]> Git Repo - qemu.git/blame - hw/block/onenand.c
Include migration/vmstate.h less
[qemu.git] / hw / block / onenand.c
CommitLineData
7e7c5e4c
AZ
1/*
2 * OneNAND flash memories emulation.
3 *
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <[email protected]>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
fad6cb1a 17 * You should have received a copy of the GNU General Public License along
8167ee88 18 * with this program; if not, see <http://www.gnu.org/licenses/>.
7e7c5e4c
AZ
19 */
20
80c71a24 21#include "qemu/osdep.h"
da34e65c 22#include "qapi/error.h"
83c9f4ca 23#include "hw/hw.h"
0d09e41a 24#include "hw/block/flash.h"
83c9f4ca 25#include "hw/irq.h"
4be74634 26#include "sysemu/block-backend.h"
022c62cb 27#include "exec/memory.h"
83c9f4ca 28#include "hw/sysbus.h"
d6454270 29#include "migration/vmstate.h"
1de7afc9 30#include "qemu/error-report.h"
9e6e9247 31#include "qemu/log.h"
0b8fa32f 32#include "qemu/module.h"
7e7c5e4c
AZ
33
34/* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
35#define PAGE_SHIFT 11
36
37/* Fixed */
38#define BLOCK_SHIFT (PAGE_SHIFT + 6)
39
af073cd9
AF
40#define TYPE_ONE_NAND "onenand"
41#define ONE_NAND(obj) OBJECT_CHECK(OneNANDState, (obj), TYPE_ONE_NAND)
42
43typedef struct OneNANDState {
44 SysBusDevice parent_obj;
45
5923ba42
JR
46 struct {
47 uint16_t man;
48 uint16_t dev;
49 uint16_t ver;
50 } id;
7e7c5e4c 51 int shift;
a8170e5e 52 hwaddr base;
7e7c5e4c
AZ
53 qemu_irq intr;
54 qemu_irq rdy;
4be74634
MA
55 BlockBackend *blk;
56 BlockBackend *blk_cur;
7e7c5e4c
AZ
57 uint8_t *image;
58 uint8_t *otp;
59 uint8_t *current;
689a1921
AK
60 MemoryRegion ram;
61 MemoryRegion mapped_ram;
500954e3 62 uint8_t current_direction;
7e7c5e4c
AZ
63 uint8_t *boot[2];
64 uint8_t *data[2][2];
689a1921
AK
65 MemoryRegion iomem;
66 MemoryRegion container;
7e7c5e4c
AZ
67 int cycle;
68 int otpmode;
69
70 uint16_t addr[8];
71 uint16_t unladdr[8];
72 int bufaddr;
73 int count;
74 uint16_t command;
75 uint16_t config[2];
76 uint16_t status;
77 uint16_t intstatus;
78 uint16_t wpstatus;
79
bc24a225 80 ECCState ecc;
7e7c5e4c
AZ
81
82 int density_mask;
83 int secs;
84 int secs_cur;
85 int blocks;
86 uint8_t *blockwp;
bc24a225 87} OneNANDState;
7e7c5e4c
AZ
88
89enum {
90 ONEN_BUF_BLOCK = 0,
91 ONEN_BUF_BLOCK2 = 1,
92 ONEN_BUF_DEST_BLOCK = 2,
93 ONEN_BUF_DEST_PAGE = 3,
94 ONEN_BUF_PAGE = 7,
95};
96
97enum {
98 ONEN_ERR_CMD = 1 << 10,
99 ONEN_ERR_ERASE = 1 << 11,
100 ONEN_ERR_PROG = 1 << 12,
101 ONEN_ERR_LOAD = 1 << 13,
102};
103
104enum {
105 ONEN_INT_RESET = 1 << 4,
106 ONEN_INT_ERASE = 1 << 5,
107 ONEN_INT_PROG = 1 << 6,
108 ONEN_INT_LOAD = 1 << 7,
109 ONEN_INT = 1 << 15,
110};
111
112enum {
113 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
114 ONEN_LOCK_LOCKED = 1 << 1,
115 ONEN_LOCK_UNLOCKED = 1 << 2,
116};
117
689a1921
AK
118static void onenand_mem_setup(OneNANDState *s)
119{
120 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
121 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
122 * write boot commands. Also take note of the BWPS bit. */
2d256e6f
PB
123 memory_region_init(&s->container, OBJECT(s), "onenand",
124 0x10000 << s->shift);
689a1921 125 memory_region_add_subregion(&s->container, 0, &s->iomem);
