nvic: Change NVIC to support ARMv6-M
[qemu.git] / hw / intc / armv7m_nvic.c
CommitLineData
9ee6e8bb
PB
1/*
2 * ARM Nested Vectored Interrupt Controller
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
8e31bf38 7 * This code is licensed under the GPL.
9ee6e8bb
PB
8 *
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
11 */
12
8ef94f0b 13#include "qemu/osdep.h"
da34e65c 14#include "qapi/error.h"
4771d756 15#include "qemu-common.h"
33c11879 16#include "cpu.h"
83c9f4ca 17#include "hw/sysbus.h"
1de7afc9 18#include "qemu/timer.h"
bd2be150 19#include "hw/arm/arm.h"
d2db1de6 20#include "hw/intc/armv7m_nvic.h"
da6d674e 21#include "target/arm/cpu.h"
29c483a5 22#include "exec/exec-all.h"
03dd024f 23#include "qemu/log.h"
da6d674e
MD
24#include "trace.h"
25
26/* IRQ number counting:
27 *
28 * the num-irq property counts the number of external IRQ lines
29 *
30 * NVICState::num_irq counts the total number of exceptions
31 * (external IRQs, the 15 internal exceptions including reset,
32 * and one for the unused exception number 0).
33 *
34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35 *
36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37 *
38 * Iterating through all exceptions should typically be done with
39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40 *
41 * The external qemu_irq lines are the NVIC's external IRQ lines,
42 * so line 0 is exception 16.
43 *
44 * In the terminology of the architecture manual, "interrupts" are
45 * a subcategory of exception referring to the external interrupts
46 * (which are exception numbers NVIC_FIRST_IRQ and upward).
47 * For historical reasons QEMU tends to use "interrupt" and
48 * "exception" more or less interchangeably.
49 */
17906a16 50#define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
da6d674e
MD
51#define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52
53/* Effective running priority of the CPU when no exception is active
54 * (higher than the highest possible priority value)
55 */
56#define NVIC_NOEXC_PRIO 0x100
ff96c64a
PM
57/* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58#define NVIC_NS_PRIO_LIMIT 0x80
da6d674e 59
2a29ddee
PM
60static const uint8_t nvic_id[] = {
61 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62};
63
da6d674e
MD
64static int nvic_pending_prio(NVICState *s)
65{
5255fcf8 66 /* return the group priority of the current pending interrupt,
da6d674e
MD
67 * or NVIC_NOEXC_PRIO if no interrupt is pending
68 */
5255fcf8 69 return s->vectpending_prio;
da6d674e
MD
70}
71
72/* Return the value of the ISCR RETTOBASE bit:
73 * 1 if there is exactly one active exception
74 * 0 if there is more than one active exception
75 * UNKNOWN if there are no active exceptions (we choose 1,
76 * which matches the choice Cortex-M3 is documented as making).
77 *
78 * NB: some versions of the documentation talk about this
79 * counting "active exceptions other than the one shown by IPSR";
80 * this is only different in the obscure corner case where guest
81 * code has manually deactivated an exception and is about
82 * to fail an exception-return integrity check. The definition
83 * above is the one from the v8M ARM ARM and is also in line
84 * with the behaviour documented for the Cortex-M3.
85 */
86static bool nvic_rettobase(NVICState *s)
87{
88 int irq, nhand = 0;
028b0da4 89 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
da6d674e
MD
90
91 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
028b0da4
PM
92 if (s->vectors[irq].active ||
93 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94 s->sec_vectors[irq].active)) {
da6d674e
MD
95 nhand++;
96 if (nhand == 2) {
97 return 0;
98 }
99 }
100 }
101
102 return 1;
103}
104
105/* Return the value of the ISCR ISRPENDING bit:
106 * 1 if an external interrupt is pending
107 * 0 if no external interrupt is pending
108 */
109static bool nvic_isrpending(NVICState *s)
110{
111 int irq;
112
113 /* We can shortcut if the highest priority pending interrupt
114 * happens to be external or if there is nothing pending.
115 */
116 if (s->vectpending > NVIC_FIRST_IRQ) {
117 return true;
118 }
119 if (s->vectpending == 0) {
120 return false;
121 }
122
123 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124 if (s->vectors[irq].pending) {
125 return true;
126 }
127 }
128 return false;
129}
130
ff96c64a
PM
131static bool exc_is_banked(int exc)
132{
133 /* Return true if this is one of the limited set of exceptions which
134 * are banked (and thus have state in sec_vectors[])
135 */
136 return exc == ARMV7M_EXCP_HARD ||
137 exc == ARMV7M_EXCP_MEM ||
138 exc == ARMV7M_EXCP_USAGE ||
139 exc == ARMV7M_EXCP_SVC ||
140 exc == ARMV7M_EXCP_PENDSV ||
141 exc == ARMV7M_EXCP_SYSTICK;
142}
143
da6d674e
MD
144/* Return a mask word which clears the subpriority bits from
145 * a priority value for an M-profile exception, leaving only
146 * the group priority.
147 */
ff96c64a 148static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
da6d674e 149{
ff96c64a
PM
150 return ~0U << (s->prigroup[secure] + 1);
151}
152
153static bool exc_targets_secure(NVICState *s, int exc)
154{
155 /* Return true if this non-banked exception targets Secure state. */
156 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157 return false;
158 }
159
160 if (exc >= NVIC_FIRST_IRQ) {
161 return !s->itns[exc];
162 }
163
164 /* Function shouldn't be called for banked exceptions. */
165 assert(!exc_is_banked(exc));
166
167 switch (exc) {
168 case ARMV7M_EXCP_NMI:
169 case ARMV7M_EXCP_BUS:
170 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171 case ARMV7M_EXCP_SECURE:
172 return true;
173 case ARMV7M_EXCP_DEBUG:
174 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175 return false;
176 default:
177 /* reset, and reserved (unused) low exception numbers.
178 * We'll get called by code that loops through all the exception
179 * numbers, but it doesn't matter what we return here as these
180 * non-existent exceptions will never be pended or active.
181 */
182 return true;
183 }
184}
185
186static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187{
188 /* Return the group priority for this exception, given its raw
189 * (group-and-subgroup) priority value and whether it is targeting
190 * secure state or not.
191 */
192 if (rawprio < 0) {
193 return rawprio;
194 }
195 rawprio &= nvic_gprio_mask(s, targets_secure);
196 /* AIRCR.PRIS causes us to squash all NS priorities into the
197 * lower half of the total range
198 */
199 if (!targets_secure &&
200 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202 }
203 return rawprio;
204}
205
206/* Recompute vectpending and exception_prio for a CPU which implements
207 * the Security extension
208 */
209static void nvic_recompute_state_secure(NVICState *s)
210{
211 int i, bank;
212 int pend_prio = NVIC_NOEXC_PRIO;
213 int active_prio = NVIC_NOEXC_PRIO;
214 int pend_irq = 0;
215 bool pending_is_s_banked = false;
216
217 /* R_CQRV: precedence is by:
218 * - lowest group priority; if both the same then
219 * - lowest subpriority; if both the same then
220 * - lowest exception number; if both the same (ie banked) then
221 * - secure exception takes precedence
222 * Compare pseudocode RawExecutionPriority.
223 * Annoyingly, now we have two prigroup values (for S and NS)
224 * we can't do the loop comparison on raw priority values.
225 */
226 for (i = 1; i < s->num_irq; i++) {
227 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228 VecInfo *vec;
229 int prio;
230 bool targets_secure;
231
232 if (bank == M_REG_S) {
233 if (!exc_is_banked(i)) {
234 continue;
235 }
236 vec = &s->sec_vectors[i];
237 targets_secure = true;
238 } else {
239 vec = &s->vectors[i];
240 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
241 }
242
243 prio = exc_group_prio(s, vec->prio, targets_secure);
244 if (vec->enabled && vec->pending && prio < pend_prio) {
245 pend_prio = prio;
246 pend_irq = i;
247 pending_is_s_banked = (bank == M_REG_S);
248 }
249 if (vec->active && prio < active_prio) {
250 active_prio = prio;
251 }
252 }
253 }
254
255 s->vectpending_is_s_banked = pending_is_s_banked;
256 s->vectpending = pend_irq;
257 s->vectpending_prio = pend_prio;
258 s->exception_prio = active_prio;
259
260 trace_nvic_recompute_state_secure(s->vectpending,
261 s->vectpending_is_s_banked,
262 s->vectpending_prio,
263 s->exception_prio);
da6d674e
MD
264}
265
266/* Recompute vectpending and exception_prio */
267static void nvic_recompute_state(NVICState *s)
268{
269 int i;
270 int pend_prio = NVIC_NOEXC_PRIO;
271 int active_prio = NVIC_NOEXC_PRIO;
272 int pend_irq = 0;
273
ff96c64a
PM
274 /* In theory we could write one function that handled both
275 * the "security extension present" and "not present"; however
276 * the security related changes significantly complicate the
277 * recomputation just by themselves and mixing both cases together
278 * would be even worse, so we retain a separate non-secure-only
279 * version for CPUs which don't implement the security extension.
280 */
281 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282 nvic_recompute_state_secure(s);
283 return;
284 }
285
da6d674e
MD
286 for (i = 1; i < s->num_irq; i++) {
287 VecInfo *vec = &s->vectors[i];
288
289 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290 pend_prio = vec->prio;
291 pend_irq = i;
292 }
293 if (vec->active && vec->prio < active_prio) {
294 active_prio = vec->prio;
295 }
296 }
297
22a9c26a 298 if (active_prio > 0) {
ff96c64a 299 active_prio &= nvic_gprio_mask(s, false);
22a9c26a
PM
300 }
301
5255fcf8 302 if (pend_prio > 0) {
ff96c64a 303 pend_prio &= nvic_gprio_mask(s, false);
5255fcf8
PM
304 }
305
da6d674e 306 s->vectpending = pend_irq;
5255fcf8 307 s->vectpending_prio = pend_prio;
22a9c26a 308 s->exception_prio = active_prio;
da6d674e 309
5255fcf8
PM
310 trace_nvic_recompute_state(s->vectpending,
311 s->vectpending_prio,
312 s->exception_prio);
da6d674e
MD
313}
314
315/* Return the current execution priority of the CPU
316 * (equivalent to the pseudocode ExecutionPriority function).
