]>
Commit | Line | Data |
---|---|---|
47c1c8c1 VP |
1 | /* |
2 | * QEMU HAX support | |
3 | * | |
4 | * Copyright IBM, Corp. 2008 | |
5 | * Red Hat, Inc. 2008 | |
6 | * | |
7 | * Authors: | |
8 | * Anthony Liguori <[email protected]> | |
9 | * Glauber Costa <[email protected]> | |
10 | * | |
11 | * Copyright (c) 2011 Intel Corporation | |
12 | * Written by: | |
13 | * Jiang Yunhong<[email protected]> | |
14 | * Xin Xiaohui<[email protected]> | |
15 | * Zhang Xiantao<[email protected]> | |
16 | * | |
17 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
18 | * See the COPYING file in the top-level directory. | |
19 | * | |
20 | */ | |
21 | ||
22 | /* | |
23 | * HAX common code for both windows and darwin | |
24 | */ | |
25 | ||
26 | #include "qemu/osdep.h" | |
27 | #include "cpu.h" | |
28 | #include "exec/address-spaces.h" | |
29 | #include "exec/exec-all.h" | |
30 | #include "exec/ioport.h" | |
31 | ||
32 | #include "qemu-common.h" | |
33 | #include "strings.h" | |
34 | #include "hax-i386.h" | |
35 | #include "sysemu/accel.h" | |
36 | #include "sysemu/sysemu.h" | |
37 | #include "qemu/main-loop.h" | |
38 | #include "hw/boards.h" | |
39 | ||
40 | #define DEBUG_HAX 0 | |
41 | ||
42 | #define DPRINTF(fmt, ...) \ | |
43 | do { \ | |
44 | if (DEBUG_HAX) { \ | |
45 | fprintf(stdout, fmt, ## __VA_ARGS__); \ | |
46 | } \ | |
47 | } while (0) | |
48 | ||
49 | /* Current version */ | |
50 | const uint32_t hax_cur_version = 0x4; /* API v4: unmapping and MMIO moves */ | |
51 | /* Minimum HAX kernel version */ | |
52 | const uint32_t hax_min_version = 0x4; /* API v4: supports unmapping */ | |
53 | ||
54 | static bool hax_allowed; | |
55 | ||
56 | struct hax_state hax_global; | |
57 | ||
58 | static void hax_vcpu_sync_state(CPUArchState *env, int modified); | |
59 | static int hax_arch_get_registers(CPUArchState *env); | |
60 | ||
61 | int hax_enabled(void) | |
62 | { | |
63 | return hax_allowed; | |
64 | } | |
65 | ||
66 | int valid_hax_tunnel_size(uint16_t size) | |
67 | { | |
68 | return size >= sizeof(struct hax_tunnel); | |
69 | } | |
70 | ||
71 | hax_fd hax_vcpu_get_fd(CPUArchState *env) | |
72 | { | |
73 | struct hax_vcpu_state *vcpu = ENV_GET_CPU(env)->hax_vcpu; | |
74 | if (!vcpu) { | |
75 | return HAX_INVALID_FD; | |
76 | } | |
77 | return vcpu->fd; | |
78 | } | |
79 | ||
80 | static int hax_get_capability(struct hax_state *hax) | |
81 | { | |
82 | int ret; | |
83 | struct hax_capabilityinfo capinfo, *cap = &capinfo; | |
84 | ||
85 | ret = hax_capability(hax, cap); | |
86 | if (ret) { | |
87 | return ret; | |
88 | } | |
89 | ||
90 | if ((cap->wstatus & HAX_CAP_WORKSTATUS_MASK) == HAX_CAP_STATUS_NOTWORKING) { | |
91 | if (cap->winfo & HAX_CAP_FAILREASON_VT) { | |
92 | DPRINTF | |
93 | ("VTX feature is not enabled, HAX driver will not work.\n"); | |
94 | } else if (cap->winfo & HAX_CAP_FAILREASON_NX) { | |
95 | DPRINTF | |
96 | ("NX feature is not enabled, HAX driver will not work.\n"); | |
97 | } | |
98 | return -ENXIO; | |
99 | ||
100 | } | |
101 | ||
102 | if (!(cap->winfo & HAX_CAP_UG)) { | |
103 | fprintf(stderr, "UG mode is not supported by the hardware.\n"); | |
104 | return -ENOTSUP; | |
105 | } | |
106 | ||
107 | if (cap->wstatus & HAX_CAP_MEMQUOTA) { | |
108 | if (cap->mem_quota < hax->mem_quota) { | |
109 | fprintf(stderr, "The VM memory needed exceeds the driver limit.\n"); | |
110 | return -ENOSPC; | |
111 | } | |
112 | } | |
113 | return 0; | |
114 | } | |
115 | ||
116 | static int hax_version_support(struct hax_state *hax) | |
117 | { | |
118 | int ret; | |
119 | struct hax_module_version version; | |
120 | ||
121 | ret = hax_mod_version(hax, &version); | |
122 | if (ret < 0) { | |
123 | return 0; | |
124 | } | |
125 | ||
126 | if (hax_min_version > version.cur_version) { | |
127 | fprintf(stderr, "Incompatible HAX module version %d,", | |
128 | version.cur_version); | |
129 | fprintf(stderr, "requires minimum version %d\n", hax_min_version); | |
130 | return 0; | |
131 | } | |
132 | if (hax_cur_version < version.compat_version) { | |
133 | fprintf(stderr, "Incompatible QEMU HAX API version %x,", | |
134 | hax_cur_version); | |
135 | fprintf(stderr, "requires minimum HAX API version %x\n", | |
136 | version.compat_version); | |
137 | return 0; | |
138 | } | |
139 | ||
140 | return 1; | |
141 | } | |
142 | ||
143 | int hax_vcpu_create(int id) | |
144 | { | |
145 | struct hax_vcpu_state *vcpu = NULL; | |
146 | int ret; | |
147 | ||
148 | if (!hax_global.vm) { | |
149 | fprintf(stderr, "vcpu %x created failed, vm is null\n", id); | |
150 | return -1; | |
151 | } | |
152 | ||