2d256e6f 126 memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
689a1921
AK
127 &s->ram, 0x0200 << s->shift,
128 0xbe00 << s->shift);
129 memory_region_add_subregion_overlap(&s->container,
130 0x0200 << s->shift,
131 &s->mapped_ram,
132 1);
133}
134
500954e3 135static void onenand_intr_update(OneNANDState *s)
7e7c5e4c 136{
500954e3 137 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
7e7c5e4c
AZ
138}
139
44b1ff31 140static int onenand_pre_save(void *opaque)
7e7c5e4c 141{
500954e3
JR
142 OneNANDState *s = opaque;
143 if (s->current == s->otp) {
144 s->current_direction = 1;
145 } else if (s->current == s->image) {
146 s->current_direction = 2;
147 } else {
148 s->current_direction = 0;
149 }
44b1ff31
DDAG
150
151 return 0;
7e7c5e4c
AZ
152}
153
500954e3 154static int onenand_post_load(void *opaque, int version_id)
7e7c5e4c 155{
500954e3
JR
156 OneNANDState *s = opaque;
157 switch (s->current_direction) {
158 case 0:
159 break;
160 case 1:
161 s->current = s->otp;
162 break;
163 case 2:
164 s->current = s->image;
165 break;
166 default:
167 return -1;
168 }
169 onenand_intr_update(s);
170 return 0;
7e7c5e4c
AZ
171}
172
500954e3
JR
173static const VMStateDescription vmstate_onenand = {
174 .name = "onenand",
175 .version_id = 1,
176 .minimum_version_id = 1,
500954e3
JR
177 .pre_save = onenand_pre_save,
178 .post_load = onenand_post_load,
179 .fields = (VMStateField[]) {
180 VMSTATE_UINT8(current_direction, OneNANDState),
181 VMSTATE_INT32(cycle, OneNANDState),
182 VMSTATE_INT32(otpmode, OneNANDState),
183 VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
184 VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
185 VMSTATE_INT32(bufaddr, OneNANDState),
186 VMSTATE_INT32(count, OneNANDState),
187 VMSTATE_UINT16(command, OneNANDState),
188 VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
189 VMSTATE_UINT16(status, OneNANDState),
190 VMSTATE_UINT16(intstatus, OneNANDState),
191 VMSTATE_UINT16(wpstatus, OneNANDState),
192 VMSTATE_INT32(secs_cur, OneNANDState),
193 VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
194 VMSTATE_UINT8(ecc.cp, OneNANDState),
195 VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
196 VMSTATE_UINT16(ecc.count, OneNANDState),
b79269b7
IM
197 VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
198 ((64 + 2) << PAGE_SHIFT)),
500954e3
JR
199 VMSTATE_END_OF_LIST()
200 }
201};
202
7e7c5e4c 203/* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
bc24a225 204static void onenand_reset(OneNANDState *s, int cold)
7e7c5e4c
AZ
205{
206 memset(&s->addr, 0, sizeof(s->addr));
207 s->command = 0;
208 s->count = 1;
209 s->bufaddr = 0;
210 s->config[0] = 0x40c0;
211 s->config[1] = 0x0000;
212 onenand_intr_update(s);
213 qemu_irq_raise(s->rdy);
214 s->status = 0x0000;
215 s->intstatus = cold ? 0x8080 : 0x8010;
216 s->unladdr[0] = 0;
217 s->unladdr[1] = 0;
218 s->wpstatus = 0x0002;
219 s->cycle = 0;
220 s->otpmode = 0;
4be74634 221 s->blk_cur = s->blk;
7e7c5e4c
AZ
222 s->current = s->image;
223 s->secs_cur = s->secs;
224
225 if (cold) {
226 /* Lock the whole flash */
227 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
228
441692dd
EB
229 if (s->blk_cur && blk_pread(s->blk_cur, 0, s->boot[0],