317 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
318 */
319static inline int nvic_exec_prio(NVICState *s)
320{
321 CPUARMState *env = &s->cpu->env;
49c80c38 322 int running = NVIC_NOEXC_PRIO;
da6d674e 323
49c80c38
PM
324 if (env->v7m.basepri[M_REG_NS] > 0) {
325 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
326 }
327
328 if (env->v7m.basepri[M_REG_S] > 0) {
329 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330 if (running > basepri) {
331 running = basepri;
332 }
333 }
334
335 if (env->v7m.primask[M_REG_NS]) {
336 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337 if (running > NVIC_NS_PRIO_LIMIT) {
338 running = NVIC_NS_PRIO_LIMIT;
339 }
340 } else {
341 running = 0;
342 }
343 }
344
345 if (env->v7m.primask[M_REG_S]) {
da6d674e 346 running = 0;
da6d674e 347 }
49c80c38
PM
348
349 if (env->v7m.faultmask[M_REG_NS]) {
350 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351 running = -1;
352 } else {
353 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354 if (running > NVIC_NS_PRIO_LIMIT) {
355 running = NVIC_NS_PRIO_LIMIT;
356 }
357 } else {
358 running = 0;
359 }
360 }
361 }
362
363 if (env->v7m.faultmask[M_REG_S]) {
364 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
365 }
366
da6d674e
MD
367 /* consider priority of active handler */
368 return MIN(running, s->exception_prio);
369}
370
5d479199
PM
371bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
372{
373 /* Return true if the requested execution priority is negative
374 * for the specified security state, ie that security state
375 * has an active NMI or HardFault or has set its FAULTMASK.
376 * Note that this is not the same as whether the execution
377 * priority is actually negative (for instance AIRCR.PRIS may
378 * mean we don't allow FAULTMASK_NS to actually make the execution
379 * priority negative). Compare pseudocode IsReqExcPriNeg().
380 */
381 NVICState *s = opaque;
382
383 if (s->cpu->env.v7m.faultmask[secure]) {
384 return true;
385 }
386
387 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388 s->vectors[ARMV7M_EXCP_HARD].active) {
389 return true;
390 }
391
392 if (s->vectors[ARMV7M_EXCP_NMI].active &&
393 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394 return true;
395 }
396
397 return false;
398}
399
7ecdaa4a
PM
400bool armv7m_nvic_can_take_pending_exception(void *opaque)
401{
402 NVICState *s = opaque;
403
404 return nvic_exec_prio(s) > nvic_pending_prio(s);
405}
406
42a6686b
PM
407int armv7m_nvic_raw_execution_priority(void *opaque)
408{
409 NVICState *s = opaque;
410
411 return s->exception_prio;
412}
413
e6a0d350
PM
414/* caller must call nvic_irq_update() after this.
415 * secure indicates the bank to use for banked exceptions (we assert if
416 * we are passed secure=true for a non-banked exception).
417 */
418static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
da6d674e
MD
419{
420 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421 assert(irq < s->num_irq);
422
c4379b48
JS
423 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
424
e6a0d350
PM
425 if (secure) {
426 assert(exc_is_banked(irq));
427 s->sec_vectors[irq].prio = prio;
428 } else {
429 s->vectors[irq].prio = prio;
430 }
431
432 trace_nvic_set_prio(irq, secure, prio);
433}
434
435/* Return the current raw priority register value.
436 * secure indicates the bank to use for banked exceptions (we assert if
437 * we are passed secure=true for a non-banked exception).
438 */
439static int get_prio(NVICState *s, unsigned irq, bool secure)
440{
441 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
442 assert(irq < s->num_irq);
da6d674e 443
e6a0d350
PM
444 if (secure) {
445 assert(exc_is_banked(irq));
446 return s->sec_vectors[irq].prio;
447 } else {
448 return s->vectors[irq].prio;
449 }
da6d674e
MD
450}
451
452/* Recompute state and assert irq line accordingly.
453 * Must be called after changes to:
454 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
455 * prigroup
456 */
457static void nvic_irq_update(NVICState *s)
458{
459 int lvl;
460 int pend_prio;
461
462 nvic_recompute_state(s);
463 pend_prio = nvic_pending_prio(s);
464
465 /* Raise NVIC output if this IRQ would be taken, except that we
466 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
467 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
468 * to those CPU registers don't cause us to recalculate the NVIC
469 * pending info.
470 */
471 lvl = (pend_prio < s->exception_prio);
472 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
473 qemu_set_irq(s->excpout, lvl);
474}
475
2fb50a33
PM
476/**
477 * armv7m_nvic_clear_pending: mark the specified exception as not pending
478 * @opaque: the NVIC
479 * @irq: the exception number to mark as not pending
480 * @secure: false for non-banked exceptions or for the nonsecure
481 * version of a banked exception, true for the secure version of a banked
482 * exception.
483 *
484 * Marks the specified exception as not pending. Note that we will assert()
485 * if @secure is true and @irq does not specify one of the fixed set
486 * of architecturally banked exceptions.
487 */
488static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
da6d674e
MD
489{
490 NVICState *s = (NVICState *)opaque;
491 VecInfo *vec;
492
493 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
494
2fb50a33
PM
495 if (secure) {
496 assert(exc_is_banked(irq));
497 vec = &s->sec_vectors[irq];
498 } else {
499 vec = &s->vectors[irq];
500 }
501 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
da6d674e
MD
502 if (vec->pending) {
503 vec->pending = 0;
504 nvic_irq_update(s);
505 }
506}
507
5ede82b8
PM
508static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
509 bool derived)
9ee6e8bb 510{
5ede82b8
PM
511 /* Pend an exception, including possibly escalating it to HardFault.
512 *
513 * This function handles both "normal" pending of interrupts and
514 * exceptions, and also derived exceptions (ones which occur as
515 * a result of trying to take some other exception).
516 *
517 * If derived == true, the caller guarantees that we are part way through
518 * trying to take an exception (but have not yet called
519 * armv7m_nvic_acknowledge_irq() to make it active), and so:
520 * - s->vectpending is the "original exception" we were trying to take
521 * - irq is the "derived exception"
522 * - nvic_exec_prio(s) gives the priority before exception entry
523 * Here we handle the prioritization logic which the pseudocode puts
524 * in the DerivedLateArrival() function.
525 */
526
f797c075 527 NVICState *s = (NVICState *)opaque;
2fb50a33 528 bool banked = exc_is_banked(irq);
da6d674e 529 VecInfo *vec;
1a5182c0 530 bool targets_secure;
da6d674e
MD
531
532 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
2fb50a33 533 assert(!secure || banked);
da6d674e 534
2fb50a33 535 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
a73c98e1 536
1a5182c0
PM
537 targets_secure = banked ? secure : exc_targets_secure(s, irq);
538
539 trace_nvic_set_pending(irq, secure, targets_secure,
540 derived, vec->enabled, vec->prio);
5ede82b8
PM
541
542 if (derived) {
543 /* Derived exceptions are always synchronous. */
544 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
545
546 if (irq == ARMV7M_EXCP_DEBUG &&
547 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
548 /* DebugMonitorFault, but its priority is lower than the
549 * preempted exception priority: just ignore it.
550 */
551 return;
552 }
553
554 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
555 /* If this is a terminal exception (one which means we cannot
556 * take the original exception, like a failure to read its
557 * vector table entry), then we must take the derived exception.
558 * If the derived exception can't take priority over the
559 * original exception, then we go into Lockup.
560 *
561 * For QEMU, we rely on the fact that a derived exception is
562 * terminal if and only if it's reported to us as HardFault,
563 * which saves having to have an extra argument is_terminal
564 * that we'd only use in one place.
565 */
566 cpu_abort(&s->cpu->parent_obj,
567 "Lockup: can't take terminal derived exception "
568 "(original exception priority %d)\n",
569 s->vectpending_prio);
570 }
571 /* We now continue with the same code as for a normal pending
572 * exception, which will cause us to pend the derived exception.
573 * We'll then take either the original or the derived exception
574 * based on which is higher priority by the usual mechanism
575 * for selecting the highest priority pending interrupt.
576 */
577 }
a73c98e1
MD
578
579 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
580 /* If a synchronous exception is pending then it may be
581 * escalated to HardFault if:
582 * * it is equal or lower priority to current execution
583 * * it is disabled
584 * (ie we need to take it immediately but we can't do so).
585 * Asynchronous exceptions (and interrupts) simply remain pending.
586 *
587 * For QEMU, we don't have any imprecise (asynchronous) faults,
588 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
589 * synchronous.
590 * Debug exceptions are awkward because only Debug exceptions
591 * resulting from the BKPT instruction should be escalated,
592 * but we don't currently implement any Debug exceptions other
593 * than those that result from BKPT, so we treat all debug exceptions
594 * as needing escalation.
595 *
596 * This all means we can identify whether to escalate based only on
597 * the exception number and don't (yet) need the caller to explicitly
598 * tell us whether this exception is synchronous or not.
599 */
600 int running = nvic_exec_prio(s);
601 bool escalate = false;
602
80ac2390 603 if (exc_group_prio(s, vec->prio, secure) >= running) {
a73c98e1
MD
604 trace_nvic_escalate_prio(irq, vec->prio, running);
605 escalate = true;
606 } else if (!vec->enabled) {
607 trace_nvic_escalate_disabled(irq);
608 escalate = true;
609 }
610
611 if (escalate) {
a73c98e1 612
94a34abe 613 /* We need to escalate this exception to a synchronous HardFault.
2fb50a33
PM
614 * If BFHFNMINS is set then we escalate to the banked HF for
615 * the target security state of the original exception; otherwise
616 * we take a Secure HardFault.
617 */
a73c98e1 618 irq = ARMV7M_EXCP_HARD;
2fb50a33 619 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
1a5182c0 620 (targets_secure ||
2fb50a33
PM
621 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
622 vec = &s->sec_vectors[irq];
623 } else {
624 vec = &s->vectors[irq];
625 }
94a34abe
PM
626 if (running <= vec->prio) {
627 /* We want to escalate to HardFault but we can't take the
628 * synchronous HardFault at this point either. This is a
629 * Lockup condition due to a guest bug. We don't model
630 * Lockup, so report via cpu_abort() instead.
