]>
Commit | Line | Data |
---|---|---|
494b00c7 CD |
1 | /* |
2 | * ARM implementation of KVM hooks | |
3 | * | |
4 | * Copyright Christoffer Dall 2009-2010 | |
5 | * | |
6 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
7 | * See the COPYING file in the top-level directory. | |
8 | * | |
9 | */ | |
10 | ||
11 | #include <stdio.h> | |
12 | #include <sys/types.h> | |
13 | #include <sys/ioctl.h> | |
14 | #include <sys/mman.h> | |
15 | ||
16 | #include <linux/kvm.h> | |
17 | ||
18 | #include "qemu-common.h" | |
19 | #include "qemu/timer.h" | |
20 | #include "sysemu/sysemu.h" | |
21 | #include "sysemu/kvm.h" | |
eb035b48 | 22 | #include "kvm_arm.h" |
494b00c7 | 23 | #include "cpu.h" |
bd2be150 | 24 | #include "hw/arm/arm.h" |
494b00c7 CD |
25 | |
26 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { | |
27 | KVM_CAP_LAST_INFO | |
28 | }; | |
29 | ||
228d5e04 PS |
30 | int kvm_arm_vcpu_init(CPUState *cs) |
31 | { | |
32 | ARMCPU *cpu = ARM_CPU(cs); | |
33 | struct kvm_vcpu_init init; | |
34 | ||
35 | init.target = cpu->kvm_target; | |
36 | memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); | |
37 | ||
38 | return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); | |
39 | } | |
40 | ||
a96c0514 PM |
41 | bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, |
42 | int *fdarray, | |
43 | struct kvm_vcpu_init *init) | |
44 | { | |
45 | int ret, kvmfd = -1, vmfd = -1, cpufd = -1; | |
46 | ||
47 | kvmfd = qemu_open("/dev/kvm", O_RDWR); | |
48 | if (kvmfd < 0) { | |
49 | goto err; | |
50 | } | |
51 | vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); | |
52 | if (vmfd < 0) { | |
53 | goto err; | |
54 | } | |
55 | cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); | |
56 | if (cpufd < 0) { | |
57 | goto err; | |
58 | } | |
59 | ||
60 | ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init); | |
61 | if (ret >= 0) { | |
62 | ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); | |
63 | if (ret < 0) { | |
64 | goto err; | |
65 | } | |
66 | } else { | |
67 | /* Old kernel which doesn't know about the | |
68 | * PREFERRED_TARGET ioctl: we know it will only support | |
69 | * creating one kind of guest CPU which is its preferred | |
70 | * CPU type. | |
71 | */ | |
72 | while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { | |
73 | init->target = *cpus_to_try++; | |
74 | memset(init->features, 0, sizeof(init->features)); | |
75 | ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); | |
76 | if (ret >= 0) { | |
77 | break; | |
78 | } | |
79 | } | |
80 | if (ret < 0) { | |
81 | goto err; | |
82 | } | |
83 | } | |
84 | ||
85 | fdarray[0] = kvmfd; | |
86 | fdarray[1] = vmfd; | |
87 | fdarray[2] = cpufd; | |
88 | ||
89 | return true; | |
90 | ||
91 | err: | |
92 | if (cpufd >= 0) { | |
93 | close(cpufd); | |
94 | } | |
95 | if (vmfd >= 0) { | |
96 | close(vmfd); | |
97 | } | |
98 | if (kvmfd >= 0) { | |
99 | close(kvmfd); | |
100 | } | |
101 | ||
102 | return false; | |
103 | } | |
104 | ||
105 | void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) | |
106 | { | |
107 | int i; | |
108 | ||
109 | for (i = 2; i >= 0; i--) { | |
110 | close(fdarray[i]); | |
111 | } | |
112 | } | |
113 | ||
a96c0514 PM |
114 | static void kvm_arm_host_cpu_class_init(ObjectClass *oc, void *data) |
115 | { | |
116 | ARMHostCPUClass *ahcc = ARM_HOST_CPU_CLASS(oc); | |
117 | ||
118 | /* All we really need to set up for the 'host' CPU | |
