]>
Commit | Line | Data |
---|---|---|
80cabfad FB |
1 | /* |
2 | * QEMU MC146818 RTC emulation | |
5fafdf24 | 3 | * |
80cabfad | 4 | * Copyright (c) 2003-2004 Fabrice Bellard |
5fafdf24 | 5 | * |
80cabfad FB |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
e688df6b | 24 | |
b6a0aa05 | 25 | #include "qemu/osdep.h" |
a8d25326 | 26 | #include "qemu-common.h" |
f348b6d1 | 27 | #include "qemu/cutils.h" |
0b8fa32f | 28 | #include "qemu/module.h" |
f348b6d1 | 29 | #include "qemu/bcd.h" |
64552b6b | 30 | #include "hw/irq.h" |
a27bd6c7 | 31 | #include "hw/qdev-properties.h" |
1de7afc9 | 32 | #include "qemu/timer.h" |
9c17d615 | 33 | #include "sysemu/sysemu.h" |
1dfb1b2d | 34 | #include "sysemu/replay.h" |
71e8a915 | 35 | #include "sysemu/reset.h" |
54d31236 | 36 | #include "sysemu/runstate.h" |
bcdb9064 | 37 | #include "hw/rtc/mc146818rtc.h" |
7ffcb73d | 38 | #include "hw/rtc/mc146818rtc_regs.h" |
d6454270 | 39 | #include "migration/vmstate.h" |
e688df6b | 40 | #include "qapi/error.h" |
b0227cdb | 41 | #include "qapi/qapi-events-misc-target.h" |
7b1b5d19 | 42 | #include "qapi/visitor.h" |
f98167ea | 43 | #include "exec/address-spaces.h" |
673652a7 | 44 | #include "hw/rtc/mc146818rtc_regs.h" |
80cabfad | 45 | |
d362e757 | 46 | #ifdef TARGET_I386 |
3c13c4be | 47 | #include "qapi/qapi-commands-misc-target.h" |
0d09e41a | 48 | #include "hw/i386/apic.h" |
d362e757 JK |
49 | #endif |
50 | ||
80cabfad | 51 | //#define DEBUG_CMOS |
aa6f63ff | 52 | //#define DEBUG_COALESCED |
80cabfad | 53 | |
ec51e364 IY |
54 | #ifdef DEBUG_CMOS |
55 | # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__) | |
56 | #else | |
57 | # define CMOS_DPRINTF(format, ...) do { } while (0) | |
58 | #endif | |
59 | ||
aa6f63ff BS |
60 | #ifdef DEBUG_COALESCED |
61 | # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__) | |
62 | #else | |
63 | # define DPRINTF_C(format, ...) do { } while (0) | |
64 | #endif | |
65 | ||
00cf5774 PB |
66 | #define SEC_PER_MIN 60 |
67 | #define MIN_PER_HOUR 60 | |
68 | #define SEC_PER_HOUR 3600 | |
69 | #define HOUR_PER_DAY 24 | |
70 | #define SEC_PER_DAY 86400 | |
56038ef6 | 71 | |
dd17765b | 72 | #define RTC_REINJECT_ON_ACK_COUNT 20 |
e46deaba | 73 | #define RTC_CLOCK_RATE 32768 |
13566fe3 | 74 | #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768) |
ba32edab | 75 | |
dff38e7b | 76 | static void rtc_set_time(RTCState *s); |
56038ef6 | 77 | static void rtc_update_time(RTCState *s); |
e2826cf4 | 78 | static void rtc_set_cmos(RTCState *s, const struct tm *tm); |
56038ef6 | 79 | static inline int rtc_from_bcd(RTCState *s, int a); |
00cf5774 | 80 | static uint64_t get_next_alarm(RTCState *s); |
56038ef6 | 81 | |
41a9b8b2 YZ |
82 | static inline bool rtc_running(RTCState *s) |
83 | { | |
84 | return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) && | |
85 | (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20); | |
86 | } | |
87 | ||
56038ef6 YZ |
88 | static uint64_t get_guest_rtc_ns(RTCState *s) |
89 | { | |
884f17c2 | 90 | uint64_t guest_clock = qemu_clock_get_ns(rtc_clock); |
56038ef6 | 91 | |
9be38598 | 92 | return s->base_rtc * NANOSECONDS_PER_SECOND + |
73bcb24d | 93 | guest_clock - s->last_update + s->offset; |
56038ef6 | 94 | } |
dff38e7b | 95 | |
93b66569 AL |
96 | static void rtc_coalesced_timer_update(RTCState *s) |
97 | { | |
98 | if (s->irq_coalesced == 0) { | |
bc72ad67 | 99 | timer_del(s->coalesced_timer); |
93b66569 AL |
100 | } else { |
101 | /* divide each RTC interval to 2 - 8 smaller intervals */ | |
7cd9681b | 102 | int c = MIN(s->irq_coalesced, 7) + 1; |
884f17c2 | 103 | int64_t next_clock = qemu_clock_get_ns(rtc_clock) + |
bd618eab | 104 | periodic_clock_to_ns(s->period / c); |
bc72ad67 | 105 | timer_mod(s->coalesced_timer, next_clock); |
93b66569 AL |
106 | } |
107 | } | |
108 | ||
e0c8b950 XG |
109 | static QLIST_HEAD(, RTCState) rtc_devices = |
110 | QLIST_HEAD_INITIALIZER(rtc_devices); | |
111 | ||
388ad5d2 | 112 | #ifdef TARGET_I386 |
e0c8b950 XG |
113 | void qmp_rtc_reset_reinjection(Error **errp) |
114 | { | |
115 | RTCState *s; | |
116 | ||
117 | QLIST_FOREACH(s, &rtc_devices, link) { | |
118 | s->irq_coalesced = 0; | |
119 | } | |
120 | } | |
121 | ||
122 | static bool rtc_policy_slew_deliver_irq(RTCState *s) | |
123 | { | |
124 | apic_reset_irq_delivered(); | |
125 | qemu_irq_raise(s->irq); | |
126 | return apic_get_irq_delivered(); | |
127 | } | |
128 | ||
93b66569 AL |
129 | static void rtc_coalesced_timer(void *opaque) |
130 | { | |
131 | RTCState *s = opaque; | |
132 | ||
133 | if (s->irq_coalesced != 0) { | |
93b66569 | 134 | s->cmos_data[RTC_REG_C] |= 0xc0; |
aa6f63ff | 135 | DPRINTF_C("cmos: injecting from timer\n"); |
e0c8b950 | 136 | if (rtc_policy_slew_deliver_irq(s)) { |
93b66569 | 137 | s->irq_coalesced--; |
aa6f63ff BS |
138 | DPRINTF_C("cmos: coalesced irqs decreased to %d\n", |
139 | s->irq_coalesced); | |
93b66569 AL |
140 | } |
141 | } | |
142 | ||
143 | rtc_coalesced_timer_update(s); | |
144 | } | |
e0c8b950 XG |
145 | #else |
146 | static bool rtc_policy_slew_deliver_irq(RTCState *s) | |