631 */
632 cpu_abort(&s->cpu->parent_obj,
633 "Lockup: can't escalate %d to HardFault "
634 "(current priority %d)\n", irq, running);
635 }
636
2fb50a33 637 /* HF may be banked but there is only one shared HFSR */
a73c98e1
MD
638 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
639 }
640 }
641
da6d674e
MD
642 if (!vec->pending) {
643 vec->pending = 1;
644 nvic_irq_update(s);
645 }
9ee6e8bb
PB
646}
647
5ede82b8
PM
648void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
649{
650 do_armv7m_nvic_set_pending(opaque, irq, secure, false);
651}
652
653void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
654{
655 do_armv7m_nvic_set_pending(opaque, irq, secure, true);
656}
657
9ee6e8bb 658/* Make pending IRQ active. */
6c948518 659void armv7m_nvic_acknowledge_irq(void *opaque)
9ee6e8bb 660{
f797c075 661 NVICState *s = (NVICState *)opaque;
da6d674e
MD
662 CPUARMState *env = &s->cpu->env;
663 const int pending = s->vectpending;
664 const int running = nvic_exec_prio(s);
da6d674e
MD
665 VecInfo *vec;
666
667 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
668
5cb18069
PM
669 if (s->vectpending_is_s_banked) {
670 vec = &s->sec_vectors[pending];
5cb18069
PM
671 } else {
672 vec = &s->vectors[pending];
5cb18069 673 }
da6d674e
MD
674
675 assert(vec->enabled);
676 assert(vec->pending);
677
5255fcf8 678 assert(s->vectpending_prio < running);
da6d674e 679
6c948518 680 trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
da6d674e
MD
681
682 vec->active = 1;
683 vec->pending = 0;
684
de2db7ec 685 write_v7m_exception(env, s->vectpending);
da6d674e
MD
686
687 nvic_irq_update(s);
6c948518
PM
688}
689
690void armv7m_nvic_get_pending_irq_info(void *opaque,
691 int *pirq, bool *ptargets_secure)
692{
693 NVICState *s = (NVICState *)opaque;
694 const int pending = s->vectpending;
695 bool targets_secure;
696
697 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
698
699 if (s->vectpending_is_s_banked) {
700 targets_secure = true;
701 } else {
702 targets_secure = !exc_is_banked(pending) &&
703 exc_targets_secure(s, pending);
704 }
705
706 trace_nvic_get_pending_irq_info(pending, targets_secure);
5cb18069 707
6c948518
PM
708 *ptargets_secure = targets_secure;
709 *pirq = pending;
9ee6e8bb
PB
710}
711
5cb18069 712int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
9ee6e8bb 713{
f797c075 714 NVICState *s = (NVICState *)opaque;
da6d674e 715 VecInfo *vec;
aa488fe3 716 int ret;
da6d674e
MD
717
718 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
719
5cb18069
PM
720 if (secure && exc_is_banked(irq)) {
721 vec = &s->sec_vectors[irq];
722 } else {
723 vec = &s->vectors[irq];
724 }
da6d674e 725
5cb18069 726 trace_nvic_complete_irq(irq, secure);
da6d674e 727
aa488fe3
PM
728 if (!vec->active) {
729 /* Tell the caller this was an illegal exception return */
730 return -1;
731 }
732
733 ret = nvic_rettobase(s);
734
da6d674e
MD
735 vec->active = 0;
736 if (vec->level) {
737 /* Re-pend the exception if it's still held high; only
738 * happens for extenal IRQs
739 */
740 assert(irq >= NVIC_FIRST_IRQ);
741 vec->pending = 1;
742 }
743
744 nvic_irq_update(s);
aa488fe3
PM
745
746 return ret;
da6d674e
MD
747}
748
749/* callback when external interrupt line is changed */
750static void set_irq_level(void *opaque, int n, int level)
751{
752 NVICState *s = opaque;
753 VecInfo *vec;
754
755 n += NVIC_FIRST_IRQ;
756
757 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
758
759 trace_nvic_set_irq_level(n, level);
760
761 /* The pending status of an external interrupt is
762 * latched on rising edge and exception handler return.
763 *
764 * Pulsing the IRQ will always run the handler
765 * once, and the handler will re-run until the
766 * level is low when the handler completes.
767 */
768 vec = &s->vectors[n];
769 if (level != vec->level) {
770 vec->level = level;
771 if (level) {
2fb50a33 772 armv7m_nvic_set_pending(s, n, false);
da6d674e
MD
773 }
774 }
9ee6e8bb
PB
775}
776
45db7ba6 777static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
9ee6e8bb 778{
d713ea6c 779 ARMCPU *cpu = s->cpu;
9ee6e8bb 780 uint32_t val;
9ee6e8bb
PB
781
782 switch (offset) {
783 case 4: /* Interrupt Control Type. */
c4379b48
JS
784 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
785 goto bad_offset;
786 }
da6d674e 787 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
ae7c5c85
PM
788 case 0xc: /* CPPWR */
789 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
790 goto bad_offset;
791 }
792 /* We make the IMPDEF choice that nothing can ever go into a
793 * non-retentive power state, which allows us to RAZ/WI this.
794 */
795 return 0;
e1be0a57
PM
796 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
797 {
cf5f7937 798 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
e1be0a57
PM
799 int i;
800
801 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
802 goto bad_offset;
803 }
804 if (!attrs.secure) {
805 return 0;
806 }
807 val = 0;
808 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
809 if (s->itns[startvec + i]) {
810 val |= (1 << i);
811 }
812 }
813 return val;
814 }
9ee6e8bb 815 case 0xd00: /* CPUID Base. */
e3da9921 816 return cpu->midr;
3f1e0eb7 817 case 0xd04: /* Interrupt Control State (ICSR) */
9ee6e8bb 818 /* VECTACTIVE */
b06c262b 819 val = cpu->env.v7m.exception;
9ee6e8bb 820 /* VECTPENDING */
da6d674e
MD
821 val |= (s->vectpending & 0xff) << 12;
822 /* ISRPENDING - set if any external IRQ is pending */
823 if (nvic_isrpending(s)) {
824 val |= (1 << 22);
825 }
826 /* RETTOBASE - set if only one handler is active */
827 if (nvic_rettobase(s)) {
828 val |= (1 << 11);
9ee6e8bb 829 }
3f1e0eb7
PM
830 if (attrs.secure) {
831 /* PENDSTSET */
832 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
833 val |= (1 << 26);
834 }
835 /* PENDSVSET */
836 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
837 val |= (1 << 28);
838 }
839 } else {
840 /* PENDSTSET */
841 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
842 val |= (1 << 26);
843 }
844 /* PENDSVSET */
845 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
846 val |= (1 << 28);
847 }
da6d674e 848 }
9ee6e8bb 849 /* NMIPENDSET */
4f2eff36
PM
850 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
851 && s->vectors[ARMV7M_EXCP_NMI].pending) {
9ee6e8bb 852 val |= (1 << 31);
da6d674e 853 }
3f1e0eb7
PM
854 /* ISRPREEMPT: RES0 when halting debug not implemented */
855 /* STTNS: RES0 for the Main Extension */
9ee6e8bb
PB
856 return val;
857 case 0xd08: /* Vector Table Offset. */
45db7ba6 858 return cpu->env.v7m.vecbase[attrs.secure];
3b2e9344
PM
859 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
860 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
861 if (attrs.secure) {
862 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
863 val |= cpu->env.v7m.aircr;
864 } else {
865 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
866 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
867 * security isn't supported then BFHFNMINS is RAO (and
868 * the bit in env.v7m.aircr is always set).
869 */
870 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
871 }
872 }
873 return val;
9ee6e8bb 874 case 0xd10: /* System Control. */
7c9140af
JS
875 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
876 goto bad_offset;
877 }
24ac0fb1 878 return cpu->env.v7m.scr[attrs.secure];
9ee6e8bb 879 case 0xd14: /* Configuration Control. */
9d40cd8a
PM
880 /* The BFHFNMIGN bit is the only non-banked bit; we
881 * keep it in the non-secure copy of the register.
