]>
Commit | Line | Data |
---|---|---|
0cac1b66 BS |
1 | /* |
2 | * Common CPU TLB handling | |
3 | * | |
4 | * Copyright (c) 2003 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | ||
20 | #include "config.h" | |
21 | #include "cpu.h" | |
022c62cb PB |
22 | #include "exec/exec-all.h" |
23 | #include "exec/memory.h" | |
24 | #include "exec/address-spaces.h" | |
f08b6170 | 25 | #include "exec/cpu_ldst.h" |
0cac1b66 | 26 | |
022c62cb | 27 | #include "exec/cputlb.h" |
0cac1b66 | 28 | |
022c62cb | 29 | #include "exec/memory-internal.h" |
220c3ebd | 30 | #include "exec/ram_addr.h" |
0f590e74 | 31 | #include "tcg/tcg.h" |
0cac1b66 BS |
32 | |
33 | //#define DEBUG_TLB | |
34 | //#define DEBUG_TLB_CHECK | |
35 | ||
36 | /* statistics */ | |
37 | int tlb_flush_count; | |
38 | ||
0cac1b66 BS |
39 | /* NOTE: |
40 | * If flush_global is true (the usual case), flush all tlb entries. | |
41 | * If flush_global is false, flush (at least) all tlb entries not | |
42 | * marked global. | |
43 | * | |
44 | * Since QEMU doesn't currently implement a global/not-global flag | |
45 | * for tlb entries, at the moment tlb_flush() will also flush all | |
46 | * tlb entries in the flush_global == false case. This is OK because | |
47 | * CPU architectures generally permit an implementation to drop | |
48 | * entries from the TLB at any time, so flushing more entries than | |
49 | * required is only an efficiency issue, not a correctness issue. | |
50 | */ | |
00c8cb0a | 51 | void tlb_flush(CPUState *cpu, int flush_global) |
0cac1b66 | 52 | { |
00c8cb0a | 53 | CPUArchState *env = cpu->env_ptr; |
0cac1b66 BS |
54 | |
55 | #if defined(DEBUG_TLB) | |
56 | printf("tlb_flush:\n"); | |
57 | #endif | |
58 | /* must reset current TB so that interrupts cannot modify the | |
59 | links while we are modifying them */ | |
d77953b9 | 60 | cpu->current_tb = NULL; |
0cac1b66 | 61 | |
4fadb3bb | 62 | memset(env->tlb_table, -1, sizeof(env->tlb_table)); |
88e89a57 | 63 | memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table)); |
8cd70437 | 64 | memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); |
0cac1b66 | 65 | |
88e89a57 | 66 | env->vtlb_index = 0; |
0cac1b66 BS |
67 | env->tlb_flush_addr = -1; |
68 | env->tlb_flush_mask = 0; | |
69 | tlb_flush_count++; | |
70 | } | |
71 | ||
72 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) | |
73 | { | |
74 | if (addr == (tlb_entry->addr_read & | |
75 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | |
76 | addr == (tlb_entry->addr_write & | |
77 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | |
78 | addr == (tlb_entry->addr_code & | |
79 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
4fadb3bb | 80 | memset(tlb_entry, -1, sizeof(*tlb_entry)); |
0cac1b66 BS |
81 | } |
82 | } | |
83 | ||
31b030d4 | 84 | void tlb_flush_page(CPUState *cpu, target_ulong addr) |
0cac1b66 | 85 | { |
31b030d4 | 86 | CPUArchState *env = cpu->env_ptr; |
0cac1b66 BS |
87 | int i; |
88 | int mmu_idx; | |
89 | ||
90 | #if defined(DEBUG_TLB) | |
91 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); | |
92 | #endif | |
93 | /* Check if we need to flush due to large pages. */ | |
94 | if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { | |
95 | #if defined(DEBUG_TLB) | |
96 | printf("tlb_flush_page: forced full flush (" | |
97 | TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", | |
98 | env->tlb_flush_addr, env->tlb_flush_mask); | |
99 | #endif | |
00c8cb0a | 100 | tlb_flush(cpu, 1); |
0cac1b66 BS |
101 | return; |
102 | } | |
103 | /* must reset current TB so that interrupts cannot modify the | |
104 | links while we are modifying them */ | |
d77953b9 | 105 | cpu->current_tb = NULL; |
0cac1b66 BS |
106 | |
107 | addr &= TARGET_PAGE_MASK; | |
108 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
109 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