147 | { | |
148 | assert(0); | |
149 | return false; | |
150 | } | |
93b66569 AL |
151 | #endif |
152 | ||
369b4135 | 153 | static uint32_t rtc_periodic_clock_ticks(RTCState *s) |
dff38e7b | 154 | { |
369b4135 TY |
155 | int period_code; |
156 | ||
157 | if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) { | |
158 | return 0; | |
159 | } | |
dff38e7b FB |
160 | |
161 | period_code = s->cmos_data[RTC_REG_A] & 0x0f; | |
369b4135 | 162 | |
bd618eab | 163 | return periodic_period_to_clock(period_code); |
369b4135 TY |
164 | } |
165 | ||
166 | /* | |
167 | * handle periodic timer. @old_period indicates the periodic timer update | |
168 | * is just due to period adjustment. | |
169 | */ | |
170 | static void | |
7a3e29b1 | 171 | periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period, bool period_change) |
369b4135 TY |
172 | { |
173 | uint32_t period; | |
174 | int64_t cur_clock, next_irq_clock, lost_clock = 0; | |
175 | ||
176 | period = rtc_periodic_clock_ticks(s); | |
7a3e29b1 PB |
177 | s->period = period; |
178 | ||
b429de73 MT |
179 | if (!period) { |
180 | s->irq_coalesced = 0; | |
181 | timer_del(s->periodic_timer); | |
182 | return; | |
183 | } | |
73bcb24d | 184 | |
b429de73 MT |
185 | /* compute 32 khz clock */ |
186 | cur_clock = | |
187 | muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND); | |
188 | ||
189 | /* | |
190 | * if the periodic timer's update is due to period re-configuration, | |
191 | * we should count the clock since last interrupt. | |
192 | */ | |
7a3e29b1 | 193 | if (old_period && period_change) { |
b429de73 MT |
194 | int64_t last_periodic_clock, next_periodic_clock; |
195 | ||
196 | next_periodic_clock = muldiv64(s->next_periodic_time, | |
197 | RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND); | |
198 | last_periodic_clock = next_periodic_clock - old_period; | |
199 | lost_clock = cur_clock - last_periodic_clock; | |
200 | assert(lost_clock >= 0); | |
3ae32adf | 201 | } |
369b4135 | 202 | |
3ae32adf PB |
203 | /* |
204 | * s->irq_coalesced can change for two reasons: | |
205 | * | |
206 | * a) if one or more periodic timer interrupts have been lost, | |
207 | * lost_clock will be more that a period. | |
208 | * | |
209 | * b) when the period may be reconfigured, we expect the OS to | |
210 | * treat delayed tick as the new period. So, when switching | |
211 | * from a shorter to a longer period, scale down the missing, | |
212 | * because the OS will treat past delayed ticks as longer | |
213 | * (leftovers are put back into lost_clock). When switching | |
214 | * to a shorter period, scale up the missing ticks since the | |
215 | * OS handler will treat past delayed ticks as shorter. | |
216 | */ | |
217 | if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { | |
218 | uint32_t old_irq_coalesced = s->irq_coalesced; | |
219 | ||
3ae32adf PB |
220 | lost_clock += old_irq_coalesced * old_period; |
221 | s->irq_coalesced = lost_clock / s->period; | |
222 | lost_clock %= s->period; | |
223 | if (old_irq_coalesced != s->irq_coalesced || | |
224 | old_period != s->period) { | |
225 | DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, " | |
226 | "period scaled from %d to %d\n", old_irq_coalesced, | |
227 | s->irq_coalesced, old_period, s->period); | |
228 | rtc_coalesced_timer_update(s); | |
229 | } | |
230 | } else { | |
369b4135 | 231 | /* |
3ae32adf PB |
232 | * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW |
233 | * is not used, we should make the time progress anyway. | |
369b4135 | 234 | */ |
3ae32adf | 235 | lost_clock = MIN(lost_clock, period); |
b429de73 | 236 | } |
369b4135 | 237 | |
b429de73 | 238 | assert(lost_clock >= 0 && lost_clock <= period); |
369b4135 | 239 | |
b429de73 MT |
240 | next_irq_clock = cur_clock + period - lost_clock; |
241 | s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1; | |
242 | timer_mod(s->periodic_timer, s->next_periodic_time); | |
dff38e7b FB |
243 | } |
244 | ||
245 | static void rtc_periodic_timer(void *opaque) | |
246 | { | |
247 | RTCState *s = opaque; | |
248 | ||
7a3e29b1 | 249 | periodic_timer_update(s, s->next_periodic_time, s->period, false); |
663447d4 | 250 | s->cmos_data[RTC_REG_C] |= REG_C_PF; |
100d9891 | 251 | if (s->cmos_data[RTC_REG_B] & REG_B_PIE) { |
663447d4 | 252 | s->cmos_data[RTC_REG_C] |= REG_C_IRQF; |
104059da | 253 | if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { |
ba32edab | 254 | if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT) |
e0c8b950 XG |
255 | s->irq_reinject_on_ack_count = 0; |
256 | if (!rtc_policy_slew_deliver_irq(s)) { | |
93b66569 AL |
257 | s->irq_coalesced++; |
258 | rtc_coalesced_timer_update(s); | |
aa6f63ff BS |
259 | DPRINTF_C("cmos: coalesced irqs increased to %d\n", |
260 | s->irq_coalesced); | |
93b66569 AL |
261 | } |
262 | } else | |
e0c8b950 | 263 | qemu_irq_raise(s->irq); |
100d9891 | 264 | } |
dff38e7b | 265 | } |
80cabfad | 266 | |
56038ef6 YZ |
267 | /* handle update-ended timer */ |