882 */
883 val = cpu->env.v7m.ccr[attrs.secure];
884 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
885 return val;
437d59c1 886 case 0xd24: /* System Handler Control and State (SHCSR) */
22ab3460
JS
887 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
888 goto bad_offset;
889 }
9ee6e8bb 890 val = 0;
437d59c1
PM
891 if (attrs.secure) {
892 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
893 val |= (1 << 0);
894 }
895 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
896 val |= (1 << 2);
897 }
898 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
899 val |= (1 << 3);
900 }
901 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
902 val |= (1 << 7);
903 }
904 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
905 val |= (1 << 10);
906 }
907 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
908 val |= (1 << 11);
909 }
910 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
911 val |= (1 << 12);
912 }
913 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
914 val |= (1 << 13);
915 }
916 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
917 val |= (1 << 15);
918 }
919 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
920 val |= (1 << 16);
921 }
922 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
923 val |= (1 << 18);
924 }
925 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
926 val |= (1 << 21);
927 }
928 /* SecureFault is not banked but is always RAZ/WI to NS */
929 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
930 val |= (1 << 4);
931 }
932 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
933 val |= (1 << 19);
934 }
935 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
936 val |= (1 << 20);
937 }
938 } else {
939 if (s->vectors[ARMV7M_EXCP_MEM].active) {
940 val |= (1 << 0);
941 }
942 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
943 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
944 if (s->vectors[ARMV7M_EXCP_HARD].active) {
945 val |= (1 << 2);
946 }
947 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
948 val |= (1 << 21);
949 }
950 }
951 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
952 val |= (1 << 3);
953 }
954 if (s->vectors[ARMV7M_EXCP_SVC].active) {
955 val |= (1 << 7);
956 }
957 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
958 val |= (1 << 10);
959 }
960 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
961 val |= (1 << 11);
962 }
963 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
964 val |= (1 << 12);
965 }
966 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
967 val |= (1 << 13);
968 }
969 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
970 val |= (1 << 15);
971 }
972 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
973 val |= (1 << 16);
974 }
975 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
976 val |= (1 << 18);
977 }
da6d674e 978 }
437d59c1
PM
979 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
980 if (s->vectors[ARMV7M_EXCP_BUS].active) {
981 val |= (1 << 1);
982 }
983 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
984 val |= (1 << 14);
985 }
986 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
987 val |= (1 << 17);
988 }
989 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
990 s->vectors[ARMV7M_EXCP_NMI].active) {
991 /* NMIACT is not present in v7M */
992 val |= (1 << 5);
993 }
da6d674e 994 }
437d59c1
PM
995
996 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
da6d674e
MD
997 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
998 val |= (1 << 8);
999 }
9ee6e8bb 1000 return val;
9ee6e8bb 1001 case 0xd2c: /* Hard Fault Status. */
7c9140af
JS
1002 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1003 goto bad_offset;
1004 }
e6b33209 1005 return cpu->env.v7m.hfsr;
9ee6e8bb 1006 case 0xd30: /* Debug Fault Status. */
e6b33209
MD
1007 return cpu->env.v7m.dfsr;
1008 case 0xd34: /* MMFAR MemManage Fault Address */
7c9140af
JS
1009 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1010 goto bad_offset;
1011 }
c51a5cfc 1012 return cpu->env.v7m.mmfar[attrs.secure];
9ee6e8bb 1013 case 0xd38: /* Bus Fault Address. */
7c9140af
JS
1014 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1015 goto bad_offset;
1016 }
e6b33209 1017 return cpu->env.v7m.bfar;
9ee6e8bb
PB
1018 case 0xd3c: /* Aux Fault Status. */
1019 /* TODO: Implement fault status registers. */
e6b33209
MD
1020 qemu_log_mask(LOG_UNIMP,
1021 "Aux Fault status registers unimplemented\n");
e72e3ffc 1022 return 0;
9ee6e8bb 1023 case 0xd40: /* PFR0. */
5a53e2c1
PM
1024 return cpu->id_pfr0;
1025 case 0xd44: /* PFR1. */
1026 return cpu->id_pfr1;
9ee6e8bb 1027 case 0xd48: /* DFR0. */
5a53e2c1 1028 return cpu->id_dfr0;
9ee6e8bb 1029 case 0xd4c: /* AFR0. */
5a53e2c1 1030 return cpu->id_afr0;
9ee6e8bb 1031 case 0xd50: /* MMFR0. */
5a53e2c1 1032 return cpu->id_mmfr0;
9ee6e8bb 1033 case 0xd54: /* MMFR1. */
5a53e2c1 1034 return cpu->id_mmfr1;
9ee6e8bb 1035 case 0xd58: /* MMFR2. */
5a53e2c1 1036 return cpu->id_mmfr2;
9ee6e8bb 1037 case 0xd5c: /* MMFR3. */
5a53e2c1 1038 return cpu->id_mmfr3;
9ee6e8bb 1039 case 0xd60: /* ISAR0. */
5a53e2c1 1040 return cpu->id_isar0;
9ee6e8bb 1041 case 0xd64: /* ISAR1. */
5a53e2c1 1042 return cpu->id_isar1;
9ee6e8bb 1043 case 0xd68: /* ISAR2. */
5a53e2c1 1044 return cpu->id_isar2;
9ee6e8bb 1045 case 0xd6c: /* ISAR3. */
5a53e2c1 1046 return cpu->id_isar3;
9ee6e8bb 1047 case 0xd70: /* ISAR4. */
5a53e2c1
PM
1048 return cpu->id_isar4;
1049 case 0xd74: /* ISAR5. */
1050 return cpu->id_isar5;
43bbce7f
PM
1051 case 0xd78: /* CLIDR */
1052 return cpu->clidr;
1053 case 0xd7c: /* CTR */
1054 return cpu->ctr;
1055 case 0xd80: /* CSSIDR */
1056 {
1057 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1058 return cpu->ccsidr[idx];
1059 }
1060 case 0xd84: /* CSSELR */
1061 return cpu->env.v7m.csselr[attrs.secure];
9ee6e8bb 1062 /* TODO: Implement debug registers. */
29c483a5
MD
1063 case 0xd90: /* MPU_TYPE */
1064 /* Unified MPU; if the MPU is not present this value is zero */
1065 return cpu->pmsav7_dregion << 8;
1066 break;
1067 case 0xd94: /* MPU_CTRL */
ecf5e8ea 1068 return cpu->env.v7m.mpu_ctrl[attrs.secure];
29c483a5 1069 case 0xd98: /* MPU_RNR */
1bc04a88 1070 return cpu->env.pmsav7.rnr[attrs.secure];
29c483a5
MD
1071 case 0xd9c: /* MPU_RBAR */
1072 case 0xda4: /* MPU_RBAR_A1 */
1073 case 0xdac: /* MPU_RBAR_A2 */
1074 case 0xdb4: /* MPU_RBAR_A3 */
1075 {
1bc04a88 1076 int region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5 1077
0e1a46bb
PM
1078 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1079 /* PMSAv8M handling of the aliases is different from v7M:
1080 * aliases A1, A2, A3 override the low two bits of the region
1081 * number in MPU_RNR, and there is no 'region' field in the
1082 * RBAR register.
1083 */
1084 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1085 if (aliasno) {
1086 region = deposit32(region, 0, 2, aliasno);
1087 }
1088 if (region >= cpu->pmsav7_dregion) {
1089 return 0;
1090 }
62c58ee0 1091 return cpu->env.pmsav8.rbar[attrs.secure][region];
0e1a46bb
PM
1092 }
1093
29c483a5
MD
1094 if (region >= cpu->pmsav7_dregion) {
1095 return 0;
1096 }
2b75ef01 1097 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
29c483a5 1098 }
0e1a46bb
PM
1099 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1100 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1101 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1102 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
29c483a5 1103 {
1bc04a88 1104 int region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5 1105
0e1a46bb
PM
1106 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1107 /* PMSAv8M handling of the aliases is different from v7M:
1108 * aliases A1, A2, A3 override the low two bits of the region
1109 * number in MPU_RNR.
1110 */
1111 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1112 if (aliasno) {
1113 region = deposit32(region, 0, 2, aliasno);
1114 }
1115 if (region >= cpu->pmsav7_dregion) {
1116 return 0;
1117 }
62c58ee0 1118 return cpu->env.pmsav8.rlar[attrs.secure][region];
0e1a46bb
PM
1119 }
1120
29c483a5
MD
1121 if (region >= cpu->pmsav7_dregion) {
1122 return 0;
1123 }
1124 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1125 (cpu->env.pmsav7.drsr[region] & 0xffff);
1126 }
0e1a46bb
PM
1127 case 0xdc0: /* MPU_MAIR0 */
1128 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1129 goto bad_offset;
1130 }
4125e6fe 1131 return cpu->env.pmsav8.mair0[attrs.secure];
0e1a46bb
PM
1132 case 0xdc4: /* MPU_MAIR1 */
1133 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1134 goto bad_offset;
1135 }
4125e6fe 1136 return cpu->env.pmsav8.mair1[attrs.secure];
9901c576
PM
1137 case 0xdd0: /* SAU_CTRL */
1138 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1139 goto bad_offset;
1140 }
1141 if (!attrs.secure) {
1142 return 0;
1143 }
1144 return cpu->env.sau.ctrl;
1145 case 0xdd4: /* SAU_TYPE */
1146 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1147 goto bad_offset;
1148 }
1149 if (!attrs.secure) {
1150 return 0;
1151 }
1152 return cpu->sau_sregion;
1153 case 0xdd8: /* SAU_RNR */
1154 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1155 goto bad_offset;
1156 }
1157 if (!attrs.secure) {
1158 return 0;
1159 }
1160 return cpu->env.sau.rnr;
1161 case 0xddc: /* SAU_RBAR */
1162 {
1163 int region = cpu->env.sau.rnr;
1164
1165 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1166 goto bad_offset;
1167 }
1168 if (!attrs.secure) {
1169 return 0;
1170 }
1171 if (region >= cpu->sau_sregion) {
1172 return 0;
1173 }
1174 return cpu->env.sau.rbar[region];
1175 }
1176 case 0xde0: /* SAU_RLAR */
1177 {
1178 int region = cpu->env.sau.rnr;
1179
1180 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1181 goto bad_offset;
1182 }
1183 if (!attrs.secure) {
1184 return 0;
1185 }
1186 if (region >= cpu->sau_sregion) {
1187 return 0;
1188 }
1189 return cpu->env.sau.rlar[region];
1190 }
bed079da
PM
1191 case 0xde4: /* SFSR */
1192 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1193 goto bad_offset;
1194 }
1195 if (!attrs.secure) {
1196 return 0;
1197 }
1198 return cpu->env.v7m.sfsr;
1199 case 0xde8: /* SFAR */
1200 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1201 goto bad_offset;
1202 }
1203 if (!attrs.secure) {
1204 return 0;
1205 }
1206 return cpu->env.v7m.sfar;
9ee6e8bb 1207 default:
0e1a46bb 1208 bad_offset:
e72e3ffc
PM
1209 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1210 return 0;
9ee6e8bb
PB
1211 }
1212}
1213
45db7ba6
PM
1214static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1215 MemTxAttrs attrs)
9ee6e8bb 1216{
d713ea6c 1217 ARMCPU *cpu = s->cpu;
ff68dacb 1218
9ee6e8bb 1219 switch (offset) {
ae7c5c85
PM
1220 case 0xc: /* CPPWR */
1221 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1222 goto bad_offset;
1223 }
1224 /* Make the IMPDEF choice to RAZ/WI this. */
1225 break;
e1be0a57
PM
1226 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1227 {
cf5f7937 1228 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
e1be0a57
PM
1229 int i;
1230
1231 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1232 goto bad_offset;
1233 }
1234 if (!attrs.secure) {
1235 break;
1236 }
1237 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1238 s->itns[startvec + i] = (value >> i) & 1;
1239 }
1240 nvic_irq_update(s);
1241 break;
1242 }
3f1e0eb7 1243 case 0xd04: /* Interrupt Control State (ICSR) */
4f2eff36 1244 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
3f1e0eb7
PM
1245 if (value & (1 << 31)) {
1246 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1247 } else if (value & (1 << 30) &&
1248 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1249 /* PENDNMICLR didn't exist in v7M */
1250 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1251 }
9ee6e8bb
PB
1252 }
1253 if (value & (1 << 28)) {
2fb50a33 1254 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
9ee6e8bb 1255 } else if (value & (1 << 27)) {
2fb50a33 1256 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
9ee6e8bb
PB
1257 }
1258 if (value & (1 << 26)) {
2fb50a33 1259 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
9ee6e8bb 1260 } else if (value & (1 << 25)) {
2fb50a33 1261 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
9ee6e8bb
PB
1262 }
1263 break;
1264 case 0xd08: /* Vector Table Offset. */
45db7ba6 1265 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
9ee6e8bb 1266 break;
3b2e9344
PM
1267 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1268 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1269 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1270 if (attrs.secure ||
1271 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1272 qemu_irq_pulse(s->sysresetreq);
1273 }
e192becd 1274 }
3b2e9344 1275 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
14790f73
MD
1276 qemu_log_mask(LOG_GUEST_ERROR,
1277 "Setting VECTCLRACTIVE when not in DEBUG mode "
1278 "is UNPREDICTABLE\n");
9ee6e8bb 1279 }
3b2e9344
PM
1280 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1281 /* NB: this bit is RES0 in v8M */
14790f73
MD
1282 qemu_log_mask(LOG_GUEST_ERROR,
1283 "Setting VECTRESET when not in DEBUG mode "
1284 "is UNPREDICTABLE\n");
9ee6e8bb 1285 }
c4379b48
JS
1286 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1287 s->prigroup[attrs.secure] =
1288 extract32(value,
1289 R_V7M_AIRCR_PRIGROUP_SHIFT,
1290 R_V7M_AIRCR_PRIGROUP_LENGTH);
1291 }
3b2e9344
PM
1292 if (attrs.secure) {
1293 /* These bits are only writable by secure */
1294 cpu->env.v7m.aircr = value &
1295 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1296 R_V7M_AIRCR_BFHFNMINS_MASK |
1297 R_V7M_AIRCR_PRIS_MASK);
7208b426
PM
1298 /* BFHFNMINS changes the priority of Secure HardFault, and
1299 * allows a pending Non-secure HardFault to preempt (which
1300 * we implement by marking it enabled).