119 | * is the feature bits -- we rely on the fact that the | |
120 | * various ID register values in ARMCPU are only used for | |
121 | * TCG CPUs. | |
122 | */ | |
123 | if (!kvm_arm_get_host_cpu_features(ahcc)) { | |
124 | fprintf(stderr, "Failed to retrieve host CPU features!\n"); | |
125 | abort(); | |
126 | } | |
127 | } | |
128 | ||
129 | static void kvm_arm_host_cpu_initfn(Object *obj) | |
130 | { | |
131 | ARMHostCPUClass *ahcc = ARM_HOST_CPU_GET_CLASS(obj); | |
132 | ARMCPU *cpu = ARM_CPU(obj); | |
133 | CPUARMState *env = &cpu->env; | |
134 | ||
135 | cpu->kvm_target = ahcc->target; | |
136 | cpu->dtb_compatible = ahcc->dtb_compatible; | |
137 | env->features = ahcc->features; | |
138 | } | |
139 | ||
140 | static const TypeInfo host_arm_cpu_type_info = { | |
141 | .name = TYPE_ARM_HOST_CPU, | |
26861c7c MH |
142 | #ifdef TARGET_AARCH64 |
143 | .parent = TYPE_AARCH64_CPU, | |
144 | #else | |
a96c0514 | 145 | .parent = TYPE_ARM_CPU, |
26861c7c | 146 | #endif |
a96c0514 PM |
147 | .instance_init = kvm_arm_host_cpu_initfn, |
148 | .class_init = kvm_arm_host_cpu_class_init, | |
149 | .class_size = sizeof(ARMHostCPUClass), | |
150 | }; | |
151 | ||
494b00c7 CD |
152 | int kvm_arch_init(KVMState *s) |
153 | { | |
154 | /* For ARM interrupt delivery is always asynchronous, | |
155 | * whether we are using an in-kernel VGIC or not. | |
156 | */ | |
157 | kvm_async_interrupts_allowed = true; | |
a96c0514 PM |
158 | |
159 | type_register_static(&host_arm_cpu_type_info); | |
160 | ||
494b00c7 CD |
161 | return 0; |
162 | } | |
163 | ||
164 | unsigned long kvm_arch_vcpu_id(CPUState *cpu) | |
165 | { | |
166 | return cpu->cpu_index; | |
167 | } | |
168 | ||
eb035b48 PM |
169 | /* We track all the KVM devices which need their memory addresses |
170 | * passing to the kernel in a list of these structures. | |
171 | * When board init is complete we run through the list and | |
172 | * tell the kernel the base addresses of the memory regions. | |
173 | * We use a MemoryListener to track mapping and unmapping of | |
174 | * the regions during board creation, so the board models don't | |
175 | * need to do anything special for the KVM case. | |
176 | */ | |
177 | typedef struct KVMDevice { | |
178 | struct kvm_arm_device_addr kda; | |
1da41cc1 | 179 | struct kvm_device_attr kdattr; |
eb035b48 PM |
180 | MemoryRegion *mr; |
181 | QSLIST_ENTRY(KVMDevice) entries; | |
1da41cc1 | 182 | int dev_fd; |
eb035b48 PM |
183 | } KVMDevice; |
184 | ||
185 | static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head; | |
186 | ||
187 | static void kvm_arm_devlistener_add(MemoryListener *listener, | |
188 | MemoryRegionSection *section) | |
189 | { | |
190 | KVMDevice *kd; | |
191 | ||
192 | QSLIST_FOREACH(kd, &kvm_devices_head, entries) { | |
193 | if (section->mr == kd->mr) { | |
194 | kd->kda.addr = section->offset_within_address_space; | |
195 | } | |
196 | } | |
197 | } | |
198 | ||
199 | static void kvm_arm_devlistener_del(MemoryListener *listener, | |
200 | MemoryRegionSection *section) | |
201 | { | |
202 | KVMDevice *kd; | |
203 | ||
204 | QSLIST_FOREACH(kd, &kvm_devices_head, entries) { | |
205 | if (section->mr == kd->mr) { | |
206 | kd->kda.addr = -1; | |
207 | } | |
208 | } | |
209 | } | |
210 | ||
211 | static MemoryListener devlistener = { | |
212 | .region_add = kvm_arm_devlistener_add, | |
213 | .region_del = kvm_arm_devlistener_del, | |
214 | }; | |
215 | ||