153 | if (hax_global.vm->vcpus[id]) { | |
154 | fprintf(stderr, "vcpu %x allocated already\n", id); | |
155 | return 0; | |
156 | } | |
157 | ||
158 | vcpu = g_malloc(sizeof(struct hax_vcpu_state)); | |
159 | if (!vcpu) { | |
160 | fprintf(stderr, "Failed to alloc vcpu state\n"); | |
161 | return -ENOMEM; | |
162 | } | |
163 | ||
164 | memset(vcpu, 0, sizeof(struct hax_vcpu_state)); | |
165 | ||
166 | ret = hax_host_create_vcpu(hax_global.vm->fd, id); | |
167 | if (ret) { | |
168 | fprintf(stderr, "Failed to create vcpu %x\n", id); | |
169 | goto error; | |
170 | } | |
171 | ||
172 | vcpu->vcpu_id = id; | |
173 | vcpu->fd = hax_host_open_vcpu(hax_global.vm->id, id); | |
174 | if (hax_invalid_fd(vcpu->fd)) { | |
175 | fprintf(stderr, "Failed to open the vcpu\n"); | |
176 | ret = -ENODEV; | |
177 | goto error; | |
178 | } | |
179 | ||
180 | hax_global.vm->vcpus[id] = vcpu; | |
181 | ||
182 | ret = hax_host_setup_vcpu_channel(vcpu); | |
183 | if (ret) { | |
184 | fprintf(stderr, "Invalid hax tunnel size\n"); | |
185 | ret = -EINVAL; | |
186 | goto error; | |
187 | } | |
188 | return 0; | |
189 | ||
190 | error: | |
191 | /* vcpu and tunnel will be closed automatically */ | |
192 | if (vcpu && !hax_invalid_fd(vcpu->fd)) { | |
193 | hax_close_fd(vcpu->fd); | |
194 | } | |
195 | ||
196 | hax_global.vm->vcpus[id] = NULL; | |
197 | g_free(vcpu); | |
198 | return -1; | |
199 | } | |
200 | ||
201 | int hax_vcpu_destroy(CPUState *cpu) | |
202 | { | |
203 | struct hax_vcpu_state *vcpu = cpu->hax_vcpu; | |
204 | ||
205 | if (!hax_global.vm) { | |
206 | fprintf(stderr, "vcpu %x destroy failed, vm is null\n", vcpu->vcpu_id); | |
207 | return -1; | |
208 | } | |
209 | ||
210 | if (!vcpu) { | |
211 | return 0; | |
212 | } | |
213 | ||
214 | /* | |
215 | * 1. The hax_tunnel is also destroied when vcpu destroy | |
216 | * 2. close fd will cause hax module vcpu be cleaned | |
217 | */ | |
218 | hax_close_fd(vcpu->fd); | |
219 | hax_global.vm->vcpus[vcpu->vcpu_id] = NULL; | |
220 | g_free(vcpu); | |
221 | return 0; | |
222 | } | |
223 | ||
224 | int hax_init_vcpu(CPUState *cpu) | |
225 | { | |
226 | int ret; | |
227 | ||
228 | ret = hax_vcpu_create(cpu->cpu_index); | |
229 | if (ret < 0) { | |
230 | fprintf(stderr, "Failed to create HAX vcpu\n"); | |
231 | exit(-1); | |
232 | } | |
233 | ||
234 | cpu->hax_vcpu = hax_global.vm->vcpus[cpu->cpu_index]; | |
235 | cpu->hax_vcpu_dirty = true; | |
236 | qemu_register_reset(hax_reset_vcpu_state, (CPUArchState *) (cpu->env_ptr)); | |
237 | ||
238 | return ret; | |
239 | } | |
240 | ||
241 | struct hax_vm *hax_vm_create(struct hax_state *hax) | |
242 | { | |
243 | struct hax_vm *vm; | |
244 | int vm_id = 0, ret; | |
245 | ||
246 | if (hax_invalid_fd(hax->fd)) { | |
247 | return NULL; | |
248 | } | |
249 | ||
250 | if (hax->vm) { | |
251 | return hax->vm; | |
252 | } | |
253 | ||
254 | vm = g_malloc(sizeof(struct hax_vm)); | |
255 | if (!vm) { | |
256 | return NULL; | |
257 | } | |
258 | memset(vm, 0, sizeof(struct hax_vm)); | |
259 | ret = hax_host_create_vm(hax, &vm_id); | |
260 | if (ret) { | |
261 | fprintf(stderr, "Failed to create vm %x\n", ret); | |
262 | goto error; | |
263 | } | |
264 | vm->id = vm_id; | |
265 | vm->fd = hax_host_open_vm(hax, vm_id); | |
266 | if (hax_invalid_fd(vm->fd)) { | |
267 | fprintf(stderr, "Failed to open vm %d\n", vm_id); | |
268 | goto error; | |
269 | } | |
270 | ||
271 | hax->vm = vm; | |
272 | return vm; | |
273 | ||
274 | error: | |
275 | g_free(vm); | |
276 | hax->vm = NULL; | |
277 | return NULL; | |
278 | } | |
279 | ||
280 | int hax_vm_destroy(struct hax_vm *vm) | |
281 | { | |
282 | int i; | |
283 | ||
284 | for (i = 0; i < HAX_MAX_VCPU; i++) | |
285 | if (vm->vcpus[i]) { | |
286 | fprintf(stderr, "VCPU should be cleaned before vm clean\n"); | |
287 | return -1; | |
288 | } | |
289 | hax_close_fd(vm->fd); | |
290 | g_free(vm); | |
291 | hax_global.vm = NULL; | |
292 | return 0; | |
293 | } | |
294 | ||
295 | static void hax_handle_interrupt(CPUState *cpu, int mask) | |
296 | { | |
297 | cpu->interrupt_request |= mask; | |
298 | ||
299 | if (!qemu_cpu_is_self(cpu)) { | |
300 | qemu_cpu_kick(cpu); | |
301 | } | |
302 | } | |
303 | ||
304 | static int hax_init(ram_addr_t ram_size) | |
305 | { | |
306 | struct hax_state *hax = NULL; | |
307 | struct hax_qemu_version qversion; | |
308 | int ret; | |
309 | ||
310 | hax = &hax_global; | |
311 | ||
312 | memset(hax, 0, sizeof(struct hax_state)); | |
313 | hax->mem_quota = ram_size; | |
314 | ||
315 | hax->fd = hax_mod_open(); | |
316 | if (hax_invalid_fd(hax->fd)) { | |
317 | hax->fd = 0; | |
