 61, which is 10 bits to the left of the usual location. This shifted | |
421 | | significand must be normalized or smaller. If `zSig' is not normalized, | |
422 | | `zExp' must be 0; in that case, the result returned is a subnormal number, | |
423 | | and it must not require rounding. In the usual case that `zSig' is | |
424 | | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | |
425 | | The handling of underflow and overflow follows the IEC/IEEE Standard for | |
426 | | Binary Floating-Point Arithmetic. | |
427 | *----------------------------------------------------------------------------*/ | |
428 | ||
429 | static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig STATUS_PARAM) | |
430 | { | |
431 | int8 roundingMode; | |
432 | flag roundNearestEven; | |
433 | int16 roundIncrement, roundBits; | |
434 | flag isTiny; | |
435 | ||
436 | roundingMode = STATUS(float_rounding_mode); | |
437 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
438 | roundIncrement = 0x200; | |
439 | if ( ! roundNearestEven ) { | |
440 | if ( roundingMode == float_round_to_zero ) { | |
441 | roundIncrement = 0; | |
442 | } | |
443 | else { | |
444 | roundIncrement = 0x3FF; | |
445 | if ( zSign ) { | |
446 | if ( roundingMode == float_round_up ) roundIncrement = 0; | |
447 | } | |
448 | else { | |
449 | if ( roundingMode == float_round_down ) roundIncrement = 0; | |
450 | } | |
451 | } | |
452 | } | |
453 | roundBits = zSig & 0x3FF; | |
454 | if ( 0x7FD <= (bits16) zExp ) { | |
455 | if ( ( 0x7FD < zExp ) | |
456 | || ( ( zExp == 0x7FD ) | |
457 | && ( (sbits64) ( zSig + roundIncrement ) < 0 ) ) | |
458 | ) { | |
459 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | |
f090c9d4 | 460 | return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 )); |
158142c2 FB |
461 | } |
462 | if ( zExp < 0 ) { | |
fe76d976 | 463 | if ( STATUS(flush_to_zero) ) return packFloat64( zSign, 0, 0 ); |
158142c2 FB |
464 | isTiny = |
465 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
466 | || ( zExp < -1 ) | |
467 | || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); | |
468 | shift64RightJamming( zSig, - zExp, &zSig ); | |
469 | zExp = 0; | |
470 | roundBits = zSig & 0x3FF; | |
471 | if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR); | |
472 | } | |
473 | } | |
474 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
475 | zSig = ( zSig + roundIncrement )>>10; | |
476 | zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); | |
477 | if ( zSig == 0 ) zExp = 0; | |
478 | return packFloat64( zSign, zExp, zSig ); | |
479 | ||
480 | } | |
481 | ||
482 | /*---------------------------------------------------------------------------- | |
483 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
484 | | and significand `zSig', and returns the proper double-precision floating- | |
485 | | point value corresponding to the abstract input. This routine is just like | |
486 | | `roundAndPackFloat64' except that `zSig' does not have to be normalized. | |
487 | | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' | |
488 | | floating-point exponent. | |
489 | *----------------------------------------------------------------------------*/ | |
490 | ||
491 | static float64 | |
492 | normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig STATUS_PARAM) | |
493 | { | |
494 | int8 shiftCount; | |
495 | ||
496 | shiftCount = countLeadingZeros64( zSig ) - 1; | |
497 | return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR); | |
498 | ||
499 | } | |
500 | ||
501 | #ifdef FLOATX80 | |
502 | ||
503 | /*---------------------------------------------------------------------------- | |
504 | | Returns the fraction bits of the extended double-precision floating-point | |
505 | | value `a'. | |
506 | *----------------------------------------------------------------------------*/ | |
507 | ||
508 | INLINE bits64 extractFloatx80Frac( floatx80 a ) | |
509 | { | |
510 | ||
511 | return a.low; | |
512 | ||
513 | } | |
514 | ||
515 | /*---------------------------------------------------------------------------- | |
516 | | Returns the exponent bits of the extended double-precision floating-point | |
517 | | value `a'. | |
518 | *----------------------------------------------------------------------------*/ | |
519 | ||
520 | INLINE int32 extractFloatx80Exp( floatx80 a ) | |
521 | { | |
522 | ||
523 | return a.high & 0x7FFF; | |
524 | ||
525 | } | |
526 | ||
527 | /*---------------------------------------------------------------------------- | |
528 | | Returns the sign bit of the extended double-precision floating-point value | |
529 | | `a'. | |
530 | *----------------------------------------------------------------------------*/ | |
531 | ||
532 | INLINE flag extractFloatx80Sign( floatx80 a ) | |
533 | { | |
534 | ||
535 | return a.high>>15; | |
536 | ||
537 | } | |
538 | ||
539 | /*---------------------------------------------------------------------------- | |
540 | | Normalizes the subnormal extended double-precision floating-point value | |
541 | | represented by the denormalized significand `aSig'. The normalized exponent | |
542 | | and significand are stored at the locations pointed to by `zExpPtr' and | |
543 | | `zSigPtr', respectively. | |
544 | *----------------------------------------------------------------------------*/ | |
545 | ||
546 | static void | |
547 | normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr ) | |
548 | { | |
549 | int8 shiftCount; | |
550 | ||
551 | shiftCount = countLeadingZeros64( aSig ); | |
552 | *zSigPtr = aSig<<shiftCount; | |
553 | *zExpPtr = 1 - shiftCount; | |
554 | ||
555 | } | |
556 | ||
557 | /*---------------------------------------------------------------------------- | |
558 | | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an | |
559 | | extended double-precision floating-point value, returning the result. | |
560 | *----------------------------------------------------------------------------*/ | |
561 | ||
562 | INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig ) | |
563 | { | |
564 | floatx80 z; | |
565 | ||
566 | z.low = zSig; | |
567 | z.high = ( ( (bits16) zSign )<<15 ) + zExp; | |
568 | return z; | |
569 | ||
570 | } | |
571 | ||
572 | /*---------------------------------------------------------------------------- | |
573 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
574 | | and extended significand formed by the concatenation of `zSig0' and `zSig1', | |
575 | | and returns the proper extended double-precision floating-point value | |
576 | | corresponding to the abstract input. Ordinarily, the abstract value is | |
577 | | rounded and packed into the extended double-precision format, with the | |
578 | | inexact exception raised if the abstract input cannot be represented | |
579 | | exactly. However, if the abstract value is too large, the overflow and | |
580 | | inexact exceptions are raised and an infinity or maximal finite value is | |
581 | | returned. If the abstract value is too small, the input value is rounded to | |
582 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
583 | | the abstract input cannot be represented exactly as a subnormal extended | |
584 | | double-precision floating-point number. | |
585 | | If `roundingPrecision' is 32 or 64, the result is rounded to the same | |
586 | | number of bits as single or double precision, respectively. Otherwise, the | |
587 | | result is rounded to the full precision of the extended double-precision | |
588 | | format. | |
589 | | The input significand must be normalized or smaller. If the input | |
590 | | significand is not normalized, `zExp' must be 0; in that case, the result | |
591 | | returned is a subnormal number, and it must not require rounding. The | |
592 | | handling of underflow and overflow follows the IEC/IEEE Standard for Binary | |
593 | | Floating-Point Arithmetic. | |
594 | *----------------------------------------------------------------------------*/ | |
595 | ||
596 | static floatx80 | |
597 | roundAndPackFloatx80( | |
598 | int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 | |
599 | STATUS_PARAM) | |
600 | { | |
601 | int8 roundingMode; | |
602 | flag roundNearestEven, increment, isTiny; | |
603 | int64 roundIncrement, roundMask, roundBits; | |
604 | ||
605 | roundingMode = STATUS(float_rounding_mode); | |
606 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
607 | if ( roundingPrecision == 80 ) goto precision80; | |
608 | if ( roundingPrecision == 64 ) { | |
609 | roundIncrement = LIT64( 0x0000000000000400 ); | |
610 | roundMask = LIT64( 0x00000000000007FF ); | |
611 | } | |
612 | else if ( roundingPrecision == 32 ) { | |
613 | roundIncrement = LIT64( 0x0000008000000000 ); | |
614 | roundMask = LIT64( 0x000000FFFFFFFFFF ); | |
615 | } | |
616 | else { | |
617 | goto precision80; | |
618 | } | |
619 | zSig0 |= ( zSig1 != 0 ); | |
620 | if ( ! roundNearestEven ) { | |
621 | if ( roundingMode == float_round_to_zero ) { | |
622 | roundIncrement = 0; | |
623 | } | |
624 | else { | |
625 | roundIncrement = roundMask; | |
626 | if ( zSign ) { | |
627 | if ( roundingMode == float_round_up ) roundIncrement = 0; | |
628 | } | |
629 | else { | |
630 | if ( roundingMode == float_round_down ) roundIncrement = 0; | |
631 | } | |
632 | } | |
633 | } | |
634 | roundBits = zSig0 & roundMask; | |
635 | if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { | |
636 | if ( ( 0x7FFE < zExp ) | |
637 | || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) | |
638 | ) { | |
639 | goto overflow; | |
640 | } | |
641 | if ( zExp <= 0 ) { | |
fe76d976 | 642 | if ( STATUS(flush_to_zero) ) return packFloatx80( zSign, 0, 0 ); |
158142c2 FB |
643 | isTiny = |
644 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
645 | || ( zExp < 0 ) | |
646 | || ( zSig0 <= zSig0 + roundIncrement ); | |
647 | shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); | |
648 | zExp = 0; | |
649 | roundBits = zSig0 & roundMask; | |
650 | if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR); | |
651 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
652 | zSig0 += roundIncrement; | |
653 | if ( (sbits64) zSig0 < 0 ) zExp = 1; | |
654 | roundIncrement = roundMask + 1; | |
655 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
656 | roundMask |= roundIncrement; | |
657 | } | |
658 | zSig0 &= ~ roundMask; | |
659 | return packFloatx80( zSign, zExp, zSig0 ); | |
660 | } | |
661 | } | |
662 | if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact; | |
663 | zSig0 += roundIncrement; | |
664 | if ( zSig0 < roundIncrement ) { | |
665 | ++zExp; | |
666 | zSig0 = LIT64( 0x8000000000000000 ); | |
667 | } | |
668 | roundIncrement = roundMask + 1; | |
669 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | |
670 | roundMask |= roundIncrement; | |
671 | } | |
672 | zSig0 &= ~ roundMask; | |
673 | if ( zSig0 == 0 ) zExp = 0; | |
674 | return packFloatx80( zSign, zExp, zSig0 ); | |
675 | precision80: | |
676 | increment = ( (sbits64) zSig1 < 0 ); | |
677 | if ( ! roundNearestEven ) { | |
678 | if ( roundingMode == float_round_to_zero ) { | |
679 | increment = 0; | |
680 | } | |
681 | else { | |
682 | if ( zSign ) { | |
683 | increment = ( roundingMode == float_round_down ) && zSig1; | |
684 | } | |
685 | else { | |
686 | increment = ( roundingMode == float_round_up ) && zSig1; | |
687 | } | |
688 | } | |
689 | } | |
690 | if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { | |
691 | if ( ( 0x7FFE < zExp ) | |
692 | || ( ( zExp == 0x7FFE ) | |
693 | && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) | |
694 | && increment | |
695 | ) | |
696 | ) { | |
697 | roundMask = 0; | |
698 | overflow: | |
699 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | |
700 | if ( ( roundingMode == float_round_to_zero ) | |
701 | || ( zSign && ( roundingMode == float_round_up ) ) | |
702 | || ( ! zSign && ( roundingMode == float_round_down ) ) | |
703 | ) { | |
704 | return packFloatx80( zSign, 0x7FFE, ~ roundMask ); | |
705 | } | |
706 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
707 | } | |
708 | if ( zExp <= 0 ) { | |
709 | isTiny = | |
710 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
711 | || ( zExp < 0 ) | |
712 | || ! increment | |
713 | || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); | |
714 | shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); | |
715 | zExp = 0; | |
716 | if ( isTiny && zSig1 ) float_raise( float_flag_underflow STATUS_VAR); | |
717 | if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
718 | if ( roundNearestEven ) { | |
719 | increment = ( (sbits64) zSig1 < 0 ); | |
720 | } | |
721 | else { | |
722 | if ( zSign ) { | |
723 | increment = ( roundingMode == float_round_down ) && zSig1; | |
724 | } | |
725 | else { | |
726 | increment = ( roundingMode == float_round_up ) && zSig1; | |
727 | } | |
728 | } | |
729 | if ( increment ) { | |
730 | ++zSig0; | |
731 | zSig0 &= | |
732 | ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven ); | |
733 | if ( (sbits64) zSig0 < 0 ) zExp = 1; | |
734 | } | |
735 | return packFloatx80( zSign, zExp, zSig0 ); | |
736 | } | |
737 | } | |
738 | if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
739 | if ( increment ) { | |
740 | ++zSig0; | |
741 | if ( zSig0 == 0 ) { | |
742 | ++zExp; | |
743 | zSig0 = LIT64( 0x8000000000000000 ); | |
744 | } | |
745 | else { | |
746 | zSig0 &= ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven ); | |
747 | } | |
748 | } | |
749 | else { | |
750 | if ( zSig0 == 0 ) zExp = 0; | |
751 | } | |
752 | return packFloatx80( zSign, zExp, zSig0 ); | |
753 | ||
754 | } | |
755 | ||
756 | /*---------------------------------------------------------------------------- | |
757 | | Takes an abstract floating-point value having sign `zSign', exponent | |
758 | | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', | |
759 | | and returns the proper extended double-precision floating-point value | |
760 | | corresponding to the abstract input. This routine is just like | |
761 | | `roundAndPackFloatx80' except that the input significand does not have to be | |
762 | | normalized. | |
763 | *----------------------------------------------------------------------------*/ | |
764 | ||
765 | static floatx80 | |
766 | normalizeRoundAndPackFloatx80( | |
767 | int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 | |
768 | STATUS_PARAM) | |
769 | { | |
770 | int8 shiftCount; | |
771 | ||
772 | if ( zSig0 == 0 ) { | |
773 | zSig0 = zSig1; | |
774 | zSig1 = 0; | |
775 | zExp -= 64; | |
776 | } | |
777 | shiftCount = countLeadingZeros64( zSig0 ); | |
778 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
779 | zExp -= shiftCount; | |
780 | return | |
781 | roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 STATUS_VAR); | |
782 | ||
783 | } | |
784 | ||
785 | #endif | |
786 | ||
787 | #ifdef FLOAT128 | |
788 | ||
789 | /*---------------------------------------------------------------------------- | |
790 | | Returns the least-significant 64 fraction bits of the quadruple-precision | |
791 | | floating-point value `a'. | |
792 | *----------------------------------------------------------------------------*/ | |
793 | ||
794 | INLINE bits64 extractFloat128Frac1( float128 a ) | |
795 | { | |
796 | ||
797 | return a.low; | |
798 | ||
799 | } | |
800 | ||
801 | /*---------------------------------------------------------------------------- | |
802 | | Returns the most-significant 48 fraction bits of the quadruple-precision | |
803 | | floating-point value `a'. | |
804 | *----------------------------------------------------------------------------*/ | |
805 | ||
806 | INLINE bits64 extractFloat128Frac0( float128 a ) | |
807 | { | |
808 | ||
809 | return a.high & LIT64( 0x0000FFFFFFFFFFFF ); | |
810 | ||
811 | } | |
812 | ||
813 | /*---------------------------------------------------------------------------- | |
814 | | Returns the exponent bits of the quadruple-precision floating-point value | |
815 | | `a'. | |
816 | *----------------------------------------------------------------------------*/ | |
817 | ||
818 | INLINE int32 extractFloat128Exp( float128 a ) | |
819 | { | |
820 | ||
821 | return ( a.high>>48 ) & 0x7FFF; | |
822 | ||
823 | } | |
824 | ||
825 | /*---------------------------------------------------------------------------- | |
826 | | Returns the sign bit of the quadruple-precision floating-point value `a'. | |
827 | *----------------------------------------------------------------------------*/ | |
828 | ||
829 | INLINE flag extractFloat128Sign( float128 a ) | |
830 | { | |
831 | ||
832 | return a.high>>63; | |
833 | ||
834 | } | |
835 | ||
836 | /*---------------------------------------------------------------------------- | |
837 | | Normalizes the subnormal quadruple-precision floating-point value | |
838 | | represented by the denormalized significand formed by the concatenation of | |
839 | | `aSig0' and `aSig1'. The normalized exponent is stored at the location | |
840 | | pointed to by `zExpPtr'. The most significant 49 bits of the normalized | |
841 | | significand are stored at the location pointed to by `zSig0Ptr', and the | |
842 | | least significant 64 bits of the normalized significand are stored at the | |
843 | | location pointed to by `zSig1Ptr'. | |
844 | *----------------------------------------------------------------------------*/ | |
845 | ||
846 | static void | |
847 | normalizeFloat128Subnormal( | |
848 | bits64 aSig0, | |
849 | bits64 aSig1, | |
850 | int32 *zExpPtr, | |
851 | bits64 *zSig0Ptr, | |
852 | bits64 *zSig1Ptr | |
853 | ) | |
854 | { | |
855 | int8 shiftCount; | |
856 | ||
857 | if ( aSig0 == 0 ) { | |
858 | shiftCount = countLeadingZeros64( aSig1 ) - 15; | |
859 | if ( shiftCount < 0 ) { | |
860 | *zSig0Ptr = aSig1>>( - shiftCount ); | |
861 | *zSig1Ptr = aSig1<<( shiftCount & 63 ); | |
862 | } | |
863 | else { | |
864 | *zSig0Ptr = aSig1<<shiftCount; | |
865 | *zSig1Ptr = 0; | |
866 | } | |
867 | *zExpPtr = - shiftCount - 63; | |
868 | } | |
869 | else { | |
870 | shiftCount = countLeadingZeros64( aSig0 ) - 15; | |
871 | shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); | |
872 | *zExpPtr = 1 - shiftCount; | |
873 | } | |
874 | ||
875 | } | |
876 | ||
877 | /*---------------------------------------------------------------------------- | |
878 | | Packs the sign `zSign', the exponent `zExp', and the significand formed | |
879 | | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision | |
880 | | floating-point value, returning the result. After being shifted into the | |
881 | | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply | |
882 | | added together to form the most significant 32 bits of the result. This | |
883 | | means that any integer portion of `zSig0' will be added into the exponent. | |
884 | | Since a properly normalized significand will have an integer portion equal | |
885 | | to 1, the `zExp' input should be 1 less than the desired result exponent | |
886 | | whenever `zSig0' and `zSig1' concatenated form a complete, normalized | |
887 | | significand. | |
888 | *----------------------------------------------------------------------------*/ | |
889 | ||
890 | INLINE float128 | |
891 | packFloat128( flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 ) | |
892 | { | |
893 | float128 z; | |
894 | ||
895 | z.low = zSig1; | |
896 | z.high = ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<48 ) + zSig0; | |
897 | return z; | |
898 | ||
899 | } | |
900 | ||
901 | /*---------------------------------------------------------------------------- | |
902 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
903 | | and extended significand formed by the concatenation of `zSig0', `zSig1', | |
904 | | and `zSig2', and returns the proper quadruple-precision floating-point value | |
905 | | corresponding to the abstract input. Ordinarily, the abstract value is | |
906 | | simply rounded and packed into the quadruple-precision format, with the | |
907 | | inexact exception raised if the abstract input cannot be represented | |
908 | | exactly. However, if the abstract value is too large, the overflow and | |
909 | | inexact exceptions are raised and an infinity or maximal finite value is | |
910 | | returned. If the abstract value is too small, the input value is rounded to | |
911 | | a subnormal number, and the underflow and inexact exceptions are raised if | |
912 | | the abstract input cannot be represented exactly as a subnormal quadruple- | |
913 | | precision floating-point number. | |
914 | | The input significand must be normalized or smaller. If the input | |
915 | | significand is not normalized, `zExp' must be 0; in that case, the result | |
916 | | returned is a subnormal number, and it must not require rounding. In the | |
917 | | usual case that the input significand is normalized, `zExp' must be 1 less | |
918 | | than the ``true'' floating-point exponent. The handling of underflow and | |
919 | | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
920 | *----------------------------------------------------------------------------*/ | |
921 | ||
922 | static float128 | |
923 | roundAndPackFloat128( | |
924 | flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1, bits64 zSig2 STATUS_PARAM) | |
925 | { | |
926 | int8 roundingMode; | |
927 | flag roundNearestEven, increment, isTiny; | |
928 | ||
929 | roundingMode = STATUS(float_rounding_mode); | |
930 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | |
931 | increment = ( (sbits64) zSig2 < 0 ); | |
932 | if ( ! roundNearestEven ) { | |
933 | if ( roundingMode == float_round_to_zero ) { | |
934 | increment = 0; | |
935 | } | |
936 | else { | |
937 | if ( zSign ) { | |
938 | increment = ( roundingMode == float_round_down ) && zSig2; | |
939 | } | |
940 | else { | |
941 | increment = ( roundingMode == float_round_up ) && zSig2; | |
942 | } | |
943 | } | |
944 | } | |
945 | if ( 0x7FFD <= (bits32) zExp ) { | |
946 | if ( ( 0x7FFD < zExp ) | |
947 | || ( ( zExp == 0x7FFD ) | |
948 | && eq128( | |
949 | LIT64( 0x0001FFFFFFFFFFFF ), | |
950 | LIT64( 0xFFFFFFFFFFFFFFFF ), | |
951 | zSig0, | |
952 | zSig1 | |
953 | ) | |
954 | && increment | |
955 | ) | |
956 | ) { | |
957 | float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR); | |
958 | if ( ( roundingMode == float_round_to_zero ) | |
959 | || ( zSign && ( roundingMode == float_round_up ) ) | |
960 | || ( ! zSign && ( roundingMode == float_round_down ) ) | |
961 | ) { | |
962 | return | |
963 | packFloat128( | |
964 | zSign, | |
965 | 0x7FFE, | |
966 | LIT64( 0x0000FFFFFFFFFFFF ), | |
967 | LIT64( 0xFFFFFFFFFFFFFFFF ) | |
968 | ); | |
969 | } | |
970 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
971 | } | |
972 | if ( zExp < 0 ) { | |
fe76d976 | 973 | if ( STATUS(flush_to_zero) ) return packFloat128( zSign, 0, 0, 0 ); |
158142c2 FB |
974 | isTiny = |
975 | ( STATUS(float_detect_tininess) == float_tininess_before_rounding ) | |
976 | || ( zExp < -1 ) | |
977 | || ! increment | |
978 | || lt128( | |
979 | zSig0, | |
980 | zSig1, | |
981 | LIT64( 0x0001FFFFFFFFFFFF ), | |
982 | LIT64( 0xFFFFFFFFFFFFFFFF ) | |
983 | ); | |
984 | shift128ExtraRightJamming( | |
985 | zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); | |
986 | zExp = 0; | |
987 | if ( isTiny && zSig2 ) float_raise( float_flag_underflow STATUS_VAR); | |
988 | if ( roundNearestEven ) { | |
989 | increment = ( (sbits64) zSig2 < 0 ); | |
990 | } | |
991 | else { | |
992 | if ( zSign ) { | |
993 | increment = ( roundingMode == float_round_down ) && zSig2; | |
994 | } | |
995 | else { | |
996 | increment = ( roundingMode == float_round_up ) && zSig2; | |
997 | } | |
998 | } | |
999 | } | |
1000 | } | |
1001 | if ( zSig2 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
1002 | if ( increment ) { | |
1003 | add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); | |
1004 | zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven ); | |
1005 | } | |
1006 | else { | |
1007 | if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; | |
1008 | } | |
1009 | return packFloat128( zSign, zExp, zSig0, zSig1 ); | |
1010 | ||
1011 | } | |
1012 | ||
1013 | /*---------------------------------------------------------------------------- | |
1014 | | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | |
1015 | | and significand formed by the concatenation of `zSig0' and `zSig1', and | |
1016 | | returns the proper quadruple-precision floating-point value corresponding | |
1017 | | to the abstract input. This routine is just like `roundAndPackFloat128' | |
1018 | | except that the input significand has fewer bits and does not have to be | |
1019 | | normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- | |
1020 | | point exponent. | |
1021 | *----------------------------------------------------------------------------*/ | |
1022 | ||
1023 | static float128 | |
1024 | normalizeRoundAndPackFloat128( | |
1025 | flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 STATUS_PARAM) | |
1026 | { | |
1027 | int8 shiftCount; | |
1028 | bits64 zSig2; | |
1029 | ||
1030 | if ( zSig0 == 0 ) { | |
1031 | zSig0 = zSig1; | |
1032 | zSig1 = 0; | |
1033 | zExp -= 64; | |
1034 | } | |
1035 | shiftCount = countLeadingZeros64( zSig0 ) - 15; | |
1036 | if ( 0 <= shiftCount ) { | |
1037 | zSig2 = 0; | |
1038 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
1039 | } | |
1040 | else { | |
1041 | shift128ExtraRightJamming( | |
1042 | zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); | |
1043 | } | |
1044 | zExp -= shiftCount; | |
1045 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR); | |
1046 | ||
1047 | } | |
1048 | ||
1049 | #endif | |
1050 | ||
1051 | /*---------------------------------------------------------------------------- | |
1052 | | Returns the result of converting the 32-bit two's complement integer `a' | |
1053 | | to the single-precision floating-point format. The conversion is performed | |
1054 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1055 | *----------------------------------------------------------------------------*/ | |
1056 | ||
1057 | float32 int32_to_float32( int32 a STATUS_PARAM ) | |
1058 | { | |
1059 | flag zSign; | |
1060 | ||
f090c9d4 | 1061 | if ( a == 0 ) return float32_zero; |
158142c2 FB |
1062 | if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); |
1063 | zSign = ( a < 0 ); | |
1064 | return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a STATUS_VAR ); | |
1065 | ||
1066 | } | |
1067 | ||
1068 | /*---------------------------------------------------------------------------- | |