268 | static void check_update_timer(RTCState *s) | |
269 | { | |
270 | uint64_t next_update_time; | |
271 | uint64_t guest_nsec; | |
00cf5774 | 272 | int next_alarm_sec; |
56038ef6 | 273 | |
41a9b8b2 YZ |
274 | /* From the data sheet: "Holding the dividers in reset prevents |
275 | * interrupts from operating, while setting the SET bit allows" | |
6a51d83a | 276 | * them to occur. |
56038ef6 | 277 | */ |
41a9b8b2 | 278 | if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) { |
33f21e4f | 279 | assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0); |
bc72ad67 | 280 | timer_del(s->update_timer); |
41a9b8b2 YZ |
281 | return; |
282 | } | |
56038ef6 | 283 | |
13566fe3 | 284 | guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND; |
884f17c2 | 285 | next_update_time = qemu_clock_get_ns(rtc_clock) |
13566fe3 | 286 | + NANOSECONDS_PER_SECOND - guest_nsec; |
00cf5774 PB |
287 | |
288 | /* Compute time of next alarm. One second is already accounted | |
289 | * for in next_update_time. | |
290 | */ | |
291 | next_alarm_sec = get_next_alarm(s); | |
13566fe3 SH |
292 | s->next_alarm_time = next_update_time + |
293 | (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND; | |
00cf5774 | 294 | |
33f21e4f PB |
295 | /* If update_in_progress latched the UIP bit, we must keep the timer |
296 | * programmed to the next second, so that UIP is cleared. Otherwise, | |
297 | * if UF is already set, we might be able to optimize. | |
298 | */ | |
299 | if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) && | |
300 | (s->cmos_data[RTC_REG_C] & REG_C_UF)) { | |
6a51d83a PB |
301 | /* If AF cannot change (i.e. either it is set already, or |
302 | * SET=1 and then the time is not updated), nothing to do. | |
303 | */ | |
304 | if ((s->cmos_data[RTC_REG_B] & REG_B_SET) || | |
305 | (s->cmos_data[RTC_REG_C] & REG_C_AF)) { | |
306 | timer_del(s->update_timer); | |
307 | return; | |
308 | } | |
309 | ||
00cf5774 PB |
310 | /* UF is set, but AF is clear. Program the timer to target |
311 | * the alarm time. */ | |
312 | next_update_time = s->next_alarm_time; | |
313 | } | |
e93379b0 | 314 | if (next_update_time != timer_expire_time_ns(s->update_timer)) { |
bc72ad67 | 315 | timer_mod(s->update_timer, next_update_time); |
56038ef6 YZ |
316 | } |
317 | } | |
318 | ||
319 | static inline uint8_t convert_hour(RTCState *s, uint8_t hour) | |
320 | { | |
321 | if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) { | |
322 | hour %= 12; | |
323 | if (s->cmos_data[RTC_HOURS] & 0x80) { | |
324 | hour += 12; | |
325 | } | |
326 | } | |
327 | return hour; | |
328 | } | |
329 | ||
00cf5774 | 330 | static uint64_t get_next_alarm(RTCState *s) |
56038ef6 | 331 | { |
00cf5774 PB |
332 | int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec; |
333 | int32_t hour, min, sec; | |
334 | ||
335 | rtc_update_time(s); | |
56038ef6 YZ |
336 | |
337 | alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]); | |
338 | alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]); | |
339 | alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]); | |
00cf5774 | 340 | alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour); |
56038ef6 YZ |
341 | |
342 | cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]); | |
343 | cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]); | |
344 | cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]); | |
345 | cur_hour = convert_hour(s, cur_hour); | |
346 | ||
00cf5774 PB |
347 | if (alarm_hour == -1) { |
348 | alarm_hour = cur_hour; | |
349 | if (alarm_min == -1) { | |
350 | alarm_min = cur_min; | |
351 | if (alarm_sec == -1) { | |
352 | alarm_sec = cur_sec + 1; | |
353 | } else if (cur_sec > alarm_sec) { | |
354 | alarm_min++; | |
355 | } | |
356 | } else if (cur_min == alarm_min) { | |
357 | if (alarm_sec == -1) { | |
358 | alarm_sec = cur_sec + 1; | |
359 | } else { | |
360 | if (cur_sec > alarm_sec) { | |
361 | alarm_hour++; | |
362 | } | |
363 | } | |
364 | if (alarm_sec == SEC_PER_MIN) { | |
365 | /* wrap to next hour, minutes is not in don't care mode */ | |
366 | alarm_sec = 0; | |
367 | alarm_hour++; | |
368 | } | |
369 | } else if (cur_min > alarm_min) { | |
370 | alarm_hour++; | |
371 | } | |
372 | } else if (cur_hour == alarm_hour) { | |
373 | if (alarm_min == -1) { | |
374 | alarm_min = cur_min; | |
375 | if (alarm_sec == -1) { | |
376 | alarm_sec = cur_sec + 1; | |
377 | } else if (cur_sec > alarm_sec) { | |
378 | alarm_min++; | |
379 | } | |
380 | ||
381 | if (alarm_sec == SEC_PER_MIN) { | |
382 | alarm_sec = 0; | |
383 | alarm_min++; | |
384 | } | |
385 | /* wrap to next day, hour is not in don't care mode */ | |
386 | alarm_min %= MIN_PER_HOUR; | |
387 | } else if (cur_min == alarm_min) { | |
388 | if (alarm_sec == -1) { | |
389 | alarm_sec = cur_sec + 1; | |
390 | } | |
391 | /* wrap to next day, hours+minutes not in don't care mode */ | |
392 | alarm_sec %= SEC_PER_MIN; | |
393 | } | |
56038ef6 | 394 | } |
56038ef6 | 395 | |
00cf5774 PB |
396 | /* values that are still don't care fire at the next min/sec */ |