318 | ret = -ENODEV; | |
319 | goto error; | |
320 | } | |
321 | ||
322 | ret = hax_get_capability(hax); | |
323 | ||
324 | if (ret) { | |
325 | if (ret != -ENOSPC) { | |
326 | ret = -EINVAL; | |
327 | } | |
328 | goto error; | |
329 | } | |
330 | ||
331 | if (!hax_version_support(hax)) { | |
332 | ret = -EINVAL; | |
333 | goto error; | |
334 | } | |
335 | ||
336 | hax->vm = hax_vm_create(hax); | |
337 | if (!hax->vm) { | |
338 | fprintf(stderr, "Failed to create HAX VM\n"); | |
339 | ret = -EINVAL; | |
340 | goto error; | |
341 | } | |
342 | ||
343 | hax_memory_init(); | |
344 | ||
345 | qversion.cur_version = hax_cur_version; | |
346 | qversion.min_version = hax_min_version; | |
347 | hax_notify_qemu_version(hax->vm->fd, &qversion); | |
348 | cpu_interrupt_handler = hax_handle_interrupt; | |
349 | ||
350 | return ret; | |
351 | error: | |
352 | if (hax->vm) { | |
353 | hax_vm_destroy(hax->vm); | |
354 | } | |
355 | if (hax->fd) { | |
356 | hax_mod_close(hax); | |
357 | } | |
358 | ||
359 | return ret; | |
360 | } | |
361 | ||
362 | static int hax_accel_init(MachineState *ms) | |
363 | { | |
364 | int ret = hax_init(ms->ram_size); | |
365 | ||
366 | if (ret && (ret != -ENOSPC)) { | |
367 | fprintf(stderr, "No accelerator found.\n"); | |
368 | } else { | |
369 | fprintf(stdout, "HAX is %s and emulator runs in %s mode.\n", | |
370 | !ret ? "working" : "not working", | |
371 | !ret ? "fast virt" : "emulation"); | |
372 | } | |
373 | return ret; | |
374 | } | |
375 | ||
376 | static int hax_handle_fastmmio(CPUArchState *env, struct hax_fastmmio *hft) | |
377 | { | |
378 | if (hft->direction < 2) { | |
379 | cpu_physical_memory_rw(hft->gpa, (uint8_t *) &hft->value, hft->size, | |
380 | hft->direction); | |
381 | } else { | |
382 | /* | |
383 | * HAX API v4 supports transferring data between two MMIO addresses, | |
384 | * hft->gpa and hft->gpa2 (instructions such as MOVS require this): | |
385 | * hft->direction == 2: gpa ==> gpa2 | |
386 | */ | |
387 | uint64_t value; | |
388 | cpu_physical_memory_rw(hft->gpa, (uint8_t *) &value, hft->size, 0); | |
389 | cpu_physical_memory_rw(hft->gpa2, (uint8_t *) &value, hft->size, 1); | |
390 | } | |
391 | ||
392 | return 0; | |
393 | } | |
394 | ||
395 | static int hax_handle_io(CPUArchState *env, uint32_t df, uint16_t port, | |
396 | int direction, int size, int count, void *buffer) | |
397 | { | |
398 | uint8_t *ptr; | |
399 | int i; | |
400 | MemTxAttrs attrs = { 0 }; | |
401 | ||
402 | if (!df) { | |
403 | ptr = (uint8_t *) buffer; | |
404 | } else { | |
405 | ptr = buffer + size * count - size; | |
406 | } | |
407 | for (i = 0; i < count; i++) { | |
408 | address_space_rw(&address_space_io, port, attrs, | |
409 | ptr, size, direction == HAX_EXIT_IO_OUT); | |
410 | if (!df) { | |
411 | ptr += size; | |
412 | } else { | |
413 | ptr -= size; | |
414 | } | |
415 | } | |
416 | ||
417 | return 0; | |
418 | } | |
419 | ||
420 | static int hax_vcpu_interrupt(CPUArchState *env) | |
421 | { | |
422 | CPUState *cpu = ENV_GET_CPU(env); | |
423 | struct hax_vcpu_state *vcpu = cpu->hax_vcpu; | |
424 | struct hax_tunnel *ht = vcpu->tunnel; | |
425 | ||
426 | /* | |
427 | * Try to inject an interrupt if the guest can accept it | |
428 | * Unlike KVM, HAX kernel check for the eflags, instead of qemu | |
429 | */ | |
430 | if (ht->ready_for_interrupt_injection && | |
431 | (cpu->interrupt_request & CPU_INTERRUPT_HARD)) { | |
432 | int irq; | |
433 | ||
434 | irq = cpu_get_pic_interrupt(env); | |
435 | if (irq >= 0) { | |
436 | hax_inject_interrupt(env, irq); | |
437 | cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; | |
438 | } | |
439 | } | |
440 | ||
441 | /* If we have an interrupt but the guest is not ready to receive an | |
442 | * interrupt, request an interrupt window exit. This will | |
443 | * cause a return to userspace as soon as the guest is ready to | |
444 | * receive interrupts. */ | |
445 | if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { | |
446 | ht->request_interrupt_window = 1; | |
447 | } else { | |
448 | ht->request_interrupt_window = 0; | |
449 | } | |
450 | return 0; | |
451 | } | |
452 | ||
453 | void hax_raise_event(CPUState *cpu) | |
454 | { | |
455 | struct hax_vcpu_state *vcpu = cpu->hax_vcpu; | |
456 | ||
457 | if (!vcpu) { | |
458 | return; | |
459 | } | |
460 | vcpu->tunnel->user_event_pending = 1; | |
461 | } | |
462 | ||
463 | /* | |
464 | * Ask hax kernel module to run the CPU for us till: | |
465 | * 1. Guest crash or shutdown | |
466 | * 2. Need QEMU's emulation like guest execute MMIO instruction | |