1069 | | Returns the result of converting the 32-bit two's complement integer `a' | |
1070 | | to the double-precision floating-point format. The conversion is performed | |
1071 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1072 | *----------------------------------------------------------------------------*/ | |
1073 | ||
1074 | float64 int32_to_float64( int32 a STATUS_PARAM ) | |
1075 | { | |
1076 | flag zSign; | |
1077 | uint32 absA; | |
1078 | int8 shiftCount; | |
1079 | bits64 zSig; | |
1080 | ||
f090c9d4 | 1081 | if ( a == 0 ) return float64_zero; |
158142c2 FB |
1082 | zSign = ( a < 0 ); |
1083 | absA = zSign ? - a : a; | |
1084 | shiftCount = countLeadingZeros32( absA ) + 21; | |
1085 | zSig = absA; | |
1086 | return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount ); | |
1087 | ||
1088 | } | |
1089 | ||
1090 | #ifdef FLOATX80 | |
1091 | ||
1092 | /*---------------------------------------------------------------------------- | |
1093 | | Returns the result of converting the 32-bit two's complement integer `a' | |
1094 | | to the extended double-precision floating-point format. The conversion | |
1095 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1096 | | Arithmetic. | |
1097 | *----------------------------------------------------------------------------*/ | |
1098 | ||
1099 | floatx80 int32_to_floatx80( int32 a STATUS_PARAM ) | |
1100 | { | |
1101 | flag zSign; | |
1102 | uint32 absA; | |
1103 | int8 shiftCount; | |
1104 | bits64 zSig; | |
1105 | ||
1106 | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
1107 | zSign = ( a < 0 ); | |
1108 | absA = zSign ? - a : a; | |
1109 | shiftCount = countLeadingZeros32( absA ) + 32; | |
1110 | zSig = absA; | |
1111 | return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); | |
1112 | ||
1113 | } | |
1114 | ||
1115 | #endif | |
1116 | ||
1117 | #ifdef FLOAT128 | |
1118 | ||
1119 | /*---------------------------------------------------------------------------- | |
1120 | | Returns the result of converting the 32-bit two's complement integer `a' to | |
1121 | | the quadruple-precision floating-point format. The conversion is performed | |
1122 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1123 | *----------------------------------------------------------------------------*/ | |
1124 | ||
1125 | float128 int32_to_float128( int32 a STATUS_PARAM ) | |
1126 | { | |
1127 | flag zSign; | |
1128 | uint32 absA; | |
1129 | int8 shiftCount; | |
1130 | bits64 zSig0; | |
1131 | ||
1132 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
1133 | zSign = ( a < 0 ); | |
1134 | absA = zSign ? - a : a; | |
1135 | shiftCount = countLeadingZeros32( absA ) + 17; | |
1136 | zSig0 = absA; | |
1137 | return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 ); | |
1138 | ||
1139 | } | |
1140 | ||
1141 | #endif | |
1142 | ||
1143 | /*---------------------------------------------------------------------------- | |
1144 | | Returns the result of converting the 64-bit two's complement integer `a' | |
1145 | | to the single-precision floating-point format. The conversion is performed | |
1146 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1147 | *----------------------------------------------------------------------------*/ | |
1148 | ||
1149 | float32 int64_to_float32( int64 a STATUS_PARAM ) | |
1150 | { | |
1151 | flag zSign; | |
1152 | uint64 absA; | |
1153 | int8 shiftCount; | |
1154 | ||
f090c9d4 | 1155 | if ( a == 0 ) return float32_zero; |
158142c2 FB |
1156 | zSign = ( a < 0 ); |
1157 | absA = zSign ? - a : a; | |
1158 | shiftCount = countLeadingZeros64( absA ) - 40; | |
1159 | if ( 0 <= shiftCount ) { | |
1160 | return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount ); | |
1161 | } | |
1162 | else { | |
1163 | shiftCount += 7; | |
1164 | if ( shiftCount < 0 ) { | |
1165 | shift64RightJamming( absA, - shiftCount, &absA ); | |
1166 | } | |
1167 | else { | |
1168 | absA <<= shiftCount; | |
1169 | } | |
1170 | return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA STATUS_VAR ); | |
1171 | } | |
1172 | ||
1173 | } | |
1174 | ||
3430b0be | 1175 | float32 uint64_to_float32( uint64 a STATUS_PARAM ) |
75d62a58 JM |
1176 | { |
1177 | int8 shiftCount; | |
1178 | ||
f090c9d4 | 1179 | if ( a == 0 ) return float32_zero; |
75d62a58 JM |
1180 | shiftCount = countLeadingZeros64( a ) - 40; |
1181 | if ( 0 <= shiftCount ) { | |
1182 | return packFloat32( 1 > 0, 0x95 - shiftCount, a<<shiftCount ); | |
1183 | } | |
1184 | else { | |
1185 | shiftCount += 7; | |
1186 | if ( shiftCount < 0 ) { | |
1187 | shift64RightJamming( a, - shiftCount, &a ); | |
1188 | } | |
1189 | else { | |
1190 | a <<= shiftCount; | |
1191 | } | |
1192 | return roundAndPackFloat32( 1 > 0, 0x9C - shiftCount, a STATUS_VAR ); | |
1193 | } | |
1194 | } | |
1195 | ||
158142c2 FB |
1196 | /*---------------------------------------------------------------------------- |
1197 | | Returns the result of converting the 64-bit two's complement integer `a' | |
1198 | | to the double-precision floating-point format. The conversion is performed | |
1199 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1200 | *----------------------------------------------------------------------------*/ | |
1201 | ||
1202 | float64 int64_to_float64( int64 a STATUS_PARAM ) | |
1203 | { | |
1204 | flag zSign; | |
1205 | ||
f090c9d4 | 1206 | if ( a == 0 ) return float64_zero; |
158142c2 FB |
1207 | if ( a == (sbits64) LIT64( 0x8000000000000000 ) ) { |
1208 | return packFloat64( 1, 0x43E, 0 ); | |
1209 | } | |
1210 | zSign = ( a < 0 ); | |
1211 | return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a STATUS_VAR ); | |
1212 | ||
1213 | } | |
1214 | ||
75d62a58 JM |
1215 | float64 uint64_to_float64( uint64 a STATUS_PARAM ) |
1216 | { | |
f090c9d4 | 1217 | if ( a == 0 ) return float64_zero; |
75d62a58 JM |
1218 | return normalizeRoundAndPackFloat64( 0, 0x43C, a STATUS_VAR ); |
1219 | ||
1220 | } | |
1221 | ||
158142c2 FB |
1222 | #ifdef FLOATX80 |
1223 | ||
1224 | /*---------------------------------------------------------------------------- | |
1225 | | Returns the result of converting the 64-bit two's complement integer `a' | |
1226 | | to the extended double-precision floating-point format. The conversion | |
1227 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1228 | | Arithmetic. | |
1229 | *----------------------------------------------------------------------------*/ | |
1230 | ||
1231 | floatx80 int64_to_floatx80( int64 a STATUS_PARAM ) | |
1232 | { | |
1233 | flag zSign; | |
1234 | uint64 absA; | |
1235 | int8 shiftCount; | |
1236 | ||
1237 | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | |
1238 | zSign = ( a < 0 ); | |
1239 | absA = zSign ? - a : a; | |
1240 | shiftCount = countLeadingZeros64( absA ); | |
1241 | return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount ); | |
1242 | ||
1243 | } | |
1244 | ||
1245 | #endif | |
1246 | ||
1247 | #ifdef FLOAT128 | |
1248 | ||
1249 | /*---------------------------------------------------------------------------- | |
1250 | | Returns the result of converting the 64-bit two's complement integer `a' to | |
1251 | | the quadruple-precision floating-point format. The conversion is performed | |
1252 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1253 | *----------------------------------------------------------------------------*/ | |
1254 | ||
1255 | float128 int64_to_float128( int64 a STATUS_PARAM ) | |
1256 | { | |
1257 | flag zSign; | |
1258 | uint64 absA; | |
1259 | int8 shiftCount; | |
1260 | int32 zExp; | |
1261 | bits64 zSig0, zSig1; | |
1262 | ||
1263 | if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
1264 | zSign = ( a < 0 ); | |
1265 | absA = zSign ? - a : a; | |
1266 | shiftCount = countLeadingZeros64( absA ) + 49; | |
1267 | zExp = 0x406E - shiftCount; | |
1268 | if ( 64 <= shiftCount ) { | |
1269 | zSig1 = 0; | |
1270 | zSig0 = absA; | |
1271 | shiftCount -= 64; | |
1272 | } | |
1273 | else { | |
1274 | zSig1 = absA; | |
1275 | zSig0 = 0; | |
1276 | } | |
1277 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | |
1278 | return packFloat128( zSign, zExp, zSig0, zSig1 ); | |
1279 | ||
1280 | } | |
1281 | ||
1282 | #endif | |
1283 | ||
1284 | /*---------------------------------------------------------------------------- | |
1285 | | Returns the result of converting the single-precision floating-point value | |
1286 | | `a' to the 32-bit two's complement integer format. The conversion is | |
1287 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1288 | | Arithmetic---which means in particular that the conversion is rounded | |
1289 | | according to the current rounding mode. If `a' is a NaN, the largest | |
1290 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
1291 | | largest integer with the same sign as `a' is returned. | |
1292 | *----------------------------------------------------------------------------*/ | |
1293 | ||
1294 | int32 float32_to_int32( float32 a STATUS_PARAM ) | |
1295 | { | |
1296 | flag aSign; | |
1297 | int16 aExp, shiftCount; | |
1298 | bits32 aSig; | |
1299 | bits64 aSig64; | |
1300 | ||
1301 | aSig = extractFloat32Frac( a ); | |
1302 | aExp = extractFloat32Exp( a ); | |
1303 | aSign = extractFloat32Sign( a ); | |
1304 | if ( ( aExp == 0xFF ) && aSig ) aSign = 0; | |
1305 | if ( aExp ) aSig |= 0x00800000; | |
1306 | shiftCount = 0xAF - aExp; | |
1307 | aSig64 = aSig; | |
1308 | aSig64 <<= 32; | |
1309 | if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 ); | |
1310 | return roundAndPackInt32( aSign, aSig64 STATUS_VAR ); | |
1311 | ||
1312 | } | |
1313 | ||
1314 | /*---------------------------------------------------------------------------- | |
1315 | | Returns the result of converting the single-precision floating-point value | |
1316 | | `a' to the 32-bit two's complement integer format. The conversion is | |
1317 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1318 | | Arithmetic, except that the conversion is always rounded toward zero. | |
1319 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
1320 | | the conversion overflows, the largest integer with the same sign as `a' is | |
1321 | | returned. | |
1322 | *----------------------------------------------------------------------------*/ | |
1323 | ||
1324 | int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM ) | |
1325 | { | |
1326 | flag aSign; | |
1327 | int16 aExp, shiftCount; | |
1328 | bits32 aSig; | |
1329 | int32 z; | |
1330 | ||
1331 | aSig = extractFloat32Frac( a ); | |
1332 | aExp = extractFloat32Exp( a ); | |
1333 | aSign = extractFloat32Sign( a ); | |
1334 | shiftCount = aExp - 0x9E; | |
1335 | if ( 0 <= shiftCount ) { | |
f090c9d4 | 1336 | if ( float32_val(a) != 0xCF000000 ) { |
158142c2 FB |
1337 | float_raise( float_flag_invalid STATUS_VAR); |
1338 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; | |
1339 | } | |
1340 | return (sbits32) 0x80000000; | |
1341 | } | |
1342 | else if ( aExp <= 0x7E ) { | |
1343 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
1344 | return 0; | |
1345 | } | |
1346 | aSig = ( aSig | 0x00800000 )<<8; | |
1347 | z = aSig>>( - shiftCount ); | |
1348 | if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { | |
1349 | STATUS(float_exception_flags) |= float_flag_inexact; | |
1350 | } | |
1351 | if ( aSign ) z = - z; | |
1352 | return z; | |
1353 | ||
1354 | } | |
1355 | ||
1356 | /*---------------------------------------------------------------------------- | |
1357 | | Returns the result of converting the single-precision floating-point value | |
1358 | | `a' to the 64-bit two's complement integer format. The conversion is | |
1359 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1360 | | Arithmetic---which means in particular that the conversion is rounded | |
1361 | | according to the current rounding mode. If `a' is a NaN, the largest | |
1362 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
1363 | | largest integer with the same sign as `a' is returned. | |
1364 | *----------------------------------------------------------------------------*/ | |
1365 | ||
1366 | int64 float32_to_int64( float32 a STATUS_PARAM ) | |
1367 | { | |
1368 | flag aSign; | |
1369 | int16 aExp, shiftCount; | |
1370 | bits32 aSig; | |
1371 | bits64 aSig64, aSigExtra; | |
1372 | ||
1373 | aSig = extractFloat32Frac( a ); | |
1374 | aExp = extractFloat32Exp( a ); | |
1375 | aSign = extractFloat32Sign( a ); | |
1376 | shiftCount = 0xBE - aExp; | |
1377 | if ( shiftCount < 0 ) { | |
1378 | float_raise( float_flag_invalid STATUS_VAR); | |
1379 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { | |
1380 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
1381 | } | |
1382 | return (sbits64) LIT64( 0x8000000000000000 ); | |
1383 | } | |
1384 | if ( aExp ) aSig |= 0x00800000; | |
1385 | aSig64 = aSig; | |
1386 | aSig64 <<= 40; | |
1387 | shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra ); | |
1388 | return roundAndPackInt64( aSign, aSig64, aSigExtra STATUS_VAR ); | |
1389 | ||
1390 | } | |
1391 | ||
1392 | /*---------------------------------------------------------------------------- | |
1393 | | Returns the result of converting the single-precision floating-point value | |
1394 | | `a' to the 64-bit two's complement integer format. The conversion is | |
1395 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1396 | | Arithmetic, except that the conversion is always rounded toward zero. If | |
1397 | | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
1398 | | conversion overflows, the largest integer with the same sign as `a' is | |
1399 | | returned. | |
1400 | *----------------------------------------------------------------------------*/ | |
1401 | ||
1402 | int64 float32_to_int64_round_to_zero( float32 a STATUS_PARAM ) | |
1403 | { | |
1404 | flag aSign; | |
1405 | int16 aExp, shiftCount; | |
1406 | bits32 aSig; | |
1407 | bits64 aSig64; | |
1408 | int64 z; | |
1409 | ||
1410 | aSig = extractFloat32Frac( a ); | |
1411 | aExp = extractFloat32Exp( a ); | |
1412 | aSign = extractFloat32Sign( a ); | |
1413 | shiftCount = aExp - 0xBE; | |
1414 | if ( 0 <= shiftCount ) { | |
f090c9d4 | 1415 | if ( float32_val(a) != 0xDF000000 ) { |
158142c2 FB |
1416 | float_raise( float_flag_invalid STATUS_VAR); |
1417 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { | |
1418 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
1419 | } | |
1420 | } | |
1421 | return (sbits64) LIT64( 0x8000000000000000 ); | |
1422 | } | |
1423 | else if ( aExp <= 0x7E ) { | |
1424 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
1425 | return 0; | |
1426 | } | |
1427 | aSig64 = aSig | 0x00800000; | |
1428 | aSig64 <<= 40; | |
1429 | z = aSig64>>( - shiftCount ); | |
1430 | if ( (bits64) ( aSig64<<( shiftCount & 63 ) ) ) { | |
1431 | STATUS(float_exception_flags) |= float_flag_inexact; | |
1432 | } | |
1433 | if ( aSign ) z = - z; | |
1434 | return z; | |
1435 | ||
1436 | } | |
1437 | ||
1438 | /*---------------------------------------------------------------------------- | |
1439 | | Returns the result of converting the single-precision floating-point value | |
1440 | | `a' to the double-precision floating-point format. The conversion is | |
1441 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1442 | | Arithmetic. | |
1443 | *----------------------------------------------------------------------------*/ | |
1444 | ||
1445 | float64 float32_to_float64( float32 a STATUS_PARAM ) | |
1446 | { | |
1447 | flag aSign; | |
1448 | int16 aExp; | |
1449 | bits32 aSig; | |
1450 | ||
1451 | aSig = extractFloat32Frac( a ); | |
1452 | aExp = extractFloat32Exp( a ); | |
1453 | aSign = extractFloat32Sign( a ); | |
1454 | if ( aExp == 0xFF ) { | |
1455 | if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR )); | |
1456 | return packFloat64( aSign, 0x7FF, 0 ); | |
1457 | } | |
1458 | if ( aExp == 0 ) { | |
1459 | if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); | |
1460 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1461 | --aExp; | |
1462 | } | |
1463 | return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 ); | |
1464 | ||
1465 | } | |
1466 | ||
1467 | #ifdef FLOATX80 | |
1468 | ||
1469 | /*---------------------------------------------------------------------------- | |
1470 | | Returns the result of converting the single-precision floating-point value | |
1471 | | `a' to the extended double-precision floating-point format. The conversion | |
1472 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1473 | | Arithmetic. | |
1474 | *----------------------------------------------------------------------------*/ | |
1475 | ||
1476 | floatx80 float32_to_floatx80( float32 a STATUS_PARAM ) | |
1477 | { | |
1478 | flag aSign; | |
1479 | int16 aExp; | |
1480 | bits32 aSig; | |
1481 | ||
1482 | aSig = extractFloat32Frac( a ); | |
1483 | aExp = extractFloat32Exp( a ); | |
1484 | aSign = extractFloat32Sign( a ); | |
1485 | if ( aExp == 0xFF ) { | |
1486 | if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR ) ); | |
1487 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
1488 | } | |
1489 | if ( aExp == 0 ) { | |
1490 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
1491 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1492 | } | |
1493 | aSig |= 0x00800000; | |
1494 | return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 ); | |
1495 | ||
1496 | } | |
1497 | ||
1498 | #endif | |
1499 | ||
1500 | #ifdef FLOAT128 | |
1501 | ||
1502 | /*---------------------------------------------------------------------------- | |
1503 | | Returns the result of converting the single-precision floating-point value | |
1504 | | `a' to the double-precision floating-point format. The conversion is | |
1505 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
1506 | | Arithmetic. | |
1507 | *----------------------------------------------------------------------------*/ | |
1508 | ||
1509 | float128 float32_to_float128( float32 a STATUS_PARAM ) | |
1510 | { | |
1511 | flag aSign; | |
1512 | int16 aExp; | |
1513 | bits32 aSig; | |
1514 | ||
1515 | aSig = extractFloat32Frac( a ); | |
1516 | aExp = extractFloat32Exp( a ); | |
1517 | aSign = extractFloat32Sign( a ); | |
1518 | if ( aExp == 0xFF ) { | |
1519 | if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR ) ); | |
1520 | return packFloat128( aSign, 0x7FFF, 0, 0 ); | |
1521 | } | |
1522 | if ( aExp == 0 ) { | |
1523 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | |
1524 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1525 | --aExp; | |
1526 | } | |
1527 | return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 ); | |
1528 | ||
1529 | } | |
1530 | ||
1531 | #endif | |
1532 | ||
1533 | /*---------------------------------------------------------------------------- | |
1534 | | Rounds the single-precision floating-point value `a' to an integer, and | |
1535 | | returns the result as a single-precision floating-point value. The | |
1536 | | operation is performed according to the IEC/IEEE Standard for Binary | |
1537 | | Floating-Point Arithmetic. | |
1538 | *----------------------------------------------------------------------------*/ | |
1539 | ||
1540 | float32 float32_round_to_int( float32 a STATUS_PARAM) | |
1541 | { | |
1542 | flag aSign; | |
1543 | int16 aExp; | |
1544 | bits32 lastBitMask, roundBitsMask; | |
1545 | int8 roundingMode; | |
f090c9d4 | 1546 | bits32 z; |
158142c2 FB |
1547 | |
1548 | aExp = extractFloat32Exp( a ); | |
1549 | if ( 0x96 <= aExp ) { | |
1550 | if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { | |
1551 | return propagateFloat32NaN( a, a STATUS_VAR ); | |
1552 | } | |
1553 | return a; | |
1554 | } | |
1555 | if ( aExp <= 0x7E ) { | |
f090c9d4 | 1556 | if ( (bits32) ( float32_val(a)<<1 ) == 0 ) return a; |
158142c2 FB |
1557 | STATUS(float_exception_flags) |= float_flag_inexact; |
1558 | aSign = extractFloat32Sign( a ); | |
1559 | switch ( STATUS(float_rounding_mode) ) { | |
1560 | case float_round_nearest_even: | |
1561 | if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { | |
1562 | return packFloat32( aSign, 0x7F, 0 ); | |
1563 | } | |
1564 | break; | |
1565 | case float_round_down: | |
f090c9d4 | 1566 | return make_float32(aSign ? 0xBF800000 : 0); |
158142c2 | 1567 | case float_round_up: |
f090c9d4 | 1568 | return make_float32(aSign ? 0x80000000 : 0x3F800000); |
158142c2 FB |
1569 | } |
1570 | return packFloat32( aSign, 0, 0 ); | |
1571 | } | |
1572 | lastBitMask = 1; | |
1573 | lastBitMask <<= 0x96 - aExp; | |
1574 | roundBitsMask = lastBitMask - 1; | |
f090c9d4 | 1575 | z = float32_val(a); |
158142c2 FB |
1576 | roundingMode = STATUS(float_rounding_mode); |
1577 | if ( roundingMode == float_round_nearest_even ) { | |
1578 | z += lastBitMask>>1; | |
1579 | if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; | |
1580 | } | |
1581 | else if ( roundingMode != float_round_to_zero ) { | |
f090c9d4 | 1582 | if ( extractFloat32Sign( make_float32(z) ) ^ ( roundingMode == float_round_up ) ) { |
158142c2 FB |
1583 | z += roundBitsMask; |
1584 | } | |
1585 | } | |
1586 | z &= ~ roundBitsMask; | |
f090c9d4 PB |
1587 | if ( z != float32_val(a) ) STATUS(float_exception_flags) |= float_flag_inexact; |
1588 | return make_float32(z); | |
158142c2 FB |
1589 | |
1590 | } | |
1591 | ||
1592 | /*---------------------------------------------------------------------------- | |
1593 | | Returns the result of adding the absolute values of the single-precision | |
1594 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
1595 | | before being returned. `zSign' is ignored if the result is a NaN. | |
1596 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
1597 | | Floating-Point Arithmetic. | |
1598 | *----------------------------------------------------------------------------*/ | |
1599 | ||
1600 | static float32 addFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM) | |
1601 | { | |
1602 | int16 aExp, bExp, zExp; | |
1603 | bits32 aSig, bSig, zSig; | |
1604 | int16 expDiff; | |
1605 | ||
1606 | aSig = extractFloat32Frac( a ); | |
1607 | aExp = extractFloat32Exp( a ); | |
1608 | bSig = extractFloat32Frac( b ); | |
1609 | bExp = extractFloat32Exp( b ); | |
1610 | expDiff = aExp - bExp; | |
1611 | aSig <<= 6; | |
1612 | bSig <<= 6; | |
1613 | if ( 0 < expDiff ) { | |
1614 | if ( aExp == 0xFF ) { | |
1615 | if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1616 | return a; | |
1617 | } | |
1618 | if ( bExp == 0 ) { | |
1619 | --expDiff; | |
1620 | } | |
1621 | else { | |
1622 | bSig |= 0x20000000; | |
1623 | } | |
1624 | shift32RightJamming( bSig, expDiff, &bSig ); | |
1625 | zExp = aExp; | |
1626 | } | |
1627 | else if ( expDiff < 0 ) { | |
1628 | if ( bExp == 0xFF ) { | |
1629 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1630 | return packFloat32( zSign, 0xFF, 0 ); | |
1631 | } | |
1632 | if ( aExp == 0 ) { | |
1633 | ++expDiff; | |
1634 | } | |
1635 | else { | |
1636 | aSig |= 0x20000000; | |
1637 | } | |
1638 | shift32RightJamming( aSig, - expDiff, &aSig ); | |
1639 | zExp = bExp; | |
1640 | } | |
1641 | else { | |
1642 | if ( aExp == 0xFF ) { | |
1643 | if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1644 | return a; | |
1645 | } | |
fe76d976 PB |
1646 | if ( aExp == 0 ) { |
1647 | if ( STATUS(flush_to_zero) ) return packFloat32( zSign, 0, 0 ); | |
1648 | return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); | |
1649 | } | |
158142c2 FB |
1650 | zSig = 0x40000000 + aSig + bSig; |
1651 | zExp = aExp; | |
1652 | goto roundAndPack; | |
1653 | } | |
1654 | aSig |= 0x20000000; | |
1655 | zSig = ( aSig + bSig )<<1; | |
1656 | --zExp; | |
1657 | if ( (sbits32) zSig < 0 ) { | |
1658 | zSig = aSig + bSig; | |
1659 | ++zExp; | |
1660 | } | |
1661 | roundAndPack: | |
1662 | return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | |
1663 | ||
1664 | } | |
1665 | ||
1666 | /*---------------------------------------------------------------------------- | |
1667 | | Returns the result of subtracting the absolute values of the single- | |
1668 | | precision floating-point values `a' and `b'. If `zSign' is 1, the | |
1669 | | difference is negated before being returned. `zSign' is ignored if the | |
1670 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
1671 | | Standard for Binary Floating-Point Arithmetic. | |
1672 | *----------------------------------------------------------------------------*/ | |
1673 | ||
1674 | static float32 subFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM) | |
1675 | { | |
1676 | int16 aExp, bExp, zExp; | |
1677 | bits32 aSig, bSig, zSig; | |
1678 | int16 expDiff; | |
1679 | ||
1680 | aSig = extractFloat32Frac( a ); | |
1681 | aExp = extractFloat32Exp( a ); | |
1682 | bSig = extractFloat32Frac( b ); | |
1683 | bExp = extractFloat32Exp( b ); | |
1684 | expDiff = aExp - bExp; | |
1685 | aSig <<= 7; | |
1686 | bSig <<= 7; | |
1687 | if ( 0 < expDiff ) goto aExpBigger; | |
1688 | if ( expDiff < 0 ) goto bExpBigger; | |
1689 | if ( aExp == 0xFF ) { | |
1690 | if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1691 | float_raise( float_flag_invalid STATUS_VAR); | |
1692 | return float32_default_nan; | |
1693 | } | |
1694 | if ( aExp == 0 ) { | |
1695 | aExp = 1; | |
1696 | bExp = 1; | |
1697 | } | |
1698 | if ( bSig < aSig ) goto aBigger; | |
1699 | if ( aSig < bSig ) goto bBigger; | |
1700 | return packFloat32( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); | |
1701 | bExpBigger: | |
1702 | if ( bExp == 0xFF ) { | |
1703 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1704 | return packFloat32( zSign ^ 1, 0xFF, 0 ); | |
1705 | } | |
1706 | if ( aExp == 0 ) { | |
1707 | ++expDiff; | |
1708 | } | |
1709 | else { | |
1710 | aSig |= 0x40000000; | |
1711 | } | |
1712 | shift32RightJamming( aSig, - expDiff, &aSig ); | |
1713 | bSig |= 0x40000000; | |
1714 | bBigger: | |
1715 | zSig = bSig - aSig; | |
1716 | zExp = bExp; | |
1717 | zSign ^= 1; | |
1718 | goto normalizeRoundAndPack; | |
1719 | aExpBigger: | |
1720 | if ( aExp == 0xFF ) { | |
1721 | if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1722 | return a; | |
1723 | } | |
1724 | if ( bExp == 0 ) { | |
1725 | --expDiff; | |
1726 | } | |
1727 | else { | |
1728 | bSig |= 0x40000000; | |
1729 | } | |
1730 | shift32RightJamming( bSig, expDiff, &bSig ); | |
1731 | aSig |= 0x40000000; | |
1732 | aBigger: | |
1733 | zSig = aSig - bSig; | |
1734 | zExp = aExp; | |
1735 | normalizeRoundAndPack: | |
1736 | --zExp; | |
1737 | return normalizeRoundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | |
1738 | ||
1739 | } | |
1740 | ||
1741 | /*---------------------------------------------------------------------------- | |
1742 | | Returns the result of adding the single-precision floating-point values `a' | |
1743 | | and `b'. The operation is performed according to the IEC/IEEE Standard for | |
1744 | | Binary Floating-Point Arithmetic. | |
1745 | *----------------------------------------------------------------------------*/ | |
1746 | ||
1747 | float32 float32_add( float32 a, float32 b STATUS_PARAM ) | |
1748 | { | |
1749 | flag aSign, bSign; | |
1750 | ||
1751 | aSign = extractFloat32Sign( a ); | |
1752 | bSign = extractFloat32Sign( b ); | |
1753 | if ( aSign == bSign ) { | |
1754 | return addFloat32Sigs( a, b, aSign STATUS_VAR); | |
1755 | } | |
1756 | else { | |
1757 | return subFloat32Sigs( a, b, aSign STATUS_VAR ); | |
1758 | } | |
1759 | ||
1760 | } | |
1761 | ||
1762 | /*---------------------------------------------------------------------------- | |
1763 | | Returns the result of subtracting the single-precision floating-point values | |
1764 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
1765 | | for Binary Floating-Point Arithmetic. | |
1766 | *----------------------------------------------------------------------------*/ | |
1767 | ||
1768 | float32 float32_sub( float32 a, float32 b STATUS_PARAM ) | |
1769 | { | |
1770 | flag aSign, bSign; | |
1771 | ||
1772 | aSign = extractFloat32Sign( a ); | |
1773 | bSign = extractFloat32Sign( b ); | |
1774 | if ( aSign == bSign ) { | |
1775 | return subFloat32Sigs( a, b, aSign STATUS_VAR ); | |
1776 | } | |
1777 | else { | |
1778 | return addFloat32Sigs( a, b, aSign STATUS_VAR ); | |
1779 | } | |
1780 | ||
1781 | } | |
1782 | ||
1783 | /*---------------------------------------------------------------------------- | |
1784 | | Returns the result of multiplying the single-precision floating-point values | |
1785 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
1786 | | for Binary Floating-Point Arithmetic. | |
1787 | *----------------------------------------------------------------------------*/ | |
1788 | ||
1789 | float32 float32_mul( float32 a, float32 b STATUS_PARAM ) | |
1790 | { | |
1791 | flag aSign, bSign, zSign; | |
1792 | int16 aExp, bExp, zExp; | |
1793 | bits32 aSig, bSig; | |
1794 | bits64 zSig64; | |
1795 | bits32 zSig; | |
1796 | ||
1797 | aSig = extractFloat32Frac( a ); | |
1798 | aExp = extractFloat32Exp( a ); | |
1799 | aSign = extractFloat32Sign( a ); | |
1800 | bSig = extractFloat32Frac( b ); | |
1801 | bExp = extractFloat32Exp( b ); | |
1802 | bSign = extractFloat32Sign( b ); | |
1803 | zSign = aSign ^ bSign; | |
1804 | if ( aExp == 0xFF ) { | |
1805 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | |
1806 | return propagateFloat32NaN( a, b STATUS_VAR ); | |
1807 | } | |
1808 | if ( ( bExp | bSig ) == 0 ) { | |
1809 | float_raise( float_flag_invalid STATUS_VAR); | |
1810 | return float32_default_nan; | |
1811 | } | |
1812 | return packFloat32( zSign, 0xFF, 0 ); | |
1813 | } | |
1814 | if ( bExp == 0xFF ) { | |
1815 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1816 | if ( ( aExp | aSig ) == 0 ) { | |
1817 | float_raise( float_flag_invalid STATUS_VAR); | |
1818 | return float32_default_nan; | |
1819 | } | |
1820 | return packFloat32( zSign, 0xFF, 0 ); | |
1821 | } | |
1822 | if ( aExp == 0 ) { | |
1823 | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
1824 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1825 | } | |
1826 | if ( bExp == 0 ) { | |
1827 | if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
1828 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
1829 | } | |
1830 | zExp = aExp + bExp - 0x7F; | |
1831 | aSig = ( aSig | 0x00800000 )<<7; | |
1832 | bSig = ( bSig | 0x00800000 )<<8; | |
1833 | shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 ); | |
1834 | zSig = zSig64; | |
1835 | if ( 0 <= (sbits32) ( zSig<<1 ) ) { | |
1836 | zSig <<= 1; | |
1837 | --zExp; | |
1838 | } | |
1839 | return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | |
1840 | ||
1841 | } | |
1842 | ||
1843 | /*---------------------------------------------------------------------------- | |
1844 | | Returns the result of dividing the single-precision floating-point value `a' | |
1845 | | by the corresponding value `b'. The operation is performed according to the | |
1846 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1847 | *----------------------------------------------------------------------------*/ | |
1848 | ||
1849 | float32 float32_div( float32 a, float32 b STATUS_PARAM ) | |
1850 | { | |
1851 | flag aSign, bSign, zSign; | |
1852 | int16 aExp, bExp, zExp; | |
1853 | bits32 aSig, bSig, zSig; | |
1854 | ||
1855 | aSig = extractFloat32Frac( a ); | |
1856 | aExp = extractFloat32Exp( a ); | |
1857 | aSign = extractFloat32Sign( a ); | |
1858 | bSig = extractFloat32Frac( b ); | |
1859 | bExp = extractFloat32Exp( b ); | |
1860 | bSign = extractFloat32Sign( b ); | |
1861 | zSign = aSign ^ bSign; | |
1862 | if ( aExp == 0xFF ) { | |
1863 | if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1864 | if ( bExp == 0xFF ) { | |
1865 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1866 | float_raise( float_flag_invalid STATUS_VAR); | |
1867 | return float32_default_nan; | |
1868 | } | |
1869 | return packFloat32( zSign, 0xFF, 0 ); | |
1870 | } | |
1871 | if ( bExp == 0xFF ) { | |
1872 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1873 | return packFloat32( zSign, 0, 0 ); | |
1874 | } | |
1875 | if ( bExp == 0 ) { | |
1876 | if ( bSig == 0 ) { | |
1877 | if ( ( aExp | aSig ) == 0 ) { | |
1878 | float_raise( float_flag_invalid STATUS_VAR); | |
1879 | return float32_default_nan; | |
1880 | } | |
1881 | float_raise( float_flag_divbyzero STATUS_VAR); | |
1882 | return packFloat32( zSign, 0xFF, 0 ); | |
1883 | } | |
1884 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
1885 | } | |
1886 | if ( aExp == 0 ) { | |
1887 | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | |
1888 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1889 | } | |
1890 | zExp = aExp - bExp + 0x7D; | |
1891 | aSig = ( aSig | 0x00800000 )<<7; | |
1892 | bSig = ( bSig | 0x00800000 )<<8; | |
1893 | if ( bSig <= ( aSig + aSig ) ) { | |
1894 | aSig >>= 1; | |
1895 | ++zExp; | |
1896 | } | |
1897 | zSig = ( ( (bits64) aSig )<<32 ) / bSig; | |
1898 | if ( ( zSig & 0x3F ) == 0 ) { | |
1899 | zSig |= ( (bits64) bSig * zSig != ( (bits64) aSig )<<32 ); | |
1900 | } | |
1901 | return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR ); | |
1902 | ||
1903 | } | |
1904 | ||
1905 | /*---------------------------------------------------------------------------- | |
1906 | | Returns the remainder of the single-precision floating-point value `a' | |
1907 | | with respect to the corresponding value `b'. The operation is performed | |
1908 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
1909 | *----------------------------------------------------------------------------*/ | |
1910 | ||
1911 | float32 float32_rem( float32 a, float32 b STATUS_PARAM ) | |
1912 | { | |
1913 | flag aSign, bSign, zSign; | |
1914 | int16 aExp, bExp, expDiff; | |
1915 | bits32 aSig, bSig; | |
1916 | bits32 q; | |
1917 | bits64 aSig64, bSig64, q64; | |
1918 | bits32 alternateASig; | |
1919 | sbits32 sigMean; | |
1920 | ||
1921 | aSig = extractFloat32Frac( a ); | |
1922 | aExp = extractFloat32Exp( a ); | |
1923 | aSign = extractFloat32Sign( a ); | |
1924 | bSig = extractFloat32Frac( b ); | |
1925 | bExp = extractFloat32Exp( b ); | |
1926 | bSign = extractFloat32Sign( b ); | |
1927 | if ( aExp == 0xFF ) { | |
1928 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | |
1929 | return propagateFloat32NaN( a, b STATUS_VAR ); | |
1930 | } | |
1931 | float_raise( float_flag_invalid STATUS_VAR); | |
1932 | return float32_default_nan; | |
1933 | } | |
1934 | if ( bExp == 0xFF ) { | |
1935 | if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR ); | |
1936 | return a; | |
1937 | } | |
1938 | if ( bExp == 0 ) { | |
1939 | if ( bSig == 0 ) { | |
1940 | float_raise( float_flag_invalid STATUS_VAR); | |
1941 | return float32_default_nan; | |
1942 | } | |
1943 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | |
1944 | } | |
1945 | if ( aExp == 0 ) { | |
1946 | if ( aSig == 0 ) return a; | |
1947 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
1948 | } | |
1949 | expDiff = aExp - bExp; | |
1950 | aSig |= 0x00800000; | |
1951 | bSig |= 0x00800000; | |
1952 | if ( expDiff < 32 ) { | |
1953 | aSig <<= 8; | |
1954 | bSig <<= 8; | |
1955 | if ( expDiff < 0 ) { | |
1956 | if ( expDiff < -1 ) return a; | |
1957 | aSig >>= 1; | |
1958 | } | |
1959 | q = ( bSig <= aSig ); | |
1960 | if ( q ) aSig -= bSig; | |
1961 | if ( 0 < expDiff ) { | |
1962 | q = ( ( (bits64) aSig )<<32 ) / bSig; | |
1963 | q >>= 32 - expDiff; | |
1964 | bSig >>= 2; | |
1965 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
1966 | } | |
1967 | else { | |
1968 | aSig >>= 2; | |
1969 | bSig >>= 2; | |
1970 | } | |
1971 | } | |
1972 | else { | |
1973 | if ( bSig <= aSig ) aSig -= bSig; | |
1974 | aSig64 = ( (bits64) aSig )<<40; | |
1975 | bSig64 = ( (bits64) bSig )<<40; | |
1976 | expDiff -= 64; | |
1977 | while ( 0 < expDiff ) { | |
1978 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
1979 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
1980 | aSig64 = - ( ( bSig * q64 )<<38 ); | |
1981 | expDiff -= 62; | |
1982 | } | |
1983 | expDiff += 64; | |
1984 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | |
1985 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | |
1986 | q = q64>>( 64 - expDiff ); | |
1987 | bSig <<= 6; | |
1988 | aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; | |
1989 | } | |
1990 | do { | |
1991 | alternateASig = aSig; | |
1992 | ++q; | |
1993 | aSig -= bSig; | |
1994 | } while ( 0 <= (sbits32) aSig ); | |
1995 | sigMean = aSig + alternateASig; | |
1996 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
1997 | aSig = alternateASig; | |
1998 | } | |
1999 | zSign = ( (sbits32) aSig < 0 ); | |
2000 | if ( zSign ) aSig = - aSig; | |
2001 | return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig STATUS_VAR ); | |
2002 | ||
2003 | } | |
2004 | ||
2005 | /*---------------------------------------------------------------------------- | |
2006 | | Returns the square root of the single-precision floating-point value `a'. | |
2007 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
2008 | | Floating-Point Arithmetic. | |
2009 | *----------------------------------------------------------------------------*/ | |
2010 | ||
2011 | float32 float32_sqrt( float32 a STATUS_PARAM ) | |
2012 | { | |
2013 | flag aSign; | |
2014 | int16 aExp, zExp; | |
2015 | bits32 aSig, zSig; | |
2016 | bits64 rem, term; | |
2017 | ||
2018 | aSig = extractFloat32Frac( a ); | |
2019 | aExp = extractFloat32Exp( a ); | |
2020 | aSign = extractFloat32Sign( a ); | |
2021 | if ( aExp == 0xFF ) { | |
f090c9d4 | 2022 | if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR ); |
158142c2 FB |
2023 | if ( ! aSign ) return a; |
2024 | float_raise( float_flag_invalid STATUS_VAR); | |
2025 | return float32_default_nan; | |
2026 | } | |
2027 | if ( aSign ) { | |
2028 | if ( ( aExp | aSig ) == 0 ) return a; | |
2029 | float_raise( float_flag_invalid STATUS_VAR); | |
2030 | return float32_default_nan; | |
2031 | } | |
2032 | if ( aExp == 0 ) { | |
f090c9d4 | 2033 | if ( aSig == 0 ) return float32_zero; |
158142c2 FB |
2034 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); |
2035 | } | |
2036 | zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; | |
2037 | aSig = ( aSig | 0x00800000 )<<8; | |
2038 | zSig = estimateSqrt32( aExp, aSig ) + 2; | |
2039 | if ( ( zSig & 0x7F ) <= 5 ) { | |
2040 | if ( zSig < 2 ) { | |
2041 | zSig = 0x7FFFFFFF; | |
2042 | goto roundAndPack; | |
2043 | } | |
2044 | aSig >>= aExp & 1; | |
2045 | term = ( (bits64) zSig ) * zSig; | |
2046 | rem = ( ( (bits64) aSig )<<32 ) - term; | |
2047 | while ( (sbits64) rem < 0 ) { | |
2048 | --zSig; | |
2049 | rem += ( ( (bits64) zSig )<<1 ) | 1; | |
2050 | } | |
2051 | zSig |= ( rem != 0 ); | |
2052 | } | |
2053 | shift32RightJamming( zSig, 1, &zSig ); | |
2054 | roundAndPack: | |
2055 | return roundAndPackFloat32( 0, zExp, zSig STATUS_VAR ); | |
2056 | ||
2057 | } | |
2058 | ||
374dfc33 AJ |
2059 | /*---------------------------------------------------------------------------- |
2060 | | Returns the binary log of the single-precision floating-point value `a'. | |
2061 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
2062 | | Floating-Point Arithmetic. | |
2063 | *----------------------------------------------------------------------------*/ | |
2064 | float32 float32_log2( float32 a STATUS_PARAM ) | |
2065 | { | |
2066 | flag aSign, zSign; | |
2067 | int16 aExp; | |
2068 | bits32 aSig, zSig, i; | |
2069 | ||
2070 | aSig = extractFloat32Frac( a ); | |
2071 | aExp = extractFloat32Exp( a ); | |
2072 | aSign = extractFloat32Sign( a ); | |
2073 | ||
2074 | if ( aExp == 0 ) { | |
2075 | if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 ); | |
2076 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | |
2077 | } | |
2078 | if ( aSign ) { | |
2079 | float_raise( float_flag_invalid STATUS_VAR); | |
2080 | return float32_default_nan; | |
2081 | } | |
2082 | if ( aExp == 0xFF ) { | |
2083 | if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR ); | |
2084 | return a; | |
2085 | } | |
2086 | ||
2087 | aExp -= 0x7F; | |
2088 | aSig |= 0x00800000; | |
2089 | zSign = aExp < 0; | |
2090 | zSig = aExp << 23; | |
2091 | ||
2092 | for (i = 1 << 22; i > 0; i >>= 1) { | |
2093 | aSig = ( (bits64)aSig * aSig ) >> 23; | |
2094 | if ( aSig & 0x01000000 ) { | |
2095 | aSig >>= 1; | |
2096 | zSig |= i; | |
2097 | } | |
2098 | } | |
2099 | ||
2100 | if ( zSign ) | |
2101 | zSig = -zSig; | |
2102 | ||
2103 | return normalizeRoundAndPackFloat32( zSign, 0x85, zSig STATUS_VAR ); | |
2104 | } | |
2105 | ||
158142c2 FB |
2106 | /*---------------------------------------------------------------------------- |
2107 | | Returns 1 if the single-precision floating-point value `a' is equal to | |
2108 | | the corresponding value `b', and 0 otherwise. The comparison is performed | |
2109 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2110 | *----------------------------------------------------------------------------*/ | |
2111 | ||
750afe93 | 2112 | int float32_eq( float32 a, float32 b STATUS_PARAM ) |
158142c2 FB |
2113 | { |
2114 | ||
2115 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2116 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2117 | ) { | |
2118 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | |
2119 | float_raise( float_flag_invalid STATUS_VAR); | |
2120 | } | |
2121 | return 0; | |
2122 | } | |
f090c9d4 PB |
2123 | return ( float32_val(a) == float32_val(b) ) || |
2124 | ( (bits32) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 ); | |
158142c2 FB |
2125 | |
2126 | } | |
2127 | ||
2128 | /*---------------------------------------------------------------------------- | |
2129 | | Returns 1 if the single-precision floating-point value `a' is less than | |
2130 | | or equal to the corresponding value `b', and 0 otherwise. The comparison | |
2131 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2132 | | Arithmetic. | |
2133 | *----------------------------------------------------------------------------*/ | |
2134 | ||
750afe93 | 2135 | int float32_le( float32 a, float32 b STATUS_PARAM ) |
158142c2 FB |
2136 | { |
2137 | flag aSign, bSign; | |
f090c9d4 | 2138 | bits32 av, bv; |
158142c2 FB |
2139 | |
2140 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2141 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2142 | ) { | |
2143 | float_raise( float_flag_invalid STATUS_VAR); | |
2144 | return 0; | |
2145 | } | |
2146 | aSign = extractFloat32Sign( a ); | |
2147 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
2148 | av = float32_val(a); |
2149 | bv = float32_val(b); | |
2150 | if ( aSign != bSign ) return aSign || ( (bits32) ( ( av | bv )<<1 ) == 0 ); | |
2151 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); | |
158142c2 FB |
2152 | |
2153 | } | |
2154 | ||
2155 | /*---------------------------------------------------------------------------- | |
2156 | | Returns 1 if the single-precision floating-point value `a' is less than | |
2157 | | the corresponding value `b', and 0 otherwise. The comparison is performed | |
2158 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2159 | *----------------------------------------------------------------------------*/ | |
2160 | ||
750afe93 | 2161 | int float32_lt( float32 a, float32 b STATUS_PARAM ) |
158142c2 FB |
2162 | { |
2163 | flag aSign, bSign; | |
f090c9d4 | 2164 | bits32 av, bv; |
158142c2 FB |
2165 | |
2166 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2167 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2168 | ) { | |
2169 | float_raise( float_flag_invalid STATUS_VAR); | |
2170 | return 0; | |
2171 | } | |
2172 | aSign = extractFloat32Sign( a ); | |
2173 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
2174 | av = float32_val(a); |
2175 | bv = float32_val(b); | |
2176 | if ( aSign != bSign ) return aSign && ( (bits32) ( ( av | bv )<<1 ) != 0 ); | |
2177 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); | |
158142c2 FB |
2178 | |
2179 | } | |
2180 | ||
2181 | /*---------------------------------------------------------------------------- | |
2182 | | Returns 1 if the single-precision floating-point value `a' is equal to | |
2183 | | the corresponding value `b', and 0 otherwise. The invalid exception is | |
2184 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
2185 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2186 | *----------------------------------------------------------------------------*/ | |
2187 | ||
750afe93 | 2188 | int float32_eq_signaling( float32 a, float32 b STATUS_PARAM ) |
158142c2 | 2189 | { |
f090c9d4 | 2190 | bits32 av, bv; |
158142c2 FB |
2191 | |
2192 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2193 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2194 | ) { | |
2195 | float_raise( float_flag_invalid STATUS_VAR); | |
2196 | return 0; | |
2197 | } | |
f090c9d4 PB |
2198 | av = float32_val(a); |
2199 | bv = float32_val(b); | |
2200 | return ( av == bv ) || ( (bits32) ( ( av | bv )<<1 ) == 0 ); | |
158142c2 FB |
2201 | |
2202 | } | |
2203 | ||
2204 | /*---------------------------------------------------------------------------- | |
2205 | | Returns 1 if the single-precision floating-point value `a' is less than or | |
2206 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
2207 | | cause an exception. Otherwise, the comparison is performed according to the | |
2208 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2209 | *----------------------------------------------------------------------------*/ | |
2210 | ||
750afe93 | 2211 | int float32_le_quiet( float32 a, float32 b STATUS_PARAM ) |
158142c2 FB |
2212 | { |
2213 | flag aSign, bSign; | |
f090c9d4 | 2214 | bits32 av, bv; |
158142c2 FB |
2215 | |
2216 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2217 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2218 | ) { | |
2219 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | |
2220 | float_raise( float_flag_invalid STATUS_VAR); | |
2221 | } | |
2222 | return 0; | |
2223 | } | |
2224 | aSign = extractFloat32Sign( a ); | |
2225 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
2226 | av = float32_val(a); |
2227 | bv = float32_val(b); | |
2228 | if ( aSign != bSign ) return aSign || ( (bits32) ( ( av | bv )<<1 ) == 0 ); | |
2229 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); | |
158142c2 FB |
2230 | |
2231 | } | |
2232 | ||
2233 | /*---------------------------------------------------------------------------- | |
2234 | | Returns 1 if the single-precision floating-point value `a' is less than | |
2235 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
2236 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
2237 | | Standard for Binary Floating-Point Arithmetic. | |
2238 | *----------------------------------------------------------------------------*/ | |
2239 | ||
750afe93 | 2240 | int float32_lt_quiet( float32 a, float32 b STATUS_PARAM ) |
158142c2 FB |
2241 | { |
2242 | flag aSign, bSign; | |
f090c9d4 | 2243 | bits32 av, bv; |
158142c2 FB |
2244 | |
2245 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | |
2246 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | |
2247 | ) { | |
2248 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | |
2249 | float_raise( float_flag_invalid STATUS_VAR); | |
2250 | } | |
2251 | return 0; | |
2252 | } | |
2253 | aSign = extractFloat32Sign( a ); | |
2254 | bSign = extractFloat32Sign( b ); | |
f090c9d4 PB |
2255 | av = float32_val(a); |
2256 | bv = float32_val(b); | |
2257 | if ( aSign != bSign ) return aSign && ( (bits32) ( ( av | bv )<<1 ) != 0 ); | |
2258 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); | |
158142c2 FB |
2259 | |
2260 | } | |
2261 | ||
2262 | /*---------------------------------------------------------------------------- | |
2263 | | Returns the result of converting the double-precision floating-point value | |
2264 | | `a' to the 32-bit two's complement integer format. The conversion is | |
2265 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2266 | | Arithmetic---which means in particular that the conversion is rounded | |
2267 | | according to the current rounding mode. If `a' is a NaN, the largest | |
2268 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
2269 | | largest integer with the same sign as `a' is returned. | |
2270 | *----------------------------------------------------------------------------*/ | |
2271 | ||
2272 | int32 float64_to_int32( float64 a STATUS_PARAM ) | |
2273 | { | |
2274 | flag aSign; | |
2275 | int16 aExp, shiftCount; | |
2276 | bits64 aSig; | |
2277 | ||
2278 | aSig = extractFloat64Frac( a ); | |
2279 | aExp = extractFloat64Exp( a ); | |
2280 | aSign = extractFloat64Sign( a ); | |
2281 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
2282 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
2283 | shiftCount = 0x42C - aExp; | |
2284 | if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); | |
2285 | return roundAndPackInt32( aSign, aSig STATUS_VAR ); | |
2286 | ||
2287 | } | |
2288 | ||
2289 | /*---------------------------------------------------------------------------- | |
2290 | | Returns the result of converting the double-precision floating-point value | |
2291 | | `a' to the 32-bit two's complement integer format. The conversion is | |
2292 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2293 | | Arithmetic, except that the conversion is always rounded toward zero. | |
2294 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
2295 | | the conversion overflows, the largest integer with the same sign as `a' is | |
2296 | | returned. | |
2297 | *----------------------------------------------------------------------------*/ | |
2298 | ||
2299 | int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM ) | |
2300 | { | |
2301 | flag aSign; | |
2302 | int16 aExp, shiftCount; | |
2303 | bits64 aSig, savedASig; | |
2304 | int32 z; | |
2305 | ||
2306 | aSig = extractFloat64Frac( a ); | |
2307 | aExp = extractFloat64Exp( a ); | |
2308 | aSign = extractFloat64Sign( a ); | |
2309 | if ( 0x41E < aExp ) { | |
2310 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | |
2311 | goto invalid; | |
2312 | } | |
2313 | else if ( aExp < 0x3FF ) { | |
2314 | if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
2315 | return 0; | |
2316 | } | |
2317 | aSig |= LIT64( 0x0010000000000000 ); | |
2318 | shiftCount = 0x433 - aExp; | |
2319 | savedASig = aSig; | |
2320 | aSig >>= shiftCount; | |
2321 | z = aSig; | |
2322 | if ( aSign ) z = - z; | |
2323 | if ( ( z < 0 ) ^ aSign ) { | |
2324 | invalid: | |
2325 | float_raise( float_flag_invalid STATUS_VAR); | |
2326 | return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; | |
2327 | } | |
2328 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
2329 | STATUS(float_exception_flags) |= float_flag_inexact; | |
2330 | } | |
2331 | return z; | |
2332 | ||
2333 | } | |
2334 | ||
2335 | /*---------------------------------------------------------------------------- | |
2336 | | Returns the result of converting the double-precision floating-point value | |
2337 | | `a' to the 64-bit two's complement integer format. The conversion is | |
2338 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2339 | | Arithmetic---which means in particular that the conversion is rounded | |
2340 | | according to the current rounding mode. If `a' is a NaN, the largest | |
2341 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
2342 | | largest integer with the same sign as `a' is returned. | |
2343 | *----------------------------------------------------------------------------*/ | |
2344 | ||
2345 | int64 float64_to_int64( float64 a STATUS_PARAM ) | |
2346 | { | |
2347 | flag aSign; | |
2348 | int16 aExp, shiftCount; | |
2349 | bits64 aSig, aSigExtra; | |
2350 | ||
2351 | aSig = extractFloat64Frac( a ); | |
2352 | aExp = extractFloat64Exp( a ); | |
2353 | aSign = extractFloat64Sign( a ); | |
2354 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
2355 | shiftCount = 0x433 - aExp; | |
2356 | if ( shiftCount <= 0 ) { | |
2357 | if ( 0x43E < aExp ) { | |
2358 | float_raise( float_flag_invalid STATUS_VAR); | |
2359 | if ( ! aSign | |
2360 | || ( ( aExp == 0x7FF ) | |
2361 | && ( aSig != LIT64( 0x0010000000000000 ) ) ) | |
2362 | ) { | |
2363 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
2364 | } | |
2365 | return (sbits64) LIT64( 0x8000000000000000 ); | |
2366 | } | |
2367 | aSigExtra = 0; | |
2368 | aSig <<= - shiftCount; | |
2369 | } | |
2370 | else { | |
2371 | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); | |
2372 | } | |
2373 | return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR ); | |
2374 | ||
2375 | } | |
2376 | ||
2377 | /*---------------------------------------------------------------------------- | |
2378 | | Returns the result of converting the double-precision floating-point value | |
2379 | | `a' to the 64-bit two's complement integer format. The conversion is | |
2380 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2381 | | Arithmetic, except that the conversion is always rounded toward zero. | |
2382 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