1da41cc1 CD |
216 | static void kvm_arm_set_device_addr(KVMDevice *kd) |
217 | { | |
218 | struct kvm_device_attr *attr = &kd->kdattr; | |
219 | int ret; | |
220 | ||
221 | /* If the device control API is available and we have a device fd on the | |
222 | * KVMDevice struct, let's use the newer API | |
223 | */ | |
224 | if (kd->dev_fd >= 0) { | |
225 | uint64_t addr = kd->kda.addr; | |
226 | attr->addr = (uintptr_t)&addr; | |
227 | ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); | |
228 | } else { | |
229 | ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); | |
230 | } | |
231 | ||
232 | if (ret < 0) { | |
233 | fprintf(stderr, "Failed to set device address: %s\n", | |
234 | strerror(-ret)); | |
235 | abort(); | |
236 | } | |
237 | } | |
238 | ||
eb035b48 PM |
239 | static void kvm_arm_machine_init_done(Notifier *notifier, void *data) |
240 | { | |
241 | KVMDevice *kd, *tkd; | |
242 | ||
243 | memory_listener_unregister(&devlistener); | |
244 | QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { | |
245 | if (kd->kda.addr != -1) { | |
1da41cc1 | 246 | kvm_arm_set_device_addr(kd); |
eb035b48 | 247 | } |
dfde4e6e | 248 | memory_region_unref(kd->mr); |
eb035b48 PM |
249 | g_free(kd); |
250 | } | |
251 | } | |
252 | ||
253 | static Notifier notify = { | |
254 | .notify = kvm_arm_machine_init_done, | |
255 | }; | |
256 | ||
1da41cc1 CD |
257 | void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, |
258 | uint64_t attr, int dev_fd) | |
eb035b48 PM |
259 | { |
260 | KVMDevice *kd; | |
261 | ||
262 | if (!kvm_irqchip_in_kernel()) { | |
263 | return; | |
264 | } | |
265 | ||
266 | if (QSLIST_EMPTY(&kvm_devices_head)) { | |
267 | memory_listener_register(&devlistener, NULL); | |
268 | qemu_add_machine_init_done_notifier(¬ify); | |
269 | } | |
270 | kd = g_new0(KVMDevice, 1); | |
271 | kd->mr = mr; | |
272 | kd->kda.id = devid; | |
273 | kd->kda.addr = -1; | |
1da41cc1 CD |
274 | kd->kdattr.flags = 0; |
275 | kd->kdattr.group = group; | |
276 | kd->kdattr.attr = attr; | |
277 | kd->dev_fd = dev_fd; | |
eb035b48 | 278 | QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); |
dfde4e6e | 279 | memory_region_ref(kd->mr); |
eb035b48 PM |
280 | } |
281 | ||
ff047453 PM |
282 | bool write_kvmstate_to_list(ARMCPU *cpu) |
283 | { | |
284 | CPUState *cs = CPU(cpu); | |
285 | int i; | |
286 | bool ok = true; | |
287 | ||
288 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
289 | struct kvm_one_reg r; | |
290 | uint64_t regidx = cpu->cpreg_indexes[i]; | |
291 | uint32_t v32; | |
292 | int ret; | |
293 | ||
294 | r.id = regidx; | |
295 | ||
296 | switch (regidx & KVM_REG_SIZE_MASK) { | |
297 | case KVM_REG_SIZE_U32: | |
298 | r.addr = (uintptr_t)&v32; | |
299 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
300 | if (!ret) { | |
301 | cpu->cpreg_values[i] = v32; | |
302 | } | |
303 | break; | |
304 | case KVM_REG_SIZE_U64: | |
305 | r.addr = (uintptr_t)(cpu->cpreg_values + i); | |
306 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
307 | break; | |
308 | default: | |
309 | abort(); | |
310 | } | |
311 | if (ret) { | |
312 | ok = false; | |
313 | } | |
314 | } | |
315 | return ok; | |
316 | } | |
317 | ||
318 | bool write_list_to_kvmstate(ARMCPU *cpu) | |
319 | { | |
320 | CPUState *cs = CPU(cpu); | |
321 | int i; | |
322 | bool ok = true; | |
323 | ||
324 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
325 | struct kvm_one_reg r; | |