1301 */
331f4bae
PM
1302 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1303 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
7208b426 1304 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
331f4bae
PM
1305 } else {
1306 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
7208b426 1307 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
331f4bae 1308 }
3b2e9344 1309 }
da6d674e 1310 nvic_irq_update(s);
9ee6e8bb
PB
1311 }
1312 break;
1313 case 0xd10: /* System Control. */
7c9140af
JS
1314 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1315 goto bad_offset;
1316 }
24ac0fb1
PM
1317 /* We don't implement deep-sleep so these bits are RAZ/WI.
1318 * The other bits in the register are banked.
1319 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1320 * is architecturally permitted.
1321 */
1322 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1323 cpu->env.v7m.scr[attrs.secure] = value;
e6b33209
MD
1324 break;
1325 case 0xd14: /* Configuration Control. */
22ab3460
JS
1326 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1327 goto bad_offset;
1328 }
1329
e6b33209
MD
1330 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1331 value &= (R_V7M_CCR_STKALIGN_MASK |
1332 R_V7M_CCR_BFHFNMIGN_MASK |
1333 R_V7M_CCR_DIV_0_TRP_MASK |
1334 R_V7M_CCR_UNALIGN_TRP_MASK |
1335 R_V7M_CCR_USERSETMPEND_MASK |
1336 R_V7M_CCR_NONBASETHRDENA_MASK);
1337
9d40cd8a
PM
1338 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1339 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1340 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1341 | R_V7M_CCR_STKALIGN_MASK;
1342 }
1343 if (attrs.secure) {
1344 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1345 cpu->env.v7m.ccr[M_REG_NS] =
1346 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1347 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1348 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1349 }
1350
1351 cpu->env.v7m.ccr[attrs.secure] = value;
e72e3ffc 1352 break;
437d59c1 1353 case 0xd24: /* System Handler Control and State (SHCSR) */
22ab3460
JS
1354 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1355 goto bad_offset;
1356 }
437d59c1
PM
1357 if (attrs.secure) {
1358 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1359 /* Secure HardFault active bit cannot be written */
1360 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1361 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1362 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1363 (value & (1 << 10)) != 0;
1364 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1365 (value & (1 << 11)) != 0;
1366 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1367 (value & (1 << 12)) != 0;
1368 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1369 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1370 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1371 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1372 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1373 (value & (1 << 18)) != 0;
04829ce3 1374 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
437d59c1
PM
1375 /* SecureFault not banked, but RAZ/WI to NS */
1376 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1377 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1378 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1379 } else {
1380 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1381 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1382 /* HARDFAULTPENDED is not present in v7M */
1383 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1384 }
1385 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1386 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1387 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1388 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1389 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1390 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1391 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1392 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1393 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1394 }
1395 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1396 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1397 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1398 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1399 }
1400 /* NMIACT can only be written if the write is of a zero, with
1401 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1402 */
1403 if (!attrs.secure && cpu->env.v7m.secure &&
1404 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1405 (value & (1 << 5)) == 0) {
1406 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1407 }
1408 /* HARDFAULTACT can only be written if the write is of a zero
1409 * to the non-secure HardFault state by the CPU in secure state.
1410 * The only case where we can be targeting the non-secure HF state
1411 * when in secure state is if this is a write via the NS alias
1412 * and BFHFNMINS is 1.
1413 */
1414 if (!attrs.secure && cpu->env.v7m.secure &&
1415 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1416 (value & (1 << 2)) == 0) {
1417 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1418 }
1419
1420 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
5db53e35 1421 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
da6d674e 1422 nvic_irq_update(s);
9ee6e8bb 1423 break;
9ee6e8bb 1424 case 0xd2c: /* Hard Fault Status. */
7c9140af
JS
1425 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1426 goto bad_offset;
1427 }
e6b33209
MD
1428 cpu->env.v7m.hfsr &= ~value; /* W1C */
1429 break;
9ee6e8bb 1430 case 0xd30: /* Debug Fault Status. */
e6b33209
MD
1431 cpu->env.v7m.dfsr &= ~value; /* W1C */
1432 break;
9ee6e8bb 1433 case 0xd34: /* Mem Manage Address. */
7c9140af
JS
1434 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1435 goto bad_offset;
1436 }
c51a5cfc 1437 cpu->env.v7m.mmfar[attrs.secure] = value;
e6b33209 1438 return;
9ee6e8bb 1439 case 0xd38: /* Bus Fault Address. */
7c9140af
JS
1440 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1441 goto bad_offset;
1442 }
e6b33209
MD
1443 cpu->env.v7m.bfar = value;
1444 return;
9ee6e8bb 1445 case 0xd3c: /* Aux Fault Status. */
e72e3ffc 1446 qemu_log_mask(LOG_UNIMP,
e6b33209 1447 "NVIC: Aux fault status registers unimplemented\n");
e72e3ffc 1448 break;
43bbce7f
PM
1449 case 0xd84: /* CSSELR */
1450 if (!arm_v7m_csselr_razwi(cpu)) {
1451 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1452 }
1453 break;
29c483a5
MD
1454 case 0xd90: /* MPU_TYPE */
1455 return; /* RO */
1456 case 0xd94: /* MPU_CTRL */
1457 if ((value &
1458 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1459 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1460 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1461 "UNPREDICTABLE\n");
1462 }
ecf5e8ea
PM
1463 cpu->env.v7m.mpu_ctrl[attrs.secure]
1464 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1465 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1466 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
29c483a5
MD
1467 tlb_flush(CPU(cpu));
1468 break;
1469 case 0xd98: /* MPU_RNR */
1470 if (value >= cpu->pmsav7_dregion) {
1471 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1472 PRIu32 "/%" PRIu32 "\n",
1473 value, cpu->pmsav7_dregion);
1474 } else {
1bc04a88 1475 cpu->env.pmsav7.rnr[attrs.secure] = value;
29c483a5
MD
1476 }
1477 break;
1478 case 0xd9c: /* MPU_RBAR */
1479 case 0xda4: /* MPU_RBAR_A1 */
1480 case 0xdac: /* MPU_RBAR_A2 */
1481 case 0xdb4: /* MPU_RBAR_A3 */
1482 {
1483 int region;
1484
0e1a46bb
PM
1485 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1486 /* PMSAv8M handling of the aliases is different from v7M:
1487 * aliases A1, A2, A3 override the low two bits of the region
1488 * number in MPU_RNR, and there is no 'region' field in the
1489 * RBAR register.
1490 */
1491 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1492
1bc04a88 1493 region = cpu->env.pmsav7.rnr[attrs.secure];
0e1a46bb
PM
1494 if (aliasno) {
1495 region = deposit32(region, 0, 2, aliasno);
1496 }
1497 if (region >= cpu->pmsav7_dregion) {
1498 return;
1499 }
62c58ee0 1500 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
0e1a46bb
PM
1501 tlb_flush(CPU(cpu));
1502 return;
1503 }
1504
29c483a5
MD
1505 if (value & (1 << 4)) {
1506 /* VALID bit means use the region number specified in this
1507 * value and also update MPU_RNR.REGION with that value.
1508 */
1509 region = extract32(value, 0, 4);
1510 if (region >= cpu->pmsav7_dregion) {
1511 qemu_log_mask(LOG_GUEST_ERROR,
1512 "MPU region out of range %u/%" PRIu32 "\n",
1513 region, cpu->pmsav7_dregion);
1514 return;
1515 }
1bc04a88 1516 cpu->env.pmsav7.rnr[attrs.secure] = region;
29c483a5 1517 } else {
1bc04a88 1518 region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5
MD
1519 }
1520
1521 if (region >= cpu->pmsav7_dregion) {
1522 return;
1523 }
1524
1525 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1526 tlb_flush(CPU(cpu));
1527 break;
1528 }
0e1a46bb
PM
1529 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1530 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1531 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1532 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
29c483a5 1533 {
1bc04a88 1534 int region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5 1535
0e1a46bb
PM
1536 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1537 /* PMSAv8M handling of the aliases is different from v7M:
1538 * aliases A1, A2, A3 override the low two bits of the region
1539 * number in MPU_RNR.