2383 | | the conversion overflows, the largest integer with the same sign as `a' is | |
2384 | | returned. | |
2385 | *----------------------------------------------------------------------------*/ | |
2386 | ||
2387 | int64 float64_to_int64_round_to_zero( float64 a STATUS_PARAM ) | |
2388 | { | |
2389 | flag aSign; | |
2390 | int16 aExp, shiftCount; | |
2391 | bits64 aSig; | |
2392 | int64 z; | |
2393 | ||
2394 | aSig = extractFloat64Frac( a ); | |
2395 | aExp = extractFloat64Exp( a ); | |
2396 | aSign = extractFloat64Sign( a ); | |
2397 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | |
2398 | shiftCount = aExp - 0x433; | |
2399 | if ( 0 <= shiftCount ) { | |
2400 | if ( 0x43E <= aExp ) { | |
f090c9d4 | 2401 | if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) { |
158142c2 FB |
2402 | float_raise( float_flag_invalid STATUS_VAR); |
2403 | if ( ! aSign | |
2404 | || ( ( aExp == 0x7FF ) | |
2405 | && ( aSig != LIT64( 0x0010000000000000 ) ) ) | |
2406 | ) { | |
2407 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
2408 | } | |
2409 | } | |
2410 | return (sbits64) LIT64( 0x8000000000000000 ); | |
2411 | } | |
2412 | z = aSig<<shiftCount; | |
2413 | } | |
2414 | else { | |
2415 | if ( aExp < 0x3FE ) { | |
2416 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
2417 | return 0; | |
2418 | } | |
2419 | z = aSig>>( - shiftCount ); | |
2420 | if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) { | |
2421 | STATUS(float_exception_flags) |= float_flag_inexact; | |
2422 | } | |
2423 | } | |
2424 | if ( aSign ) z = - z; | |
2425 | return z; | |
2426 | ||
2427 | } | |
2428 | ||
2429 | /*---------------------------------------------------------------------------- | |
2430 | | Returns the result of converting the double-precision floating-point value | |
2431 | | `a' to the single-precision floating-point format. The conversion is | |
2432 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2433 | | Arithmetic. | |
2434 | *----------------------------------------------------------------------------*/ | |
2435 | ||
2436 | float32 float64_to_float32( float64 a STATUS_PARAM ) | |
2437 | { | |
2438 | flag aSign; | |
2439 | int16 aExp; | |
2440 | bits64 aSig; | |
2441 | bits32 zSig; | |
2442 | ||
2443 | aSig = extractFloat64Frac( a ); | |
2444 | aExp = extractFloat64Exp( a ); | |
2445 | aSign = extractFloat64Sign( a ); | |
2446 | if ( aExp == 0x7FF ) { | |
2447 | if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a STATUS_VAR ) ); | |
2448 | return packFloat32( aSign, 0xFF, 0 ); | |
2449 | } | |
2450 | shift64RightJamming( aSig, 22, &aSig ); | |
2451 | zSig = aSig; | |
2452 | if ( aExp || zSig ) { | |
2453 | zSig |= 0x40000000; | |
2454 | aExp -= 0x381; | |
2455 | } | |
2456 | return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR ); | |
2457 | ||
2458 | } | |
2459 | ||
2460 | #ifdef FLOATX80 | |
2461 | ||
2462 | /*---------------------------------------------------------------------------- | |
2463 | | Returns the result of converting the double-precision floating-point value | |
2464 | | `a' to the extended double-precision floating-point format. The conversion | |
2465 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2466 | | Arithmetic. | |
2467 | *----------------------------------------------------------------------------*/ | |
2468 | ||
2469 | floatx80 float64_to_floatx80( float64 a STATUS_PARAM ) | |
2470 | { | |
2471 | flag aSign; | |
2472 | int16 aExp; | |
2473 | bits64 aSig; | |
2474 | ||
2475 | aSig = extractFloat64Frac( a ); | |
2476 | aExp = extractFloat64Exp( a ); | |
2477 | aSign = extractFloat64Sign( a ); | |
2478 | if ( aExp == 0x7FF ) { | |
2479 | if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a STATUS_VAR ) ); | |
2480 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
2481 | } | |
2482 | if ( aExp == 0 ) { | |
2483 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | |
2484 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
2485 | } | |
2486 | return | |
2487 | packFloatx80( | |
2488 | aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); | |
2489 | ||
2490 | } | |
2491 | ||
2492 | #endif | |
2493 | ||
2494 | #ifdef FLOAT128 | |
2495 | ||
2496 | /*---------------------------------------------------------------------------- | |
2497 | | Returns the result of converting the double-precision floating-point value | |
2498 | | `a' to the quadruple-precision floating-point format. The conversion is | |
2499 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
2500 | | Arithmetic. | |
2501 | *----------------------------------------------------------------------------*/ | |
2502 | ||
2503 | float128 float64_to_float128( float64 a STATUS_PARAM ) | |
2504 | { | |
2505 | flag aSign; | |
2506 | int16 aExp; | |
2507 | bits64 aSig, zSig0, zSig1; | |
2508 | ||
2509 | aSig = extractFloat64Frac( a ); | |
2510 | aExp = extractFloat64Exp( a ); | |
2511 | aSign = extractFloat64Sign( a ); | |
2512 | if ( aExp == 0x7FF ) { | |
2513 | if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a STATUS_VAR ) ); | |
2514 | return packFloat128( aSign, 0x7FFF, 0, 0 ); | |
2515 | } | |
2516 | if ( aExp == 0 ) { | |
2517 | if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); | |
2518 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
2519 | --aExp; | |
2520 | } | |
2521 | shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); | |
2522 | return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); | |
2523 | ||
2524 | } | |
2525 | ||
2526 | #endif | |
2527 | ||
2528 | /*---------------------------------------------------------------------------- | |
2529 | | Rounds the double-precision floating-point value `a' to an integer, and | |
2530 | | returns the result as a double-precision floating-point value. The | |
2531 | | operation is performed according to the IEC/IEEE Standard for Binary | |
2532 | | Floating-Point Arithmetic. | |
2533 | *----------------------------------------------------------------------------*/ | |
2534 | ||
2535 | float64 float64_round_to_int( float64 a STATUS_PARAM ) | |
2536 | { | |
2537 | flag aSign; | |
2538 | int16 aExp; | |
2539 | bits64 lastBitMask, roundBitsMask; | |
2540 | int8 roundingMode; | |
f090c9d4 | 2541 | bits64 z; |
158142c2 FB |
2542 | |
2543 | aExp = extractFloat64Exp( a ); | |
2544 | if ( 0x433 <= aExp ) { | |
2545 | if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { | |
2546 | return propagateFloat64NaN( a, a STATUS_VAR ); | |
2547 | } | |
2548 | return a; | |
2549 | } | |
2550 | if ( aExp < 0x3FF ) { | |
f090c9d4 | 2551 | if ( (bits64) ( float64_val(a)<<1 ) == 0 ) return a; |
158142c2 FB |
2552 | STATUS(float_exception_flags) |= float_flag_inexact; |
2553 | aSign = extractFloat64Sign( a ); | |
2554 | switch ( STATUS(float_rounding_mode) ) { | |
2555 | case float_round_nearest_even: | |
2556 | if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { | |
2557 | return packFloat64( aSign, 0x3FF, 0 ); | |
2558 | } | |
2559 | break; | |
2560 | case float_round_down: | |
f090c9d4 | 2561 | return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0); |
158142c2 | 2562 | case float_round_up: |
f090c9d4 PB |
2563 | return make_float64( |
2564 | aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 )); | |
158142c2 FB |
2565 | } |
2566 | return packFloat64( aSign, 0, 0 ); | |
2567 | } | |
2568 | lastBitMask = 1; | |
2569 | lastBitMask <<= 0x433 - aExp; | |
2570 | roundBitsMask = lastBitMask - 1; | |
f090c9d4 | 2571 | z = float64_val(a); |
158142c2 FB |
2572 | roundingMode = STATUS(float_rounding_mode); |
2573 | if ( roundingMode == float_round_nearest_even ) { | |
2574 | z += lastBitMask>>1; | |
2575 | if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; | |
2576 | } | |
2577 | else if ( roundingMode != float_round_to_zero ) { | |
f090c9d4 | 2578 | if ( extractFloat64Sign( make_float64(z) ) ^ ( roundingMode == float_round_up ) ) { |
158142c2 FB |
2579 | z += roundBitsMask; |
2580 | } | |
2581 | } | |
2582 | z &= ~ roundBitsMask; | |
f090c9d4 PB |
2583 | if ( z != float64_val(a) ) |
2584 | STATUS(float_exception_flags) |= float_flag_inexact; | |
2585 | return make_float64(z); | |
158142c2 FB |
2586 | |
2587 | } | |
2588 | ||
e6e5906b PB |
2589 | float64 float64_trunc_to_int( float64 a STATUS_PARAM) |
2590 | { | |
2591 | int oldmode; | |
2592 | float64 res; | |
2593 | oldmode = STATUS(float_rounding_mode); | |
2594 | STATUS(float_rounding_mode) = float_round_to_zero; | |
2595 | res = float64_round_to_int(a STATUS_VAR); | |
2596 | STATUS(float_rounding_mode) = oldmode; | |
2597 | return res; | |
2598 | } | |
2599 | ||
158142c2 FB |
2600 | /*---------------------------------------------------------------------------- |
2601 | | Returns the result of adding the absolute values of the double-precision | |
2602 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
2603 | | before being returned. `zSign' is ignored if the result is a NaN. | |
2604 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
2605 | | Floating-Point Arithmetic. | |
2606 | *----------------------------------------------------------------------------*/ | |
2607 | ||
2608 | static float64 addFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM ) | |
2609 | { | |
2610 | int16 aExp, bExp, zExp; | |
2611 | bits64 aSig, bSig, zSig; | |
2612 | int16 expDiff; | |
2613 | ||
2614 | aSig = extractFloat64Frac( a ); | |
2615 | aExp = extractFloat64Exp( a ); | |
2616 | bSig = extractFloat64Frac( b ); | |
2617 | bExp = extractFloat64Exp( b ); | |
2618 | expDiff = aExp - bExp; | |
2619 | aSig <<= 9; | |
2620 | bSig <<= 9; | |
2621 | if ( 0 < expDiff ) { | |
2622 | if ( aExp == 0x7FF ) { | |
2623 | if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
2624 | return a; | |
2625 | } | |
2626 | if ( bExp == 0 ) { | |
2627 | --expDiff; | |
2628 | } | |
2629 | else { | |
2630 | bSig |= LIT64( 0x2000000000000000 ); | |
2631 | } | |
2632 | shift64RightJamming( bSig, expDiff, &bSig ); | |
2633 | zExp = aExp; | |
2634 | } | |
2635 | else if ( expDiff < 0 ) { | |
2636 | if ( bExp == 0x7FF ) { | |
2637 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
2638 | return packFloat64( zSign, 0x7FF, 0 ); | |
2639 | } | |
2640 | if ( aExp == 0 ) { | |
2641 | ++expDiff; | |
2642 | } | |
2643 | else { | |
2644 | aSig |= LIT64( 0x2000000000000000 ); | |
2645 | } | |
2646 | shift64RightJamming( aSig, - expDiff, &aSig ); | |
2647 | zExp = bExp; | |
2648 | } | |
2649 | else { | |
2650 | if ( aExp == 0x7FF ) { | |
2651 | if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
2652 | return a; | |
2653 | } | |
fe76d976 PB |
2654 | if ( aExp == 0 ) { |
2655 | if ( STATUS(flush_to_zero) ) return packFloat64( zSign, 0, 0 ); | |
2656 | return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); | |
2657 | } | |
158142c2 FB |
2658 | zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; |
2659 | zExp = aExp; | |
2660 | goto roundAndPack; | |
2661 | } | |
2662 | aSig |= LIT64( 0x2000000000000000 ); | |
2663 | zSig = ( aSig + bSig )<<1; | |
2664 | --zExp; | |
2665 | if ( (sbits64) zSig < 0 ) { | |
2666 | zSig = aSig + bSig; | |
2667 | ++zExp; | |
2668 | } | |
2669 | roundAndPack: | |
2670 | return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); | |
2671 | ||
2672 | } | |
2673 | ||
2674 | /*---------------------------------------------------------------------------- | |
2675 | | Returns the result of subtracting the absolute values of the double- | |
2676 | | precision floating-point values `a' and `b'. If `zSign' is 1, the | |
2677 | | difference is negated before being returned. `zSign' is ignored if the | |
2678 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
2679 | | Standard for Binary Floating-Point Arithmetic. | |
2680 | *----------------------------------------------------------------------------*/ | |
2681 | ||
2682 | static float64 subFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM ) | |
2683 | { | |
2684 | int16 aExp, bExp, zExp; | |
2685 | bits64 aSig, bSig, zSig; | |
2686 | int16 expDiff; | |
2687 | ||
2688 | aSig = extractFloat64Frac( a ); | |
2689 | aExp = extractFloat64Exp( a ); | |
2690 | bSig = extractFloat64Frac( b ); | |
2691 | bExp = extractFloat64Exp( b ); | |
2692 | expDiff = aExp - bExp; | |
2693 | aSig <<= 10; | |
2694 | bSig <<= 10; | |
2695 | if ( 0 < expDiff ) goto aExpBigger; | |
2696 | if ( expDiff < 0 ) goto bExpBigger; | |
2697 | if ( aExp == 0x7FF ) { | |
2698 | if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
2699 | float_raise( float_flag_invalid STATUS_VAR); | |
2700 | return float64_default_nan; | |
2701 | } | |
2702 | if ( aExp == 0 ) { | |
2703 | aExp = 1; | |
2704 | bExp = 1; | |
2705 | } | |
2706 | if ( bSig < aSig ) goto aBigger; | |
2707 | if ( aSig < bSig ) goto bBigger; | |
2708 | return packFloat64( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); | |
2709 | bExpBigger: | |
2710 | if ( bExp == 0x7FF ) { | |
2711 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
2712 | return packFloat64( zSign ^ 1, 0x7FF, 0 ); | |
2713 | } | |
2714 | if ( aExp == 0 ) { | |
2715 | ++expDiff; | |
2716 | } | |
2717 | else { | |
2718 | aSig |= LIT64( 0x4000000000000000 ); | |
2719 | } | |
2720 | shift64RightJamming( aSig, - expDiff, &aSig ); | |
2721 | bSig |= LIT64( 0x4000000000000000 ); | |
2722 | bBigger: | |
2723 | zSig = bSig - aSig; | |
2724 | zExp = bExp; | |
2725 | zSign ^= 1; | |
2726 | goto normalizeRoundAndPack; | |
2727 | aExpBigger: | |
2728 | if ( aExp == 0x7FF ) { | |
2729 | if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
2730 | return a; | |
2731 | } | |
2732 | if ( bExp == 0 ) { | |
2733 | --expDiff; | |
2734 | } | |
2735 | else { | |
2736 | bSig |= LIT64( 0x4000000000000000 ); | |
2737 | } | |
2738 | shift64RightJamming( bSig, expDiff, &bSig ); | |
2739 | aSig |= LIT64( 0x4000000000000000 ); | |
2740 | aBigger: | |
2741 | zSig = aSig - bSig; | |
2742 | zExp = aExp; | |
2743 | normalizeRoundAndPack: | |
2744 | --zExp; | |
2745 | return normalizeRoundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); | |
2746 | ||
2747 | } | |
2748 | ||
2749 | /*---------------------------------------------------------------------------- | |
2750 | | Returns the result of adding the double-precision floating-point values `a' | |
2751 | | and `b'. The operation is performed according to the IEC/IEEE Standard for | |
2752 | | Binary Floating-Point Arithmetic. | |
2753 | *----------------------------------------------------------------------------*/ | |
2754 | ||
2755 | float64 float64_add( float64 a, float64 b STATUS_PARAM ) | |
2756 | { | |
2757 | flag aSign, bSign; | |
2758 | ||
2759 | aSign = extractFloat64Sign( a ); | |
2760 | bSign = extractFloat64Sign( b ); | |
2761 | if ( aSign == bSign ) { | |
2762 | return addFloat64Sigs( a, b, aSign STATUS_VAR ); | |
2763 | } | |
2764 | else { | |
2765 | return subFloat64Sigs( a, b, aSign STATUS_VAR ); | |
2766 | } | |
2767 | ||
2768 | } | |
2769 | ||
2770 | /*---------------------------------------------------------------------------- | |
2771 | | Returns the result of subtracting the double-precision floating-point values | |
2772 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
2773 | | for Binary Floating-Point Arithmetic. | |
2774 | *----------------------------------------------------------------------------*/ | |
2775 | ||
2776 | float64 float64_sub( float64 a, float64 b STATUS_PARAM ) | |
2777 | { | |
2778 | flag aSign, bSign; | |
2779 | ||
2780 | aSign = extractFloat64Sign( a ); | |
2781 | bSign = extractFloat64Sign( b ); | |
2782 | if ( aSign == bSign ) { | |
2783 | return subFloat64Sigs( a, b, aSign STATUS_VAR ); | |
2784 | } | |
2785 | else { | |
2786 | return addFloat64Sigs( a, b, aSign STATUS_VAR ); | |
2787 | } | |
2788 | ||
2789 | } | |
2790 | ||
2791 | /*---------------------------------------------------------------------------- | |
2792 | | Returns the result of multiplying the double-precision floating-point values | |
2793 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
2794 | | for Binary Floating-Point Arithmetic. | |
2795 | *----------------------------------------------------------------------------*/ | |
2796 | ||
2797 | float64 float64_mul( float64 a, float64 b STATUS_PARAM ) | |
2798 | { | |
2799 | flag aSign, bSign, zSign; | |
2800 | int16 aExp, bExp, zExp; | |
2801 | bits64 aSig, bSig, zSig0, zSig1; | |
2802 | ||
2803 | aSig = extractFloat64Frac( a ); | |
2804 | aExp = extractFloat64Exp( a ); | |
2805 | aSign = extractFloat64Sign( a ); | |
2806 | bSig = extractFloat64Frac( b ); | |
2807 | bExp = extractFloat64Exp( b ); | |
2808 | bSign = extractFloat64Sign( b ); | |
2809 | zSign = aSign ^ bSign; | |
2810 | if ( aExp == 0x7FF ) { | |
2811 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | |
2812 | return propagateFloat64NaN( a, b STATUS_VAR ); | |
2813 | } | |
2814 | if ( ( bExp | bSig ) == 0 ) { | |
2815 | float_raise( float_flag_invalid STATUS_VAR); | |
2816 | return float64_default_nan; | |
2817 | } | |
2818 | return packFloat64( zSign, 0x7FF, 0 ); | |
2819 | } | |
2820 | if ( bExp == 0x7FF ) { | |
2821 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
2822 | if ( ( aExp | aSig ) == 0 ) { | |
2823 | float_raise( float_flag_invalid STATUS_VAR); | |
2824 | return float64_default_nan; | |
2825 | } | |
2826 | return packFloat64( zSign, 0x7FF, 0 ); | |
2827 | } | |
2828 | if ( aExp == 0 ) { | |
2829 | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
2830 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
2831 | } | |
2832 | if ( bExp == 0 ) { | |
2833 | if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
2834 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
2835 | } | |
2836 | zExp = aExp + bExp - 0x3FF; | |
2837 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | |
2838 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
2839 | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | |
2840 | zSig0 |= ( zSig1 != 0 ); | |
2841 | if ( 0 <= (sbits64) ( zSig0<<1 ) ) { | |
2842 | zSig0 <<= 1; | |
2843 | --zExp; | |
2844 | } | |
2845 | return roundAndPackFloat64( zSign, zExp, zSig0 STATUS_VAR ); | |
2846 | ||
2847 | } | |
2848 | ||
2849 | /*---------------------------------------------------------------------------- | |
2850 | | Returns the result of dividing the double-precision floating-point value `a' | |
2851 | | by the corresponding value `b'. The operation is performed according to | |
2852 | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2853 | *----------------------------------------------------------------------------*/ | |
2854 | ||
2855 | float64 float64_div( float64 a, float64 b STATUS_PARAM ) | |
2856 | { | |
2857 | flag aSign, bSign, zSign; | |
2858 | int16 aExp, bExp, zExp; | |
2859 | bits64 aSig, bSig, zSig; | |
2860 | bits64 rem0, rem1; | |
2861 | bits64 term0, term1; | |
2862 | ||
2863 | aSig = extractFloat64Frac( a ); | |
2864 | aExp = extractFloat64Exp( a ); | |
2865 | aSign = extractFloat64Sign( a ); | |
2866 | bSig = extractFloat64Frac( b ); | |
2867 | bExp = extractFloat64Exp( b ); | |
2868 | bSign = extractFloat64Sign( b ); | |
2869 | zSign = aSign ^ bSign; | |
2870 | if ( aExp == 0x7FF ) { | |
2871 | if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
2872 | if ( bExp == 0x7FF ) { | |
2873 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
2874 | float_raise( float_flag_invalid STATUS_VAR); | |
2875 | return float64_default_nan; | |
2876 | } | |
2877 | return packFloat64( zSign, 0x7FF, 0 ); | |
2878 | } | |
2879 | if ( bExp == 0x7FF ) { | |
2880 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
2881 | return packFloat64( zSign, 0, 0 ); | |
2882 | } | |
2883 | if ( bExp == 0 ) { | |
2884 | if ( bSig == 0 ) { | |
2885 | if ( ( aExp | aSig ) == 0 ) { | |
2886 | float_raise( float_flag_invalid STATUS_VAR); | |
2887 | return float64_default_nan; | |
2888 | } | |
2889 | float_raise( float_flag_divbyzero STATUS_VAR); | |
2890 | return packFloat64( zSign, 0x7FF, 0 ); | |
2891 | } | |
2892 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
2893 | } | |
2894 | if ( aExp == 0 ) { | |
2895 | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | |
2896 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
2897 | } | |
2898 | zExp = aExp - bExp + 0x3FD; | |
2899 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | |
2900 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
2901 | if ( bSig <= ( aSig + aSig ) ) { | |
2902 | aSig >>= 1; | |
2903 | ++zExp; | |
2904 | } | |
2905 | zSig = estimateDiv128To64( aSig, 0, bSig ); | |
2906 | if ( ( zSig & 0x1FF ) <= 2 ) { | |
2907 | mul64To128( bSig, zSig, &term0, &term1 ); | |
2908 | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | |
2909 | while ( (sbits64) rem0 < 0 ) { | |
2910 | --zSig; | |
2911 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | |
2912 | } | |
2913 | zSig |= ( rem1 != 0 ); | |
2914 | } | |
2915 | return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR ); | |
2916 | ||
2917 | } | |
2918 | ||
2919 | /*---------------------------------------------------------------------------- | |
2920 | | Returns the remainder of the double-precision floating-point value `a' | |
2921 | | with respect to the corresponding value `b'. The operation is performed | |
2922 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
2923 | *----------------------------------------------------------------------------*/ | |
2924 | ||
2925 | float64 float64_rem( float64 a, float64 b STATUS_PARAM ) | |
2926 | { | |
2927 | flag aSign, bSign, zSign; | |
2928 | int16 aExp, bExp, expDiff; | |
2929 | bits64 aSig, bSig; | |
2930 | bits64 q, alternateASig; | |
2931 | sbits64 sigMean; | |
2932 | ||
2933 | aSig = extractFloat64Frac( a ); | |
2934 | aExp = extractFloat64Exp( a ); | |
2935 | aSign = extractFloat64Sign( a ); | |
2936 | bSig = extractFloat64Frac( b ); | |
2937 | bExp = extractFloat64Exp( b ); | |
2938 | bSign = extractFloat64Sign( b ); | |
2939 | if ( aExp == 0x7FF ) { | |
2940 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | |
2941 | return propagateFloat64NaN( a, b STATUS_VAR ); | |
2942 | } | |
2943 | float_raise( float_flag_invalid STATUS_VAR); | |
2944 | return float64_default_nan; | |
2945 | } | |
2946 | if ( bExp == 0x7FF ) { | |
2947 | if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR ); | |
2948 | return a; | |
2949 | } | |
2950 | if ( bExp == 0 ) { | |
2951 | if ( bSig == 0 ) { | |
2952 | float_raise( float_flag_invalid STATUS_VAR); | |
2953 | return float64_default_nan; | |
2954 | } | |
2955 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | |
2956 | } | |
2957 | if ( aExp == 0 ) { | |
2958 | if ( aSig == 0 ) return a; | |
2959 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
2960 | } | |
2961 | expDiff = aExp - bExp; | |
2962 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; | |
2963 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | |
2964 | if ( expDiff < 0 ) { | |
2965 | if ( expDiff < -1 ) return a; | |
2966 | aSig >>= 1; | |
2967 | } | |
2968 | q = ( bSig <= aSig ); | |
2969 | if ( q ) aSig -= bSig; | |
2970 | expDiff -= 64; | |
2971 | while ( 0 < expDiff ) { | |
2972 | q = estimateDiv128To64( aSig, 0, bSig ); | |
2973 | q = ( 2 < q ) ? q - 2 : 0; | |
2974 | aSig = - ( ( bSig>>2 ) * q ); | |
2975 | expDiff -= 62; | |
2976 | } | |
2977 | expDiff += 64; | |
2978 | if ( 0 < expDiff ) { | |
2979 | q = estimateDiv128To64( aSig, 0, bSig ); | |
2980 | q = ( 2 < q ) ? q - 2 : 0; | |
2981 | q >>= 64 - expDiff; | |
2982 | bSig >>= 2; | |
2983 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | |
2984 | } | |
2985 | else { | |
2986 | aSig >>= 2; | |
2987 | bSig >>= 2; | |
2988 | } | |
2989 | do { | |
2990 | alternateASig = aSig; | |
2991 | ++q; | |
2992 | aSig -= bSig; | |
2993 | } while ( 0 <= (sbits64) aSig ); | |
2994 | sigMean = aSig + alternateASig; | |
2995 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | |
2996 | aSig = alternateASig; | |
2997 | } | |
2998 | zSign = ( (sbits64) aSig < 0 ); | |
2999 | if ( zSign ) aSig = - aSig; | |
3000 | return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig STATUS_VAR ); | |
3001 | ||
3002 | } | |
3003 | ||
3004 | /*---------------------------------------------------------------------------- | |
3005 | | Returns the square root of the double-precision floating-point value `a'. | |
3006 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
3007 | | Floating-Point Arithmetic. | |
3008 | *----------------------------------------------------------------------------*/ | |
3009 | ||
3010 | float64 float64_sqrt( float64 a STATUS_PARAM ) | |
3011 | { | |
3012 | flag aSign; | |
3013 | int16 aExp, zExp; | |
3014 | bits64 aSig, zSig, doubleZSig; | |
3015 | bits64 rem0, rem1, term0, term1; | |
3016 | ||
3017 | aSig = extractFloat64Frac( a ); | |
3018 | aExp = extractFloat64Exp( a ); | |
3019 | aSign = extractFloat64Sign( a ); | |
3020 | if ( aExp == 0x7FF ) { | |
3021 | if ( aSig ) return propagateFloat64NaN( a, a STATUS_VAR ); | |
3022 | if ( ! aSign ) return a; | |
3023 | float_raise( float_flag_invalid STATUS_VAR); | |
3024 | return float64_default_nan; | |
3025 | } | |
3026 | if ( aSign ) { | |
3027 | if ( ( aExp | aSig ) == 0 ) return a; | |
3028 | float_raise( float_flag_invalid STATUS_VAR); | |
3029 | return float64_default_nan; | |
3030 | } | |
3031 | if ( aExp == 0 ) { | |
f090c9d4 | 3032 | if ( aSig == 0 ) return float64_zero; |
158142c2 FB |
3033 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); |
3034 | } | |
3035 | zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; | |
3036 | aSig |= LIT64( 0x0010000000000000 ); | |
3037 | zSig = estimateSqrt32( aExp, aSig>>21 ); | |
3038 | aSig <<= 9 - ( aExp & 1 ); | |
3039 | zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 ); | |
3040 | if ( ( zSig & 0x1FF ) <= 5 ) { | |
3041 | doubleZSig = zSig<<1; | |
3042 | mul64To128( zSig, zSig, &term0, &term1 ); | |
3043 | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | |
3044 | while ( (sbits64) rem0 < 0 ) { | |
3045 | --zSig; | |
3046 | doubleZSig -= 2; | |
3047 | add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 ); | |
3048 | } | |
3049 | zSig |= ( ( rem0 | rem1 ) != 0 ); | |
3050 | } | |
3051 | return roundAndPackFloat64( 0, zExp, zSig STATUS_VAR ); | |
3052 | ||
3053 | } | |
3054 | ||
374dfc33 AJ |
3055 | /*---------------------------------------------------------------------------- |
3056 | | Returns the binary log of the double-precision floating-point value `a'. | |
3057 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
3058 | | Floating-Point Arithmetic. | |