110 | tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); | |
111 | } | |
112 | ||
88e89a57 XT |
113 | /* check whether there are entries that need to be flushed in the vtlb */ |
114 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
115 | int k; | |
116 | for (k = 0; k < CPU_VTLB_SIZE; k++) { | |
117 | tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr); | |
118 | } | |
119 | } | |
120 | ||
611d4f99 | 121 | tb_flush_jmp_cache(cpu, addr); |
0cac1b66 BS |
122 | } |
123 | ||
124 | /* update the TLBs so that writes to code in the virtual page 'addr' | |
125 | can be detected */ | |
126 | void tlb_protect_code(ram_addr_t ram_addr) | |
127 | { | |
a2f4d5be | 128 | cpu_physical_memory_reset_dirty(ram_addr, TARGET_PAGE_SIZE, |
52159192 | 129 | DIRTY_MEMORY_CODE); |
0cac1b66 BS |
130 | } |
131 | ||
132 | /* update the TLB so that writes in physical page 'phys_addr' are no longer | |
133 | tested for self modifying code */ | |
baea4fae | 134 | void tlb_unprotect_code_phys(CPUState *cpu, ram_addr_t ram_addr, |
0cac1b66 BS |
135 | target_ulong vaddr) |
136 | { | |
52159192 | 137 | cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); |
0cac1b66 BS |
138 | } |
139 | ||
140 | static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe) | |
141 | { | |
142 | return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0; | |
143 | } | |
144 | ||
145 | void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start, | |
146 | uintptr_t length) | |
147 | { | |
148 | uintptr_t addr; | |
149 | ||
150 | if (tlb_is_dirty_ram(tlb_entry)) { | |
151 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | |
152 | if ((addr - start) < length) { | |
153 | tlb_entry->addr_write |= TLB_NOTDIRTY; | |
154 | } | |
155 | } | |
156 | } | |
157 | ||
7443b437 PB |
158 | static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) |
159 | { | |
160 | ram_addr_t ram_addr; | |
161 | ||
1b5ec234 | 162 | if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) { |
7443b437 PB |
163 | fprintf(stderr, "Bad ram pointer %p\n", ptr); |
164 | abort(); | |
165 | } | |
166 | return ram_addr; | |
167 | } | |
168 | ||
0cac1b66 BS |
169 | void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length) |
170 | { | |
182735ef | 171 | CPUState *cpu; |
0cac1b66 BS |
172 | CPUArchState *env; |
173 | ||
bdc44640 | 174 | CPU_FOREACH(cpu) { |
0cac1b66 BS |
175 | int mmu_idx; |
176 | ||
182735ef | 177 | env = cpu->env_ptr; |
0cac1b66 BS |
178 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { |
179 | unsigned int i; | |
180 | ||
181 | for (i = 0; i < CPU_TLB_SIZE; i++) { | |
182 | tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], | |
183 | start1, length); | |
184 | } | |
88e89a57 XT |
185 | |
186 | for (i = 0; i < CPU_VTLB_SIZE; i++) { | |
187 | tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i], | |
188 | start1, length); | |
189 | } | |
0cac1b66 BS |
190 | } |
191 | } | |
192 | } | |
193 | ||
194 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) | |
195 | { | |
196 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { | |
197 | tlb_entry->addr_write = vaddr; | |
198 | } | |
199 | } | |
200 | ||
201 | /* update the TLB corresponding to virtual page vaddr | |
202 | so that it is no longer dirty */ | |
203 | void tlb_set_dirty(CPUArchState *env, target_ulong vaddr) | |
204 | { | |
205 | int i; | |
206 | int mmu_idx; | |
207 | ||
208 | vaddr &= TARGET_PAGE_MASK; | |
209 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
210 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
211 | tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); | |
212 | } | |
88e89a57 XT |
213 | |
214 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
215 | int k; | |
216 | for (k = 0; k < CPU_VTLB_SIZE; k++) { | |
217 | tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr); | |