230 8 << BDRV_SECTOR_BITS) < 0) {
500954e3
JR
231 hw_error("%s: Loading the BootRAM failed.\n", __func__);
232 }
7e7c5e4c
AZ
233 }
234}
235
500954e3
JR
236static void onenand_system_reset(DeviceState *dev)
237{
af073cd9
AF
238 OneNANDState *s = ONE_NAND(dev);
239
240 onenand_reset(s, 1);
500954e3
JR
241}
242
bc24a225 243static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
7e7c5e4c
AZ
244 void *dest)
245{
441692dd
EB
246 assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
247 assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
4be74634 248 if (s->blk_cur) {
441692dd
EB
249 return blk_pread(s->blk_cur, sec << BDRV_SECTOR_BITS, dest,
250 secn << BDRV_SECTOR_BITS) < 0;
4be74634 251 } else if (sec + secn > s->secs_cur) {
7e7c5e4c 252 return 1;
4be74634 253 }
7e7c5e4c
AZ
254
255 memcpy(dest, s->current + (sec << 9), secn << 9);
256
257 return 0;
258}
259
bc24a225 260static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
7e7c5e4c
AZ
261 void *src)
262{
f1588dd2
JR
263 int result = 0;
264
265 if (secn > 0) {
441692dd
EB
266 uint32_t size = secn << BDRV_SECTOR_BITS;
267 uint32_t offset = sec << BDRV_SECTOR_BITS;
268 assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
269 assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
7c00b9de 270 const uint8_t *sp = (const uint8_t *)src;
f1588dd2 271 uint8_t *dp = 0;
4be74634 272 if (s->blk_cur) {
7267c094 273 dp = g_malloc(size);
441692dd 274 if (!dp || blk_pread(s->blk_cur, offset, dp, size) < 0) {
f1588dd2
JR
275 result = 1;
276 }
277 } else {
278 if (sec + secn > s->secs_cur) {
279 result = 1;
280 } else {
441692dd 281 dp = (uint8_t *)s->current + offset;
f1588dd2
JR
282 }
283 }
284 if (!result) {
285 uint32_t i;
286 for (i = 0; i < size; i++) {
287 dp[i] &= sp[i];
288 }
4be74634 289 if (s->blk_cur) {
441692dd 290 result = blk_pwrite(s->blk_cur, offset, dp, size, 0) < 0;
f1588dd2
JR
291 }
292 }
4be74634 293 if (dp && s->blk_cur) {
7267c094 294 g_free(dp);
f1588dd2
JR
295 }
296 }
7e7c5e4c 297
f1588dd2 298 return result;
7e7c5e4c
AZ
299}
300
bc24a225 301static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
7e7c5e4c
AZ
302 void *dest)
303{
304 uint8_t buf[512];
305
4be74634 306 if (s->blk_cur) {
441692dd
EB
307 uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
308 if (blk_pread(s->blk_cur, offset, buf, BDRV_SECTOR_SIZE) < 0) {
7e7c5e4c 309 return 1;
4be74634 310 }
7e7c5e4c 311 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
4be74634 312 } else if (sec + secn > s->secs_cur) {
7e7c5e4c 313 return 1;
4be74634 314 } else {
7e7c5e4c 315 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
4be74634 316 }
441692dd 317
7e7c5e4c
AZ
318 return 0;
319}
320
bc24a225 321static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
7e7c5e4c
AZ
322 void *src)
323{
f1588dd2
JR
324 int result = 0;
325 if (secn > 0) {
7c00b9de 326 const uint8_t *sp = (const uint8_t *)src;
f1588dd2 327 uint8_t *dp = 0, *dpp = 0;
441692dd
EB
328 uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
329 assert(UINT32_MAX >> BDRV_SECTOR_BITS > s->secs_cur + (sec >> 5));
4be74634 330 if (s->blk_cur) {
7267c094 331 dp = g_malloc(512);
4be74634 332 if (!dp