467 | * 3. Guest execute HLT | |
468 | * 4. QEMU have Signal/event pending | |
469 | * 5. An unknown VMX exit happens | |
470 | */ | |
471 | static int hax_vcpu_hax_exec(CPUArchState *env) | |
472 | { | |
473 | int ret = 0; | |
474 | CPUState *cpu = ENV_GET_CPU(env); | |
475 | X86CPU *x86_cpu = X86_CPU(cpu); | |
476 | struct hax_vcpu_state *vcpu = cpu->hax_vcpu; | |
477 | struct hax_tunnel *ht = vcpu->tunnel; | |
478 | ||
479 | if (!hax_enabled()) { | |
480 | DPRINTF("Trying to vcpu execute at eip:" TARGET_FMT_lx "\n", env->eip); | |
481 | return 0; | |
482 | } | |
483 | ||
484 | cpu->halted = 0; | |
485 | ||
486 | if (cpu->interrupt_request & CPU_INTERRUPT_POLL) { | |
487 | cpu->interrupt_request &= ~CPU_INTERRUPT_POLL; | |
488 | apic_poll_irq(x86_cpu->apic_state); | |
489 | } | |
490 | ||
491 | if (cpu->interrupt_request & CPU_INTERRUPT_INIT) { | |
492 | DPRINTF("\nhax_vcpu_hax_exec: handling INIT for %d\n", | |
493 | cpu->cpu_index); | |
494 | do_cpu_init(x86_cpu); | |
495 | hax_vcpu_sync_state(env, 1); | |
496 | } | |
497 | ||
498 | if (cpu->interrupt_request & CPU_INTERRUPT_SIPI) { | |
499 | DPRINTF("hax_vcpu_hax_exec: handling SIPI for %d\n", | |
500 | cpu->cpu_index); | |
501 | hax_vcpu_sync_state(env, 0); | |
502 | do_cpu_sipi(x86_cpu); | |
503 | hax_vcpu_sync_state(env, 1); | |
504 | } | |
505 | ||
506 | do { | |
507 | int hax_ret; | |
508 | ||
509 | if (cpu->exit_request) { | |
510 | ret = 1; | |
511 | break; | |
512 | } | |
513 | ||
514 | hax_vcpu_interrupt(env); | |
515 | ||
516 | qemu_mutex_unlock_iothread(); | |
517 | hax_ret = hax_vcpu_run(vcpu); | |
518 | qemu_mutex_lock_iothread(); | |
519 | current_cpu = cpu; | |
520 | ||
521 | /* Simply continue the vcpu_run if system call interrupted */ | |
522 | if (hax_ret == -EINTR || hax_ret == -EAGAIN) { | |
523 | DPRINTF("io window interrupted\n"); | |
524 | continue; | |
525 | } | |
526 | ||
527 | if (hax_ret < 0) { | |
528 | fprintf(stderr, "vcpu run failed for vcpu %x\n", vcpu->vcpu_id); | |
529 | abort(); | |
530 | } | |
531 | switch (ht->_exit_status) { | |
532 | case HAX_EXIT_IO: | |
533 | ret = hax_handle_io(env, ht->pio._df, ht->pio._port, | |
534 | ht->pio._direction, | |
535 | ht->pio._size, ht->pio._count, vcpu->iobuf); | |
536 | break; | |
537 | case HAX_EXIT_FAST_MMIO: | |
538 | ret = hax_handle_fastmmio(env, (struct hax_fastmmio *) vcpu->iobuf); | |
539 | break; | |
540 | /* Guest state changed, currently only for shutdown */ | |
541 | case HAX_EXIT_STATECHANGE: | |
542 | fprintf(stdout, "VCPU shutdown request\n"); | |
543 | qemu_system_shutdown_request(); | |
544 | hax_vcpu_sync_state(env, 0); | |
545 | ret = 1; | |
546 | break; | |
547 | case HAX_EXIT_UNKNOWN_VMEXIT: | |
548 | fprintf(stderr, "Unknown VMX exit %x from guest\n", | |
549 | ht->_exit_reason); | |
550 | qemu_system_reset_request(); | |
551 | hax_vcpu_sync_state(env, 0); | |
552 | cpu_dump_state(cpu, stderr, fprintf, 0); | |
553 | ret = -1; | |
554 | break; | |
555 | case HAX_EXIT_HLT: | |
556 | if (!(cpu->interrupt_request & CPU_INTERRUPT_HARD) && | |
557 | !(cpu->interrupt_request & CPU_INTERRUPT_NMI)) { | |
558 | /* hlt instruction with interrupt disabled is shutdown */ | |
559 | env->eflags |= IF_MASK; | |
560 | cpu->halted = 1; | |
561 | cpu->exception_index = EXCP_HLT; | |
562 | ret = 1; | |
563 | } | |
564 | break; | |
565 | /* these situations will continue to hax module */ | |
566 | case HAX_EXIT_INTERRUPT: | |
567 | case HAX_EXIT_PAUSED: | |
568 | break; | |
569 | case HAX_EXIT_MMIO: | |
570 | /* Should not happen on UG system */ | |
571 | fprintf(stderr, "HAX: unsupported MMIO emulation\n"); | |
572 | ret = -1; | |
573 | break; | |
574 | case HAX_EXIT_REAL: | |
575 | /* Should not happen on UG system */ | |
576 | fprintf(stderr, "HAX: unimplemented real mode emulation\n"); | |
577 | ret = -1; | |
578 | break; | |
579 | default: | |
580 | fprintf(stderr, "Unknown exit %x from HAX\n", ht->_exit_status); | |
581 | qemu_system_reset_request(); | |
582 | hax_vcpu_sync_state(env, 0); | |
583 | cpu_dump_state(cpu, stderr, fprintf, 0); | |
584 | ret = 1; | |
585 | break; | |
586 | } | |
587 | } while (!ret); | |
588 | ||
589 | if (cpu->exit_request) { | |
590 | cpu->exit_request = 0; | |
591 | cpu->exception_index = EXCP_INTERRUPT; | |
592 | } | |
593 | return ret < 0; | |
594 | } | |
595 | ||
596 | static void do_hax_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) | |
597 | { | |
598 | CPUArchState *env = cpu->env_ptr; | |
599 | ||
600 | hax_arch_get_registers(env); | |
601 | cpu->hax_vcpu_dirty = true; | |
602 | } | |
603 | ||