3059 | *----------------------------------------------------------------------------*/ | |
3060 | float64 float64_log2( float64 a STATUS_PARAM ) | |
3061 | { | |
3062 | flag aSign, zSign; | |
3063 | int16 aExp; | |
3064 | bits64 aSig, aSig0, aSig1, zSig, i; | |
3065 | ||
3066 | aSig = extractFloat64Frac( a ); | |
3067 | aExp = extractFloat64Exp( a ); | |
3068 | aSign = extractFloat64Sign( a ); | |
3069 | ||
3070 | if ( aExp == 0 ) { | |
3071 | if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 ); | |
3072 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | |
3073 | } | |
3074 | if ( aSign ) { | |
3075 | float_raise( float_flag_invalid STATUS_VAR); | |
3076 | return float64_default_nan; | |
3077 | } | |
3078 | if ( aExp == 0x7FF ) { | |
3079 | if ( aSig ) return propagateFloat64NaN( a, float64_zero STATUS_VAR ); | |
3080 | return a; | |
3081 | } | |
3082 | ||
3083 | aExp -= 0x3FF; | |
3084 | aSig |= LIT64( 0x0010000000000000 ); | |
3085 | zSign = aExp < 0; | |
3086 | zSig = (bits64)aExp << 52; | |
3087 | for (i = 1LL << 51; i > 0; i >>= 1) { | |
3088 | mul64To128( aSig, aSig, &aSig0, &aSig1 ); | |
3089 | aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 ); | |
3090 | if ( aSig & LIT64( 0x0020000000000000 ) ) { | |
3091 | aSig >>= 1; | |
3092 | zSig |= i; | |
3093 | } | |
3094 | } | |
3095 | ||
3096 | if ( zSign ) | |
3097 | zSig = -zSig; | |
3098 | return normalizeRoundAndPackFloat64( zSign, 0x408, zSig STATUS_VAR ); | |
3099 | } | |
3100 | ||
158142c2 FB |
3101 | /*---------------------------------------------------------------------------- |
3102 | | Returns 1 if the double-precision floating-point value `a' is equal to the | |
3103 | | corresponding value `b', and 0 otherwise. The comparison is performed | |
3104 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3105 | *----------------------------------------------------------------------------*/ | |
3106 | ||
750afe93 | 3107 | int float64_eq( float64 a, float64 b STATUS_PARAM ) |
158142c2 | 3108 | { |
f090c9d4 | 3109 | bits64 av, bv; |
158142c2 FB |
3110 | |
3111 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
3112 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
3113 | ) { | |
3114 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | |
3115 | float_raise( float_flag_invalid STATUS_VAR); | |
3116 | } | |
3117 | return 0; | |
3118 | } | |
f090c9d4 | 3119 | av = float64_val(a); |
a1b91bb4 | 3120 | bv = float64_val(b); |
f090c9d4 | 3121 | return ( av == bv ) || ( (bits64) ( ( av | bv )<<1 ) == 0 ); |
158142c2 FB |
3122 | |
3123 | } | |
3124 | ||
3125 | /*---------------------------------------------------------------------------- | |
3126 | | Returns 1 if the double-precision floating-point value `a' is less than or | |
3127 | | equal to the corresponding value `b', and 0 otherwise. The comparison is | |
3128 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
3129 | | Arithmetic. | |
3130 | *----------------------------------------------------------------------------*/ | |
3131 | ||
750afe93 | 3132 | int float64_le( float64 a, float64 b STATUS_PARAM ) |
158142c2 FB |
3133 | { |
3134 | flag aSign, bSign; | |
f090c9d4 | 3135 | bits64 av, bv; |
158142c2 FB |
3136 | |
3137 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
3138 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
3139 | ) { | |
3140 | float_raise( float_flag_invalid STATUS_VAR); | |
3141 | return 0; | |
3142 | } | |
3143 | aSign = extractFloat64Sign( a ); | |
3144 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 3145 | av = float64_val(a); |
a1b91bb4 | 3146 | bv = float64_val(b); |
f090c9d4 PB |
3147 | if ( aSign != bSign ) return aSign || ( (bits64) ( ( av | bv )<<1 ) == 0 ); |
3148 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); | |
158142c2 FB |
3149 | |
3150 | } | |
3151 | ||
3152 | /*---------------------------------------------------------------------------- | |
3153 | | Returns 1 if the double-precision floating-point value `a' is less than | |
3154 | | the corresponding value `b', and 0 otherwise. The comparison is performed | |
3155 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3156 | *----------------------------------------------------------------------------*/ | |
3157 | ||
750afe93 | 3158 | int float64_lt( float64 a, float64 b STATUS_PARAM ) |
158142c2 FB |
3159 | { |
3160 | flag aSign, bSign; | |
f090c9d4 | 3161 | bits64 av, bv; |
158142c2 FB |
3162 | |
3163 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
3164 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
3165 | ) { | |
3166 | float_raise( float_flag_invalid STATUS_VAR); | |
3167 | return 0; | |
3168 | } | |
3169 | aSign = extractFloat64Sign( a ); | |
3170 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 3171 | av = float64_val(a); |
a1b91bb4 | 3172 | bv = float64_val(b); |
f090c9d4 PB |
3173 | if ( aSign != bSign ) return aSign && ( (bits64) ( ( av | bv )<<1 ) != 0 ); |
3174 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); | |
158142c2 FB |
3175 | |
3176 | } | |
3177 | ||
3178 | /*---------------------------------------------------------------------------- | |
3179 | | Returns 1 if the double-precision floating-point value `a' is equal to the | |
3180 | | corresponding value `b', and 0 otherwise. The invalid exception is raised | |
3181 | | if either operand is a NaN. Otherwise, the comparison is performed | |
3182 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3183 | *----------------------------------------------------------------------------*/ | |
3184 | ||
750afe93 | 3185 | int float64_eq_signaling( float64 a, float64 b STATUS_PARAM ) |
158142c2 | 3186 | { |
f090c9d4 | 3187 | bits64 av, bv; |
158142c2 FB |
3188 | |
3189 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
3190 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
3191 | ) { | |
3192 | float_raise( float_flag_invalid STATUS_VAR); | |
3193 | return 0; | |
3194 | } | |
f090c9d4 | 3195 | av = float64_val(a); |
a1b91bb4 | 3196 | bv = float64_val(b); |
f090c9d4 | 3197 | return ( av == bv ) || ( (bits64) ( ( av | bv )<<1 ) == 0 ); |
158142c2 FB |
3198 | |
3199 | } | |
3200 | ||
3201 | /*---------------------------------------------------------------------------- | |
3202 | | Returns 1 if the double-precision floating-point value `a' is less than or | |
3203 | | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
3204 | | cause an exception. Otherwise, the comparison is performed according to the | |
3205 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3206 | *----------------------------------------------------------------------------*/ | |
3207 | ||
750afe93 | 3208 | int float64_le_quiet( float64 a, float64 b STATUS_PARAM ) |
158142c2 FB |
3209 | { |
3210 | flag aSign, bSign; | |
f090c9d4 | 3211 | bits64 av, bv; |
158142c2 FB |
3212 | |
3213 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
3214 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
3215 | ) { | |
3216 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | |
3217 | float_raise( float_flag_invalid STATUS_VAR); | |
3218 | } | |
3219 | return 0; | |
3220 | } | |
3221 | aSign = extractFloat64Sign( a ); | |
3222 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 3223 | av = float64_val(a); |
a1b91bb4 | 3224 | bv = float64_val(b); |
f090c9d4 PB |
3225 | if ( aSign != bSign ) return aSign || ( (bits64) ( ( av | bv )<<1 ) == 0 ); |
3226 | return ( av == bv ) || ( aSign ^ ( av < bv ) ); | |
158142c2 FB |
3227 | |
3228 | } | |
3229 | ||
3230 | /*---------------------------------------------------------------------------- | |
3231 | | Returns 1 if the double-precision floating-point value `a' is less than | |
3232 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
3233 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
3234 | | Standard for Binary Floating-Point Arithmetic. | |
3235 | *----------------------------------------------------------------------------*/ | |
3236 | ||
750afe93 | 3237 | int float64_lt_quiet( float64 a, float64 b STATUS_PARAM ) |
158142c2 FB |
3238 | { |
3239 | flag aSign, bSign; | |
f090c9d4 | 3240 | bits64 av, bv; |
158142c2 FB |
3241 | |
3242 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | |
3243 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | |
3244 | ) { | |
3245 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | |
3246 | float_raise( float_flag_invalid STATUS_VAR); | |
3247 | } | |
3248 | return 0; | |
3249 | } | |
3250 | aSign = extractFloat64Sign( a ); | |
3251 | bSign = extractFloat64Sign( b ); | |
f090c9d4 | 3252 | av = float64_val(a); |
a1b91bb4 | 3253 | bv = float64_val(b); |
f090c9d4 PB |
3254 | if ( aSign != bSign ) return aSign && ( (bits64) ( ( av | bv )<<1 ) != 0 ); |
3255 | return ( av != bv ) && ( aSign ^ ( av < bv ) ); | |
158142c2 FB |
3256 | |
3257 | } | |
3258 | ||
3259 | #ifdef FLOATX80 | |
3260 | ||
3261 | /*---------------------------------------------------------------------------- | |
3262 | | Returns the result of converting the extended double-precision floating- | |
3263 | | point value `a' to the 32-bit two's complement integer format. The | |
3264 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
3265 | | Floating-Point Arithmetic---which means in particular that the conversion | |
3266 | | is rounded according to the current rounding mode. If `a' is a NaN, the | |
3267 | | largest positive integer is returned. Otherwise, if the conversion | |
3268 | | overflows, the largest integer with the same sign as `a' is returned. | |
3269 | *----------------------------------------------------------------------------*/ | |
3270 | ||
3271 | int32 floatx80_to_int32( floatx80 a STATUS_PARAM ) | |
3272 | { | |
3273 | flag aSign; | |
3274 | int32 aExp, shiftCount; | |
3275 | bits64 aSig; | |
3276 | ||
3277 | aSig = extractFloatx80Frac( a ); | |
3278 | aExp = extractFloatx80Exp( a ); | |
3279 | aSign = extractFloatx80Sign( a ); | |
3280 | if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; | |
3281 | shiftCount = 0x4037 - aExp; | |
3282 | if ( shiftCount <= 0 ) shiftCount = 1; | |
3283 | shift64RightJamming( aSig, shiftCount, &aSig ); | |
3284 | return roundAndPackInt32( aSign, aSig STATUS_VAR ); | |
3285 | ||
3286 | } | |
3287 | ||
3288 | /*---------------------------------------------------------------------------- | |
3289 | | Returns the result of converting the extended double-precision floating- | |
3290 | | point value `a' to the 32-bit two's complement integer format. The | |
3291 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
3292 | | Floating-Point Arithmetic, except that the conversion is always rounded | |
3293 | | toward zero. If `a' is a NaN, the largest positive integer is returned. | |
3294 | | Otherwise, if the conversion overflows, the largest integer with the same | |
3295 | | sign as `a' is returned. | |
3296 | *----------------------------------------------------------------------------*/ | |
3297 | ||
3298 | int32 floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM ) | |
3299 | { | |
3300 | flag aSign; | |
3301 | int32 aExp, shiftCount; | |
3302 | bits64 aSig, savedASig; | |
3303 | int32 z; | |
3304 | ||
3305 | aSig = extractFloatx80Frac( a ); | |
3306 | aExp = extractFloatx80Exp( a ); | |
3307 | aSign = extractFloatx80Sign( a ); | |
3308 | if ( 0x401E < aExp ) { | |
3309 | if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; | |
3310 | goto invalid; | |
3311 | } | |
3312 | else if ( aExp < 0x3FFF ) { | |
3313 | if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
3314 | return 0; | |
3315 | } | |
3316 | shiftCount = 0x403E - aExp; | |
3317 | savedASig = aSig; | |
3318 | aSig >>= shiftCount; | |
3319 | z = aSig; | |
3320 | if ( aSign ) z = - z; | |
3321 | if ( ( z < 0 ) ^ aSign ) { | |
3322 | invalid: | |
3323 | float_raise( float_flag_invalid STATUS_VAR); | |
3324 | return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; | |
3325 | } | |
3326 | if ( ( aSig<<shiftCount ) != savedASig ) { | |
3327 | STATUS(float_exception_flags) |= float_flag_inexact; | |
3328 | } | |
3329 | return z; | |
3330 | ||
3331 | } | |
3332 | ||
3333 | /*---------------------------------------------------------------------------- | |
3334 | | Returns the result of converting the extended double-precision floating- | |
3335 | | point value `a' to the 64-bit two's complement integer format. The | |
3336 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
3337 | | Floating-Point Arithmetic---which means in particular that the conversion | |
3338 | | is rounded according to the current rounding mode. If `a' is a NaN, | |
3339 | | the largest positive integer is returned. Otherwise, if the conversion | |
3340 | | overflows, the largest integer with the same sign as `a' is returned. | |
3341 | *----------------------------------------------------------------------------*/ | |
3342 | ||
3343 | int64 floatx80_to_int64( floatx80 a STATUS_PARAM ) | |
3344 | { | |
3345 | flag aSign; | |
3346 | int32 aExp, shiftCount; | |
3347 | bits64 aSig, aSigExtra; | |
3348 | ||
3349 | aSig = extractFloatx80Frac( a ); | |
3350 | aExp = extractFloatx80Exp( a ); | |
3351 | aSign = extractFloatx80Sign( a ); | |
3352 | shiftCount = 0x403E - aExp; | |
3353 | if ( shiftCount <= 0 ) { | |
3354 | if ( shiftCount ) { | |
3355 | float_raise( float_flag_invalid STATUS_VAR); | |
3356 | if ( ! aSign | |
3357 | || ( ( aExp == 0x7FFF ) | |
3358 | && ( aSig != LIT64( 0x8000000000000000 ) ) ) | |
3359 | ) { | |
3360 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
3361 | } | |
3362 | return (sbits64) LIT64( 0x8000000000000000 ); | |
3363 | } | |
3364 | aSigExtra = 0; | |
3365 | } | |
3366 | else { | |
3367 | shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); | |
3368 | } | |
3369 | return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR ); | |
3370 | ||
3371 | } | |
3372 | ||
3373 | /*---------------------------------------------------------------------------- | |
3374 | | Returns the result of converting the extended double-precision floating- | |
3375 | | point value `a' to the 64-bit two's complement integer format. The | |
3376 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
3377 | | Floating-Point Arithmetic, except that the conversion is always rounded | |
3378 | | toward zero. If `a' is a NaN, the largest positive integer is returned. | |
3379 | | Otherwise, if the conversion overflows, the largest integer with the same | |
3380 | | sign as `a' is returned. | |
3381 | *----------------------------------------------------------------------------*/ | |
3382 | ||
3383 | int64 floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM ) | |
3384 | { | |
3385 | flag aSign; | |
3386 | int32 aExp, shiftCount; | |
3387 | bits64 aSig; | |
3388 | int64 z; | |
3389 | ||
3390 | aSig = extractFloatx80Frac( a ); | |
3391 | aExp = extractFloatx80Exp( a ); | |
3392 | aSign = extractFloatx80Sign( a ); | |
3393 | shiftCount = aExp - 0x403E; | |
3394 | if ( 0 <= shiftCount ) { | |
3395 | aSig &= LIT64( 0x7FFFFFFFFFFFFFFF ); | |
3396 | if ( ( a.high != 0xC03E ) || aSig ) { | |
3397 | float_raise( float_flag_invalid STATUS_VAR); | |
3398 | if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) { | |
3399 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
3400 | } | |
3401 | } | |
3402 | return (sbits64) LIT64( 0x8000000000000000 ); | |
3403 | } | |
3404 | else if ( aExp < 0x3FFF ) { | |
3405 | if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact; | |
3406 | return 0; | |
3407 | } | |
3408 | z = aSig>>( - shiftCount ); | |
3409 | if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) { | |
3410 | STATUS(float_exception_flags) |= float_flag_inexact; | |
3411 | } | |
3412 | if ( aSign ) z = - z; | |
3413 | return z; | |
3414 | ||
3415 | } | |
3416 | ||
3417 | /*---------------------------------------------------------------------------- | |
3418 | | Returns the result of converting the extended double-precision floating- | |
3419 | | point value `a' to the single-precision floating-point format. The | |
3420 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
3421 | | Floating-Point Arithmetic. | |
3422 | *----------------------------------------------------------------------------*/ | |
3423 | ||
3424 | float32 floatx80_to_float32( floatx80 a STATUS_PARAM ) | |
3425 | { | |
3426 | flag aSign; | |
3427 | int32 aExp; | |
3428 | bits64 aSig; | |
3429 | ||
3430 | aSig = extractFloatx80Frac( a ); | |
3431 | aExp = extractFloatx80Exp( a ); | |
3432 | aSign = extractFloatx80Sign( a ); | |
3433 | if ( aExp == 0x7FFF ) { | |
3434 | if ( (bits64) ( aSig<<1 ) ) { | |
3435 | return commonNaNToFloat32( floatx80ToCommonNaN( a STATUS_VAR ) ); | |
3436 | } | |
3437 | return packFloat32( aSign, 0xFF, 0 ); | |
3438 | } | |
3439 | shift64RightJamming( aSig, 33, &aSig ); | |
3440 | if ( aExp || aSig ) aExp -= 0x3F81; | |
3441 | return roundAndPackFloat32( aSign, aExp, aSig STATUS_VAR ); | |
3442 | ||
3443 | } | |
3444 | ||
3445 | /*---------------------------------------------------------------------------- | |
3446 | | Returns the result of converting the extended double-precision floating- | |
3447 | | point value `a' to the double-precision floating-point format. The | |
3448 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
3449 | | Floating-Point Arithmetic. | |
3450 | *----------------------------------------------------------------------------*/ | |
3451 | ||
3452 | float64 floatx80_to_float64( floatx80 a STATUS_PARAM ) | |
3453 | { | |
3454 | flag aSign; | |
3455 | int32 aExp; | |
3456 | bits64 aSig, zSig; | |
3457 | ||
3458 | aSig = extractFloatx80Frac( a ); | |
3459 | aExp = extractFloatx80Exp( a ); | |
3460 | aSign = extractFloatx80Sign( a ); | |
3461 | if ( aExp == 0x7FFF ) { | |
3462 | if ( (bits64) ( aSig<<1 ) ) { | |
3463 | return commonNaNToFloat64( floatx80ToCommonNaN( a STATUS_VAR ) ); | |
3464 | } | |
3465 | return packFloat64( aSign, 0x7FF, 0 ); | |
3466 | } | |
3467 | shift64RightJamming( aSig, 1, &zSig ); | |
3468 | if ( aExp || aSig ) aExp -= 0x3C01; | |
3469 | return roundAndPackFloat64( aSign, aExp, zSig STATUS_VAR ); | |
3470 | ||
3471 | } | |
3472 | ||
3473 | #ifdef FLOAT128 | |
3474 | ||
3475 | /*---------------------------------------------------------------------------- | |
3476 | | Returns the result of converting the extended double-precision floating- | |
3477 | | point value `a' to the quadruple-precision floating-point format. The | |
3478 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
3479 | | Floating-Point Arithmetic. | |
3480 | *----------------------------------------------------------------------------*/ | |
3481 | ||
3482 | float128 floatx80_to_float128( floatx80 a STATUS_PARAM ) | |
3483 | { | |
3484 | flag aSign; | |
3485 | int16 aExp; | |
3486 | bits64 aSig, zSig0, zSig1; | |
3487 | ||
3488 | aSig = extractFloatx80Frac( a ); | |
3489 | aExp = extractFloatx80Exp( a ); | |
3490 | aSign = extractFloatx80Sign( a ); | |
3491 | if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) { | |
3492 | return commonNaNToFloat128( floatx80ToCommonNaN( a STATUS_VAR ) ); | |
3493 | } | |
3494 | shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); | |
3495 | return packFloat128( aSign, aExp, zSig0, zSig1 ); | |
3496 | ||
3497 | } | |
3498 | ||
3499 | #endif | |
3500 | ||
3501 | /*---------------------------------------------------------------------------- | |
3502 | | Rounds the extended double-precision floating-point value `a' to an integer, | |
3503 | | and returns the result as an extended quadruple-precision floating-point | |
3504 | | value. The operation is performed according to the IEC/IEEE Standard for | |
3505 | | Binary Floating-Point Arithmetic. | |
3506 | *----------------------------------------------------------------------------*/ | |
3507 | ||
3508 | floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM ) | |
3509 | { | |
3510 | flag aSign; | |
3511 | int32 aExp; | |
3512 | bits64 lastBitMask, roundBitsMask; | |
3513 | int8 roundingMode; | |
3514 | floatx80 z; | |
3515 | ||
3516 | aExp = extractFloatx80Exp( a ); | |
3517 | if ( 0x403E <= aExp ) { | |
3518 | if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) { | |
3519 | return propagateFloatx80NaN( a, a STATUS_VAR ); | |
3520 | } | |
3521 | return a; | |
3522 | } | |
3523 | if ( aExp < 0x3FFF ) { | |
3524 | if ( ( aExp == 0 ) | |
3525 | && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { | |
3526 | return a; | |
3527 | } | |
3528 | STATUS(float_exception_flags) |= float_flag_inexact; | |
3529 | aSign = extractFloatx80Sign( a ); | |
3530 | switch ( STATUS(float_rounding_mode) ) { | |
3531 | case float_round_nearest_even: | |
3532 | if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 ) | |
3533 | ) { | |
3534 | return | |
3535 | packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
3536 | } | |
3537 | break; | |
3538 | case float_round_down: | |
3539 | return | |
3540 | aSign ? | |
3541 | packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) | |
3542 | : packFloatx80( 0, 0, 0 ); | |
3543 | case float_round_up: | |
3544 | return | |
3545 | aSign ? packFloatx80( 1, 0, 0 ) | |
3546 | : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); | |
3547 | } | |
3548 | return packFloatx80( aSign, 0, 0 ); | |
3549 | } | |
3550 | lastBitMask = 1; | |
3551 | lastBitMask <<= 0x403E - aExp; | |
3552 | roundBitsMask = lastBitMask - 1; | |
3553 | z = a; | |
3554 | roundingMode = STATUS(float_rounding_mode); | |
3555 | if ( roundingMode == float_round_nearest_even ) { | |
3556 | z.low += lastBitMask>>1; | |
3557 | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; | |
3558 | } | |
3559 | else if ( roundingMode != float_round_to_zero ) { | |
3560 | if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) { | |
3561 | z.low += roundBitsMask; | |
3562 | } | |
3563 | } | |
3564 | z.low &= ~ roundBitsMask; | |
3565 | if ( z.low == 0 ) { | |
3566 | ++z.high; | |
3567 | z.low = LIT64( 0x8000000000000000 ); | |
3568 | } | |
3569 | if ( z.low != a.low ) STATUS(float_exception_flags) |= float_flag_inexact; | |
3570 | return z; | |
3571 | ||
3572 | } | |
3573 | ||
3574 | /*---------------------------------------------------------------------------- | |
3575 | | Returns the result of adding the absolute values of the extended double- | |
3576 | | precision floating-point values `a' and `b'. If `zSign' is 1, the sum is | |
3577 | | negated before being returned. `zSign' is ignored if the result is a NaN. | |
3578 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
3579 | | Floating-Point Arithmetic. | |
3580 | *----------------------------------------------------------------------------*/ | |
3581 | ||
3582 | static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM) | |
3583 | { | |
3584 | int32 aExp, bExp, zExp; | |
3585 | bits64 aSig, bSig, zSig0, zSig1; | |
3586 | int32 expDiff; | |
3587 | ||
3588 | aSig = extractFloatx80Frac( a ); | |
3589 | aExp = extractFloatx80Exp( a ); | |
3590 | bSig = extractFloatx80Frac( b ); | |
3591 | bExp = extractFloatx80Exp( b ); | |
3592 | expDiff = aExp - bExp; | |
3593 | if ( 0 < expDiff ) { | |
3594 | if ( aExp == 0x7FFF ) { | |
3595 | if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | |
3596 | return a; | |
3597 | } | |
3598 | if ( bExp == 0 ) --expDiff; | |
3599 | shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
3600 | zExp = aExp; | |
3601 | } | |
3602 | else if ( expDiff < 0 ) { | |
3603 | if ( bExp == 0x7FFF ) { | |
3604 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | |
3605 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
3606 | } | |
3607 | if ( aExp == 0 ) ++expDiff; | |
3608 | shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
3609 | zExp = bExp; | |
3610 | } | |
3611 | else { | |
3612 | if ( aExp == 0x7FFF ) { | |
3613 | if ( (bits64) ( ( aSig | bSig )<<1 ) ) { | |
3614 | return propagateFloatx80NaN( a, b STATUS_VAR ); | |
3615 | } | |
3616 | return a; | |
3617 | } | |
3618 | zSig1 = 0; | |
3619 | zSig0 = aSig + bSig; | |
3620 | if ( aExp == 0 ) { | |
3621 | normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); | |
3622 | goto roundAndPack; | |
3623 | } | |
3624 | zExp = aExp; | |
3625 | goto shiftRight1; | |
3626 | } | |
3627 | zSig0 = aSig + bSig; | |
3628 | if ( (sbits64) zSig0 < 0 ) goto roundAndPack; | |
3629 | shiftRight1: | |
3630 | shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); | |
3631 | zSig0 |= LIT64( 0x8000000000000000 ); | |
3632 | ++zExp; | |
3633 | roundAndPack: | |
3634 | return | |
3635 | roundAndPackFloatx80( | |
3636 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | |
3637 | ||
3638 | } | |
3639 | ||
3640 | /*---------------------------------------------------------------------------- | |
3641 | | Returns the result of subtracting the absolute values of the extended | |
3642 | | double-precision floating-point values `a' and `b'. If `zSign' is 1, the | |
3643 | | difference is negated before being returned. `zSign' is ignored if the | |
3644 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
3645 | | Standard for Binary Floating-Point Arithmetic. | |
3646 | *----------------------------------------------------------------------------*/ | |
3647 | ||
3648 | static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM ) | |
3649 | { | |
3650 | int32 aExp, bExp, zExp; | |
3651 | bits64 aSig, bSig, zSig0, zSig1; | |
3652 | int32 expDiff; | |
3653 | floatx80 z; | |
3654 | ||
3655 | aSig = extractFloatx80Frac( a ); | |
3656 | aExp = extractFloatx80Exp( a ); | |
3657 | bSig = extractFloatx80Frac( b ); | |
3658 | bExp = extractFloatx80Exp( b ); | |
3659 | expDiff = aExp - bExp; | |
3660 | if ( 0 < expDiff ) goto aExpBigger; | |
3661 | if ( expDiff < 0 ) goto bExpBigger; | |
3662 | if ( aExp == 0x7FFF ) { | |
3663 | if ( (bits64) ( ( aSig | bSig )<<1 ) ) { | |
3664 | return propagateFloatx80NaN( a, b STATUS_VAR ); | |
3665 | } | |
3666 | float_raise( float_flag_invalid STATUS_VAR); | |
3667 | z.low = floatx80_default_nan_low; | |
3668 | z.high = floatx80_default_nan_high; | |
3669 | return z; | |
3670 | } | |
3671 | if ( aExp == 0 ) { | |
3672 | aExp = 1; | |
3673 | bExp = 1; | |
3674 | } | |
3675 | zSig1 = 0; | |
3676 | if ( bSig < aSig ) goto aBigger; | |
3677 | if ( aSig < bSig ) goto bBigger; | |
3678 | return packFloatx80( STATUS(float_rounding_mode) == float_round_down, 0, 0 ); | |
3679 | bExpBigger: | |
3680 | if ( bExp == 0x7FFF ) { | |
3681 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | |
3682 | return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
3683 | } | |
3684 | if ( aExp == 0 ) ++expDiff; | |