441692dd 333 || blk_pread(s->blk_cur, offset, dp, BDRV_SECTOR_SIZE) < 0) {
f1588dd2
JR
334 result = 1;
335 } else {
336 dpp = dp + ((sec & 31) << 4);
337 }
338 } else {
339 if (sec + secn > s->secs_cur) {
340 result = 1;
341 } else {
342 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
343 }
344 }
345 if (!result) {
346 uint32_t i;
347 for (i = 0; i < (secn << 4); i++) {
348 dpp[i] &= sp[i];
349 }
4be74634 350 if (s->blk_cur) {
441692dd
EB
351 result = blk_pwrite(s->blk_cur, offset, dp,
352 BDRV_SECTOR_SIZE, 0) < 0;
f1588dd2
JR
353 }
354 }
f7047c2d 355 g_free(dp);
f1588dd2
JR
356 }
357 return result;
7e7c5e4c
AZ
358}
359
bc24a225 360static inline int onenand_erase(OneNANDState *s, int sec, int num)
7e7c5e4c 361{
f1588dd2 362 uint8_t *blankbuf, *tmpbuf;
6b0126f9 363
7267c094 364 blankbuf = g_malloc(512);
7267c094 365 tmpbuf = g_malloc(512);
f1588dd2
JR
366 memset(blankbuf, 0xff, 512);
367 for (; num > 0; num--, sec++) {
4be74634 368 if (s->blk_cur) {
f1588dd2 369 int erasesec = s->secs_cur + (sec >> 5);
441692dd
EB
370 if (blk_pwrite(s->blk_cur, sec << BDRV_SECTOR_BITS, blankbuf,
371 BDRV_SECTOR_SIZE, 0) < 0) {
f1588dd2
JR
372 goto fail;
373 }
441692dd
EB
374 if (blk_pread(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
375 BDRV_SECTOR_SIZE) < 0) {
f1588dd2
JR
376 goto fail;
377 }
378 memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
441692dd
EB
379 if (blk_pwrite(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
380 BDRV_SECTOR_SIZE, 0) < 0) {
f1588dd2
JR
381 goto fail;
382 }
383 } else {
384 if (sec + 1 > s->secs_cur) {
385 goto fail;
386 }
387 memcpy(s->current + (sec << 9), blankbuf, 512);
388 memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
389 blankbuf, 1 << 4);
390 }
7e7c5e4c
AZ
391 }
392
7267c094
AL
393 g_free(tmpbuf);
394 g_free(blankbuf);
7e7c5e4c 395 return 0;
f1588dd2
JR
396
397fail:
7267c094
AL
398 g_free(tmpbuf);
399 g_free(blankbuf);
f1588dd2 400 return 1;
7e7c5e4c
AZ
401}
402
82866965 403static void onenand_command(OneNANDState *s)
7e7c5e4c
AZ
404{
405 int b;
406 int sec;
407 void *buf;
408#define SETADDR(block, page) \
409 sec = (s->addr[page] & 3) + \
410 ((((s->addr[page] >> 2) & 0x3f) + \
411 (((s->addr[block] & 0xfff) | \
412 (s->addr[block] >> 15 ? \
413 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
414#define SETBUF_M() \
415 buf = (s->bufaddr & 8) ? \
416 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
417 buf += (s->bufaddr & 3) << 9;
418#define SETBUF_S() \
419 buf = (s->bufaddr & 8) ? \
420 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
421 buf += (s->bufaddr & 3) << 4;
422
82866965 423 switch (s->command) {
7e7c5e4c
AZ
424 case 0x00: /* Load single/multiple sector data unit into buffer */
425 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
426
427 SETBUF_M()
428 if (onenand_load_main(s, sec, s->count, buf))
429 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
430
431#if 0
432 SETBUF_S()
433 if (onenand_load_spare(s, sec, s->count, buf))
434 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
435#endif
436
437 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
438 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
439 * then we need two split the read/write into two chunks.