604 | void hax_cpu_synchronize_state(CPUState *cpu) | |
605 | { | |
606 | if (!cpu->hax_vcpu_dirty) { | |
607 | run_on_cpu(cpu, do_hax_cpu_synchronize_state, RUN_ON_CPU_NULL); | |
608 | } | |
609 | } | |
610 | ||
611 | static void do_hax_cpu_synchronize_post_reset(CPUState *cpu, | |
612 | run_on_cpu_data arg) | |
613 | { | |
614 | CPUArchState *env = cpu->env_ptr; | |
615 | ||
616 | hax_vcpu_sync_state(env, 1); | |
617 | cpu->hax_vcpu_dirty = false; | |
618 | } | |
619 | ||
620 | void hax_cpu_synchronize_post_reset(CPUState *cpu) | |
621 | { | |
622 | run_on_cpu(cpu, do_hax_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); | |
623 | } | |
624 | ||
625 | static void do_hax_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) | |
626 | { | |
627 | CPUArchState *env = cpu->env_ptr; | |
628 | ||
629 | hax_vcpu_sync_state(env, 1); | |
630 | cpu->hax_vcpu_dirty = false; | |
631 | } | |
632 | ||
633 | void hax_cpu_synchronize_post_init(CPUState *cpu) | |
634 | { | |
635 | run_on_cpu(cpu, do_hax_cpu_synchronize_post_init, RUN_ON_CPU_NULL); | |
636 | } | |
637 | ||
638 | int hax_smp_cpu_exec(CPUState *cpu) | |
639 | { | |
640 | CPUArchState *env = (CPUArchState *) (cpu->env_ptr); | |
641 | int fatal; | |
642 | int ret; | |
643 | ||
644 | while (1) { | |
645 | if (cpu->exception_index >= EXCP_INTERRUPT) { | |
646 | ret = cpu->exception_index; | |
647 | cpu->exception_index = -1; | |
648 | break; | |
649 | } | |
650 | ||
651 | fatal = hax_vcpu_hax_exec(env); | |
652 | ||
653 | if (fatal) { | |
654 | fprintf(stderr, "Unsupported HAX vcpu return\n"); | |
655 | abort(); | |
656 | } | |
657 | } | |
658 | ||
659 | return ret; | |
660 | } | |
661 | ||
662 | static void set_v8086_seg(struct segment_desc_t *lhs, const SegmentCache *rhs) | |
663 | { | |
664 | memset(lhs, 0, sizeof(struct segment_desc_t)); | |
665 | lhs->selector = rhs->selector; | |
666 | lhs->base = rhs->base; | |
667 | lhs->limit = rhs->limit; | |
668 | lhs->type = 3; | |
669 | lhs->present = 1; | |
670 | lhs->dpl = 3; | |
671 | lhs->operand_size = 0; | |
672 | lhs->desc = 1; | |
673 | lhs->long_mode = 0; | |
674 | lhs->granularity = 0; | |
675 | lhs->available = 0; | |
676 | } | |
677 | ||
678 | static void get_seg(SegmentCache *lhs, const struct segment_desc_t *rhs) | |
679 | { | |
680 | lhs->selector = rhs->selector; | |
681 | lhs->base = rhs->base; | |
682 | lhs->limit = rhs->limit; | |
683 | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | |
684 | | (rhs->present * DESC_P_MASK) | |
685 | | (rhs->dpl << DESC_DPL_SHIFT) | |
686 | | (rhs->operand_size << DESC_B_SHIFT) | |
687 | | (rhs->desc * DESC_S_MASK) | |
688 | | (rhs->long_mode << DESC_L_SHIFT) | |
689 | | (rhs->granularity * DESC_G_MASK) | (rhs->available * DESC_AVL_MASK); | |
690 | } | |
691 | ||
692 | static void set_seg(struct segment_desc_t *lhs, const SegmentCache *rhs) | |
693 | { | |
694 | unsigned flags = rhs->flags; | |
695 | ||
696 | memset(lhs, 0, sizeof(struct segment_desc_t)); | |
697 | lhs->selector = rhs->selector; | |
698 | lhs->base = rhs->base; | |
699 | lhs->limit = rhs->limit; | |
700 | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | |
701 | lhs->present = (flags & DESC_P_MASK) != 0; | |
702 | lhs->dpl = rhs->selector & 3; | |
703 | lhs->operand_size = (flags >> DESC_B_SHIFT) & 1; | |
704 | lhs->desc = (flags & DESC_S_MASK) != 0; | |
705 | lhs->long_mode = (flags >> DESC_L_SHIFT) & 1; | |
706 | lhs->granularity = (flags & DESC_G_MASK) != 0; | |
707 | lhs->available = (flags & DESC_AVL_MASK) != 0; | |
708 | } | |
709 | ||
710 | static void hax_getput_reg(uint64_t *hax_reg, target_ulong *qemu_reg, int set) | |
711 | { | |
712 | target_ulong reg = *hax_reg; | |
713 | ||
714 | if (set) { | |
715 | *hax_reg = *qemu_reg; | |
716 | } else { | |
717 | *qemu_reg = reg; | |
718 | } | |
719 | } | |
720 | ||
721 | /* The sregs has been synced with HAX kernel already before this call */ | |
722 | static int hax_get_segments(CPUArchState *env, struct vcpu_state_t *sregs) | |
723 | { | |
724 | get_seg(&env->segs[R_CS], &sregs->_cs); | |
725 | get_seg(&env->segs[R_DS], &sregs->_ds); | |
726 | get_seg(&env->segs[R_ES], &sregs->_es); | |
727 | get_seg(&env->segs[R_FS], &sregs->_fs); | |
728 | get_seg(&env->segs[R_GS], &sregs->_gs); | |
729 | get_seg(&env->segs[R_SS], &sregs->_ss); | |
730 | ||
731 | get_seg(&env->tr, &sregs->_tr); | |
732 | get_seg(&env->ldt, &sregs->_ldt); | |
733 | env->idt.limit = sregs->_idt.limit; | |
734 | env->idt.base = sregs->_idt.base; | |
735 | env->gdt.limit = sregs->_gdt.limit; | |
736 | env->gdt.base = sregs->_gdt.base; | |
737 | return 0; | |