397 | if (alarm_min == -1) { | |
398 | alarm_min = 0; | |
399 | } | |
400 | if (alarm_sec == -1) { | |
401 | alarm_sec = 0; | |
402 | } | |
403 | ||
404 | /* keep values in range */ | |
405 | if (alarm_sec == SEC_PER_MIN) { | |
406 | alarm_sec = 0; | |
407 | alarm_min++; | |
408 | } | |
409 | if (alarm_min == MIN_PER_HOUR) { | |
410 | alarm_min = 0; | |
411 | alarm_hour++; | |
412 | } | |
413 | alarm_hour %= HOUR_PER_DAY; | |
414 | ||
415 | hour = alarm_hour - cur_hour; | |
416 | min = hour * MIN_PER_HOUR + alarm_min - cur_min; | |
417 | sec = min * SEC_PER_MIN + alarm_sec - cur_sec; | |
418 | return sec <= 0 ? sec + SEC_PER_DAY : sec; | |
56038ef6 YZ |
419 | } |
420 | ||
421 | static void rtc_update_timer(void *opaque) | |
422 | { | |
423 | RTCState *s = opaque; | |
424 | int32_t irqs = REG_C_UF; | |
425 | int32_t new_irqs; | |
426 | ||
41a9b8b2 YZ |
427 | assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60); |
428 | ||
56038ef6 YZ |
429 | /* UIP might have been latched, update time and clear it. */ |
430 | rtc_update_time(s); | |
431 | s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; | |
432 | ||
884f17c2 | 433 | if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) { |
56038ef6 YZ |
434 | irqs |= REG_C_AF; |
435 | if (s->cmos_data[RTC_REG_B] & REG_B_AIE) { | |
fb064112 | 436 | qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL); |
56038ef6 YZ |
437 | } |
438 | } | |
00cf5774 | 439 | |
56038ef6 YZ |
440 | new_irqs = irqs & ~s->cmos_data[RTC_REG_C]; |
441 | s->cmos_data[RTC_REG_C] |= irqs; | |
442 | if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) { | |
443 | s->cmos_data[RTC_REG_C] |= REG_C_IRQF; | |
444 | qemu_irq_raise(s->irq); | |
445 | } | |
446 | check_update_timer(s); | |
447 | } | |
448 | ||
0da8c842 AG |
449 | static void cmos_ioport_write(void *opaque, hwaddr addr, |
450 | uint64_t data, unsigned size) | |
80cabfad | 451 | { |
b41a2cd1 | 452 | RTCState *s = opaque; |
369b4135 | 453 | uint32_t old_period; |
9a6e2dcf | 454 | bool update_periodic_timer; |
80cabfad FB |
455 | |
456 | if ((addr & 1) == 0) { | |
457 | s->cmos_index = data & 0x7f; | |
458 | } else { | |
c5539cb4 | 459 | CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n", |
ec51e364 | 460 | s->cmos_index, data); |
dff38e7b | 461 | switch(s->cmos_index) { |
80cabfad FB |
462 | case RTC_SECONDS_ALARM: |
463 | case RTC_MINUTES_ALARM: | |
464 | case RTC_HOURS_ALARM: | |
80cabfad | 465 | s->cmos_data[s->cmos_index] = data; |
56038ef6 | 466 | check_update_timer(s); |
80cabfad | 467 | break; |
7cd9681b | 468 | case RTC_IBM_PS2_CENTURY_BYTE: |
e67edb94 PB |
469 | s->cmos_index = RTC_CENTURY; |
470 | /* fall through */ | |
471 | case RTC_CENTURY: | |
80cabfad FB |
472 | case RTC_SECONDS: |
473 | case RTC_MINUTES: | |
474 | case RTC_HOURS: | |
475 | case RTC_DAY_OF_WEEK: | |
476 | case RTC_DAY_OF_MONTH: | |
477 | case RTC_MONTH: | |
478 | case RTC_YEAR: | |
479 | s->cmos_data[s->cmos_index] = data; | |
dff38e7b | 480 | /* if in set mode, do not update the time */ |
41a9b8b2 | 481 | if (rtc_running(s)) { |
dff38e7b | 482 | rtc_set_time(s); |
56038ef6 | 483 | check_update_timer(s); |
dff38e7b | 484 | } |
80cabfad FB |
485 | break; |
486 | case RTC_REG_A: | |
9a6e2dcf | 487 | update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f; |
369b4135 | 488 | old_period = rtc_periodic_clock_ticks(s); |
9a6e2dcf | 489 | |
41a9b8b2 YZ |
490 | if ((data & 0x60) == 0x60) { |
491 | if (rtc_running(s)) { | |
492 | rtc_update_time(s); | |
493 | } | |
494 | /* What happens to UIP when divider reset is enabled is | |
495 | * unclear from the datasheet. Shouldn't matter much | |
496 | * though. | |
497 | */ | |
498 | s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; | |
499 | } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) && | |
500 | (data & 0x70) <= 0x20) { | |
501 | /* when the divider reset is removed, the first update cycle | |
502 | * begins one-half second later*/ | |
503 | if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { | |
504 | s->offset = 500000000; | |
505 | rtc_set_time(s); | |
506 | } | |
507 | s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; | |
508 | } | |
dff38e7b FB |
509 | /* UIP bit is read only */ |
510 | s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) | | |
511 | (s->cmos_data[RTC_REG_A] & REG_A_UIP); | |
9a6e2dcf XG |
512 | |
513 | if (update_periodic_timer) { | |
369b4135 | 514 | periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), |
7a3e29b1 | 515 | old_period, true); |
9a6e2dcf XG |
516 | } |
517 | ||
56038ef6 | 518 | check_update_timer(s); |
dff38e7b | 519 | break; |
80cabfad | 520 | case RTC_REG_B: |
9a6e2dcf XG |
521 | update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data) |
522 | & REG_B_PIE; | |
369b4135 | 523 | old_period = rtc_periodic_clock_ticks(s); |
9a6e2dcf | 524 | |
dff38e7b | 525 | if (data & REG_B_SET) { |
56038ef6 | 526 | /* update cmos to when the rtc was stopping */ |
41a9b8b2 | 527 | if (rtc_running(s)) { |
56038ef6 YZ |
528 | rtc_update_time(s); |