440 */
441 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
442 break;
443 case 0x13: /* Load single/multiple spare sector into buffer */
444 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
445
446 SETBUF_S()
447 if (onenand_load_spare(s, sec, s->count, buf))
448 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
449
450 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
451 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
452 * then we need two split the read/write into two chunks.
453 */
454 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
455 break;
456 case 0x80: /* Program single/multiple sector data unit from buffer */
457 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
458
459 SETBUF_M()
460 if (onenand_prog_main(s, sec, s->count, buf))
461 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
462
463#if 0
464 SETBUF_S()
465 if (onenand_prog_spare(s, sec, s->count, buf))
466 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
467#endif
468
469 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
470 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
471 * then we need two split the read/write into two chunks.
472 */
473 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
474 break;
475 case 0x1a: /* Program single/multiple spare area sector from buffer */
476 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
477
478 SETBUF_S()
479 if (onenand_prog_spare(s, sec, s->count, buf))
480 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
481
482 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
483 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
484 * then we need two split the read/write into two chunks.
485 */
486 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
487 break;
488 case 0x1b: /* Copy-back program */
489 SETBUF_S()
490
491 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
492 if (onenand_load_main(s, sec, s->count, buf))
493 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
494
495 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
496 if (onenand_prog_main(s, sec, s->count, buf))
497 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
498
499 /* TODO: spare areas */
500
501 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
502 break;
503
504 case 0x23: /* Unlock NAND array block(s) */
505 s->intstatus |= ONEN_INT;
506
507 /* XXX the previous (?) area should be locked automatically */
508 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
509 if (b >= s->blocks) {
510 s->status |= ONEN_ERR_CMD;
511 break;
512 }
513 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
514 break;
515
516 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
517 }
518 break;
89588a4b
AZ
519 case 0x27: /* Unlock All NAND array blocks */
520 s->intstatus |= ONEN_INT;
521
522 for (b = 0; b < s->blocks; b ++) {
89588a4b
AZ
523 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
524 break;
525
526 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
527 }
528 break;
529
7e7c5e4c
AZ
530 case 0x2a: /* Lock NAND array block(s) */
531 s->intstatus |= ONEN_INT;
532
533 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
534 if (b >= s->blocks) {
535 s->status |= ONEN_ERR_CMD;
536 break;
537 }
538 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
539 break;
540
541 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
542 }
543 break;
544 case 0x2c: /* Lock-tight NAND array block(s) */
545 s->intstatus |= ONEN_INT;
546