3685 | shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | |
3686 | bBigger: | |
3687 | sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); | |
3688 | zExp = bExp; | |
3689 | zSign ^= 1; | |
3690 | goto normalizeRoundAndPack; | |
3691 | aExpBigger: | |
3692 | if ( aExp == 0x7FFF ) { | |
3693 | if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | |
3694 | return a; | |
3695 | } | |
3696 | if ( bExp == 0 ) --expDiff; | |
3697 | shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | |
3698 | aBigger: | |
3699 | sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); | |
3700 | zExp = aExp; | |
3701 | normalizeRoundAndPack: | |
3702 | return | |
3703 | normalizeRoundAndPackFloatx80( | |
3704 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | |
3705 | ||
3706 | } | |
3707 | ||
3708 | /*---------------------------------------------------------------------------- | |
3709 | | Returns the result of adding the extended double-precision floating-point | |
3710 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
3711 | | Standard for Binary Floating-Point Arithmetic. | |
3712 | *----------------------------------------------------------------------------*/ | |
3713 | ||
3714 | floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM ) | |
3715 | { | |
3716 | flag aSign, bSign; | |
3717 | ||
3718 | aSign = extractFloatx80Sign( a ); | |
3719 | bSign = extractFloatx80Sign( b ); | |
3720 | if ( aSign == bSign ) { | |
3721 | return addFloatx80Sigs( a, b, aSign STATUS_VAR ); | |
3722 | } | |
3723 | else { | |
3724 | return subFloatx80Sigs( a, b, aSign STATUS_VAR ); | |
3725 | } | |
3726 | ||
3727 | } | |
3728 | ||
3729 | /*---------------------------------------------------------------------------- | |
3730 | | Returns the result of subtracting the extended double-precision floating- | |
3731 | | point values `a' and `b'. The operation is performed according to the | |
3732 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3733 | *----------------------------------------------------------------------------*/ | |
3734 | ||
3735 | floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM ) | |
3736 | { | |
3737 | flag aSign, bSign; | |
3738 | ||
3739 | aSign = extractFloatx80Sign( a ); | |
3740 | bSign = extractFloatx80Sign( b ); | |
3741 | if ( aSign == bSign ) { | |
3742 | return subFloatx80Sigs( a, b, aSign STATUS_VAR ); | |
3743 | } | |
3744 | else { | |
3745 | return addFloatx80Sigs( a, b, aSign STATUS_VAR ); | |
3746 | } | |
3747 | ||
3748 | } | |
3749 | ||
3750 | /*---------------------------------------------------------------------------- | |
3751 | | Returns the result of multiplying the extended double-precision floating- | |
3752 | | point values `a' and `b'. The operation is performed according to the | |
3753 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3754 | *----------------------------------------------------------------------------*/ | |
3755 | ||
3756 | floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM ) | |
3757 | { | |
3758 | flag aSign, bSign, zSign; | |
3759 | int32 aExp, bExp, zExp; | |
3760 | bits64 aSig, bSig, zSig0, zSig1; | |
3761 | floatx80 z; | |
3762 | ||
3763 | aSig = extractFloatx80Frac( a ); | |
3764 | aExp = extractFloatx80Exp( a ); | |
3765 | aSign = extractFloatx80Sign( a ); | |
3766 | bSig = extractFloatx80Frac( b ); | |
3767 | bExp = extractFloatx80Exp( b ); | |
3768 | bSign = extractFloatx80Sign( b ); | |
3769 | zSign = aSign ^ bSign; | |
3770 | if ( aExp == 0x7FFF ) { | |
3771 | if ( (bits64) ( aSig<<1 ) | |
3772 | || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { | |
3773 | return propagateFloatx80NaN( a, b STATUS_VAR ); | |
3774 | } | |
3775 | if ( ( bExp | bSig ) == 0 ) goto invalid; | |
3776 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
3777 | } | |
3778 | if ( bExp == 0x7FFF ) { | |
3779 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | |
3780 | if ( ( aExp | aSig ) == 0 ) { | |
3781 | invalid: | |
3782 | float_raise( float_flag_invalid STATUS_VAR); | |
3783 | z.low = floatx80_default_nan_low; | |
3784 | z.high = floatx80_default_nan_high; | |
3785 | return z; | |
3786 | } | |
3787 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
3788 | } | |
3789 | if ( aExp == 0 ) { | |
3790 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
3791 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
3792 | } | |
3793 | if ( bExp == 0 ) { | |
3794 | if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
3795 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
3796 | } | |
3797 | zExp = aExp + bExp - 0x3FFE; | |
3798 | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | |
3799 | if ( 0 < (sbits64) zSig0 ) { | |
3800 | shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); | |
3801 | --zExp; | |
3802 | } | |
3803 | return | |
3804 | roundAndPackFloatx80( | |
3805 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | |
3806 | ||
3807 | } | |
3808 | ||
3809 | /*---------------------------------------------------------------------------- | |
3810 | | Returns the result of dividing the extended double-precision floating-point | |
3811 | | value `a' by the corresponding value `b'. The operation is performed | |
3812 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3813 | *----------------------------------------------------------------------------*/ | |
3814 | ||
3815 | floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM ) | |
3816 | { | |
3817 | flag aSign, bSign, zSign; | |
3818 | int32 aExp, bExp, zExp; | |
3819 | bits64 aSig, bSig, zSig0, zSig1; | |
3820 | bits64 rem0, rem1, rem2, term0, term1, term2; | |
3821 | floatx80 z; | |
3822 | ||
3823 | aSig = extractFloatx80Frac( a ); | |
3824 | aExp = extractFloatx80Exp( a ); | |
3825 | aSign = extractFloatx80Sign( a ); | |
3826 | bSig = extractFloatx80Frac( b ); | |
3827 | bExp = extractFloatx80Exp( b ); | |
3828 | bSign = extractFloatx80Sign( b ); | |
3829 | zSign = aSign ^ bSign; | |
3830 | if ( aExp == 0x7FFF ) { | |
3831 | if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | |
3832 | if ( bExp == 0x7FFF ) { | |
3833 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | |
3834 | goto invalid; | |
3835 | } | |
3836 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
3837 | } | |
3838 | if ( bExp == 0x7FFF ) { | |
3839 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | |
3840 | return packFloatx80( zSign, 0, 0 ); | |
3841 | } | |
3842 | if ( bExp == 0 ) { | |
3843 | if ( bSig == 0 ) { | |
3844 | if ( ( aExp | aSig ) == 0 ) { | |
3845 | invalid: | |
3846 | float_raise( float_flag_invalid STATUS_VAR); | |
3847 | z.low = floatx80_default_nan_low; | |
3848 | z.high = floatx80_default_nan_high; | |
3849 | return z; | |
3850 | } | |
3851 | float_raise( float_flag_divbyzero STATUS_VAR); | |
3852 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
3853 | } | |
3854 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
3855 | } | |
3856 | if ( aExp == 0 ) { | |
3857 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | |
3858 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | |
3859 | } | |
3860 | zExp = aExp - bExp + 0x3FFE; | |
3861 | rem1 = 0; | |
3862 | if ( bSig <= aSig ) { | |
3863 | shift128Right( aSig, 0, 1, &aSig, &rem1 ); | |
3864 | ++zExp; | |
3865 | } | |
3866 | zSig0 = estimateDiv128To64( aSig, rem1, bSig ); | |
3867 | mul64To128( bSig, zSig0, &term0, &term1 ); | |
3868 | sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); | |
3869 | while ( (sbits64) rem0 < 0 ) { | |
3870 | --zSig0; | |
3871 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | |
3872 | } | |
3873 | zSig1 = estimateDiv128To64( rem1, 0, bSig ); | |
3874 | if ( (bits64) ( zSig1<<1 ) <= 8 ) { | |
3875 | mul64To128( bSig, zSig1, &term1, &term2 ); | |
3876 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
3877 | while ( (sbits64) rem1 < 0 ) { | |
3878 | --zSig1; | |
3879 | add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); | |
3880 | } | |
3881 | zSig1 |= ( ( rem1 | rem2 ) != 0 ); | |
3882 | } | |
3883 | return | |
3884 | roundAndPackFloatx80( | |
3885 | STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR ); | |
3886 | ||
3887 | } | |
3888 | ||
3889 | /*---------------------------------------------------------------------------- | |
3890 | | Returns the remainder of the extended double-precision floating-point value | |
3891 | | `a' with respect to the corresponding value `b'. The operation is performed | |
3892 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
3893 | *----------------------------------------------------------------------------*/ | |
3894 | ||
3895 | floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM ) | |
3896 | { | |
3897 | flag aSign, bSign, zSign; | |
3898 | int32 aExp, bExp, expDiff; | |
3899 | bits64 aSig0, aSig1, bSig; | |
3900 | bits64 q, term0, term1, alternateASig0, alternateASig1; | |
3901 | floatx80 z; | |
3902 | ||
3903 | aSig0 = extractFloatx80Frac( a ); | |
3904 | aExp = extractFloatx80Exp( a ); | |
3905 | aSign = extractFloatx80Sign( a ); | |
3906 | bSig = extractFloatx80Frac( b ); | |
3907 | bExp = extractFloatx80Exp( b ); | |
3908 | bSign = extractFloatx80Sign( b ); | |
3909 | if ( aExp == 0x7FFF ) { | |
3910 | if ( (bits64) ( aSig0<<1 ) | |
3911 | || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { | |
3912 | return propagateFloatx80NaN( a, b STATUS_VAR ); | |
3913 | } | |
3914 | goto invalid; | |
3915 | } | |
3916 | if ( bExp == 0x7FFF ) { | |
3917 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR ); | |
3918 | return a; | |
3919 | } | |
3920 | if ( bExp == 0 ) { | |
3921 | if ( bSig == 0 ) { | |
3922 | invalid: | |
3923 | float_raise( float_flag_invalid STATUS_VAR); | |
3924 | z.low = floatx80_default_nan_low; | |
3925 | z.high = floatx80_default_nan_high; | |
3926 | return z; | |
3927 | } | |
3928 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | |
3929 | } | |
3930 | if ( aExp == 0 ) { | |
3931 | if ( (bits64) ( aSig0<<1 ) == 0 ) return a; | |
3932 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | |
3933 | } | |
3934 | bSig |= LIT64( 0x8000000000000000 ); | |
3935 | zSign = aSign; | |
3936 | expDiff = aExp - bExp; | |
3937 | aSig1 = 0; | |
3938 | if ( expDiff < 0 ) { | |
3939 | if ( expDiff < -1 ) return a; | |
3940 | shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); | |
3941 | expDiff = 0; | |
3942 | } | |
3943 | q = ( bSig <= aSig0 ); | |
3944 | if ( q ) aSig0 -= bSig; | |
3945 | expDiff -= 64; | |
3946 | while ( 0 < expDiff ) { | |
3947 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
3948 | q = ( 2 < q ) ? q - 2 : 0; | |
3949 | mul64To128( bSig, q, &term0, &term1 ); | |
3950 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
3951 | shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); | |
3952 | expDiff -= 62; | |
3953 | } | |
3954 | expDiff += 64; | |
3955 | if ( 0 < expDiff ) { | |
3956 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | |
3957 | q = ( 2 < q ) ? q - 2 : 0; | |
3958 | q >>= 64 - expDiff; | |
3959 | mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); | |
3960 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
3961 | shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); | |
3962 | while ( le128( term0, term1, aSig0, aSig1 ) ) { | |
3963 | ++q; | |
3964 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | |
3965 | } | |
3966 | } | |
3967 | else { | |
3968 | term1 = 0; | |
3969 | term0 = bSig; | |
3970 | } | |
3971 | sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); | |
3972 | if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
3973 | || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) | |
3974 | && ( q & 1 ) ) | |
3975 | ) { | |
3976 | aSig0 = alternateASig0; | |
3977 | aSig1 = alternateASig1; | |
3978 | zSign = ! zSign; | |
3979 | } | |
3980 | return | |
3981 | normalizeRoundAndPackFloatx80( | |
3982 | 80, zSign, bExp + expDiff, aSig0, aSig1 STATUS_VAR ); | |
3983 | ||
3984 | } | |
3985 | ||
3986 | /*---------------------------------------------------------------------------- | |
3987 | | Returns the square root of the extended double-precision floating-point | |
3988 | | value `a'. The operation is performed according to the IEC/IEEE Standard | |
3989 | | for Binary Floating-Point Arithmetic. | |
3990 | *----------------------------------------------------------------------------*/ | |
3991 | ||
3992 | floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM ) | |
3993 | { | |
3994 | flag aSign; | |
3995 | int32 aExp, zExp; | |
3996 | bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0; | |
3997 | bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
3998 | floatx80 z; | |
3999 | ||
4000 | aSig0 = extractFloatx80Frac( a ); | |
4001 | aExp = extractFloatx80Exp( a ); | |
4002 | aSign = extractFloatx80Sign( a ); | |
4003 | if ( aExp == 0x7FFF ) { | |
4004 | if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a STATUS_VAR ); | |
4005 | if ( ! aSign ) return a; | |
4006 | goto invalid; | |
4007 | } | |
4008 | if ( aSign ) { | |
4009 | if ( ( aExp | aSig0 ) == 0 ) return a; | |
4010 | invalid: | |
4011 | float_raise( float_flag_invalid STATUS_VAR); | |
4012 | z.low = floatx80_default_nan_low; | |
4013 | z.high = floatx80_default_nan_high; | |
4014 | return z; | |
4015 | } | |
4016 | if ( aExp == 0 ) { | |
4017 | if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); | |
4018 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | |
4019 | } | |
4020 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; | |
4021 | zSig0 = estimateSqrt32( aExp, aSig0>>32 ); | |
4022 | shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); | |
4023 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | |
4024 | doubleZSig0 = zSig0<<1; | |
4025 | mul64To128( zSig0, zSig0, &term0, &term1 ); | |
4026 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
4027 | while ( (sbits64) rem0 < 0 ) { | |
4028 | --zSig0; | |
4029 | doubleZSig0 -= 2; | |
4030 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | |
4031 | } | |
4032 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | |
4033 | if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) { | |
4034 | if ( zSig1 == 0 ) zSig1 = 1; | |
4035 | mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | |
4036 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
4037 | mul64To128( zSig1, zSig1, &term2, &term3 ); | |
4038 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
4039 | while ( (sbits64) rem1 < 0 ) { | |
4040 | --zSig1; | |
4041 | shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | |
4042 | term3 |= 1; | |
4043 | term2 |= doubleZSig0; | |
4044 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
4045 | } | |
4046 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
4047 | } | |
4048 | shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); | |
4049 | zSig0 |= doubleZSig0; | |
4050 | return | |
4051 | roundAndPackFloatx80( | |
4052 | STATUS(floatx80_rounding_precision), 0, zExp, zSig0, zSig1 STATUS_VAR ); | |
4053 | ||
4054 | } | |
4055 | ||
4056 | /*---------------------------------------------------------------------------- | |
4057 | | Returns 1 if the extended double-precision floating-point value `a' is | |
4058 | | equal to the corresponding value `b', and 0 otherwise. The comparison is | |
4059 | | performed according to the IEC/IEEE Standard for Binary Floating-Point | |
4060 | | Arithmetic. | |
4061 | *----------------------------------------------------------------------------*/ | |
4062 | ||
750afe93 | 4063 | int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM ) |
158142c2 FB |
4064 | { |
4065 | ||
4066 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
4067 | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | |
4068 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
4069 | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | |
4070 | ) { | |
4071 | if ( floatx80_is_signaling_nan( a ) | |
4072 | || floatx80_is_signaling_nan( b ) ) { | |
4073 | float_raise( float_flag_invalid STATUS_VAR); | |
4074 | } | |
4075 | return 0; | |
4076 | } | |
4077 | return | |
4078 | ( a.low == b.low ) | |
4079 | && ( ( a.high == b.high ) | |
4080 | || ( ( a.low == 0 ) | |
4081 | && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) | |
4082 | ); | |
4083 | ||
4084 | } | |
4085 | ||
4086 | /*---------------------------------------------------------------------------- | |
4087 | | Returns 1 if the extended double-precision floating-point value `a' is | |
4088 | | less than or equal to the corresponding value `b', and 0 otherwise. The | |
4089 | | comparison is performed according to the IEC/IEEE Standard for Binary | |
4090 | | Floating-Point Arithmetic. | |
4091 | *----------------------------------------------------------------------------*/ | |
4092 | ||
750afe93 | 4093 | int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM ) |
158142c2 FB |
4094 | { |
4095 | flag aSign, bSign; | |
4096 | ||
4097 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
4098 | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | |
4099 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
4100 | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | |
4101 | ) { | |
4102 | float_raise( float_flag_invalid STATUS_VAR); | |
4103 | return 0; | |
4104 | } | |
4105 | aSign = extractFloatx80Sign( a ); | |
4106 | bSign = extractFloatx80Sign( b ); | |
4107 | if ( aSign != bSign ) { | |
4108 | return | |
4109 | aSign | |
4110 | || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
4111 | == 0 ); | |
4112 | } | |
4113 | return | |
4114 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
4115 | : le128( a.high, a.low, b.high, b.low ); | |
4116 | ||
4117 | } | |
4118 | ||
4119 | /*---------------------------------------------------------------------------- | |
4120 | | Returns 1 if the extended double-precision floating-point value `a' is | |
4121 | | less than the corresponding value `b', and 0 otherwise. The comparison | |
4122 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
4123 | | Arithmetic. | |
4124 | *----------------------------------------------------------------------------*/ | |
4125 | ||
750afe93 | 4126 | int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM ) |
158142c2 FB |
4127 | { |
4128 | flag aSign, bSign; | |
4129 | ||
4130 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
4131 | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | |
4132 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
4133 | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | |
4134 | ) { | |
4135 | float_raise( float_flag_invalid STATUS_VAR); | |
4136 | return 0; | |
4137 | } | |
4138 | aSign = extractFloatx80Sign( a ); | |
4139 | bSign = extractFloatx80Sign( b ); | |
4140 | if ( aSign != bSign ) { | |
4141 | return | |
4142 | aSign | |
4143 | && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
4144 | != 0 ); | |
4145 | } | |
4146 | return | |
4147 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
4148 | : lt128( a.high, a.low, b.high, b.low ); | |
4149 | ||
4150 | } | |
4151 | ||
4152 | /*---------------------------------------------------------------------------- | |
4153 | | Returns 1 if the extended double-precision floating-point value `a' is equal | |
4154 | | to the corresponding value `b', and 0 otherwise. The invalid exception is | |
4155 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
4156 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4157 | *----------------------------------------------------------------------------*/ | |
4158 | ||
750afe93 | 4159 | int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM ) |
158142c2 FB |
4160 | { |
4161 | ||
4162 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
4163 | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | |
4164 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
4165 | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | |
4166 | ) { | |
4167 | float_raise( float_flag_invalid STATUS_VAR); | |
4168 | return 0; | |
4169 | } | |
4170 | return | |
4171 | ( a.low == b.low ) | |
4172 | && ( ( a.high == b.high ) | |
4173 | || ( ( a.low == 0 ) | |
4174 | && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) | |
4175 | ); | |
4176 | ||
4177 | } | |
4178 | ||
4179 | /*---------------------------------------------------------------------------- | |
4180 | | Returns 1 if the extended double-precision floating-point value `a' is less | |
4181 | | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs | |
4182 | | do not cause an exception. Otherwise, the comparison is performed according | |
4183 | | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4184 | *----------------------------------------------------------------------------*/ | |
4185 | ||
750afe93 | 4186 | int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM ) |
158142c2 FB |
4187 | { |
4188 | flag aSign, bSign; | |
4189 | ||
4190 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
4191 | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | |
4192 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
4193 | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | |
4194 | ) { | |
4195 | if ( floatx80_is_signaling_nan( a ) | |
4196 | || floatx80_is_signaling_nan( b ) ) { | |
4197 | float_raise( float_flag_invalid STATUS_VAR); | |
4198 | } | |
4199 | return 0; | |
4200 | } | |
4201 | aSign = extractFloatx80Sign( a ); | |
4202 | bSign = extractFloatx80Sign( b ); | |
4203 | if ( aSign != bSign ) { | |
4204 | return | |
4205 | aSign | |
4206 | || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
4207 | == 0 ); | |
4208 | } | |
4209 | return | |
4210 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
4211 | : le128( a.high, a.low, b.high, b.low ); | |
4212 | ||
4213 | } | |
4214 | ||
4215 | /*---------------------------------------------------------------------------- | |
4216 | | Returns 1 if the extended double-precision floating-point value `a' is less | |
4217 | | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause | |
4218 | | an exception. Otherwise, the comparison is performed according to the | |
4219 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4220 | *----------------------------------------------------------------------------*/ | |
4221 | ||
750afe93 | 4222 | int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM ) |
158142c2 FB |
4223 | { |
4224 | flag aSign, bSign; | |
4225 | ||
4226 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | |
4227 | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | |
4228 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | |
4229 | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | |
4230 | ) { | |
4231 | if ( floatx80_is_signaling_nan( a ) | |
4232 | || floatx80_is_signaling_nan( b ) ) { | |
4233 | float_raise( float_flag_invalid STATUS_VAR); | |
4234 | } | |
4235 | return 0; | |
4236 | } | |
4237 | aSign = extractFloatx80Sign( a ); | |
4238 | bSign = extractFloatx80Sign( b ); | |
4239 | if ( aSign != bSign ) { | |
4240 | return | |
4241 | aSign | |
4242 | && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
4243 | != 0 ); | |
4244 | } | |
4245 | return | |
4246 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
4247 | : lt128( a.high, a.low, b.high, b.low ); | |
4248 | ||
4249 | } | |
4250 | ||
4251 | #endif | |
4252 | ||
4253 | #ifdef FLOAT128 | |
4254 | ||
4255 | /*---------------------------------------------------------------------------- | |
4256 | | Returns the result of converting the quadruple-precision floating-point | |
4257 | | value `a' to the 32-bit two's complement integer format. The conversion | |
4258 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
4259 | | Arithmetic---which means in particular that the conversion is rounded | |
4260 | | according to the current rounding mode. If `a' is a NaN, the largest | |
4261 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
4262 | | largest integer with the same sign as `a' is returned. | |
4263 | *----------------------------------------------------------------------------*/ | |
4264 | ||
4265 | int32 float128_to_int32( float128 a STATUS_PARAM ) | |
4266 | { | |
4267 | flag aSign; | |
4268 | int32 aExp, shiftCount; | |
4269 | bits64 aSig0, aSig1; | |
4270 | ||
4271 | aSig1 = extractFloat128Frac1( a ); | |
4272 | aSig0 = extractFloat128Frac0( a ); | |
4273 | aExp = extractFloat128Exp( a ); | |
4274 | aSign = extractFloat128Sign( a ); | |
4275 | if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; | |
4276 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
4277 | aSig0 |= ( aSig1 != 0 ); | |
4278 | shiftCount = 0x4028 - aExp; | |
4279 | if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); | |
4280 | return roundAndPackInt32( aSign, aSig0 STATUS_VAR ); | |
4281 | ||
4282 | } | |
4283 | ||
4284 | /*---------------------------------------------------------------------------- | |
4285 | | Returns the result of converting the quadruple-precision floating-point | |
4286 | | value `a' to the 32-bit two's complement integer format. The conversion | |
4287 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
4288 | | Arithmetic, except that the conversion is always rounded toward zero. If | |
4289 | | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | |
4290 | | conversion overflows, the largest integer with the same sign as `a' is | |
4291 | | returned. | |
4292 | *----------------------------------------------------------------------------*/ | |
4293 | ||
4294 | int32 float128_to_int32_round_to_zero( float128 a STATUS_PARAM ) | |
4295 | { | |
4296 | flag aSign; | |
4297 | int32 aExp, shiftCount; | |
4298 | bits64 aSig0, aSig1, savedASig; | |
4299 | int32 z; | |
4300 | ||
4301 | aSig1 = extractFloat128Frac1( a ); | |
4302 | aSig0 = extractFloat128Frac0( a ); | |
4303 | aExp = extractFloat128Exp( a ); | |
4304 | aSign = extractFloat128Sign( a ); | |
4305 | aSig0 |= ( aSig1 != 0 ); | |
4306 | if ( 0x401E < aExp ) { | |
4307 | if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; | |
4308 | goto invalid; | |
4309 | } | |
4310 | else if ( aExp < 0x3FFF ) { | |
4311 | if ( aExp || aSig0 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
4312 | return 0; | |
4313 | } | |
4314 | aSig0 |= LIT64( 0x0001000000000000 ); | |
4315 | shiftCount = 0x402F - aExp; | |
4316 | savedASig = aSig0; | |
4317 | aSig0 >>= shiftCount; | |
4318 | z = aSig0; | |
4319 | if ( aSign ) z = - z; | |
4320 | if ( ( z < 0 ) ^ aSign ) { | |
4321 | invalid: | |
4322 | float_raise( float_flag_invalid STATUS_VAR); | |
4323 | return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; | |
4324 | } | |