1540 */
1541 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1542
1bc04a88 1543 region = cpu->env.pmsav7.rnr[attrs.secure];
0e1a46bb
PM
1544 if (aliasno) {
1545 region = deposit32(region, 0, 2, aliasno);
1546 }
1547 if (region >= cpu->pmsav7_dregion) {
1548 return;
1549 }
62c58ee0 1550 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
0e1a46bb
PM
1551 tlb_flush(CPU(cpu));
1552 return;
1553 }
1554
29c483a5
MD
1555 if (region >= cpu->pmsav7_dregion) {
1556 return;
1557 }
1558
1559 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1560 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1561 tlb_flush(CPU(cpu));
1562 break;
1563 }
0e1a46bb
PM
1564 case 0xdc0: /* MPU_MAIR0 */
1565 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1566 goto bad_offset;
1567 }
1568 if (cpu->pmsav7_dregion) {
1569 /* Register is RES0 if no MPU regions are implemented */
4125e6fe 1570 cpu->env.pmsav8.mair0[attrs.secure] = value;
0e1a46bb
PM
1571 }
1572 /* We don't need to do anything else because memory attributes
1573 * only affect cacheability, and we don't implement caching.
1574 */
1575 break;
1576 case 0xdc4: /* MPU_MAIR1 */
1577 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1578 goto bad_offset;
1579 }
1580 if (cpu->pmsav7_dregion) {
1581 /* Register is RES0 if no MPU regions are implemented */
4125e6fe 1582 cpu->env.pmsav8.mair1[attrs.secure] = value;
0e1a46bb
PM
1583 }
1584 /* We don't need to do anything else because memory attributes
1585 * only affect cacheability, and we don't implement caching.
1586 */
1587 break;
9901c576
PM
1588 case 0xdd0: /* SAU_CTRL */
1589 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1590 goto bad_offset;
1591 }
1592 if (!attrs.secure) {
1593 return;
1594 }
1595 cpu->env.sau.ctrl = value & 3;
a94bb9cd 1596 break;
9901c576
PM
1597 case 0xdd4: /* SAU_TYPE */
1598 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1599 goto bad_offset;
1600 }
1601 break;
1602 case 0xdd8: /* SAU_RNR */
1603 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1604 goto bad_offset;
1605 }
1606 if (!attrs.secure) {
1607 return;
1608 }
1609 if (value >= cpu->sau_sregion) {
1610 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1611 PRIu32 "/%" PRIu32 "\n",
1612 value, cpu->sau_sregion);
1613 } else {
1614 cpu->env.sau.rnr = value;
1615 }
1616 break;
1617 case 0xddc: /* SAU_RBAR */
1618 {
1619 int region = cpu->env.sau.rnr;
1620
1621 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1622 goto bad_offset;
1623 }
1624 if (!attrs.secure) {
1625 return;
1626 }
1627 if (region >= cpu->sau_sregion) {
1628 return;
1629 }
1630 cpu->env.sau.rbar[region] = value & ~0x1f;
1631 tlb_flush(CPU(cpu));
1632 break;
1633 }
1634 case 0xde0: /* SAU_RLAR */
1635 {
1636 int region = cpu->env.sau.rnr;
1637
1638 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1639 goto bad_offset;
1640 }
1641 if (!attrs.secure) {
1642 return;
1643 }
1644 if (region >= cpu->sau_sregion) {
1645 return;
1646 }
1647 cpu->env.sau.rlar[region] = value & ~0x1c;
1648 tlb_flush(CPU(cpu));
1649 break;
1650 }
bed079da
PM
1651 case 0xde4: /* SFSR */
1652 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1653 goto bad_offset;
1654 }
1655 if (!attrs.secure) {
1656 return;
1657 }
1658 cpu->env.v7m.sfsr &= ~value; /* W1C */
1659 break;
1660 case 0xde8: /* SFAR */
1661 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1662 goto bad_offset;
1663 }
1664 if (!attrs.secure) {
1665 return;
1666 }
1667 cpu->env.v7m.sfsr = value;
1668 break;
2a29ddee 1669 case 0xf00: /* Software Triggered Interrupt Register */
da6d674e 1670 {
da6d674e 1671 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
7c9140af
JS
1672
1673 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1674 goto bad_offset;
1675 }
1676
eb578a23 1677 if (excnum < s->num_irq) {
2fb50a33 1678 armv7m_nvic_set_pending(s, excnum, false);
2a29ddee
PM
1679 }
1680 break;
da6d674e 1681 }
e8ab26c4
PM
1682 case 0xf50: /* ICIALLU */
1683 case 0xf58: /* ICIMVAU */
1684 case 0xf5c: /* DCIMVAC */
1685 case 0xf60: /* DCISW */
1686 case 0xf64: /* DCCMVAU */
1687 case 0xf68: /* DCCMVAC */
1688 case 0xf6c: /* DCCSW */
1689 case 0xf70: /* DCCIMVAC */
1690 case 0xf74: /* DCCISW */
1691 case 0xf78: /* BPIALL */
1692 /* Cache and branch predictor maintenance: for QEMU these always NOP */
1693 break;
9ee6e8bb 1694 default:
0e1a46bb 1695 bad_offset:
e72e3ffc
PM
1696 qemu_log_mask(LOG_GUEST_ERROR,
1697 "NVIC: Bad write offset 0x%x\n", offset);
9ee6e8bb
PB
1698 }
1699}
1700
9d40cd8a 1701static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
eb578a23
PM
1702{
1703 /* Return true if unprivileged access to this register is permitted. */
1704 switch (offset) {
1705 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
9d40cd8a
PM
1706 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1707 * controls access even though the CPU is in Secure state (I_QDKX).
1708 */
1709 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
eb578a23
PM
1710 default:
1711 /* All other user accesses cause a BusFault unconditionally */
1712 return false;
1713 }
1714}
1715
e6a0d350
PM
1716static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1717{
1718 /* Behaviour for the SHPR register field for this exception:
1719 * return M_REG_NS to use the nonsecure vector (including for
1720 * non-banked exceptions), M_REG_S for the secure version of
1721 * a banked exception, and -1 if this field should RAZ/WI.
1722 */
1723 switch (exc) {
1724 case ARMV7M_EXCP_MEM:
1725 case ARMV7M_EXCP_USAGE:
1726 case ARMV7M_EXCP_SVC:
1727 case ARMV7M_EXCP_PENDSV:
1728 case ARMV7M_EXCP_SYSTICK:
1729 /* Banked exceptions */
1730 return attrs.secure;
1731 case ARMV7M_EXCP_BUS:
1732 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1733 if (!attrs.secure &&
1734 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1735 return -1;
1736 }
1737 return M_REG_NS;
1738 case ARMV7M_EXCP_SECURE:
1739 /* Not banked, RAZ/WI from nonsecure */
1740 if (!attrs.secure) {
1741 return -1;
1742 }
1743 return M_REG_NS;
1744 case ARMV7M_EXCP_DEBUG:
1745 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1746 return M_REG_NS;
1747 case 8 ... 10:
1748 case 13:
1749 /* RES0 */
1750 return -1;
1751 default:
1752 /* Not reachable due to decode of SHPR register addresses */
1753 g_assert_not_reached();
1754 }
1755}
1756
eb578a23
PM
1757static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1758 uint64_t *data, unsigned size,
1759 MemTxAttrs attrs)
2a29ddee 1760{
f797c075 1761 NVICState *s = (NVICState *)opaque;
2a29ddee 1762 uint32_t offset = addr;
da6d674e 1763 unsigned i, startvec, end;
0e8153dd
AB
1764 uint32_t val;
1765
9d40cd8a 1766 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
eb578a23
PM
1767 /* Generate BusFault for unprivileged accesses */
1768 return MEMTX_ERROR;
1769 }
1770
0e8153dd 1771 switch (offset) {
da6d674e
MD
1772 /* reads of set and clear both return the status */
1773 case 0x100 ... 0x13f: /* NVIC Set enable */
1774 offset += 0x80;
1775 /* fall through */
1776 case 0x180 ... 0x1bf: /* NVIC Clear enable */
1777 val = 0;
12fbf1a1 1778 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
da6d674e
MD
1779
1780 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1781 if (s->vectors[startvec + i].enabled &&
1782 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1783 val |= (1 << i);
1784 }
1785 }
1786 break;
1787 case 0x200 ... 0x23f: /* NVIC Set pend */
1788 offset += 0x80;
1789 /* fall through */
1790 case 0x280 ... 0x2bf: /* NVIC Clear pend */
1791 val = 0;
12fbf1a1 1792 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
da6d674e 1793 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1794 if (s->vectors[startvec + i].pending &&
1795 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1796 val |= (1 << i);
1797 }
1798 }
1799 break;
1800 case 0x300 ... 0x33f: /* NVIC Active */
1801 val = 0;
c4379b48
JS
1802
1803 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
1804 break;
1805 }
1806
12fbf1a1 1807 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
da6d674e
MD
1808
1809 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1810 if (s->vectors[startvec + i].active &&
1811 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1812 val |= (1 << i);
1813 }
1814 }
1815 break;
1816 case 0x400 ... 0x5ef: /* NVIC Priority */
1817 val = 0;
1818 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1819
1820 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1821 if (attrs.secure || s->itns[startvec + i]) {
1822 val |= s->vectors[startvec + i].prio << (8 * i);
1823 }
da6d674e
MD
1824 }
1825 break;
7c9140af
JS
1826 case 0xd18: /* System Handler Priority (SHPR1) */
1827 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1828 val = 0;
1829 break;
1830 }
1831 /* fall through */
1832 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
0e8153dd
AB
1833 val = 0;
1834 for (i = 0; i < size; i++) {
e6a0d350
PM
1835 unsigned hdlidx = (offset - 0xd14) + i;
1836 int sbank = shpr_bank(s, hdlidx, attrs);
1837
1838 if (sbank < 0) {
1839 continue;
1840 }
1841 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
0e8153dd 1842 }
da6d674e 1843 break;