547 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
548 if (b >= s->blocks) {
549 s->status |= ONEN_ERR_CMD;
550 break;
551 }
552 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
553 continue;
554
555 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
556 }
557 break;
558
559 case 0x71: /* Erase-Verify-Read */
560 s->intstatus |= ONEN_INT;
561 break;
562 case 0x95: /* Multi-block erase */
563 qemu_irq_pulse(s->intr);
564 /* Fall through. */
565 case 0x94: /* Block erase */
566 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
567 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
568 << (BLOCK_SHIFT - 9);
569 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
570 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
571
572 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
573 break;
574 case 0xb0: /* Erase suspend */
575 break;
576 case 0x30: /* Erase resume */
577 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
578 break;
579
580 case 0xf0: /* Reset NAND Flash core */
581 onenand_reset(s, 0);
582 break;
583 case 0xf3: /* Reset OneNAND */
584 onenand_reset(s, 0);
585 break;
586
587 case 0x65: /* OTP Access */
588 s->intstatus |= ONEN_INT;
4be74634 589 s->blk_cur = NULL;
7e7c5e4c
AZ
590 s->current = s->otp;
591 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
592 s->addr[ONEN_BUF_BLOCK] = 0;
593 s->otpmode = 1;
594 break;
595
596 default:
597 s->status |= ONEN_ERR_CMD;
598 s->intstatus |= ONEN_INT;
9e6e9247
PM
599 qemu_log_mask(LOG_GUEST_ERROR, "unknown OneNAND command %x\n",
600 s->command);
7e7c5e4c
AZ
601 }
602
603 onenand_intr_update(s);
604}
605
a8170e5e 606static uint64_t onenand_read(void *opaque, hwaddr addr,
689a1921 607 unsigned size)
7e7c5e4c 608{
bc24a225 609 OneNANDState *s = (OneNANDState *) opaque;
8da3ff18 610 int offset = addr >> s->shift;
7e7c5e4c
AZ
611
612 switch (offset) {
fcf5787c 613 case 0x0000 ... 0xbffe:
8da3ff18 614 return lduw_le_p(s->boot[0] + addr);
7e7c5e4c
AZ
615
616 case 0xf000: /* Manufacturer ID */
5923ba42 617 return s->id.man;
7e7c5e4c 618 case 0xf001: /* Device ID */
5923ba42 619 return s->id.dev;
7e7c5e4c 620 case 0xf002: /* Version ID */
5923ba42
JR
621 return s->id.ver;
622 /* TODO: get the following values from a real chip! */
7e7c5e4c
AZ
623 case 0xf003: /* Data Buffer size */
624 return 1 << PAGE_SHIFT;
625 case 0xf004: /* Boot Buffer size */
626 return 0x200;
627 case 0xf005: /* Amount of buffers */
628 return 1 | (2 << 8);
629 case 0xf006: /* Technology */
630 return 0;
631
632 case 0xf100 ... 0xf107: /* Start addresses */
633 return s->addr[offset - 0xf100];
634
635 case 0xf200: /* Start buffer */
636 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
637
638 case 0xf220: /* Command */
639 return s->command;
640 case 0xf221: /* System Configuration 1 */
641 return s->config[0] & 0xffe0;
642 case 0xf222: /* System Configuration 2 */
643 return s->config[1];
644
645 case 0xf240: /* Controller Status */
646 return s->status;
647 case 0xf241: /* Interrupt */
648 return s->intstatus;
649 case 0xf24c: /* Unlock Start Block Address */
650 return s->unladdr[0];
651 case 0xf24d: /* Unlock End Block Address */
652 return s->unladdr[1];
653 case 0xf24e: /* Write Protection Status */
654 return s->wpstatus;
655
656 case 0xff00: /* ECC Status */
657 return 0x00;
658 case 0xff01: /* ECC Result of main area data */
659 case 0xff02: /* ECC Result of spare area data */
660 case 0xff03: /* ECC Result of main area data */