738 | } | |
739 | ||
740 | static int hax_set_segments(CPUArchState *env, struct vcpu_state_t *sregs) | |
741 | { | |
742 | if ((env->eflags & VM_MASK)) { | |
743 | set_v8086_seg(&sregs->_cs, &env->segs[R_CS]); | |
744 | set_v8086_seg(&sregs->_ds, &env->segs[R_DS]); | |
745 | set_v8086_seg(&sregs->_es, &env->segs[R_ES]); | |
746 | set_v8086_seg(&sregs->_fs, &env->segs[R_FS]); | |
747 | set_v8086_seg(&sregs->_gs, &env->segs[R_GS]); | |
748 | set_v8086_seg(&sregs->_ss, &env->segs[R_SS]); | |
749 | } else { | |
750 | set_seg(&sregs->_cs, &env->segs[R_CS]); | |
751 | set_seg(&sregs->_ds, &env->segs[R_DS]); | |
752 | set_seg(&sregs->_es, &env->segs[R_ES]); | |
753 | set_seg(&sregs->_fs, &env->segs[R_FS]); | |
754 | set_seg(&sregs->_gs, &env->segs[R_GS]); | |
755 | set_seg(&sregs->_ss, &env->segs[R_SS]); | |
756 | ||
757 | if (env->cr[0] & CR0_PE_MASK) { | |
758 | /* force ss cpl to cs cpl */ | |
759 | sregs->_ss.selector = (sregs->_ss.selector & ~3) | | |
760 | (sregs->_cs.selector & 3); | |
761 | sregs->_ss.dpl = sregs->_ss.selector & 3; | |
762 | } | |
763 | } | |
764 | ||
765 | set_seg(&sregs->_tr, &env->tr); | |
766 | set_seg(&sregs->_ldt, &env->ldt); | |
767 | sregs->_idt.limit = env->idt.limit; | |
768 | sregs->_idt.base = env->idt.base; | |
769 | sregs->_gdt.limit = env->gdt.limit; | |
770 | sregs->_gdt.base = env->gdt.base; | |
771 | return 0; | |
772 | } | |
773 | ||
774 | /* | |
775 | * After get the state from the kernel module, some | |
776 | * qemu emulator state need be updated also | |
777 | */ | |
778 | static int hax_setup_qemu_emulator(CPUArchState *env) | |
779 | { | |
780 | ||
781 | #define HFLAG_COPY_MASK (~( \ | |
782 | HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | |
783 | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | |
784 | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | |
785 | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)) | |
786 | ||
787 | uint32_t hflags; | |
788 | ||
789 | hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; | |
790 | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); | |
791 | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | |
792 | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); | |
793 | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); | |
794 | hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << | |
795 | (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); | |
796 | ||
797 | if (env->efer & MSR_EFER_LMA) { | |
798 | hflags |= HF_LMA_MASK; | |
799 | } | |
800 | ||
801 | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | |
802 | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | |
803 | } else { | |
804 | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | |
805 | (DESC_B_SHIFT - HF_CS32_SHIFT); | |
806 | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> | |
807 | (DESC_B_SHIFT - HF_SS32_SHIFT); | |
808 | if (!(env->cr[0] & CR0_PE_MASK) || | |
809 | (env->eflags & VM_MASK) || !(hflags & HF_CS32_MASK)) { | |
810 | hflags |= HF_ADDSEG_MASK; | |
811 | } else { | |
812 | hflags |= ((env->segs[R_DS].base | | |
813 | env->segs[R_ES].base | | |
814 | env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; | |
815 | } | |
816 | } | |
817 | ||
818 | hflags &= ~HF_SMM_MASK; | |
819 | ||
820 | env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; | |
821 | return 0; | |
822 | } | |
823 | ||
824 | static int hax_sync_vcpu_register(CPUArchState *env, int set) | |
825 | { | |
826 | struct vcpu_state_t regs; | |
827 | int ret; | |
828 | memset(®s, 0, sizeof(struct vcpu_state_t)); | |
829 | ||
830 | if (!set) { | |
831 | ret = hax_sync_vcpu_state(env, ®s, 0); | |
832 | if (ret < 0) { | |
833 | return -1; | |
834 | } | |
835 | } | |
836 | ||
837 | /* generic register */ | |
838 | hax_getput_reg(®s._rax, &env->regs[R_EAX], set); | |
839 | hax_getput_reg(®s._rbx, &env->regs[R_EBX], set); | |
840 | hax_getput_reg(®s._rcx, &env->regs[R_ECX], set); | |
841 | hax_getput_reg(®s._rdx, &env->regs[R_EDX], set); | |
842 | hax_getput_reg(®s._rsi, &env->regs[R_ESI], set); | |
843 | hax_getput_reg(®s._rdi, &env->regs[R_EDI], set); | |
844 | hax_getput_reg(®s._rsp, &env->regs[R_ESP], set); | |
845 | hax_getput_reg(®s._rbp, &env->regs[R_EBP], set); | |
846 | #ifdef TARGET_X86_64 | |
847 | hax_getput_reg(®s._r8, &env->regs[8], set); | |
848 | hax_getput_reg(®s._r9, &env->regs[9], set); | |
849 | hax_getput_reg(®s._r10, &env->regs[10], set); | |
850 | hax_getput_reg(®s._r11, &env->regs[11], set); | |
851 | hax_getput_reg(®s._r12, &env->regs[12], set); | |
852 | hax_getput_reg(®s._r13, &env->regs[13], set); | |