529 | } | |
dff38e7b FB |
530 | /* set mode: reset UIP mode */ |
531 | s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; | |
532 | data &= ~REG_B_UIE; | |
533 | } else { | |
534 | /* if disabling set mode, update the time */ | |
41a9b8b2 YZ |
535 | if ((s->cmos_data[RTC_REG_B] & REG_B_SET) && |
536 | (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) { | |
13566fe3 | 537 | s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND; |
dff38e7b FB |
538 | rtc_set_time(s); |
539 | } | |
540 | } | |
9324cc50 YZ |
541 | /* if an interrupt flag is already set when the interrupt |
542 | * becomes enabled, raise an interrupt immediately. */ | |
543 | if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) { | |
544 | s->cmos_data[RTC_REG_C] |= REG_C_IRQF; | |
545 | qemu_irq_raise(s->irq); | |
546 | } else { | |
547 | s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF; | |
548 | qemu_irq_lower(s->irq); | |
549 | } | |
bedc572e | 550 | s->cmos_data[RTC_REG_B] = data; |
9a6e2dcf XG |
551 | |
552 | if (update_periodic_timer) { | |
369b4135 | 553 | periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), |
7a3e29b1 | 554 | old_period, true); |
9a6e2dcf XG |
555 | } |
556 | ||
56038ef6 | 557 | check_update_timer(s); |
80cabfad FB |
558 | break; |
559 | case RTC_REG_C: | |
560 | case RTC_REG_D: | |
561 | /* cannot write to them */ | |
562 | break; | |
563 | default: | |
564 | s->cmos_data[s->cmos_index] = data; | |
565 | break; | |
566 | } | |
567 | } | |
568 | } | |
569 | ||
abd0c6bd | 570 | static inline int rtc_to_bcd(RTCState *s, int a) |
80cabfad | 571 | { |
6f1bf24d | 572 | if (s->cmos_data[RTC_REG_B] & REG_B_DM) { |
dff38e7b FB |
573 | return a; |
574 | } else { | |
575 | return ((a / 10) << 4) | (a % 10); | |
576 | } | |
80cabfad FB |
577 | } |
578 | ||
abd0c6bd | 579 | static inline int rtc_from_bcd(RTCState *s, int a) |
80cabfad | 580 | { |
00cf5774 PB |
581 | if ((a & 0xc0) == 0xc0) { |
582 | return -1; | |
583 | } | |
6f1bf24d | 584 | if (s->cmos_data[RTC_REG_B] & REG_B_DM) { |
dff38e7b FB |
585 | return a; |
586 | } else { | |
587 | return ((a >> 4) * 10) + (a & 0x0f); | |
588 | } | |
589 | } | |
590 | ||
e2826cf4 | 591 | static void rtc_get_time(RTCState *s, struct tm *tm) |
dff38e7b | 592 | { |
abd0c6bd PB |
593 | tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]); |
594 | tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]); | |
595 | tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f); | |
3b89eb43 PB |
596 | if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) { |
597 | tm->tm_hour %= 12; | |
598 | if (s->cmos_data[RTC_HOURS] & 0x80) { | |
599 | tm->tm_hour += 12; | |
600 | } | |
43f493af | 601 | } |
abd0c6bd PB |
602 | tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1; |
603 | tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]); | |
604 | tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1; | |
b8994faf PB |
605 | tm->tm_year = |
606 | rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year + | |
607 | rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900; | |
e2826cf4 PB |
608 | } |
609 | ||
610 | static void rtc_set_time(RTCState *s) | |
611 | { | |
612 | struct tm tm; | |
80cd3478 | 613 | |
e2826cf4 | 614 | rtc_get_time(s, &tm); |
e2826cf4 | 615 | s->base_rtc = mktimegm(&tm); |
884f17c2 | 616 | s->last_update = qemu_clock_get_ns(rtc_clock); |
56038ef6 | 617 | |
3ab72385 | 618 | qapi_event_send_rtc_change(qemu_timedate_diff(&tm)); |
43f493af FB |
619 | } |
620 | ||
e2826cf4 | 621 | static void rtc_set_cmos(RTCState *s, const struct tm *tm) |
43f493af | 622 | { |
42fc73a1 | 623 | int year; |
dff38e7b | 624 | |
abd0c6bd PB |
625 | s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec); |
626 | s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min); | |
c29cd656 | 627 | if (s->cmos_data[RTC_REG_B] & REG_B_24H) { |
43f493af | 628 | /* 24 hour format */ |
abd0c6bd | 629 | s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour); |
43f493af FB |
630 | } else { |
631 | /* 12 hour format */ | |
3b89eb43 PB |
632 | int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12; |
633 | s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h); | |
43f493af FB |
634 | if (tm->tm_hour >= 12) |
635 | s->cmos_data[RTC_HOURS] |= 0x80; | |
636 | } | |
abd0c6bd PB |
637 | s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1); |
638 | s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday); | |
639 | s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1); | |
b8994faf PB |
640 | year = tm->tm_year + 1900 - s->base_year; |
641 | s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100); | |
642 | s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100); | |
43f493af FB |
643 | } |
644 | ||
56038ef6 | 645 | static void rtc_update_time(RTCState *s) |
43f493af | 646 | { |
56038ef6 YZ |
647 | struct tm ret; |
648 | time_t guest_sec; | |
649 | int64_t guest_nsec; | |
650 | ||
651 | guest_nsec = get_guest_rtc_ns(s); | |
13566fe3 | 652 | guest_sec = guest_nsec / NANOSECONDS_PER_SECOND; |