661 case 0xff04: /* ECC Result of spare area data */
9e6e9247
PM
662 qemu_log_mask(LOG_UNIMP,
663 "onenand: ECC result registers unimplemented\n");
7e7c5e4c
AZ
664 return 0x0000;
665 }
666
9e6e9247
PM
667 qemu_log_mask(LOG_GUEST_ERROR, "read of unknown OneNAND register 0x%x\n",
668 offset);
7e7c5e4c
AZ
669 return 0;
670}
671
a8170e5e 672static void onenand_write(void *opaque, hwaddr addr,
689a1921 673 uint64_t value, unsigned size)
7e7c5e4c 674{
bc24a225 675 OneNANDState *s = (OneNANDState *) opaque;
8da3ff18 676 int offset = addr >> s->shift;
7e7c5e4c
AZ
677 int sec;
678
679 switch (offset) {
680 case 0x0000 ... 0x01ff:
681 case 0x8000 ... 0x800f:
682 if (s->cycle) {
683 s->cycle = 0;
684
685 if (value == 0x0000) {
686 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
687 onenand_load_main(s, sec,
688 1 << (PAGE_SHIFT - 9), s->data[0][0]);
689 s->addr[ONEN_BUF_PAGE] += 4;
690 s->addr[ONEN_BUF_PAGE] &= 0xff;
691 }
692 break;
693 }
694
695 switch (value) {
696 case 0x00f0: /* Reset OneNAND */
697 onenand_reset(s, 0);
698 break;
699
700 case 0x00e0: /* Load Data into Buffer */
701 s->cycle = 1;
702 break;
703
704 case 0x0090: /* Read Identification Data */
705 memset(s->boot[0], 0, 3 << s->shift);
5923ba42
JR
706 s->boot[0][0 << s->shift] = s->id.man & 0xff;
707 s->boot[0][1 << s->shift] = s->id.dev & 0xff;
7e7c5e4c
AZ
708 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
709 break;
710
711 default:
9e6e9247
PM
712 qemu_log_mask(LOG_GUEST_ERROR,
713 "unknown OneNAND boot command %" PRIx64 "\n",
714 value);
7e7c5e4c
AZ
715 }
716 break;
717
718 case 0xf100 ... 0xf107: /* Start addresses */
719 s->addr[offset - 0xf100] = value;
720 break;
721
722 case 0xf200: /* Start buffer */
723 s->bufaddr = (value >> 8) & 0xf;
724 if (PAGE_SHIFT == 11)
725 s->count = (value & 3) ?: 4;
726 else if (PAGE_SHIFT == 10)
727 s->count = (value & 1) ?: 2;
728 break;
729
730 case 0xf220: /* Command */
731 if (s->intstatus & (1 << 15))
732 break;
733 s->command = value;
82866965 734 onenand_command(s);
7e7c5e4c
AZ
735 break;
736 case 0xf221: /* System Configuration 1 */
737 s->config[0] = value;
738 onenand_intr_update(s);
739 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
740 break;
741 case 0xf222: /* System Configuration 2 */
742 s->config[1] = value;
743 break;
744
745 case 0xf241: /* Interrupt */
746 s->intstatus &= value;
747 if ((1 << 15) & ~s->intstatus)
748 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
749 ONEN_ERR_PROG | ONEN_ERR_LOAD);
750 onenand_intr_update(s);
751 break;
752 case 0xf24c: /* Unlock Start Block Address */
753 s->unladdr[0] = value & (s->blocks - 1);
754 /* For some reason we have to set the end address to by default
755 * be same as start because the software forgets to write anything
756 * in there. */
757 s->unladdr[1] = value & (s->blocks - 1);
758 break;
759 case 0xf24d: /* Unlock End Block Address */
760 s->unladdr[1] = value & (s->blocks - 1);
761 break;
762
763 default:
9e6e9247
PM
764 qemu_log_mask(LOG_GUEST_ERROR,
765 "write to unknown OneNAND register 0x%x\n",
766 offset);
7e7c5e4c
AZ
767 }
768}
769
689a1921
AK
770static const MemoryRegionOps onenand_ops = {
771 .read = onenand_read,
772 .write = onenand_write,
773 .endianness = DEVICE_NATIVE_ENDIAN,
7e7c5e4c
AZ
774};
775
887c74ca 776static void onenand_realize(DeviceState *dev, Error **errp)
7e7c5e4c 777{
887c74ca 778 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
af073cd9 779 OneNANDState *s = ONE_NAND(dev);