853 | hax_getput_reg(®s._r14, &env->regs[14], set); | |
854 | hax_getput_reg(®s._r15, &env->regs[15], set); | |
855 | #endif | |
856 | hax_getput_reg(®s._rflags, &env->eflags, set); | |
857 | hax_getput_reg(®s._rip, &env->eip, set); | |
858 | ||
859 | if (set) { | |
860 | regs._cr0 = env->cr[0]; | |
861 | regs._cr2 = env->cr[2]; | |
862 | regs._cr3 = env->cr[3]; | |
863 | regs._cr4 = env->cr[4]; | |
864 | hax_set_segments(env, ®s); | |
865 | } else { | |
866 | env->cr[0] = regs._cr0; | |
867 | env->cr[2] = regs._cr2; | |
868 | env->cr[3] = regs._cr3; | |
869 | env->cr[4] = regs._cr4; | |
870 | hax_get_segments(env, ®s); | |
871 | } | |
872 | ||
873 | if (set) { | |
874 | ret = hax_sync_vcpu_state(env, ®s, 1); | |
875 | if (ret < 0) { | |
876 | return -1; | |
877 | } | |
878 | } | |
879 | if (!set) { | |
880 | hax_setup_qemu_emulator(env); | |
881 | } | |
882 | return 0; | |
883 | } | |
884 | ||
885 | static void hax_msr_entry_set(struct vmx_msr *item, uint32_t index, | |
886 | uint64_t value) | |
887 | { | |
888 | item->entry = index; | |
889 | item->value = value; | |
890 | } | |
891 | ||
892 | static int hax_get_msrs(CPUArchState *env) | |
893 | { | |
894 | struct hax_msr_data md; | |
895 | struct vmx_msr *msrs = md.entries; | |
896 | int ret, i, n; | |
897 | ||
898 | n = 0; | |
899 | msrs[n++].entry = MSR_IA32_SYSENTER_CS; | |
900 | msrs[n++].entry = MSR_IA32_SYSENTER_ESP; | |
901 | msrs[n++].entry = MSR_IA32_SYSENTER_EIP; | |
902 | msrs[n++].entry = MSR_IA32_TSC; | |
903 | #ifdef TARGET_X86_64 | |
904 | msrs[n++].entry = MSR_EFER; | |
905 | msrs[n++].entry = MSR_STAR; | |
906 | msrs[n++].entry = MSR_LSTAR; | |
907 | msrs[n++].entry = MSR_CSTAR; | |
908 | msrs[n++].entry = MSR_FMASK; | |
909 | msrs[n++].entry = MSR_KERNELGSBASE; | |
910 | #endif | |
911 | md.nr_msr = n; | |
912 | ret = hax_sync_msr(env, &md, 0); | |
913 | if (ret < 0) { | |
914 | return ret; | |
915 | } | |
916 | ||
917 | for (i = 0; i < md.done; i++) { | |
918 | switch (msrs[i].entry) { | |
919 | case MSR_IA32_SYSENTER_CS: | |
920 | env->sysenter_cs = msrs[i].value; | |
921 | break; | |
922 | case MSR_IA32_SYSENTER_ESP: | |
923 | env->sysenter_esp = msrs[i].value; | |
924 | break; | |
925 | case MSR_IA32_SYSENTER_EIP: | |
926 | env->sysenter_eip = msrs[i].value; | |
927 | break; | |
928 | case MSR_IA32_TSC: | |
929 | env->tsc = msrs[i].value; | |
930 | break; | |
931 | #ifdef TARGET_X86_64 | |
932 | case MSR_EFER: | |
933 | env->efer = msrs[i].value; | |
934 | break; | |
935 | case MSR_STAR: | |
936 | env->star = msrs[i].value; | |
937 | break; | |
938 | case MSR_LSTAR: | |
939 | env->lstar = msrs[i].value; | |
940 | break; | |
941 | case MSR_CSTAR: | |
942 | env->cstar = msrs[i].value; | |
943 | break; | |
944 | case MSR_FMASK: | |
945 | env->fmask = msrs[i].value; | |
946 | break; | |
947 | case MSR_KERNELGSBASE: | |
948 | env->kernelgsbase = msrs[i].value; | |
949 | break; | |
950 | #endif | |
951 | } | |
952 | } | |
953 | ||
954 | return 0; | |
955 | } | |
956 | ||
957 | static int hax_set_msrs(CPUArchState *env) | |
958 | { | |
959 | struct hax_msr_data md; | |
960 | struct vmx_msr *msrs; | |
961 | msrs = md.entries; | |
962 | int n = 0; | |
963 | ||
964 | memset(&md, 0, sizeof(struct hax_msr_data)); | |
965 | hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); | |
966 | hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | |
967 | hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | |
968 | hax_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); | |
969 | #ifdef TARGET_X86_64 | |
970 | hax_msr_entry_set(&msrs[n++], MSR_EFER, env->efer); | |
971 | hax_msr_entry_set(&msrs[n++], MSR_STAR, env->star); | |
972 | hax_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); | |
973 | hax_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); | |
974 | hax_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); | |
975 | hax_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); | |
976 | #endif | |
977 | md.nr_msr = n; | |
978 | md.done = 0; | |
979 | ||
980 | return hax_sync_msr(env, &md, 1); | |
981 | } | |
982 | ||
983 | static int hax_get_fpu(CPUArchState *env) | |
984 | { | |
985 | struct fx_layout fpu; | |
986 | int i, ret; | |
987 | ||
988 | ret = hax_sync_fpu(env, &fpu, 0); | |
989 | if (ret < 0) { | |
990 | return ret; | |
991 | } | |
992 | ||
993 | env->fpstt = (fpu.fsw >> 11) & 7; | |
994 | env->fpus = fpu.fsw; | |
995 | env->fpuc = fpu.fcw; | |
996 | for (i = 0; i < 8; ++i) { | |
997 | env->fptags[i] = !((fpu.ftw >> i) & 1); | |
998 | } | |