4b9774ef 1844 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
7c9140af
JS
1845 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1846 val = 0;
1847 break;
1848 };
4b9774ef
PM
1849 /* The BFSR bits [15:8] are shared between security states
1850 * and we store them in the NS copy
1851 */
1852 val = s->cpu->env.v7m.cfsr[attrs.secure];
1853 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
1854 val = extract32(val, (offset - 0xd28) * 8, size * 8);
1855 break;
0e8153dd 1856 case 0xfe0 ... 0xfff: /* ID. */
2a29ddee 1857 if (offset & 3) {
da6d674e
MD
1858 val = 0;
1859 } else {
1860 val = nvic_id[(offset - 0xfe0) >> 2];
1861 }
1862 break;
1863 default:
1864 if (size == 4) {
45db7ba6 1865 val = nvic_readl(s, offset, attrs);
da6d674e
MD
1866 } else {
1867 qemu_log_mask(LOG_GUEST_ERROR,
1868 "NVIC: Bad read of size %d at offset 0x%x\n",
1869 size, offset);
1870 val = 0;
2a29ddee 1871 }
2a29ddee 1872 }
da6d674e
MD
1873
1874 trace_nvic_sysreg_read(addr, val, size);
eb578a23
PM
1875 *data = val;
1876 return MEMTX_OK;
2a29ddee
PM
1877}
1878
eb578a23
PM
1879static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1880 uint64_t value, unsigned size,
1881 MemTxAttrs attrs)
2a29ddee 1882{
f797c075 1883 NVICState *s = (NVICState *)opaque;
2a29ddee 1884 uint32_t offset = addr;
da6d674e
MD
1885 unsigned i, startvec, end;
1886 unsigned setval = 0;
1887
1888 trace_nvic_sysreg_write(addr, value, size);
0e8153dd 1889
9d40cd8a 1890 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
eb578a23
PM
1891 /* Generate BusFault for unprivileged accesses */
1892 return MEMTX_ERROR;
1893 }
1894
0e8153dd 1895 switch (offset) {
da6d674e
MD
1896 case 0x100 ... 0x13f: /* NVIC Set enable */
1897 offset += 0x80;
1898 setval = 1;
1899 /* fall through */
1900 case 0x180 ... 0x1bf: /* NVIC Clear enable */
1901 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1902
1903 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1904 if (value & (1 << i) &&
1905 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1906 s->vectors[startvec + i].enabled = setval;
1907 }
1908 }
1909 nvic_irq_update(s);
eb578a23 1910 return MEMTX_OK;
da6d674e
MD
1911 case 0x200 ... 0x23f: /* NVIC Set pend */
1912 /* the special logic in armv7m_nvic_set_pending()
1913 * is not needed since IRQs are never escalated
1914 */
1915 offset += 0x80;
1916 setval = 1;
1917 /* fall through */
1918 case 0x280 ... 0x2bf: /* NVIC Clear pend */
1919 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1920
1921 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1922 if (value & (1 << i) &&
1923 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1924 s->vectors[startvec + i].pending = setval;
1925 }
1926 }
1927 nvic_irq_update(s);
eb578a23 1928 return MEMTX_OK;
da6d674e 1929 case 0x300 ... 0x33f: /* NVIC Active */
eb578a23 1930 return MEMTX_OK; /* R/O */
da6d674e 1931 case 0x400 ... 0x5ef: /* NVIC Priority */
12fbf1a1 1932 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
da6d674e
MD
1933
1934 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
e1be0a57 1935 if (attrs.secure || s->itns[startvec + i]) {
e6a0d350 1936 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
e1be0a57 1937 }
da6d674e
MD
1938 }
1939 nvic_irq_update(s);
eb578a23 1940 return MEMTX_OK;
7c9140af
JS
1941 case 0xd18: /* System Handler Priority (SHPR1) */
1942 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1943 return MEMTX_OK;
1944 }
1945 /* fall through */
1946 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
0e8153dd 1947 for (i = 0; i < size; i++) {
da6d674e 1948 unsigned hdlidx = (offset - 0xd14) + i;
e6a0d350
PM
1949 int newprio = extract32(value, i * 8, 8);
1950 int sbank = shpr_bank(s, hdlidx, attrs);
1951
1952 if (sbank < 0) {
1953 continue;
1954 }
1955 set_prio(s, hdlidx, sbank, newprio);
0e8153dd 1956 }
da6d674e 1957 nvic_irq_update(s);
eb578a23 1958 return MEMTX_OK;
4b9774ef 1959 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
7c9140af
JS
1960 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1961 return MEMTX_OK;
1962 }
4b9774ef
PM
1963 /* All bits are W1C, so construct 32 bit value with 0s in
1964 * the parts not written by the access size
1965 */
1966 value <<= ((offset - 0xd28) * 8);
1967
1968 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
1969 if (attrs.secure) {
1970 /* The BFSR bits [15:8] are shared between security states
1971 * and we store them in the NS copy.
1972 */
1973 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
1974 }
1975 return MEMTX_OK;
0e8153dd 1976 }
2a29ddee 1977 if (size == 4) {
45db7ba6 1978 nvic_writel(s, offset, value, attrs);
eb578a23 1979 return MEMTX_OK;
2a29ddee 1980 }
e72e3ffc
PM
1981 qemu_log_mask(LOG_GUEST_ERROR,
1982 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
eb578a23
PM
1983 /* This is UNPREDICTABLE; treat as RAZ/WI */
1984 return MEMTX_OK;
2a29ddee
PM
1985}
1986
1987static const MemoryRegionOps nvic_sysreg_ops = {
eb578a23
PM
1988 .read_with_attrs = nvic_sysreg_read,
1989 .write_with_attrs = nvic_sysreg_write,
2a29ddee
PM
1990 .endianness = DEVICE_NATIVE_ENDIAN,
1991};
1992
f104919d
PM
1993static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1994 uint64_t value, unsigned size,
1995 MemTxAttrs attrs)
1996{
62f01848
PM
1997 MemoryRegion *mr = opaque;
1998
f104919d
PM
1999 if (attrs.secure) {
2000 /* S accesses to the alias act like NS accesses to the real region */
2001 attrs.secure = 0;
62f01848 2002 return memory_region_dispatch_write(mr, addr, value, size, attrs);
f104919d
PM
2003 } else {
2004 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2005 if (attrs.user) {
2006 return MEMTX_ERROR;
2007 }
2008 return MEMTX_OK;
2009 }
2010}
2011
2012static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2013 uint64_t *data, unsigned size,
2014 MemTxAttrs attrs)
2015{
62f01848
PM
2016 MemoryRegion *mr = opaque;
2017
f104919d
PM
2018 if (attrs.secure) {
2019 /* S accesses to the alias act like NS accesses to the real region */
2020 attrs.secure = 0;
62f01848 2021 return memory_region_dispatch_read(mr, addr, data, size, attrs);
f104919d
PM
2022 } else {
2023 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2024 if (attrs.user) {
2025 return MEMTX_ERROR;
2026 }
2027 *data = 0;
2028 return MEMTX_OK;
2029 }
2030}
2031
2032static const MemoryRegionOps nvic_sysreg_ns_ops = {
2033 .read_with_attrs = nvic_sysreg_ns_read,
2034 .write_with_attrs = nvic_sysreg_ns_write,
2035 .endianness = DEVICE_NATIVE_ENDIAN,
2036};
2037
27f26bfe
PM
2038static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2039 uint64_t value, unsigned size,
2040 MemTxAttrs attrs)
2041{
2042 NVICState *s = opaque;
2043 MemoryRegion *mr;
2044
2045 /* Direct the access to the correct systick */
2046 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2047 return memory_region_dispatch_write(mr, addr, value, size, attrs);
2048}
2049
2050static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2051 uint64_t *data, unsigned size,
2052 MemTxAttrs attrs)
2053{
2054 NVICState *s = opaque;
2055 MemoryRegion *mr;
2056
2057 /* Direct the access to the correct systick */
2058 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2059 return memory_region_dispatch_read(mr, addr, data, size, attrs);
2060}
2061
2062static const MemoryRegionOps nvic_systick_ops = {
2063 .read_with_attrs = nvic_systick_read,
2064 .write_with_attrs = nvic_systick_write,
2065 .endianness = DEVICE_NATIVE_ENDIAN,
2066};
2067
da6d674e
MD
2068static int nvic_post_load(void *opaque, int version_id)
2069{
2070 NVICState *s = opaque;
2071 unsigned i;
331f4bae 2072 int resetprio;
da6d674e
MD
2073
2074 /* Check for out of range priority settings */
331f4bae
PM
2075 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2076
2077 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
da6d674e
MD
2078 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2079 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2080 return 1;
2081 }
2082 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2083 if (s->vectors[i].prio & ~0xff) {
2084 return 1;
2085 }
2086 }
2087
2088 nvic_recompute_state(s);
2089
2090 return 0;
2091}
2092
2093static const VMStateDescription vmstate_VecInfo = {
2094 .name = "armv7m_nvic_info",
2095 .version_id = 1,
2096 .minimum_version_id = 1,
2097 .fields = (VMStateField[]) {
2098 VMSTATE_INT16(prio, VecInfo),
2099 VMSTATE_UINT8(enabled, VecInfo),
2100 VMSTATE_UINT8(pending, VecInfo),
2101 VMSTATE_UINT8(active, VecInfo),
2102 VMSTATE_UINT8(level, VecInfo),
2103 VMSTATE_END_OF_LIST()
2104 }
2105};
2106
17906a16
PM
2107static bool nvic_security_needed(void *opaque)
2108{
2109 NVICState *s = opaque;
2110
2111 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2112}
2113
2114static int nvic_security_post_load(void *opaque, int version_id)
2115{
2116 NVICState *s = opaque;
2117 int i;
2118
2119 /* Check for out of range priority settings */
331f4bae
PM
2120 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2121 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2122 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2123 * if the CPU state has been migrated yet; a mismatch won't
2124 * cause the emulation to blow up, though.