500954e3 780 uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
7e7c5e4c 781 void *ram;
a17c17a2 782 Error *local_err = NULL;
af073cd9 783
a8170e5e 784 s->base = (hwaddr)-1;
b9d38e95 785 s->rdy = NULL;
7e7c5e4c
AZ
786 s->blocks = size >> BLOCK_SHIFT;
787 s->secs = size >> 9;
7267c094 788 s->blockwp = g_malloc(s->blocks);
500954e3
JR
789 s->density_mask = (s->id.dev & 0x08)
790 ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
2d256e6f 791 memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
689a1921 792 0x10000 << s->shift);
4be74634 793 if (!s->blk) {
7267c094 794 s->image = memset(g_malloc(size + (size >> 5)),
500954e3
JR
795 0xff, size + (size >> 5));
796 } else {
4be74634 797 if (blk_is_read_only(s->blk)) {
887c74ca
MZ
798 error_setg(errp, "Can't use a read-only drive");
799 return;
a3efecb8 800 }
a17c17a2
KW
801 blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
802 BLK_PERM_ALL, &local_err);
803 if (local_err) {
887c74ca
MZ
804 error_propagate(errp, local_err);
805 return;
a17c17a2 806 }
4be74634 807 s->blk_cur = s->blk;
63efb1d9 808 }
7267c094 809 s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
7e7c5e4c 810 0xff, (64 + 2) << PAGE_SHIFT);
1cfe48c1 811 memory_region_init_ram_nomigrate(&s->ram, OBJECT(s), "onenand.ram",
f8ed85ac 812 0xc000 << s->shift, &error_fatal);
c5705a77 813 vmstate_register_ram_global(&s->ram);
689a1921 814 ram = memory_region_get_ram_ptr(&s->ram);
7e7c5e4c
AZ
815 s->boot[0] = ram + (0x0000 << s->shift);
816 s->boot[1] = ram + (0x8000 << s->shift);
817 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
818 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
819 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
820 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
689a1921 821 onenand_mem_setup(s);
af073cd9
AF
822 sysbus_init_irq(sbd, &s->intr);
823 sysbus_init_mmio(sbd, &s->container);
824 vmstate_register(dev,
500954e3
JR
825 ((s->shift & 0x7f) << 24)
826 | ((s->id.man & 0xff) << 16)
827 | ((s->id.dev & 0xff) << 8)
828 | (s->id.ver & 0xff),
829 &vmstate_onenand, s);
500954e3 830}
7e7c5e4c 831
999e12bb
AL
832static Property onenand_properties[] = {
833 DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
834 DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
835 DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
836 DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
4be74634 837 DEFINE_PROP_DRIVE("drive", OneNANDState, blk),
999e12bb
AL
838 DEFINE_PROP_END_OF_LIST(),
839};
840
841static void onenand_class_init(ObjectClass *klass, void *data)
842{
39bffca2 843 DeviceClass *dc = DEVICE_CLASS(klass);
999e12bb 844
887c74ca 845 dc->realize = onenand_realize;
39bffca2
AL
846 dc->reset = onenand_system_reset;
847 dc->props = onenand_properties;
999e12bb
AL
848}
849
8c43a6f0 850static const TypeInfo onenand_info = {
af073cd9 851 .name = TYPE_ONE_NAND,
39bffca2
AL
852 .parent = TYPE_SYS_BUS_DEVICE,
853 .instance_size = sizeof(OneNANDState),
854 .class_init = onenand_class_init,
500954e3 855};
7e7c5e4c 856
83f7d43a 857static void onenand_register_types(void)
500954e3 858{
39bffca2 859 type_register_static(&onenand_info);
7e7c5e4c 860}
c580d92b 861
500954e3 862void *onenand_raw_otp(DeviceState *onenand_device)
c580d92b 863{
af073cd9
AF
864 OneNANDState *s = ONE_NAND(onenand_device);
865
866 return s->otp;
c580d92b 867}
500954e3 868
83f7d43a 869type_init(onenand_register_types)
This page took 1.085397 seconds and 4 git commands to generate.