56038ef6 | 653 | gmtime_r(&guest_sec, &ret); |
02c6ccc6 AH |
654 | |
655 | /* Is SET flag of Register B disabled? */ | |
656 | if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) { | |
657 | rtc_set_cmos(s, &ret); | |
658 | } | |
43f493af FB |
659 | } |
660 | ||
56038ef6 | 661 | static int update_in_progress(RTCState *s) |
43f493af | 662 | { |
56038ef6 | 663 | int64_t guest_nsec; |
3b46e624 | 664 | |
41a9b8b2 | 665 | if (!rtc_running(s)) { |
56038ef6 | 666 | return 0; |
dff38e7b | 667 | } |
e93379b0 AB |
668 | if (timer_pending(s->update_timer)) { |
669 | int64_t next_update_time = timer_expire_time_ns(s->update_timer); | |
56038ef6 | 670 | /* Latch UIP until the timer expires. */ |
884f17c2 AB |
671 | if (qemu_clock_get_ns(rtc_clock) >= |
672 | (next_update_time - UIP_HOLD_LENGTH)) { | |
56038ef6 YZ |
673 | s->cmos_data[RTC_REG_A] |= REG_A_UIP; |
674 | return 1; | |
dff38e7b FB |
675 | } |
676 | } | |
677 | ||
56038ef6 YZ |
678 | guest_nsec = get_guest_rtc_ns(s); |
679 | /* UIP bit will be set at last 244us of every second. */ | |
13566fe3 SH |
680 | if ((guest_nsec % NANOSECONDS_PER_SECOND) >= |
681 | (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) { | |
56038ef6 | 682 | return 1; |
dff38e7b | 683 | } |
56038ef6 | 684 | return 0; |
80cabfad FB |
685 | } |
686 | ||
0da8c842 AG |
687 | static uint64_t cmos_ioport_read(void *opaque, hwaddr addr, |
688 | unsigned size) | |
80cabfad | 689 | { |
b41a2cd1 | 690 | RTCState *s = opaque; |
80cabfad FB |
691 | int ret; |
692 | if ((addr & 1) == 0) { | |
693 | return 0xff; | |
694 | } else { | |
695 | switch(s->cmos_index) { | |
7cd9681b | 696 | case RTC_IBM_PS2_CENTURY_BYTE: |
e67edb94 PB |
697 | s->cmos_index = RTC_CENTURY; |
698 | /* fall through */ | |
699 | case RTC_CENTURY: | |
80cabfad FB |
700 | case RTC_SECONDS: |
701 | case RTC_MINUTES: | |
702 | case RTC_HOURS: | |
703 | case RTC_DAY_OF_WEEK: | |
704 | case RTC_DAY_OF_MONTH: | |
705 | case RTC_MONTH: | |
706 | case RTC_YEAR: | |
56038ef6 YZ |
707 | /* if not in set mode, calibrate cmos before |
708 | * reading*/ | |
41a9b8b2 | 709 | if (rtc_running(s)) { |
56038ef6 YZ |
710 | rtc_update_time(s); |
711 | } | |
80cabfad FB |
712 | ret = s->cmos_data[s->cmos_index]; |
713 | break; | |
714 | case RTC_REG_A: | |
33f21e4f | 715 | ret = s->cmos_data[s->cmos_index]; |
56038ef6 | 716 | if (update_in_progress(s)) { |
33f21e4f | 717 | ret |= REG_A_UIP; |
56038ef6 | 718 | } |
80cabfad FB |
719 | break; |
720 | case RTC_REG_C: | |
721 | ret = s->cmos_data[s->cmos_index]; | |
d537cf6c | 722 | qemu_irq_lower(s->irq); |
fbc15e27 | 723 | s->cmos_data[RTC_REG_C] = 0x00; |
56038ef6 YZ |
724 | if (ret & (REG_C_UF | REG_C_AF)) { |
725 | check_update_timer(s); | |
726 | } | |
e0c8b950 | 727 | |
ba32edab | 728 | if(s->irq_coalesced && |
fbc15e27 | 729 | (s->cmos_data[RTC_REG_B] & REG_B_PIE) && |
ba32edab GN |
730 | s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) { |
731 | s->irq_reinject_on_ack_count++; | |
fbc15e27 | 732 | s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF; |
aa6f63ff | 733 | DPRINTF_C("cmos: injecting on ack\n"); |
e0c8b950 | 734 | if (rtc_policy_slew_deliver_irq(s)) { |
ba32edab | 735 | s->irq_coalesced--; |
aa6f63ff BS |
736 | DPRINTF_C("cmos: coalesced irqs decreased to %d\n", |
737 | s->irq_coalesced); | |
738 | } | |
ba32edab | 739 | } |
80cabfad FB |
740 | break; |
741 | default: | |
742 | ret = s->cmos_data[s->cmos_index]; | |
743 | break; | |
744 | } | |
ec51e364 IY |
745 | CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n", |
746 | s->cmos_index, ret); | |
80cabfad FB |
747 | return ret; |
748 | } | |
749 | } | |
750 | ||
1d914fa0 | 751 | void rtc_set_memory(ISADevice *dev, int addr, int val) |
dff38e7b | 752 | { |
0e41271e | 753 | RTCState *s = MC146818_RTC(dev); |
dff38e7b FB |
754 | if (addr >= 0 && addr <= 127) |
755 | s->cmos_data[addr] = val; | |
756 | } | |
757 | ||
b8b7456d IM |
758 | int rtc_get_memory(ISADevice *dev, int addr) |
759 | { | |
760 | RTCState *s = MC146818_RTC(dev); | |
761 | assert(addr >= 0 && addr <= 127); | |
762 | return s->cmos_data[addr]; | |
763 | } | |
764 | ||
1d914fa0 | 765 | static void rtc_set_date_from_host(ISADevice *dev) |
ea55ffb3 | 766 | { |
0e41271e | 767 | RTCState *s = MC146818_RTC(dev); |
f6503059 | 768 | struct tm tm; |
ea55ffb3 | 769 | |
f6503059 | 770 | qemu_get_timedate(&tm, 0); |
56038ef6 YZ |
771 | |
772 | s->base_rtc = mktimegm(&tm); | |
884f17c2 | 773 | s->last_update = qemu_clock_get_ns(rtc_clock); |
56038ef6 YZ |
774 | s->offset = 0; |
775 | ||
776 | /* set the CMOS date */ | |
e2826cf4 | 777 | rtc_set_cmos(s, &tm); |
ea55ffb3 TS |
778 | } |
779 | ||
44b1ff31 | 780 | static int rtc_pre_save(void *opaque) |
3cf294ee JB |
781 | { |
782 | RTCState *s = opaque; | |
783 | ||
784 | rtc_update_time(s); | |
44b1ff31 DDAG |
785 | |
786 | return 0; | |
3cf294ee JB |
787 | } |
788 | ||
6b075b8a | 789 | static int rtc_post_load(void *opaque, int version_id) |
80cabfad | 790 | { |
dff38e7b FB |
791 | RTCState *s = opaque; |