4325 | if ( ( aSig0<<shiftCount ) != savedASig ) { | |
4326 | STATUS(float_exception_flags) |= float_flag_inexact; | |
4327 | } | |
4328 | return z; | |
4329 | ||
4330 | } | |
4331 | ||
4332 | /*---------------------------------------------------------------------------- | |
4333 | | Returns the result of converting the quadruple-precision floating-point | |
4334 | | value `a' to the 64-bit two's complement integer format. The conversion | |
4335 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
4336 | | Arithmetic---which means in particular that the conversion is rounded | |
4337 | | according to the current rounding mode. If `a' is a NaN, the largest | |
4338 | | positive integer is returned. Otherwise, if the conversion overflows, the | |
4339 | | largest integer with the same sign as `a' is returned. | |
4340 | *----------------------------------------------------------------------------*/ | |
4341 | ||
4342 | int64 float128_to_int64( float128 a STATUS_PARAM ) | |
4343 | { | |
4344 | flag aSign; | |
4345 | int32 aExp, shiftCount; | |
4346 | bits64 aSig0, aSig1; | |
4347 | ||
4348 | aSig1 = extractFloat128Frac1( a ); | |
4349 | aSig0 = extractFloat128Frac0( a ); | |
4350 | aExp = extractFloat128Exp( a ); | |
4351 | aSign = extractFloat128Sign( a ); | |
4352 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
4353 | shiftCount = 0x402F - aExp; | |
4354 | if ( shiftCount <= 0 ) { | |
4355 | if ( 0x403E < aExp ) { | |
4356 | float_raise( float_flag_invalid STATUS_VAR); | |
4357 | if ( ! aSign | |
4358 | || ( ( aExp == 0x7FFF ) | |
4359 | && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) ) | |
4360 | ) | |
4361 | ) { | |
4362 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4363 | } | |
4364 | return (sbits64) LIT64( 0x8000000000000000 ); | |
4365 | } | |
4366 | shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 ); | |
4367 | } | |
4368 | else { | |
4369 | shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 ); | |
4370 | } | |
4371 | return roundAndPackInt64( aSign, aSig0, aSig1 STATUS_VAR ); | |
4372 | ||
4373 | } | |
4374 | ||
4375 | /*---------------------------------------------------------------------------- | |
4376 | | Returns the result of converting the quadruple-precision floating-point | |
4377 | | value `a' to the 64-bit two's complement integer format. The conversion | |
4378 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
4379 | | Arithmetic, except that the conversion is always rounded toward zero. | |
4380 | | If `a' is a NaN, the largest positive integer is returned. Otherwise, if | |
4381 | | the conversion overflows, the largest integer with the same sign as `a' is | |
4382 | | returned. | |
4383 | *----------------------------------------------------------------------------*/ | |
4384 | ||
4385 | int64 float128_to_int64_round_to_zero( float128 a STATUS_PARAM ) | |
4386 | { | |
4387 | flag aSign; | |
4388 | int32 aExp, shiftCount; | |
4389 | bits64 aSig0, aSig1; | |
4390 | int64 z; | |
4391 | ||
4392 | aSig1 = extractFloat128Frac1( a ); | |
4393 | aSig0 = extractFloat128Frac0( a ); | |
4394 | aExp = extractFloat128Exp( a ); | |
4395 | aSign = extractFloat128Sign( a ); | |
4396 | if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); | |
4397 | shiftCount = aExp - 0x402F; | |
4398 | if ( 0 < shiftCount ) { | |
4399 | if ( 0x403E <= aExp ) { | |
4400 | aSig0 &= LIT64( 0x0000FFFFFFFFFFFF ); | |
4401 | if ( ( a.high == LIT64( 0xC03E000000000000 ) ) | |
4402 | && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) { | |
4403 | if ( aSig1 ) STATUS(float_exception_flags) |= float_flag_inexact; | |
4404 | } | |
4405 | else { | |
4406 | float_raise( float_flag_invalid STATUS_VAR); | |
4407 | if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) { | |
4408 | return LIT64( 0x7FFFFFFFFFFFFFFF ); | |
4409 | } | |
4410 | } | |
4411 | return (sbits64) LIT64( 0x8000000000000000 ); | |
4412 | } | |
4413 | z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) ); | |
4414 | if ( (bits64) ( aSig1<<shiftCount ) ) { | |
4415 | STATUS(float_exception_flags) |= float_flag_inexact; | |
4416 | } | |
4417 | } | |
4418 | else { | |
4419 | if ( aExp < 0x3FFF ) { | |
4420 | if ( aExp | aSig0 | aSig1 ) { | |
4421 | STATUS(float_exception_flags) |= float_flag_inexact; | |
4422 | } | |
4423 | return 0; | |
4424 | } | |
4425 | z = aSig0>>( - shiftCount ); | |
4426 | if ( aSig1 | |
4427 | || ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) { | |
4428 | STATUS(float_exception_flags) |= float_flag_inexact; | |
4429 | } | |
4430 | } | |
4431 | if ( aSign ) z = - z; | |
4432 | return z; | |
4433 | ||
4434 | } | |
4435 | ||
4436 | /*---------------------------------------------------------------------------- | |
4437 | | Returns the result of converting the quadruple-precision floating-point | |
4438 | | value `a' to the single-precision floating-point format. The conversion | |
4439 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
4440 | | Arithmetic. | |
4441 | *----------------------------------------------------------------------------*/ | |
4442 | ||
4443 | float32 float128_to_float32( float128 a STATUS_PARAM ) | |
4444 | { | |
4445 | flag aSign; | |
4446 | int32 aExp; | |
4447 | bits64 aSig0, aSig1; | |
4448 | bits32 zSig; | |
4449 | ||
4450 | aSig1 = extractFloat128Frac1( a ); | |
4451 | aSig0 = extractFloat128Frac0( a ); | |
4452 | aExp = extractFloat128Exp( a ); | |
4453 | aSign = extractFloat128Sign( a ); | |
4454 | if ( aExp == 0x7FFF ) { | |
4455 | if ( aSig0 | aSig1 ) { | |
4456 | return commonNaNToFloat32( float128ToCommonNaN( a STATUS_VAR ) ); | |
4457 | } | |
4458 | return packFloat32( aSign, 0xFF, 0 ); | |
4459 | } | |
4460 | aSig0 |= ( aSig1 != 0 ); | |
4461 | shift64RightJamming( aSig0, 18, &aSig0 ); | |
4462 | zSig = aSig0; | |
4463 | if ( aExp || zSig ) { | |
4464 | zSig |= 0x40000000; | |
4465 | aExp -= 0x3F81; | |
4466 | } | |
4467 | return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR ); | |
4468 | ||
4469 | } | |
4470 | ||
4471 | /*---------------------------------------------------------------------------- | |
4472 | | Returns the result of converting the quadruple-precision floating-point | |
4473 | | value `a' to the double-precision floating-point format. The conversion | |
4474 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
4475 | | Arithmetic. | |
4476 | *----------------------------------------------------------------------------*/ | |
4477 | ||
4478 | float64 float128_to_float64( float128 a STATUS_PARAM ) | |
4479 | { | |
4480 | flag aSign; | |
4481 | int32 aExp; | |
4482 | bits64 aSig0, aSig1; | |
4483 | ||
4484 | aSig1 = extractFloat128Frac1( a ); | |
4485 | aSig0 = extractFloat128Frac0( a ); | |
4486 | aExp = extractFloat128Exp( a ); | |
4487 | aSign = extractFloat128Sign( a ); | |
4488 | if ( aExp == 0x7FFF ) { | |
4489 | if ( aSig0 | aSig1 ) { | |
4490 | return commonNaNToFloat64( float128ToCommonNaN( a STATUS_VAR ) ); | |
4491 | } | |
4492 | return packFloat64( aSign, 0x7FF, 0 ); | |
4493 | } | |
4494 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | |
4495 | aSig0 |= ( aSig1 != 0 ); | |
4496 | if ( aExp || aSig0 ) { | |
4497 | aSig0 |= LIT64( 0x4000000000000000 ); | |
4498 | aExp -= 0x3C01; | |
4499 | } | |
4500 | return roundAndPackFloat64( aSign, aExp, aSig0 STATUS_VAR ); | |
4501 | ||
4502 | } | |
4503 | ||
4504 | #ifdef FLOATX80 | |
4505 | ||
4506 | /*---------------------------------------------------------------------------- | |
4507 | | Returns the result of converting the quadruple-precision floating-point | |
4508 | | value `a' to the extended double-precision floating-point format. The | |
4509 | | conversion is performed according to the IEC/IEEE Standard for Binary | |
4510 | | Floating-Point Arithmetic. | |
4511 | *----------------------------------------------------------------------------*/ | |
4512 | ||
4513 | floatx80 float128_to_floatx80( float128 a STATUS_PARAM ) | |
4514 | { | |
4515 | flag aSign; | |
4516 | int32 aExp; | |
4517 | bits64 aSig0, aSig1; | |
4518 | ||
4519 | aSig1 = extractFloat128Frac1( a ); | |
4520 | aSig0 = extractFloat128Frac0( a ); | |
4521 | aExp = extractFloat128Exp( a ); | |
4522 | aSign = extractFloat128Sign( a ); | |
4523 | if ( aExp == 0x7FFF ) { | |
4524 | if ( aSig0 | aSig1 ) { | |
4525 | return commonNaNToFloatx80( float128ToCommonNaN( a STATUS_VAR ) ); | |
4526 | } | |
4527 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | |
4528 | } | |
4529 | if ( aExp == 0 ) { | |
4530 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); | |
4531 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
4532 | } | |
4533 | else { | |
4534 | aSig0 |= LIT64( 0x0001000000000000 ); | |
4535 | } | |
4536 | shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); | |
4537 | return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 STATUS_VAR ); | |
4538 | ||
4539 | } | |
4540 | ||
4541 | #endif | |
4542 | ||
4543 | /*---------------------------------------------------------------------------- | |
4544 | | Rounds the quadruple-precision floating-point value `a' to an integer, and | |
4545 | | returns the result as a quadruple-precision floating-point value. The | |
4546 | | operation is performed according to the IEC/IEEE Standard for Binary | |
4547 | | Floating-Point Arithmetic. | |
4548 | *----------------------------------------------------------------------------*/ | |
4549 | ||
4550 | float128 float128_round_to_int( float128 a STATUS_PARAM ) | |
4551 | { | |
4552 | flag aSign; | |
4553 | int32 aExp; | |
4554 | bits64 lastBitMask, roundBitsMask; | |
4555 | int8 roundingMode; | |
4556 | float128 z; | |
4557 | ||
4558 | aExp = extractFloat128Exp( a ); | |
4559 | if ( 0x402F <= aExp ) { | |
4560 | if ( 0x406F <= aExp ) { | |
4561 | if ( ( aExp == 0x7FFF ) | |
4562 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) | |
4563 | ) { | |
4564 | return propagateFloat128NaN( a, a STATUS_VAR ); | |
4565 | } | |
4566 | return a; | |
4567 | } | |
4568 | lastBitMask = 1; | |
4569 | lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; | |
4570 | roundBitsMask = lastBitMask - 1; | |
4571 | z = a; | |
4572 | roundingMode = STATUS(float_rounding_mode); | |
4573 | if ( roundingMode == float_round_nearest_even ) { | |
4574 | if ( lastBitMask ) { | |
4575 | add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); | |
4576 | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; | |
4577 | } | |
4578 | else { | |
4579 | if ( (sbits64) z.low < 0 ) { | |
4580 | ++z.high; | |
4581 | if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1; | |
4582 | } | |
4583 | } | |
4584 | } | |
4585 | else if ( roundingMode != float_round_to_zero ) { | |
4586 | if ( extractFloat128Sign( z ) | |
4587 | ^ ( roundingMode == float_round_up ) ) { | |
4588 | add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low ); | |
4589 | } | |
4590 | } | |
4591 | z.low &= ~ roundBitsMask; | |
4592 | } | |
4593 | else { | |
4594 | if ( aExp < 0x3FFF ) { | |
4595 | if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a; | |
4596 | STATUS(float_exception_flags) |= float_flag_inexact; | |
4597 | aSign = extractFloat128Sign( a ); | |
4598 | switch ( STATUS(float_rounding_mode) ) { | |
4599 | case float_round_nearest_even: | |
4600 | if ( ( aExp == 0x3FFE ) | |
4601 | && ( extractFloat128Frac0( a ) | |
4602 | | extractFloat128Frac1( a ) ) | |
4603 | ) { | |
4604 | return packFloat128( aSign, 0x3FFF, 0, 0 ); | |
4605 | } | |
4606 | break; | |
4607 | case float_round_down: | |
4608 | return | |
4609 | aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) | |
4610 | : packFloat128( 0, 0, 0, 0 ); | |
4611 | case float_round_up: | |
4612 | return | |
4613 | aSign ? packFloat128( 1, 0, 0, 0 ) | |
4614 | : packFloat128( 0, 0x3FFF, 0, 0 ); | |
4615 | } | |
4616 | return packFloat128( aSign, 0, 0, 0 ); | |
4617 | } | |
4618 | lastBitMask = 1; | |
4619 | lastBitMask <<= 0x402F - aExp; | |
4620 | roundBitsMask = lastBitMask - 1; | |
4621 | z.low = 0; | |
4622 | z.high = a.high; | |
4623 | roundingMode = STATUS(float_rounding_mode); | |
4624 | if ( roundingMode == float_round_nearest_even ) { | |
4625 | z.high += lastBitMask>>1; | |
4626 | if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { | |
4627 | z.high &= ~ lastBitMask; | |
4628 | } | |
4629 | } | |
4630 | else if ( roundingMode != float_round_to_zero ) { | |
4631 | if ( extractFloat128Sign( z ) | |
4632 | ^ ( roundingMode == float_round_up ) ) { | |
4633 | z.high |= ( a.low != 0 ); | |
4634 | z.high += roundBitsMask; | |
4635 | } | |
4636 | } | |
4637 | z.high &= ~ roundBitsMask; | |
4638 | } | |
4639 | if ( ( z.low != a.low ) || ( z.high != a.high ) ) { | |
4640 | STATUS(float_exception_flags) |= float_flag_inexact; | |
4641 | } | |
4642 | return z; | |
4643 | ||
4644 | } | |
4645 | ||
4646 | /*---------------------------------------------------------------------------- | |
4647 | | Returns the result of adding the absolute values of the quadruple-precision | |
4648 | | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated | |
4649 | | before being returned. `zSign' is ignored if the result is a NaN. | |
4650 | | The addition is performed according to the IEC/IEEE Standard for Binary | |
4651 | | Floating-Point Arithmetic. | |
4652 | *----------------------------------------------------------------------------*/ | |
4653 | ||
4654 | static float128 addFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM) | |
4655 | { | |
4656 | int32 aExp, bExp, zExp; | |
4657 | bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; | |
4658 | int32 expDiff; | |
4659 | ||
4660 | aSig1 = extractFloat128Frac1( a ); | |
4661 | aSig0 = extractFloat128Frac0( a ); | |
4662 | aExp = extractFloat128Exp( a ); | |
4663 | bSig1 = extractFloat128Frac1( b ); | |
4664 | bSig0 = extractFloat128Frac0( b ); | |
4665 | bExp = extractFloat128Exp( b ); | |
4666 | expDiff = aExp - bExp; | |
4667 | if ( 0 < expDiff ) { | |
4668 | if ( aExp == 0x7FFF ) { | |
4669 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
4670 | return a; | |
4671 | } | |
4672 | if ( bExp == 0 ) { | |
4673 | --expDiff; | |
4674 | } | |
4675 | else { | |
4676 | bSig0 |= LIT64( 0x0001000000000000 ); | |
4677 | } | |
4678 | shift128ExtraRightJamming( | |
4679 | bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); | |
4680 | zExp = aExp; | |
4681 | } | |
4682 | else if ( expDiff < 0 ) { | |
4683 | if ( bExp == 0x7FFF ) { | |
4684 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
4685 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
4686 | } | |
4687 | if ( aExp == 0 ) { | |
4688 | ++expDiff; | |
4689 | } | |
4690 | else { | |
4691 | aSig0 |= LIT64( 0x0001000000000000 ); | |
4692 | } | |
4693 | shift128ExtraRightJamming( | |
4694 | aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); | |
4695 | zExp = bExp; | |
4696 | } | |
4697 | else { | |
4698 | if ( aExp == 0x7FFF ) { | |
4699 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | |
4700 | return propagateFloat128NaN( a, b STATUS_VAR ); | |
4701 | } | |
4702 | return a; | |
4703 | } | |
4704 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
fe76d976 PB |
4705 | if ( aExp == 0 ) { |
4706 | if ( STATUS(flush_to_zero) ) return packFloat128( zSign, 0, 0, 0 ); | |
4707 | return packFloat128( zSign, 0, zSig0, zSig1 ); | |
4708 | } | |
158142c2 FB |
4709 | zSig2 = 0; |
4710 | zSig0 |= LIT64( 0x0002000000000000 ); | |
4711 | zExp = aExp; | |
4712 | goto shiftRight1; | |
4713 | } | |
4714 | aSig0 |= LIT64( 0x0001000000000000 ); | |
4715 | add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
4716 | --zExp; | |
4717 | if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack; | |
4718 | ++zExp; | |
4719 | shiftRight1: | |
4720 | shift128ExtraRightJamming( | |
4721 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | |
4722 | roundAndPack: | |
4723 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | |
4724 | ||
4725 | } | |
4726 | ||
4727 | /*---------------------------------------------------------------------------- | |
4728 | | Returns the result of subtracting the absolute values of the quadruple- | |
4729 | | precision floating-point values `a' and `b'. If `zSign' is 1, the | |
4730 | | difference is negated before being returned. `zSign' is ignored if the | |
4731 | | result is a NaN. The subtraction is performed according to the IEC/IEEE | |
4732 | | Standard for Binary Floating-Point Arithmetic. | |
4733 | *----------------------------------------------------------------------------*/ | |
4734 | ||
4735 | static float128 subFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM) | |
4736 | { | |
4737 | int32 aExp, bExp, zExp; | |
4738 | bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; | |
4739 | int32 expDiff; | |
4740 | float128 z; | |
4741 | ||
4742 | aSig1 = extractFloat128Frac1( a ); | |
4743 | aSig0 = extractFloat128Frac0( a ); | |
4744 | aExp = extractFloat128Exp( a ); | |
4745 | bSig1 = extractFloat128Frac1( b ); | |
4746 | bSig0 = extractFloat128Frac0( b ); | |
4747 | bExp = extractFloat128Exp( b ); | |
4748 | expDiff = aExp - bExp; | |
4749 | shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); | |
4750 | shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); | |
4751 | if ( 0 < expDiff ) goto aExpBigger; | |
4752 | if ( expDiff < 0 ) goto bExpBigger; | |
4753 | if ( aExp == 0x7FFF ) { | |
4754 | if ( aSig0 | aSig1 | bSig0 | bSig1 ) { | |
4755 | return propagateFloat128NaN( a, b STATUS_VAR ); | |
4756 | } | |
4757 | float_raise( float_flag_invalid STATUS_VAR); | |
4758 | z.low = float128_default_nan_low; | |
4759 | z.high = float128_default_nan_high; | |
4760 | return z; | |
4761 | } | |
4762 | if ( aExp == 0 ) { | |
4763 | aExp = 1; | |
4764 | bExp = 1; | |
4765 | } | |
4766 | if ( bSig0 < aSig0 ) goto aBigger; | |
4767 | if ( aSig0 < bSig0 ) goto bBigger; | |
4768 | if ( bSig1 < aSig1 ) goto aBigger; | |
4769 | if ( aSig1 < bSig1 ) goto bBigger; | |
4770 | return packFloat128( STATUS(float_rounding_mode) == float_round_down, 0, 0, 0 ); | |
4771 | bExpBigger: | |
4772 | if ( bExp == 0x7FFF ) { | |
4773 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
4774 | return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); | |
4775 | } | |
4776 | if ( aExp == 0 ) { | |
4777 | ++expDiff; | |
4778 | } | |
4779 | else { | |
4780 | aSig0 |= LIT64( 0x4000000000000000 ); | |
4781 | } | |
4782 | shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | |
4783 | bSig0 |= LIT64( 0x4000000000000000 ); | |
4784 | bBigger: | |
4785 | sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); | |
4786 | zExp = bExp; | |
4787 | zSign ^= 1; | |
4788 | goto normalizeRoundAndPack; | |
4789 | aExpBigger: | |
4790 | if ( aExp == 0x7FFF ) { | |
4791 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
4792 | return a; | |
4793 | } | |
4794 | if ( bExp == 0 ) { | |
4795 | --expDiff; | |
4796 | } | |
4797 | else { | |
4798 | bSig0 |= LIT64( 0x4000000000000000 ); | |
4799 | } | |
4800 | shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); | |
4801 | aSig0 |= LIT64( 0x4000000000000000 ); | |
4802 | aBigger: | |
4803 | sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); | |
4804 | zExp = aExp; | |
4805 | normalizeRoundAndPack: | |
4806 | --zExp; | |
4807 | return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 STATUS_VAR ); | |
4808 | ||
4809 | } | |
4810 | ||
4811 | /*---------------------------------------------------------------------------- | |
4812 | | Returns the result of adding the quadruple-precision floating-point values | |
4813 | | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | |
4814 | | for Binary Floating-Point Arithmetic. | |
4815 | *----------------------------------------------------------------------------*/ | |
4816 | ||
4817 | float128 float128_add( float128 a, float128 b STATUS_PARAM ) | |
4818 | { | |
4819 | flag aSign, bSign; | |
4820 | ||
4821 | aSign = extractFloat128Sign( a ); | |
4822 | bSign = extractFloat128Sign( b ); | |
4823 | if ( aSign == bSign ) { | |
4824 | return addFloat128Sigs( a, b, aSign STATUS_VAR ); | |
4825 | } | |
4826 | else { | |
4827 | return subFloat128Sigs( a, b, aSign STATUS_VAR ); | |
4828 | } | |
4829 | ||
4830 | } | |
4831 | ||
4832 | /*---------------------------------------------------------------------------- | |
4833 | | Returns the result of subtracting the quadruple-precision floating-point | |
4834 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
4835 | | Standard for Binary Floating-Point Arithmetic. | |
4836 | *----------------------------------------------------------------------------*/ | |
4837 | ||
4838 | float128 float128_sub( float128 a, float128 b STATUS_PARAM ) | |
4839 | { | |
4840 | flag aSign, bSign; | |
4841 | ||
4842 | aSign = extractFloat128Sign( a ); | |
4843 | bSign = extractFloat128Sign( b ); | |
4844 | if ( aSign == bSign ) { | |
4845 | return subFloat128Sigs( a, b, aSign STATUS_VAR ); | |
4846 | } | |
4847 | else { | |
4848 | return addFloat128Sigs( a, b, aSign STATUS_VAR ); | |
4849 | } | |
4850 | ||
4851 | } | |
4852 | ||
4853 | /*---------------------------------------------------------------------------- | |
4854 | | Returns the result of multiplying the quadruple-precision floating-point | |
4855 | | values `a' and `b'. The operation is performed according to the IEC/IEEE | |
4856 | | Standard for Binary Floating-Point Arithmetic. | |
4857 | *----------------------------------------------------------------------------*/ | |
4858 | ||
4859 | float128 float128_mul( float128 a, float128 b STATUS_PARAM ) | |
4860 | { | |
4861 | flag aSign, bSign, zSign; | |
4862 | int32 aExp, bExp, zExp; | |
4863 | bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; | |
4864 | float128 z; | |
4865 | ||
4866 | aSig1 = extractFloat128Frac1( a ); | |
4867 | aSig0 = extractFloat128Frac0( a ); | |
4868 | aExp = extractFloat128Exp( a ); | |
4869 | aSign = extractFloat128Sign( a ); | |
4870 | bSig1 = extractFloat128Frac1( b ); | |
4871 | bSig0 = extractFloat128Frac0( b ); | |
4872 | bExp = extractFloat128Exp( b ); | |
4873 | bSign = extractFloat128Sign( b ); | |
4874 | zSign = aSign ^ bSign; | |
4875 | if ( aExp == 0x7FFF ) { | |
4876 | if ( ( aSig0 | aSig1 ) | |
4877 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | |
4878 | return propagateFloat128NaN( a, b STATUS_VAR ); | |
4879 | } | |
4880 | if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; | |
4881 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
4882 | } | |
4883 | if ( bExp == 0x7FFF ) { | |
4884 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
4885 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) { | |
4886 | invalid: | |
4887 | float_raise( float_flag_invalid STATUS_VAR); | |
4888 | z.low = float128_default_nan_low; | |
4889 | z.high = float128_default_nan_high; | |
4890 | return z; | |
4891 | } | |
4892 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
4893 | } | |
4894 | if ( aExp == 0 ) { | |
4895 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
4896 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
4897 | } | |
4898 | if ( bExp == 0 ) { | |
4899 | if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
4900 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
4901 | } | |
4902 | zExp = aExp + bExp - 0x4000; | |
4903 | aSig0 |= LIT64( 0x0001000000000000 ); | |
4904 | shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); | |
4905 | mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); | |
4906 | add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); | |
4907 | zSig2 |= ( zSig3 != 0 ); | |
4908 | if ( LIT64( 0x0002000000000000 ) <= zSig0 ) { | |
4909 | shift128ExtraRightJamming( | |
4910 | zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); | |
4911 | ++zExp; | |
4912 | } | |
4913 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | |
4914 | ||
4915 | } | |
4916 | ||
4917 | /*---------------------------------------------------------------------------- | |
4918 | | Returns the result of dividing the quadruple-precision floating-point value | |
4919 | | `a' by the corresponding value `b'. The operation is performed according to | |
4920 | | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
4921 | *----------------------------------------------------------------------------*/ | |
4922 | ||
4923 | float128 float128_div( float128 a, float128 b STATUS_PARAM ) | |
4924 | { | |
4925 | flag aSign, bSign, zSign; | |
4926 | int32 aExp, bExp, zExp; | |
4927 | bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; | |
4928 | bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
4929 | float128 z; | |
4930 | ||
4931 | aSig1 = extractFloat128Frac1( a ); | |
4932 | aSig0 = extractFloat128Frac0( a ); | |
4933 | aExp = extractFloat128Exp( a ); | |
4934 | aSign = extractFloat128Sign( a ); | |
4935 | bSig1 = extractFloat128Frac1( b ); | |
4936 | bSig0 = extractFloat128Frac0( b ); | |
4937 | bExp = extractFloat128Exp( b ); | |
4938 | bSign = extractFloat128Sign( b ); | |
4939 | zSign = aSign ^ bSign; | |
4940 | if ( aExp == 0x7FFF ) { | |
4941 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
4942 | if ( bExp == 0x7FFF ) { | |
4943 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
4944 | goto invalid; | |
4945 | } | |
4946 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
4947 | } | |
4948 | if ( bExp == 0x7FFF ) { | |
4949 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
4950 | return packFloat128( zSign, 0, 0, 0 ); | |
4951 | } | |
4952 | if ( bExp == 0 ) { | |
4953 | if ( ( bSig0 | bSig1 ) == 0 ) { | |
4954 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) { | |
4955 | invalid: | |
4956 | float_raise( float_flag_invalid STATUS_VAR); | |
4957 | z.low = float128_default_nan_low; | |
4958 | z.high = float128_default_nan_high; | |
4959 | return z; | |
4960 | } | |
4961 | float_raise( float_flag_divbyzero STATUS_VAR); | |
4962 | return packFloat128( zSign, 0x7FFF, 0, 0 ); | |
4963 | } | |
4964 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
4965 | } | |
4966 | if ( aExp == 0 ) { | |
4967 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); | |
4968 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
4969 | } | |
4970 | zExp = aExp - bExp + 0x3FFD; | |
4971 | shortShift128Left( | |
4972 | aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 ); | |
4973 | shortShift128Left( | |
4974 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | |
4975 | if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { | |
4976 | shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); | |
4977 | ++zExp; | |
4978 | } | |