2125 */
17906a16
PM
2126 return 1;
2127 }
2128 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2129 if (s->sec_vectors[i].prio & ~0xff) {
2130 return 1;
2131 }
2132 }
2133 return 0;
2134}
2135
2136static const VMStateDescription vmstate_nvic_security = {
942566ff 2137 .name = "armv7m_nvic/m-security",
17906a16
PM
2138 .version_id = 1,
2139 .minimum_version_id = 1,
2140 .needed = nvic_security_needed,
2141 .post_load = &nvic_security_post_load,
2142 .fields = (VMStateField[]) {
2143 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2144 vmstate_VecInfo, VecInfo),
3b2e9344 2145 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
e1be0a57 2146 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
17906a16
PM
2147 VMSTATE_END_OF_LIST()
2148 }
2149};
2150
0797226c
JQ
2151static const VMStateDescription vmstate_nvic = {
2152 .name = "armv7m_nvic",
ff68dacb
PM
2153 .version_id = 4,
2154 .minimum_version_id = 4,
da6d674e 2155 .post_load = &nvic_post_load,
8f1e884b 2156 .fields = (VMStateField[]) {
da6d674e
MD
2157 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2158 vmstate_VecInfo, VecInfo),
3b2e9344 2159 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
0797226c 2160 VMSTATE_END_OF_LIST()
17906a16
PM
2161 },
2162 .subsections = (const VMStateDescription*[]) {
2163 &vmstate_nvic_security,
2164 NULL
0797226c
JQ
2165 }
2166};
23e39294 2167
da6d674e
MD
2168static Property props_nvic[] = {
2169 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2170 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2171 DEFINE_PROP_END_OF_LIST()
2172};
2173
aecff692
PM
2174static void armv7m_nvic_reset(DeviceState *dev)
2175{
331f4bae 2176 int resetprio;
f797c075 2177 NVICState *s = NVIC(dev);
da6d674e 2178
8ff26a33
PM
2179 memset(s->vectors, 0, sizeof(s->vectors));
2180 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2181 s->prigroup[M_REG_NS] = 0;
2182 s->prigroup[M_REG_S] = 0;
2183
da6d674e 2184 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
da6d674e
MD
2185 /* MEM, BUS, and USAGE are enabled through
2186 * the System Handler Control register
b3387ede 2187 */
da6d674e
MD
2188 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2189 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
2190 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2191 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2192
331f4bae
PM
2193 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2194 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
da6d674e
MD
2195 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2196 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2197
17906a16
PM
2198 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2199 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2200 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2201 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2202 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2203
2204 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2205 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
7208b426
PM
2206 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2207 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2208 } else {
2209 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
17906a16
PM
2210 }
2211
da6d674e
MD
2212 /* Strictly speaking the reset handler should be enabled.
2213 * However, we don't simulate soft resets through the NVIC,
2214 * and the reset vector should never be pended.
2215 * So we leave it disabled to catch logic errors.
2216 */
2217
2218 s->exception_prio = NVIC_NOEXC_PRIO;
2219 s->vectpending = 0;
e93bc2ac 2220 s->vectpending_is_s_banked = false;
5255fcf8 2221 s->vectpending_prio = NVIC_NOEXC_PRIO;
e1be0a57
PM
2222
2223 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2224 memset(s->itns, 0, sizeof(s->itns));
2225 } else {
2226 /* This state is constant and not guest accessible in a non-security
2227 * NVIC; we set the bits to true to avoid having to do a feature
2228 * bit check in the NVIC enable/pend/etc register accessors.
2229 */
2230 int i;
2231
2232 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2233 s->itns[i] = true;
2234 }
2235 }
ff68dacb 2236}
da6d674e 2237
ff68dacb
PM
2238static void nvic_systick_trigger(void *opaque, int n, int level)
2239{
2240 NVICState *s = opaque;
2241
2242 if (level) {
2243 /* SysTick just asked us to pend its exception.
2244 * (This is different from an external interrupt line's
2245 * behaviour.)
27f26bfe
PM
2246 * n == 0 : NonSecure systick
2247 * n == 1 : Secure systick
ff68dacb 2248 */
27f26bfe 2249 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
ff68dacb 2250 }
aecff692
PM
2251}
2252
53111180 2253static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
9ee6e8bb 2254{
f797c075 2255 NVICState *s = NVIC(dev);
ff68dacb 2256 Error *err = NULL;
f104919d 2257 int regionlen;
9ee6e8bb 2258
d713ea6c 2259 s->cpu = ARM_CPU(qemu_get_cpu(0));
95f87565
PM
2260
2261 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2262 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2263 return;
2264 }
da6d674e
MD
2265
2266 if (s->num_irq > NVIC_MAX_IRQ) {
2267 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
53111180
PM
2268 return;
2269 }
da6d674e
MD
2270
2271 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2272
2273 /* include space for internal exception vectors */
2274 s->num_irq += NVIC_FIRST_IRQ;
2275
c4379b48
JS
2276 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2277
27f26bfe
PM
2278 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2279 "realized", &err);
ff68dacb
PM
2280 if (err != NULL) {
2281 error_propagate(errp, err);
2282 return;
2283 }
27f26bfe
PM
2284 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2285 qdev_get_gpio_in_named(dev, "systick-trigger",
2286 M_REG_NS));
2287
2288 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2289 /* We couldn't init the secure systick device in instance_init
2290 * as we didn't know then if the CPU had the security extensions;
2291 * so we have to do it here.
2292 */
2293 object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2294 TYPE_SYSTICK);
2295 qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2296
2297 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2298 "realized", &err);
2299 if (err != NULL) {
2300 error_propagate(errp, err);
2301 return;
2302 }
2303 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2304 qdev_get_gpio_in_named(dev, "systick-trigger",
2305 M_REG_S));
2306 }
ff68dacb 2307
da6d674e
MD
2308 /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2309 * and looks like this:
2310 * 0x004 - ICTR
ff68dacb 2311 * 0x010 - 0xff - systick
da6d674e
MD
2312 * 0x100..0x7ec - NVIC
2313 * 0x7f0..0xcff - Reserved
2314 * 0xd00..0xd3c - SCS registers
2315 * 0xd40..0xeff - Reserved or Not implemented
2316 * 0xf00 - STIR
f104919d
PM
2317 *
2318 * Some registers within this space are banked between security states.
2319 * In v8M there is a second range 0xe002e000..0xe002efff which is the
2320 * NonSecure alias SCS; secure accesses to this behave like NS accesses
2321 * to the main SCS range, and non-secure accesses (including when
2322 * the security extension is not implemented) are RAZ/WI.
2323 * Note that both the main SCS range and the alias range are defined
2324 * to be exempt from memory attribution (R_BLJT) and so the memory
2325 * transaction attribute always matches the current CPU security
2326 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2327 * wrappers we change attrs.secure to indicate the NS access; so
2328 * generally code determining which banked register to use should
2329 * use attrs.secure; code determining actual behaviour of the system
2330 * should use env->v7m.secure.
2a29ddee 2331 */
f104919d
PM
2332 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2333 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2a29ddee
PM
2334 /* The system register region goes at the bottom of the priority
2335 * stack as it covers the whole page.
2336 */
1437c94b 2337 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2a29ddee
PM
2338 "nvic_sysregs", 0x1000);
2339 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
27f26bfe
PM
2340
2341 memory_region_init_io(&s->systickmem, OBJECT(s),
2342 &nvic_systick_ops, s,
2343 "nvic_systick", 0xe0);
2344
ff68dacb 2345 memory_region_add_subregion_overlap(&s->container, 0x10,
27f26bfe 2346 &s->systickmem, 1);
da6d674e 2347
f104919d
PM
2348 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2349 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
62f01848 2350 &nvic_sysreg_ns_ops, &s->sysregmem,
f104919d
PM
2351 "nvic_sysregs_ns", 0x1000);
2352 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
27f26bfe
PM
2353 memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2354 &nvic_sysreg_ns_ops, &s->systickmem,
2355 "nvic_systick_ns", 0xe0);
2356 memory_region_add_subregion_overlap(&s->container, 0x20010,
2357 &s->systick_ns_mem, 1);
f104919d
PM
2358 }
2359
98957a94 2360 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
9ee6e8bb 2361}
fe7e8758 2362
55e00a19
PM
2363static void armv7m_nvic_instance_init(Object *obj)
2364{
2365 /* We have a different default value for the num-irq property
2366 * than our superclass. This function runs after qdev init
2367 * has set the defaults from the Property array and before
2368 * any user-specified property setting, so just modify the
fae15286 2369 * value in the GICState struct.
55e00a19 2370 */
e192becd 2371 DeviceState *dev = DEVICE(obj);
f797c075 2372 NVICState *nvic = NVIC(obj);
da6d674e
MD
2373 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2374
955cbc6b
TH
2375 sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2376 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
27f26bfe
PM
2377 /* We can't initialize the secure systick here, as we don't know
2378 * yet if we need it.
2379 */
ff68dacb 2380
da6d674e 2381 sysbus_init_irq(sbd, &nvic->excpout);
e192becd 2382 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
27f26bfe
PM
2383 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2384 M_REG_NUM_BANKS);
55e00a19 2385}
39bffca2 2386
999e12bb
AL
2387static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2388{
39bffca2 2389 DeviceClass *dc = DEVICE_CLASS(klass);
999e12bb 2390
39bffca2 2391 dc->vmsd = &vmstate_nvic;
da6d674e 2392 dc->props = props_nvic;
aecff692 2393 dc->reset = armv7m_nvic_reset;
53111180 2394 dc->realize = armv7m_nvic_realize;
999e12bb
AL
2395}
2396
8c43a6f0 2397static const TypeInfo armv7m_nvic_info = {
1e8cae4d 2398 .name = TYPE_NVIC,
da6d674e 2399 .parent = TYPE_SYS_BUS_DEVICE,
55e00a19 2400 .instance_init = armv7m_nvic_instance_init,
f797c075 2401 .instance_size = sizeof(NVICState),
39bffca2 2402 .class_init = armv7m_nvic_class_init,
da6d674e 2403 .class_size = sizeof(SysBusDeviceClass),
a32134aa
ML
2404};
2405
83f7d43a 2406static void armv7m_nvic_register_types(void)
fe7e8758 2407{
39bffca2 2408 type_register_static(&armv7m_nvic_info);
fe7e8758
PB
2409}
2410
83f7d43a 2411type_init(armv7m_nvic_register_types)
This page took 1.143771 seconds and 4 git commands to generate.