792 | ||
3cf294ee | 793 | if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) { |
56038ef6 YZ |
794 | rtc_set_time(s); |
795 | s->offset = 0; | |
796 | check_update_timer(s); | |
797 | } | |
7a3e29b1 | 798 | s->period = rtc_periodic_clock_ticks(s); |
56038ef6 | 799 | |
1dfb1b2d PD |
800 | /* The periodic timer is deterministic in record/replay mode, |
801 | * so there is no need to update it after loading the vmstate. | |
802 | * Reading RTC here would misalign record and replay. | |
803 | */ | |
804 | if (replay_mode == REPLAY_MODE_NONE) { | |
805 | uint64_t now = qemu_clock_get_ns(rtc_clock); | |
806 | if (now < s->next_periodic_time || | |
807 | now > (s->next_periodic_time + get_max_clock_jump())) { | |
7a3e29b1 | 808 | periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), s->period, false); |
1dfb1b2d | 809 | } |
ae46e239 PD |
810 | } |
811 | ||
048c74c4 | 812 | if (version_id >= 2) { |
104059da | 813 | if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { |
048c74c4 JQ |
814 | rtc_coalesced_timer_update(s); |
815 | } | |
048c74c4 | 816 | } |
73822ec8 AL |
817 | return 0; |
818 | } | |
73822ec8 | 819 | |
5cd8cada JQ |
820 | static bool rtc_irq_reinject_on_ack_count_needed(void *opaque) |
821 | { | |
822 | RTCState *s = (RTCState *)opaque; | |
823 | return s->irq_reinject_on_ack_count != 0; | |
824 | } | |
825 | ||
0b102153 | 826 | static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = { |
bb426311 | 827 | .name = "mc146818rtc/irq_reinject_on_ack_count", |
0b102153 PD |
828 | .version_id = 1, |
829 | .minimum_version_id = 1, | |
5cd8cada | 830 | .needed = rtc_irq_reinject_on_ack_count_needed, |
0b102153 PD |
831 | .fields = (VMStateField[]) { |
832 | VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState), | |
833 | VMSTATE_END_OF_LIST() | |
834 | } | |
835 | }; | |
836 | ||
6b075b8a JQ |
837 | static const VMStateDescription vmstate_rtc = { |
838 | .name = "mc146818rtc", | |
56038ef6 | 839 | .version_id = 3, |
6b075b8a | 840 | .minimum_version_id = 1, |
3cf294ee | 841 | .pre_save = rtc_pre_save, |
6b075b8a | 842 | .post_load = rtc_post_load, |
d49805ae | 843 | .fields = (VMStateField[]) { |
6b075b8a JQ |
844 | VMSTATE_BUFFER(cmos_data, RTCState), |
845 | VMSTATE_UINT8(cmos_index, RTCState), | |
89166459 | 846 | VMSTATE_UNUSED(7*4), |
e720677e | 847 | VMSTATE_TIMER_PTR(periodic_timer, RTCState), |
6b075b8a | 848 | VMSTATE_INT64(next_periodic_time, RTCState), |
56038ef6 | 849 | VMSTATE_UNUSED(3*8), |
6b075b8a JQ |
850 | VMSTATE_UINT32_V(irq_coalesced, RTCState, 2), |
851 | VMSTATE_UINT32_V(period, RTCState, 2), | |
56038ef6 YZ |
852 | VMSTATE_UINT64_V(base_rtc, RTCState, 3), |
853 | VMSTATE_UINT64_V(last_update, RTCState, 3), | |
854 | VMSTATE_INT64_V(offset, RTCState, 3), | |
e720677e | 855 | VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3), |
00cf5774 | 856 | VMSTATE_UINT64_V(next_alarm_time, RTCState, 3), |
6b075b8a | 857 | VMSTATE_END_OF_LIST() |
0b102153 | 858 | }, |
5cd8cada JQ |
859 | .subsections = (const VMStateDescription*[]) { |
860 | &vmstate_rtc_irq_reinject_on_ack_count, | |
861 | NULL | |
6b075b8a JQ |
862 | } |
863 | }; | |
864 | ||
da98c8eb GH |
865 | /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE) |
866 | BIOS will read it and start S3 resume at POST Entry */ | |
867 | static void rtc_notify_suspend(Notifier *notifier, void *data) | |
868 | { | |
869 | RTCState *s = container_of(notifier, RTCState, suspend_notifier); | |
0e41271e | 870 | rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE); |
da98c8eb GH |
871 | } |
872 | ||
eeb7c03c GN |
873 | static void rtc_reset(void *opaque) |
874 | { | |
875 | RTCState *s = opaque; | |
876 | ||
72716184 AL |
877 | s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE); |
878 | s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF); | |
56038ef6 | 879 | check_update_timer(s); |
eeb7c03c | 880 | |
72716184 | 881 | qemu_irq_lower(s->irq); |
eeb7c03c | 882 | |
104059da | 883 | if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { |
433acf0d | 884 | s->irq_coalesced = 0; |
7cd9681b | 885 | s->irq_reinject_on_ack_count = 0; |
433acf0d | 886 | } |
eeb7c03c GN |
887 | } |
888 | ||
b2c5009b | 889 | static const MemoryRegionOps cmos_ops = { |
0da8c842 AG |
890 | .read = cmos_ioport_read, |
891 | .write = cmos_ioport_write, | |
892 | .impl = { | |
893 | .min_access_size = 1, | |
894 | .max_access_size = 1, | |
895 | }, | |
896 | .endianness = DEVICE_LITTLE_ENDIAN, | |
b2c5009b RH |
897 | }; |
898 | ||
8e099d14 | 899 | static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp) |
18297050 | 900 | { |
0e41271e | 901 | RTCState *s = MC146818_RTC(obj); |
18297050 | 902 | |
56038ef6 | 903 | rtc_update_time(s); |
8e099d14 | 904 | rtc_get_time(s, current_tm); |
18297050 AL |
905 | } |
906 | ||
db895a1e | 907 | static void rtc_realizefn(DeviceState *dev, Error **errp) |
dff38e7b | 908 | { |
db895a1e | 909 | ISADevice *isadev = ISA_DEVICE(dev); |
0e41271e | 910 | RTCState *s = MC146818_RTC(dev); |
80cabfad | 911 | |
80cabfad FB |