999 | memcpy(env->fpregs, fpu.st_mm, sizeof(env->fpregs)); | |
1000 | ||
1001 | for (i = 0; i < 8; i++) { | |
1002 | env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.mmx_1[i][0]); | |
1003 | env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.mmx_1[i][8]); | |
1004 | if (CPU_NB_REGS > 8) { | |
1005 | env->xmm_regs[i + 8].ZMM_Q(0) = ldq_p(&fpu.mmx_2[i][0]); | |
1006 | env->xmm_regs[i + 8].ZMM_Q(1) = ldq_p(&fpu.mmx_2[i][8]); | |
1007 | } | |
1008 | } | |
1009 | env->mxcsr = fpu.mxcsr; | |
1010 | ||
1011 | return 0; | |
1012 | } | |
1013 | ||
1014 | static int hax_set_fpu(CPUArchState *env) | |
1015 | { | |
1016 | struct fx_layout fpu; | |
1017 | int i; | |
1018 | ||
1019 | memset(&fpu, 0, sizeof(fpu)); | |
1020 | fpu.fsw = env->fpus & ~(7 << 11); | |
1021 | fpu.fsw |= (env->fpstt & 7) << 11; | |
1022 | fpu.fcw = env->fpuc; | |
1023 | ||
1024 | for (i = 0; i < 8; ++i) { | |
1025 | fpu.ftw |= (!env->fptags[i]) << i; | |
1026 | } | |
1027 | ||
1028 | memcpy(fpu.st_mm, env->fpregs, sizeof(env->fpregs)); | |
1029 | for (i = 0; i < 8; i++) { | |
1030 | stq_p(&fpu.mmx_1[i][0], env->xmm_regs[i].ZMM_Q(0)); | |
1031 | stq_p(&fpu.mmx_1[i][8], env->xmm_regs[i].ZMM_Q(1)); | |
1032 | if (CPU_NB_REGS > 8) { | |
1033 | stq_p(&fpu.mmx_2[i][0], env->xmm_regs[i + 8].ZMM_Q(0)); | |
1034 | stq_p(&fpu.mmx_2[i][8], env->xmm_regs[i + 8].ZMM_Q(1)); | |
1035 | } | |
1036 | } | |
1037 | ||
1038 | fpu.mxcsr = env->mxcsr; | |
1039 | ||
1040 | return hax_sync_fpu(env, &fpu, 1); | |
1041 | } | |
1042 | ||
1043 | static int hax_arch_get_registers(CPUArchState *env) | |
1044 | { | |
1045 | int ret; | |
1046 | ||
1047 | ret = hax_sync_vcpu_register(env, 0); | |
1048 | if (ret < 0) { | |
1049 | return ret; | |
1050 | } | |
1051 | ||
1052 | ret = hax_get_fpu(env); | |
1053 | if (ret < 0) { | |
1054 | return ret; | |
1055 | } | |
1056 | ||
1057 | ret = hax_get_msrs(env); | |
1058 | if (ret < 0) { | |
1059 | return ret; | |
1060 | } | |
1061 | ||
1062 | return 0; | |
1063 | } | |
1064 | ||
1065 | static int hax_arch_set_registers(CPUArchState *env) | |
1066 | { | |
1067 | int ret; | |
1068 | ret = hax_sync_vcpu_register(env, 1); | |
1069 | ||
1070 | if (ret < 0) { | |
1071 | fprintf(stderr, "Failed to sync vcpu reg\n"); | |
1072 | return ret; | |
1073 | } | |
1074 | ret = hax_set_fpu(env); | |
1075 | if (ret < 0) { | |
1076 | fprintf(stderr, "FPU failed\n"); | |
1077 | return ret; | |
1078 | } | |
1079 | ret = hax_set_msrs(env); | |
1080 | if (ret < 0) { | |
1081 | fprintf(stderr, "MSR failed\n"); | |
1082 | return ret; | |
1083 | } | |
1084 | ||
1085 | return 0; | |
1086 | } | |
1087 | ||
1088 | static void hax_vcpu_sync_state(CPUArchState *env, int modified) | |
1089 | { | |
1090 | if (hax_enabled()) { | |
1091 | if (modified) { | |
1092 | hax_arch_set_registers(env); | |
1093 | } else { | |
1094 | hax_arch_get_registers(env); | |
1095 | } | |
1096 | } | |
1097 | } | |
1098 | ||
1099 | /* | |
1100 | * much simpler than kvm, at least in first stage because: | |
1101 | * We don't need consider the device pass-through, we don't need | |
1102 | * consider the framebuffer, and we may even remove the bios at all | |
1103 | */ | |
1104 | int hax_sync_vcpus(void) | |
1105 | { | |
1106 | if (hax_enabled()) { | |
1107 | CPUState *cpu; | |
1108 | ||
1109 | cpu = first_cpu; | |
1110 | if (!cpu) { | |
1111 | return 0; | |
1112 | } | |
1113 | ||
1114 | for (; cpu != NULL; cpu = CPU_NEXT(cpu)) { | |
1115 | int ret; | |
1116 | ||
1117 | ret = hax_arch_set_registers(cpu->env_ptr); | |
1118 | if (ret < 0) { | |
1119 | return ret; | |
1120 | } | |
1121 | } | |
1122 | } | |
1123 | ||
1124 | return 0; | |
1125 | } | |
1126 | ||
1127 | void hax_reset_vcpu_state(void *opaque) | |
1128 | { | |
1129 | CPUState *cpu; | |
1130 | for (cpu = first_cpu; cpu != NULL; cpu = CPU_NEXT(cpu)) { | |
1131 | cpu->hax_vcpu->tunnel->user_event_pending = 0; | |
1132 | cpu->hax_vcpu->tunnel->ready_for_interrupt_injection = 0; | |
1133 | } | |
1134 | } | |
1135 | ||
1136 | static void hax_accel_class_init(ObjectClass *oc, void *data) | |
1137 | { | |
1138 | AccelClass *ac = ACCEL_CLASS(oc); | |
1139 | ac->name = "HAX"; | |
1140 | ac->init_machine = hax_accel_init; | |
1141 | ac->allowed = &hax_allowed; | |
1142 | } | |
1143 | ||
1144 | static const TypeInfo hax_accel_type = { | |
1145 | .name = ACCEL_CLASS_NAME("hax"), | |
1146 | .parent = TYPE_ACCEL, | |
1147 | .class_init = hax_accel_class_init, | |
1148 | }; | |
1149 | ||
1150 | static void hax_type_init(void) | |
1151 | { | |
1152 | type_register_static(&hax_accel_type); | |
1153 | } | |
1154 | ||
1155 | type_init(hax_type_init); |