326 | uint64_t regidx = cpu->cpreg_indexes[i]; | |
327 | uint32_t v32; | |
328 | int ret; | |
329 | ||
330 | r.id = regidx; | |
331 | switch (regidx & KVM_REG_SIZE_MASK) { | |
332 | case KVM_REG_SIZE_U32: | |
333 | v32 = cpu->cpreg_values[i]; | |
334 | r.addr = (uintptr_t)&v32; | |
335 | break; | |
336 | case KVM_REG_SIZE_U64: | |
337 | r.addr = (uintptr_t)(cpu->cpreg_values + i); | |
338 | break; | |
339 | default: | |
340 | abort(); | |
341 | } | |
342 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
343 | if (ret) { | |
344 | /* We might fail for "unknown register" and also for | |
345 | * "you tried to set a register which is constant with | |
346 | * a different value from what it actually contains". | |
347 | */ | |
348 | ok = false; | |
349 | } | |
350 | } | |
351 | return ok; | |
352 | } | |
353 | ||
494b00c7 CD |
354 | void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) |
355 | { | |
356 | } | |
357 | ||
358 | void kvm_arch_post_run(CPUState *cs, struct kvm_run *run) | |
359 | { | |
360 | } | |
361 | ||
362 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) | |
363 | { | |
364 | return 0; | |
365 | } | |
366 | ||
494b00c7 CD |
367 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
368 | { | |
369 | return true; | |
370 | } | |
371 | ||
372 | int kvm_arch_process_async_events(CPUState *cs) | |
373 | { | |
374 | return 0; | |
375 | } | |
376 | ||
377 | int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr) | |
378 | { | |
379 | return 1; | |
380 | } | |
381 | ||
382 | int kvm_arch_on_sigbus(int code, void *addr) | |
383 | { | |
384 | return 1; | |
385 | } | |
386 | ||
387 | void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) | |
388 | { | |
389 | qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); | |
390 | } | |
391 | ||
392 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, | |
393 | struct kvm_sw_breakpoint *bp) | |
394 | { | |
395 | qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); | |
396 | return -EINVAL; | |
397 | } | |
398 | ||
399 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
400 | target_ulong len, int type) | |
401 | { | |
402 | qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); | |
403 | return -EINVAL; | |
404 | } | |
405 | ||
406 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
407 | target_ulong len, int type) | |
408 | { | |
409 | qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); | |
410 | return -EINVAL; | |
411 | } | |
412 | ||
413 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, | |
414 | struct kvm_sw_breakpoint *bp) | |
415 | { | |
416 | qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); | |
417 | return -EINVAL; | |
418 | } | |
419 | ||
420 | void kvm_arch_remove_all_hw_breakpoints(void) | |
421 | { | |
422 | qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); | |
423 | } | |
b3a1c626 AK |
424 | |
425 | void kvm_arch_init_irq_routing(KVMState *s) | |
426 | { | |
427 | } | |
1da41cc1 CD |
428 | |
429 | int kvm_arch_irqchip_create(KVMState *s) | |
430 | { | |
431 | int ret; | |
432 | ||
433 | /* If we can create the VGIC using the newer device control API, we | |
434 | * let the device do this when it initializes itself, otherwise we | |
435 | * fall back to the old API */ | |
436 | ||
437 | ret = kvm_create_device(s, KVM_DEV_TYPE_ARM_VGIC_V2, true); | |
438 | if (ret == 0) { | |
439 | return 1; | |
440 | } | |
441 | ||
442 | return 0; | |
443 | } |