912 | s->cmos_data[RTC_REG_A] = 0x26; |
913 | s->cmos_data[RTC_REG_B] = 0x02; | |
914 | s->cmos_data[RTC_REG_C] = 0x00; | |
915 | s->cmos_data[RTC_REG_D] = 0x80; | |
916 | ||
b8994faf PB |
917 | /* This is for historical reasons. The default base year qdev property |
918 | * was set to 2000 for most machine types before the century byte was | |
919 | * implemented. | |
920 | * | |
921 | * This if statement means that the century byte will be always 0 | |
922 | * (at least until 2079...) for base_year = 1980, but will be set | |
923 | * correctly for base_year = 2000. | |
924 | */ | |
925 | if (s->base_year == 2000) { | |
926 | s->base_year = 0; | |
927 | } | |
928 | ||
db895a1e | 929 | rtc_set_date_from_host(isadev); |
ea55ffb3 | 930 | |
433acf0d | 931 | switch (s->lost_tick_policy) { |
4aa70a0e | 932 | #ifdef TARGET_I386 |
104059da | 933 | case LOST_TICK_POLICY_SLEW: |
6875204c | 934 | s->coalesced_timer = |
884f17c2 | 935 | timer_new_ns(rtc_clock, rtc_coalesced_timer, s); |
433acf0d | 936 | break; |
4aa70a0e | 937 | #endif |
104059da | 938 | case LOST_TICK_POLICY_DISCARD: |
433acf0d JK |
939 | break; |
940 | default: | |
db895a1e AF |
941 | error_setg(errp, "Invalid lost tick policy."); |
942 | return; | |
433acf0d | 943 | } |
433acf0d | 944 | |
884f17c2 AB |
945 | s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s); |
946 | s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s); | |
56038ef6 | 947 | check_update_timer(s); |
dff38e7b | 948 | |
da98c8eb GH |
949 | s->suspend_notifier.notify = rtc_notify_suspend; |
950 | qemu_register_suspend_notifier(&s->suspend_notifier); | |
951 | ||
853dca12 | 952 | memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2); |
ba480fa6 | 953 | isa_register_ioport(isadev, &s->io, RTC_ISA_BASE); |
dff38e7b | 954 | |
f98167ea PH |
955 | /* register rtc 0x70 port for coalesced_pio */ |
956 | memory_region_set_flush_coalesced(&s->io); | |
957 | memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops, | |
958 | s, "rtc-index", 1); | |
959 | memory_region_add_subregion(&s->io, 0, &s->coalesced_io); | |
960 | memory_region_add_coalescing(&s->coalesced_io, 0, 1); | |
961 | ||
ba480fa6 | 962 | qdev_set_legacy_instance_id(dev, RTC_ISA_BASE, 3); |
a08d4367 | 963 | qemu_register_reset(rtc_reset, s); |
18297050 | 964 | |
d2623129 | 965 | object_property_add_tm(OBJECT(s), "date", rtc_get_date); |
654a36d8 | 966 | |
3638439d | 967 | qdev_init_gpio_out(dev, &s->irq, 1); |
df84f17d | 968 | QLIST_INSERT_HEAD(&rtc_devices, s, link); |
32e0c826 GH |
969 | } |
970 | ||
6c646a11 | 971 | ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq) |
32e0c826 | 972 | { |
0e41271e AF |
973 | DeviceState *dev; |
974 | ISADevice *isadev; | |
eeb7c03c | 975 | |
0e41271e AF |
976 | isadev = isa_create(bus, TYPE_MC146818_RTC); |
977 | dev = DEVICE(isadev); | |
0e41271e AF |
978 | qdev_prop_set_int32(dev, "base_year", base_year); |
979 | qdev_init_nofail(dev); | |
7d932dfd | 980 | if (intercept_irq) { |
3638439d | 981 | qdev_connect_gpio_out(dev, 0, intercept_irq); |
7d932dfd | 982 | } else { |
3638439d | 983 | isa_connect_gpio_out(isadev, 0, RTC_ISA_IRQ); |
7d932dfd | 984 | } |
f2ae8abf | 985 | |
df84f17d | 986 | object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev), |
d2623129 | 987 | "date"); |
29551fdc | 988 | |
0e41271e | 989 | return isadev; |
80cabfad FB |
990 | } |
991 | ||
39bffca2 AL |
992 | static Property mc146818rtc_properties[] = { |
993 | DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980), | |
994 | DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState, | |
104059da | 995 | lost_tick_policy, LOST_TICK_POLICY_DISCARD), |
39bffca2 AL |
996 | DEFINE_PROP_END_OF_LIST(), |
997 | }; | |
998 | ||
bf7bb91e | 999 | static void rtc_resetdev(DeviceState *d) |
1000 | { | |
1001 | RTCState *s = MC146818_RTC(d); | |
1002 | ||
1003 | /* Reason: VM do suspend self will set 0xfe | |
1004 | * Reset any values other than 0xfe(Guest suspend case) */ | |
1005 | if (s->cmos_data[0x0f] != 0xfe) { | |
1006 | s->cmos_data[0x0f] = 0x00; | |
1007 | } | |
1008 | } | |
1009 | ||
8f04ee08 AL |
1010 | static void rtc_class_initfn(ObjectClass *klass, void *data) |
1011 | { | |
39bffca2 | 1012 | DeviceClass *dc = DEVICE_CLASS(klass); |
db895a1e AF |
1013 | |
1014 | dc->realize = rtc_realizefn; | |
bf7bb91e | 1015 | dc->reset = rtc_resetdev; |
39bffca2 | 1016 | dc->vmsd = &vmstate_rtc; |
4f67d30b | 1017 | device_class_set_props(dc, mc146818rtc_properties); |
8f04ee08 AL |
1018 | } |
1019 | ||
8c43a6f0 | 1020 | static const TypeInfo mc146818rtc_info = { |
0e41271e | 1021 | .name = TYPE_MC146818_RTC, |
39bffca2 AL |
1022 | .parent = TYPE_ISA_DEVICE, |
1023 | .instance_size = sizeof(RTCState), | |
1024 | .class_init = rtc_class_initfn, | |
32e0c826 GH |
1025 | }; |
1026 | ||
83f7d43a | 1027 | static void mc146818rtc_register_types(void) |
100d9891 | 1028 | { |
39bffca2 | 1029 | type_register_static(&mc146818rtc_info); |
100d9891 | 1030 | } |
83f7d43a AF |
1031 | |
1032 | type_init(mc146818rtc_register_types) |