218 | } | |
219 | } | |
0cac1b66 BS |
220 | } |
221 | ||
222 | /* Our TLB does not support large pages, so remember the area covered by | |
223 | large pages and trigger a full TLB flush if these are invalidated. */ | |
224 | static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr, | |
225 | target_ulong size) | |
226 | { | |
227 | target_ulong mask = ~(size - 1); | |
228 | ||
229 | if (env->tlb_flush_addr == (target_ulong)-1) { | |
230 | env->tlb_flush_addr = vaddr & mask; | |
231 | env->tlb_flush_mask = mask; | |
232 | return; | |
233 | } | |
234 | /* Extend the existing region to include the new page. | |
235 | This is a compromise between unnecessary flushes and the cost | |
236 | of maintaining a full variable size TLB. */ | |
237 | mask &= env->tlb_flush_mask; | |
238 | while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) { | |
239 | mask <<= 1; | |
240 | } | |
241 | env->tlb_flush_addr &= mask; | |
242 | env->tlb_flush_mask = mask; | |
243 | } | |
244 | ||
245 | /* Add a new TLB entry. At most one entry for a given virtual address | |
79e2b9ae PB |
246 | * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the |
247 | * supplied size is only used by tlb_flush_page. | |
248 | * | |
249 | * Called from TCG-generated code, which is under an RCU read-side | |
250 | * critical section. | |
251 | */ | |
fadc1cbe PM |
252 | void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, |
253 | hwaddr paddr, MemTxAttrs attrs, int prot, | |
254 | int mmu_idx, target_ulong size) | |
0cac1b66 | 255 | { |
0c591eb0 | 256 | CPUArchState *env = cpu->env_ptr; |
0cac1b66 BS |
257 | MemoryRegionSection *section; |
258 | unsigned int index; | |
259 | target_ulong address; | |
260 | target_ulong code_address; | |
261 | uintptr_t addend; | |
262 | CPUTLBEntry *te; | |
149f54b5 | 263 | hwaddr iotlb, xlat, sz; |
88e89a57 | 264 | unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE; |
0cac1b66 BS |
265 | |
266 | assert(size >= TARGET_PAGE_SIZE); | |
267 | if (size != TARGET_PAGE_SIZE) { | |
268 | tlb_add_large_page(env, vaddr, size); | |
269 | } | |
149f54b5 PB |
270 | |
271 | sz = size; | |
9d82b5a7 | 272 | section = address_space_translate_for_iotlb(cpu, paddr, &xlat, &sz); |
149f54b5 PB |
273 | assert(sz >= TARGET_PAGE_SIZE); |
274 | ||
0cac1b66 | 275 | #if defined(DEBUG_TLB) |
339aaf5b AP |
276 | qemu_log_mask(CPU_LOG_MMU, |
277 | "tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx | |
54b949d2 HP |
278 | " prot=%x idx=%d\n", |
279 | vaddr, paddr, prot, mmu_idx); | |
0cac1b66 BS |
280 | #endif |
281 | ||
282 | address = vaddr; | |
8f3e03cb PB |
283 | if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) { |
284 | /* IO memory case */ | |
0cac1b66 | 285 | address |= TLB_MMIO; |
8f3e03cb PB |
286 | addend = 0; |
287 | } else { | |
288 | /* TLB_MMIO for rom/romd handled below */ | |
149f54b5 | 289 | addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; |
0cac1b66 | 290 | } |
0cac1b66 BS |
291 | |
292 | code_address = address; | |
bb0e627a | 293 | iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat, |
149f54b5 | 294 | prot, &address); |
0cac1b66 BS |
295 | |
296 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
0cac1b66 | 297 | te = &env->tlb_table[mmu_idx][index]; |
88e89a57 XT |
298 | |
299 | /* do not discard the translation in te, evict it into a victim tlb */ | |
300 | env->tlb_v_table[mmu_idx][vidx] = *te; | |
301 | env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index]; | |
302 | ||
303 | /* refill the tlb */ | |
e469b22f | 304 | env->iotlb[mmu_idx][index].addr = iotlb - vaddr; |
fadc1cbe | 305 | env->iotlb[mmu_idx][index].attrs = attrs; |
0cac1b66 BS |
306 | te->addend = addend - vaddr; |
307 | if (prot & PAGE_READ) { | |
308 | te->addr_read = address; | |
309 | } else { | |
310 | te->addr_read = -1; | |
311 | } | |