4979 | zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
4980 | mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); | |
4981 | sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); | |
4982 | while ( (sbits64) rem0 < 0 ) { | |
4983 | --zSig0; | |
4984 | add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); | |
4985 | } | |
4986 | zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); | |
4987 | if ( ( zSig1 & 0x3FFF ) <= 4 ) { | |
4988 | mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); | |
4989 | sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); | |
4990 | while ( (sbits64) rem1 < 0 ) { | |
4991 | --zSig1; | |
4992 | add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); | |
4993 | } | |
4994 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
4995 | } | |
4996 | shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); | |
4997 | return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | |
4998 | ||
4999 | } | |
5000 | ||
5001 | /*---------------------------------------------------------------------------- | |
5002 | | Returns the remainder of the quadruple-precision floating-point value `a' | |
5003 | | with respect to the corresponding value `b'. The operation is performed | |
5004 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5005 | *----------------------------------------------------------------------------*/ | |
5006 | ||
5007 | float128 float128_rem( float128 a, float128 b STATUS_PARAM ) | |
5008 | { | |
5009 | flag aSign, bSign, zSign; | |
5010 | int32 aExp, bExp, expDiff; | |
5011 | bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; | |
5012 | bits64 allZero, alternateASig0, alternateASig1, sigMean1; | |
5013 | sbits64 sigMean0; | |
5014 | float128 z; | |
5015 | ||
5016 | aSig1 = extractFloat128Frac1( a ); | |
5017 | aSig0 = extractFloat128Frac0( a ); | |
5018 | aExp = extractFloat128Exp( a ); | |
5019 | aSign = extractFloat128Sign( a ); | |
5020 | bSig1 = extractFloat128Frac1( b ); | |
5021 | bSig0 = extractFloat128Frac0( b ); | |
5022 | bExp = extractFloat128Exp( b ); | |
5023 | bSign = extractFloat128Sign( b ); | |
5024 | if ( aExp == 0x7FFF ) { | |
5025 | if ( ( aSig0 | aSig1 ) | |
5026 | || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { | |
5027 | return propagateFloat128NaN( a, b STATUS_VAR ); | |
5028 | } | |
5029 | goto invalid; | |
5030 | } | |
5031 | if ( bExp == 0x7FFF ) { | |
5032 | if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR ); | |
5033 | return a; | |
5034 | } | |
5035 | if ( bExp == 0 ) { | |
5036 | if ( ( bSig0 | bSig1 ) == 0 ) { | |
5037 | invalid: | |
5038 | float_raise( float_flag_invalid STATUS_VAR); | |
5039 | z.low = float128_default_nan_low; | |
5040 | z.high = float128_default_nan_high; | |
5041 | return z; | |
5042 | } | |
5043 | normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); | |
5044 | } | |
5045 | if ( aExp == 0 ) { | |
5046 | if ( ( aSig0 | aSig1 ) == 0 ) return a; | |
5047 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
5048 | } | |
5049 | expDiff = aExp - bExp; | |
5050 | if ( expDiff < -1 ) return a; | |
5051 | shortShift128Left( | |
5052 | aSig0 | LIT64( 0x0001000000000000 ), | |
5053 | aSig1, | |
5054 | 15 - ( expDiff < 0 ), | |
5055 | &aSig0, | |
5056 | &aSig1 | |
5057 | ); | |
5058 | shortShift128Left( | |
5059 | bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); | |
5060 | q = le128( bSig0, bSig1, aSig0, aSig1 ); | |
5061 | if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | |
5062 | expDiff -= 64; | |
5063 | while ( 0 < expDiff ) { | |
5064 | q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
5065 | q = ( 4 < q ) ? q - 4 : 0; | |
5066 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | |
5067 | shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); | |
5068 | shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); | |
5069 | sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); | |
5070 | expDiff -= 61; | |
5071 | } | |
5072 | if ( -64 < expDiff ) { | |
5073 | q = estimateDiv128To64( aSig0, aSig1, bSig0 ); | |
5074 | q = ( 4 < q ) ? q - 4 : 0; | |
5075 | q >>= - expDiff; | |
5076 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | |
5077 | expDiff += 52; | |
5078 | if ( expDiff < 0 ) { | |
5079 | shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); | |
5080 | } | |
5081 | else { | |
5082 | shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); | |
5083 | } | |
5084 | mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); | |
5085 | sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); | |
5086 | } | |
5087 | else { | |
5088 | shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); | |
5089 | shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); | |
5090 | } | |
5091 | do { | |
5092 | alternateASig0 = aSig0; | |
5093 | alternateASig1 = aSig1; | |
5094 | ++q; | |
5095 | sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); | |
5096 | } while ( 0 <= (sbits64) aSig0 ); | |
5097 | add128( | |
b55266b5 | 5098 | aSig0, aSig1, alternateASig0, alternateASig1, (bits64 *)&sigMean0, &sigMean1 ); |
158142c2 FB |
5099 | if ( ( sigMean0 < 0 ) |
5100 | || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { | |
5101 | aSig0 = alternateASig0; | |
5102 | aSig1 = alternateASig1; | |
5103 | } | |
5104 | zSign = ( (sbits64) aSig0 < 0 ); | |
5105 | if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); | |
5106 | return | |
5107 | normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 STATUS_VAR ); | |
5108 | ||
5109 | } | |
5110 | ||
5111 | /*---------------------------------------------------------------------------- | |
5112 | | Returns the square root of the quadruple-precision floating-point value `a'. | |
5113 | | The operation is performed according to the IEC/IEEE Standard for Binary | |
5114 | | Floating-Point Arithmetic. | |
5115 | *----------------------------------------------------------------------------*/ | |
5116 | ||
5117 | float128 float128_sqrt( float128 a STATUS_PARAM ) | |
5118 | { | |
5119 | flag aSign; | |
5120 | int32 aExp, zExp; | |
5121 | bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; | |
5122 | bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; | |
5123 | float128 z; | |
5124 | ||
5125 | aSig1 = extractFloat128Frac1( a ); | |
5126 | aSig0 = extractFloat128Frac0( a ); | |
5127 | aExp = extractFloat128Exp( a ); | |
5128 | aSign = extractFloat128Sign( a ); | |
5129 | if ( aExp == 0x7FFF ) { | |
5130 | if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a STATUS_VAR ); | |
5131 | if ( ! aSign ) return a; | |
5132 | goto invalid; | |
5133 | } | |
5134 | if ( aSign ) { | |
5135 | if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; | |
5136 | invalid: | |
5137 | float_raise( float_flag_invalid STATUS_VAR); | |
5138 | z.low = float128_default_nan_low; | |
5139 | z.high = float128_default_nan_high; | |
5140 | return z; | |
5141 | } | |
5142 | if ( aExp == 0 ) { | |
5143 | if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); | |
5144 | normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); | |
5145 | } | |
5146 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; | |
5147 | aSig0 |= LIT64( 0x0001000000000000 ); | |
5148 | zSig0 = estimateSqrt32( aExp, aSig0>>17 ); | |
5149 | shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); | |
5150 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); | |
5151 | doubleZSig0 = zSig0<<1; | |
5152 | mul64To128( zSig0, zSig0, &term0, &term1 ); | |
5153 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | |
5154 | while ( (sbits64) rem0 < 0 ) { | |
5155 | --zSig0; | |
5156 | doubleZSig0 -= 2; | |
5157 | add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); | |
5158 | } | |
5159 | zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); | |
5160 | if ( ( zSig1 & 0x1FFF ) <= 5 ) { | |
5161 | if ( zSig1 == 0 ) zSig1 = 1; | |
5162 | mul64To128( doubleZSig0, zSig1, &term1, &term2 ); | |
5163 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | |
5164 | mul64To128( zSig1, zSig1, &term2, &term3 ); | |
5165 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
5166 | while ( (sbits64) rem1 < 0 ) { | |
5167 | --zSig1; | |
5168 | shortShift128Left( 0, zSig1, 1, &term2, &term3 ); | |
5169 | term3 |= 1; | |
5170 | term2 |= doubleZSig0; | |
5171 | add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); | |
5172 | } | |
5173 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | |
5174 | } | |
5175 | shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); | |
5176 | return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 STATUS_VAR ); | |
5177 | ||
5178 | } | |
5179 | ||
5180 | /*---------------------------------------------------------------------------- | |
5181 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to | |
5182 | | the corresponding value `b', and 0 otherwise. The comparison is performed | |
5183 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5184 | *----------------------------------------------------------------------------*/ | |
5185 | ||
750afe93 | 5186 | int float128_eq( float128 a, float128 b STATUS_PARAM ) |
158142c2 FB |
5187 | { |
5188 | ||
5189 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
5190 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
5191 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
5192 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
5193 | ) { | |
5194 | if ( float128_is_signaling_nan( a ) | |
5195 | || float128_is_signaling_nan( b ) ) { | |
5196 | float_raise( float_flag_invalid STATUS_VAR); | |
5197 | } | |
5198 | return 0; | |
5199 | } | |
5200 | return | |
5201 | ( a.low == b.low ) | |
5202 | && ( ( a.high == b.high ) | |
5203 | || ( ( a.low == 0 ) | |
5204 | && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) ) | |
5205 | ); | |
5206 | ||
5207 | } | |
5208 | ||
5209 | /*---------------------------------------------------------------------------- | |
5210 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
5211 | | or equal to the corresponding value `b', and 0 otherwise. The comparison | |
5212 | | is performed according to the IEC/IEEE Standard for Binary Floating-Point | |
5213 | | Arithmetic. | |
5214 | *----------------------------------------------------------------------------*/ | |
5215 | ||
750afe93 | 5216 | int float128_le( float128 a, float128 b STATUS_PARAM ) |
158142c2 FB |
5217 | { |
5218 | flag aSign, bSign; | |
5219 | ||
5220 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
5221 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
5222 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
5223 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
5224 | ) { | |
5225 | float_raise( float_flag_invalid STATUS_VAR); | |
5226 | return 0; | |
5227 | } | |
5228 | aSign = extractFloat128Sign( a ); | |
5229 | bSign = extractFloat128Sign( b ); | |
5230 | if ( aSign != bSign ) { | |
5231 | return | |
5232 | aSign | |
5233 | || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
5234 | == 0 ); | |
5235 | } | |
5236 | return | |
5237 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
5238 | : le128( a.high, a.low, b.high, b.low ); | |
5239 | ||
5240 | } | |
5241 | ||
5242 | /*---------------------------------------------------------------------------- | |
5243 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
5244 | | the corresponding value `b', and 0 otherwise. The comparison is performed | |
5245 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5246 | *----------------------------------------------------------------------------*/ | |
5247 | ||
750afe93 | 5248 | int float128_lt( float128 a, float128 b STATUS_PARAM ) |
158142c2 FB |
5249 | { |
5250 | flag aSign, bSign; | |
5251 | ||
5252 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
5253 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
5254 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
5255 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
5256 | ) { | |
5257 | float_raise( float_flag_invalid STATUS_VAR); | |
5258 | return 0; | |
5259 | } | |
5260 | aSign = extractFloat128Sign( a ); | |
5261 | bSign = extractFloat128Sign( b ); | |
5262 | if ( aSign != bSign ) { | |
5263 | return | |
5264 | aSign | |
5265 | && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
5266 | != 0 ); | |
5267 | } | |
5268 | return | |
5269 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
5270 | : lt128( a.high, a.low, b.high, b.low ); | |
5271 | ||
5272 | } | |
5273 | ||
5274 | /*---------------------------------------------------------------------------- | |
5275 | | Returns 1 if the quadruple-precision floating-point value `a' is equal to | |
5276 | | the corresponding value `b', and 0 otherwise. The invalid exception is | |
5277 | | raised if either operand is a NaN. Otherwise, the comparison is performed | |
5278 | | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5279 | *----------------------------------------------------------------------------*/ | |
5280 | ||
750afe93 | 5281 | int float128_eq_signaling( float128 a, float128 b STATUS_PARAM ) |
158142c2 FB |
5282 | { |
5283 | ||
5284 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
5285 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
5286 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
5287 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
5288 | ) { | |
5289 | float_raise( float_flag_invalid STATUS_VAR); | |
5290 | return 0; | |
5291 | } | |
5292 | return | |
5293 | ( a.low == b.low ) | |
5294 | && ( ( a.high == b.high ) | |
5295 | || ( ( a.low == 0 ) | |
5296 | && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) ) | |
5297 | ); | |
5298 | ||
5299 | } | |
5300 | ||
5301 | /*---------------------------------------------------------------------------- | |
5302 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
5303 | | or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | |
5304 | | cause an exception. Otherwise, the comparison is performed according to the | |
5305 | | IEC/IEEE Standard for Binary Floating-Point Arithmetic. | |
5306 | *----------------------------------------------------------------------------*/ | |
5307 | ||
750afe93 | 5308 | int float128_le_quiet( float128 a, float128 b STATUS_PARAM ) |
158142c2 FB |
5309 | { |
5310 | flag aSign, bSign; | |
5311 | ||
5312 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
5313 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
5314 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
5315 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
5316 | ) { | |
5317 | if ( float128_is_signaling_nan( a ) | |
5318 | || float128_is_signaling_nan( b ) ) { | |
5319 | float_raise( float_flag_invalid STATUS_VAR); | |
5320 | } | |
5321 | return 0; | |
5322 | } | |
5323 | aSign = extractFloat128Sign( a ); | |
5324 | bSign = extractFloat128Sign( b ); | |
5325 | if ( aSign != bSign ) { | |
5326 | return | |
5327 | aSign | |
5328 | || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
5329 | == 0 ); | |
5330 | } | |
5331 | return | |
5332 | aSign ? le128( b.high, b.low, a.high, a.low ) | |
5333 | : le128( a.high, a.low, b.high, b.low ); | |
5334 | ||
5335 | } | |
5336 | ||
5337 | /*---------------------------------------------------------------------------- | |
5338 | | Returns 1 if the quadruple-precision floating-point value `a' is less than | |
5339 | | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | |
5340 | | exception. Otherwise, the comparison is performed according to the IEC/IEEE | |
5341 | | Standard for Binary Floating-Point Arithmetic. | |
5342 | *----------------------------------------------------------------------------*/ | |
5343 | ||
750afe93 | 5344 | int float128_lt_quiet( float128 a, float128 b STATUS_PARAM ) |
158142c2 FB |
5345 | { |
5346 | flag aSign, bSign; | |
5347 | ||
5348 | if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) | |
5349 | && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) | |
5350 | || ( ( extractFloat128Exp( b ) == 0x7FFF ) | |
5351 | && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) | |
5352 | ) { | |
5353 | if ( float128_is_signaling_nan( a ) | |
5354 | || float128_is_signaling_nan( b ) ) { | |
5355 | float_raise( float_flag_invalid STATUS_VAR); | |
5356 | } | |
5357 | return 0; | |
5358 | } | |
5359 | aSign = extractFloat128Sign( a ); | |
5360 | bSign = extractFloat128Sign( b ); | |
5361 | if ( aSign != bSign ) { | |
5362 | return | |
5363 | aSign | |
5364 | && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | |
5365 | != 0 ); | |
5366 | } | |
5367 | return | |
5368 | aSign ? lt128( b.high, b.low, a.high, a.low ) | |
5369 | : lt128( a.high, a.low, b.high, b.low ); | |
5370 | ||
5371 | } | |
5372 | ||
5373 | #endif | |
5374 | ||
1d6bda35 FB |
5375 | /* misc functions */ |
5376 | float32 uint32_to_float32( unsigned int a STATUS_PARAM ) | |
5377 | { | |
5378 | return int64_to_float32(a STATUS_VAR); | |
5379 | } | |
5380 | ||
5381 | float64 uint32_to_float64( unsigned int a STATUS_PARAM ) | |
5382 | { | |
5383 | return int64_to_float64(a STATUS_VAR); | |
5384 | } | |
5385 | ||
5386 | unsigned int float32_to_uint32( float32 a STATUS_PARAM ) | |
5387 | { | |
5388 | int64_t v; | |
5389 | unsigned int res; | |
5390 | ||
5391 | v = float32_to_int64(a STATUS_VAR); | |
5392 | if (v < 0) { | |
5393 | res = 0; | |
5394 | float_raise( float_flag_invalid STATUS_VAR); | |
5395 | } else if (v > 0xffffffff) { | |
5396 | res = 0xffffffff; | |
5397 | float_raise( float_flag_invalid STATUS_VAR); | |
5398 | } else { | |
5399 | res = v; | |
5400 | } | |
5401 | return res; | |
5402 | } | |
5403 | ||
5404 | unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM ) | |
5405 | { | |
5406 | int64_t v; | |
5407 | unsigned int res; | |
5408 | ||
5409 | v = float32_to_int64_round_to_zero(a STATUS_VAR); | |
5410 | if (v < 0) { | |
5411 | res = 0; | |
5412 | float_raise( float_flag_invalid STATUS_VAR); | |
5413 | } else if (v > 0xffffffff) { | |
5414 | res = 0xffffffff; | |
5415 | float_raise( float_flag_invalid STATUS_VAR); | |
5416 | } else { | |
5417 | res = v; | |
5418 | } | |
5419 | return res; | |
5420 | } | |
5421 | ||
5422 | unsigned int float64_to_uint32( float64 a STATUS_PARAM ) | |
5423 | { | |
5424 | int64_t v; | |
5425 | unsigned int res; | |
5426 | ||
5427 | v = float64_to_int64(a STATUS_VAR); | |
5428 | if (v < 0) { | |
5429 | res = 0; | |
5430 | float_raise( float_flag_invalid STATUS_VAR); | |
5431 | } else if (v > 0xffffffff) { | |
5432 | res = 0xffffffff; | |
5433 | float_raise( float_flag_invalid STATUS_VAR); | |
5434 | } else { | |
5435 | res = v; | |
5436 | } | |
5437 | return res; | |
5438 | } | |
5439 | ||
5440 | unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM ) | |
5441 | { | |
5442 | int64_t v; | |
5443 | unsigned int res; | |
5444 | ||
5445 | v = float64_to_int64_round_to_zero(a STATUS_VAR); | |
5446 | if (v < 0) { | |
5447 | res = 0; | |
5448 | float_raise( float_flag_invalid STATUS_VAR); | |
5449 | } else if (v > 0xffffffff) { | |
5450 | res = 0xffffffff; | |
5451 | float_raise( float_flag_invalid STATUS_VAR); | |
5452 | } else { | |
5453 | res = v; | |
5454 | } | |
5455 | return res; | |
5456 | } | |
5457 | ||
f090c9d4 | 5458 | /* FIXME: This looks broken. */ |
75d62a58 JM |
5459 | uint64_t float64_to_uint64 (float64 a STATUS_PARAM) |
5460 | { | |
5461 | int64_t v; | |
5462 | ||
f090c9d4 PB |
5463 | v = float64_val(int64_to_float64(INT64_MIN STATUS_VAR)); |
5464 | v += float64_val(a); | |
5465 | v = float64_to_int64(make_float64(v) STATUS_VAR); | |
75d62a58 JM |
5466 | |
5467 | return v - INT64_MIN; | |
5468 | } | |
5469 | ||
5470 | uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM) | |
5471 | { | |
5472 | int64_t v; | |
5473 | ||
f090c9d4 PB |
5474 | v = float64_val(int64_to_float64(INT64_MIN STATUS_VAR)); |
5475 | v += float64_val(a); | |
5476 | v = float64_to_int64_round_to_zero(make_float64(v) STATUS_VAR); | |
75d62a58 JM |
5477 | |
5478 | return v - INT64_MIN; | |
5479 | } | |
5480 | ||
1d6bda35 | 5481 | #define COMPARE(s, nan_exp) \ |
750afe93 | 5482 | INLINE int float ## s ## _compare_internal( float ## s a, float ## s b, \ |
1d6bda35 FB |
5483 | int is_quiet STATUS_PARAM ) \ |
5484 | { \ | |
5485 | flag aSign, bSign; \ | |
f090c9d4 | 5486 | bits ## s av, bv; \ |
1d6bda35 FB |
5487 | \ |
5488 | if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) && \ | |
5489 | extractFloat ## s ## Frac( a ) ) || \ | |
5490 | ( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \ | |
5491 | extractFloat ## s ## Frac( b ) )) { \ | |
5492 | if (!is_quiet || \ | |
5493 | float ## s ## _is_signaling_nan( a ) || \ | |
5494 | float ## s ## _is_signaling_nan( b ) ) { \ | |
5495 | float_raise( float_flag_invalid STATUS_VAR); \ | |
5496 | } \ | |
5497 | return float_relation_unordered; \ | |
5498 | } \ | |
5499 | aSign = extractFloat ## s ## Sign( a ); \ | |
5500 | bSign = extractFloat ## s ## Sign( b ); \ | |
f090c9d4 | 5501 | av = float ## s ## _val(a); \ |
cd8a2533 | 5502 | bv = float ## s ## _val(b); \ |
1d6bda35 | 5503 | if ( aSign != bSign ) { \ |
f090c9d4 | 5504 | if ( (bits ## s) ( ( av | bv )<<1 ) == 0 ) { \ |
1d6bda35 FB |
5505 | /* zero case */ \ |
5506 | return float_relation_equal; \ | |
5507 | } else { \ | |
5508 | return 1 - (2 * aSign); \ | |
5509 | } \ | |
5510 | } else { \ | |
f090c9d4 | 5511 | if (av == bv) { \ |
1d6bda35 FB |
5512 | return float_relation_equal; \ |
5513 | } else { \ | |
f090c9d4 | 5514 | return 1 - 2 * (aSign ^ ( av < bv )); \ |
1d6bda35 FB |
5515 | } \ |
5516 | } \ | |
5517 | } \ | |
5518 | \ | |
750afe93 | 5519 | int float ## s ## _compare( float ## s a, float ## s b STATUS_PARAM ) \ |
1d6bda35 FB |
5520 | { \ |
5521 | return float ## s ## _compare_internal(a, b, 0 STATUS_VAR); \ | |
5522 | } \ | |
5523 | \ | |
750afe93 | 5524 | int float ## s ## _compare_quiet( float ## s a, float ## s b STATUS_PARAM ) \ |
1d6bda35 FB |
5525 | { \ |
5526 | return float ## s ## _compare_internal(a, b, 1 STATUS_VAR); \ | |
5527 | } | |
5528 | ||
5529 | COMPARE(32, 0xff) | |
5530 | COMPARE(64, 0x7ff) | |
9ee6e8bb | 5531 | |
1f587329 BS |
5532 | INLINE int float128_compare_internal( float128 a, float128 b, |
5533 | int is_quiet STATUS_PARAM ) | |
5534 | { | |
5535 | flag aSign, bSign; | |
5536 | ||
5537 | if (( ( extractFloat128Exp( a ) == 0x7fff ) && | |
5538 | ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || | |
5539 | ( ( extractFloat128Exp( b ) == 0x7fff ) && | |
5540 | ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) { | |
5541 | if (!is_quiet || | |
5542 | float128_is_signaling_nan( a ) || | |
5543 | float128_is_signaling_nan( b ) ) { | |
5544 | float_raise( float_flag_invalid STATUS_VAR); | |
5545 | } | |
5546 | return float_relation_unordered; | |
5547 | } | |
5548 | aSign = extractFloat128Sign( a ); | |
5549 | bSign = extractFloat128Sign( b ); | |
5550 | if ( aSign != bSign ) { | |
5551 | if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) { | |
5552 | /* zero case */ | |
5553 | return float_relation_equal; | |
5554 | } else { | |
5555 | return 1 - (2 * aSign); | |
5556 | } | |
5557 | } else { | |
5558 | if (a.low == b.low && a.high == b.high) { | |
5559 | return float_relation_equal; | |
5560 | } else { | |
5561 | return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); | |
5562 | } | |
5563 | } | |
5564 | } | |
5565 | ||
5566 | int float128_compare( float128 a, float128 b STATUS_PARAM ) | |
5567 | { | |
5568 | return float128_compare_internal(a, b, 0 STATUS_VAR); | |
5569 | } | |
5570 | ||
5571 | int float128_compare_quiet( float128 a, float128 b STATUS_PARAM ) | |
5572 | { | |
5573 | return float128_compare_internal(a, b, 1 STATUS_VAR); | |
5574 | } | |
5575 | ||
9ee6e8bb PB |
5576 | /* Multiply A by 2 raised to the power N. */ |
5577 | float32 float32_scalbn( float32 a, int n STATUS_PARAM ) | |
5578 | { | |
5579 | flag aSign; | |
5580 | int16 aExp; | |
5581 | bits32 aSig; | |
5582 | ||
5583 | aSig = extractFloat32Frac( a ); | |
5584 | aExp = extractFloat32Exp( a ); | |
5585 | aSign = extractFloat32Sign( a ); | |
5586 | ||
5587 | if ( aExp == 0xFF ) { | |
5588 | return a; | |
5589 | } | |
69397542 PB |
5590 | if ( aExp != 0 ) |
5591 | aSig |= 0x00800000; | |
5592 | else if ( aSig == 0 ) | |
5593 | return a; | |
5594 | ||
5595 | aExp += n - 1; | |
5596 | aSig <<= 7; | |
5597 | return normalizeRoundAndPackFloat32( aSign, aExp, aSig STATUS_VAR ); | |
9ee6e8bb PB |
5598 | } |
5599 | ||
5600 | float64 float64_scalbn( float64 a, int n STATUS_PARAM ) | |
5601 | { | |
5602 | flag aSign; | |
5603 | int16 aExp; | |
5604 | bits64 aSig; | |
5605 | ||
5606 | aSig = extractFloat64Frac( a ); | |
5607 | aExp = extractFloat64Exp( a ); | |
5608 | aSign = extractFloat64Sign( a ); | |
5609 | ||
5610 | if ( aExp == 0x7FF ) { | |
5611 | return a; | |
5612 | } | |
69397542 PB |
5613 | if ( aExp != 0 ) |
5614 | aSig |= LIT64( 0x0010000000000000 ); | |
5615 | else if ( aSig == 0 ) | |
5616 | return a; | |
5617 | ||
5618 | aExp += n - 1; | |
5619 | aSig <<= 10; | |
5620 | return normalizeRoundAndPackFloat64( aSign, aExp, aSig STATUS_VAR ); | |
9ee6e8bb PB |
5621 | } |
5622 | ||
5623 | #ifdef FLOATX80 | |
5624 | floatx80 floatx80_scalbn( floatx80 a, int n STATUS_PARAM ) | |
5625 | { | |
5626 | flag aSign; | |
5627 | int16 aExp; | |
5628 | bits64 aSig; | |
5629 | ||
5630 | aSig = extractFloatx80Frac( a ); | |
5631 | aExp = extractFloatx80Exp( a ); | |
5632 | aSign = extractFloatx80Sign( a ); | |
5633 | ||
5634 | if ( aExp == 0x7FF ) { | |
5635 | return a; | |
5636 | } | |
69397542 PB |
5637 | if (aExp == 0 && aSig == 0) |
5638 | return a; | |
5639 | ||
9ee6e8bb | 5640 | aExp += n; |
69397542 PB |
5641 | return normalizeRoundAndPackFloatx80( STATUS(floatx80_rounding_precision), |
5642 | aSign, aExp, aSig, 0 STATUS_VAR ); | |
9ee6e8bb PB |
5643 | } |
5644 | #endif | |
5645 | ||
5646 | #ifdef FLOAT128 | |
5647 | float128 float128_scalbn( float128 a, int n STATUS_PARAM ) | |
5648 | { | |
5649 | flag aSign; | |
5650 | int32 aExp; | |
5651 | bits64 aSig0, aSig1; | |
5652 | ||
5653 | aSig1 = extractFloat128Frac1( a ); | |
5654 | aSig0 = extractFloat128Frac0( a ); | |
5655 | aExp = extractFloat128Exp( a ); | |
5656 | aSign = extractFloat128Sign( a ); | |
5657 | if ( aExp == 0x7FFF ) { | |
5658 | return a; | |
5659 | } | |
69397542 PB |
5660 | if ( aExp != 0 ) |
5661 | aSig0 |= LIT64( 0x0001000000000000 ); | |
5662 | else if ( aSig0 == 0 && aSig1 == 0 ) | |
5663 | return a; | |
5664 | ||
5665 | aExp += n - 1; | |
5666 | return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1 | |
5667 | STATUS_VAR ); | |
9ee6e8bb PB |
5668 | |
5669 | } | |
5670 | #endif |