312 | ||
313 | if (prot & PAGE_EXEC) { | |
314 | te->addr_code = code_address; | |
315 | } else { | |
316 | te->addr_code = -1; | |
317 | } | |
318 | if (prot & PAGE_WRITE) { | |
319 | if ((memory_region_is_ram(section->mr) && section->readonly) | |
cc5bea60 | 320 | || memory_region_is_romd(section->mr)) { |
0cac1b66 BS |
321 | /* Write access calls the I/O callback. */ |
322 | te->addr_write = address | TLB_MMIO; | |
323 | } else if (memory_region_is_ram(section->mr) | |
a2cd8c85 JQ |
324 | && cpu_physical_memory_is_clean(section->mr->ram_addr |
325 | + xlat)) { | |
0cac1b66 BS |
326 | te->addr_write = address | TLB_NOTDIRTY; |
327 | } else { | |
328 | te->addr_write = address; | |
329 | } | |
330 | } else { | |
331 | te->addr_write = -1; | |
332 | } | |
333 | } | |
334 | ||
fadc1cbe PM |
335 | /* Add a new TLB entry, but without specifying the memory |
336 | * transaction attributes to be used. | |
337 | */ | |
338 | void tlb_set_page(CPUState *cpu, target_ulong vaddr, | |
339 | hwaddr paddr, int prot, | |
340 | int mmu_idx, target_ulong size) | |
341 | { | |
342 | tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, | |
343 | prot, mmu_idx, size); | |
344 | } | |
345 | ||
0cac1b66 BS |
346 | /* NOTE: this function can trigger an exception */ |
347 | /* NOTE2: the returned address is not exactly the physical address: it | |
116aae36 PM |
348 | * is actually a ram_addr_t (in system mode; the user mode emulation |
349 | * version of this function returns a guest virtual address). | |
350 | */ | |
0cac1b66 BS |
351 | tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) |
352 | { | |
353 | int mmu_idx, page_index, pd; | |
354 | void *p; | |
355 | MemoryRegion *mr; | |
09daed84 | 356 | CPUState *cpu = ENV_GET_CPU(env1); |
0cac1b66 BS |
357 | |
358 | page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
359 | mmu_idx = cpu_mmu_index(env1); | |
360 | if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code != | |
361 | (addr & TARGET_PAGE_MASK))) { | |
0cac1b66 | 362 | cpu_ldub_code(env1, addr); |
0cac1b66 | 363 | } |
e469b22f | 364 | pd = env1->iotlb[mmu_idx][page_index].addr & ~TARGET_PAGE_MASK; |
9d82b5a7 | 365 | mr = iotlb_to_region(cpu, pd); |
0cac1b66 | 366 | if (memory_region_is_unassigned(mr)) { |
c658b94f AF |
367 | CPUClass *cc = CPU_GET_CLASS(cpu); |
368 | ||
369 | if (cc->do_unassigned_access) { | |
370 | cc->do_unassigned_access(cpu, addr, false, true, 0, 4); | |
371 | } else { | |
a47dddd7 | 372 | cpu_abort(cpu, "Trying to execute code outside RAM or ROM at 0x" |
c658b94f AF |
373 | TARGET_FMT_lx "\n", addr); |
374 | } | |
0cac1b66 BS |
375 | } |
376 | p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend); | |
377 | return qemu_ram_addr_from_host_nofail(p); | |
378 | } | |
379 | ||
0f590e74 PB |
380 | #define MMUSUFFIX _mmu |
381 | ||
382 | #define SHIFT 0 | |
58ed270d | 383 | #include "softmmu_template.h" |
0f590e74 PB |
384 | |
385 | #define SHIFT 1 | |
58ed270d | 386 | #include "softmmu_template.h" |
0f590e74 PB |
387 | |
388 | #define SHIFT 2 | |
58ed270d | 389 | #include "softmmu_template.h" |
0f590e74 PB |
390 | |
391 | #define SHIFT 3 | |
58ed270d | 392 | #include "softmmu_template.h" |
0f590e74 PB |
393 | #undef MMUSUFFIX |
394 | ||
0cac1b66 | 395 | #define MMUSUFFIX _cmmu |
7e4e8865 SW |
396 | #undef GETPC_ADJ |
397 | #define GETPC_ADJ 0 | |
398 | #undef GETRA | |
399 | #define GETRA() ((uintptr_t)0) | |
0cac1b66 BS |
400 | #define SOFTMMU_CODE_ACCESS |
401 | ||
402 | #define SHIFT 0 | |
58ed270d | 403 | #include "softmmu_template.h" |
0cac1b66 BS |
404 | |
405 | #define SHIFT 1 | |
58ed270d | 406 | #include "softmmu_template.h" |
0cac1b66 BS |
407 | |
408 | #define SHIFT 2 | |
58ed270d | 409 | #include "softmmu_template.h" |
0cac1b66 BS |
410 | |
411 | #define SHIFT 3 | |
58ed270d | 412 | #include "softmmu_template.h" |