]>
Commit | Line | Data |
---|---|---|
d19893da FB |
1 | /* |
2 | * Host code generation | |
5fafdf24 | 3 | * |
d19893da FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
d19893da | 18 | */ |
5b6dd868 BS |
19 | #ifdef _WIN32 |
20 | #include <windows.h> | |
21 | #else | |
22 | #include <sys/types.h> | |
23 | #include <sys/mman.h> | |
24 | #endif | |
d19893da FB |
25 | #include <stdarg.h> |
26 | #include <stdlib.h> | |
27 | #include <stdio.h> | |
28 | #include <string.h> | |
29 | #include <inttypes.h> | |
30 | ||
31 | #include "config.h" | |
2054396a | 32 | |
5b6dd868 | 33 | #include "qemu-common.h" |
af5ad107 | 34 | #define NO_CPU_IO_DEFS |
d3eead2e | 35 | #include "cpu.h" |
76cad711 | 36 | #include "disas/disas.h" |
57fec1fe | 37 | #include "tcg.h" |
5b6dd868 BS |
38 | #if defined(CONFIG_USER_ONLY) |
39 | #include "qemu.h" | |
40 | #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) | |
41 | #include <sys/param.h> | |
42 | #if __FreeBSD_version >= 700104 | |
43 | #define HAVE_KINFO_GETVMMAP | |
44 | #define sigqueue sigqueue_freebsd /* avoid redefinition */ | |
45 | #include <sys/time.h> | |
46 | #include <sys/proc.h> | |
47 | #include <machine/profile.h> | |
48 | #define _KERNEL | |
49 | #include <sys/user.h> | |
50 | #undef _KERNEL | |
51 | #undef sigqueue | |
52 | #include <libutil.h> | |
53 | #endif | |
54 | #endif | |
0bc3cd62 PB |
55 | #else |
56 | #include "exec/address-spaces.h" | |
5b6dd868 BS |
57 | #endif |
58 | ||
022c62cb | 59 | #include "exec/cputlb.h" |
5b6dd868 | 60 | #include "translate-all.h" |
0aa09897 | 61 | #include "qemu/timer.h" |
5b6dd868 BS |
62 | |
63 | //#define DEBUG_TB_INVALIDATE | |
64 | //#define DEBUG_FLUSH | |
65 | /* make various TB consistency checks */ | |
66 | //#define DEBUG_TB_CHECK | |
67 | ||
68 | #if !defined(CONFIG_USER_ONLY) | |
69 | /* TB consistency checks only implemented for usermode emulation. */ | |
70 | #undef DEBUG_TB_CHECK | |
71 | #endif | |
72 | ||
73 | #define SMC_BITMAP_USE_THRESHOLD 10 | |
74 | ||
5b6dd868 BS |
75 | typedef struct PageDesc { |
76 | /* list of TBs intersecting this ram page */ | |
77 | TranslationBlock *first_tb; | |
78 | /* in order to optimize self modifying code, we count the number | |
79 | of lookups we do to a given page to use a bitmap */ | |
80 | unsigned int code_write_count; | |
81 | uint8_t *code_bitmap; | |
82 | #if defined(CONFIG_USER_ONLY) | |
83 | unsigned long flags; | |
84 | #endif | |
85 | } PageDesc; | |
86 | ||
87 | /* In system mode we want L1_MAP to be based on ram offsets, | |
88 | while in user mode we want it to be based on virtual addresses. */ | |
89 | #if !defined(CONFIG_USER_ONLY) | |
90 | #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS | |
91 | # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS | |
92 | #else | |
93 | # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS | |
94 | #endif | |
95 | #else | |
96 | # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS | |
97 | #endif | |
98 | ||
03f49957 PB |
99 | /* Size of the L2 (and L3, etc) page tables. */ |
100 | #define V_L2_BITS 10 | |
101 | #define V_L2_SIZE (1 << V_L2_BITS) | |
102 | ||
5b6dd868 BS |
103 | /* The bits remaining after N lower levels of page tables. */ |
104 | #define V_L1_BITS_REM \ | |
03f49957 | 105 | ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS) |
5b6dd868 BS |
106 | |
107 | #if V_L1_BITS_REM < 4 | |
03f49957 | 108 | #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS) |
5b6dd868 BS |
109 | #else |
110 | #define V_L1_BITS V_L1_BITS_REM | |
111 | #endif | |
112 | ||
113 | #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS) | |
114 | ||
115 | #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS) | |
116 | ||
117 | uintptr_t qemu_real_host_page_size; | |
118 | uintptr_t qemu_host_page_size; | |
119 | uintptr_t qemu_host_page_mask; | |
120 | ||
121 | /* This is a multi-level map on the virtual address space. | |
122 | The bottom level has pointers to PageDesc. */ | |
123 | static void *l1_map[V_L1_SIZE]; | |
124 | ||
57fec1fe FB |
125 | /* code generation context */ |
126 | TCGContext tcg_ctx; | |
d19893da | 127 | |
5b6dd868 BS |
128 | static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, |
129 | tb_page_addr_t phys_page2); | |
a8a826a3 | 130 | static TranslationBlock *tb_find_pc(uintptr_t tc_ptr); |
5b6dd868 | 131 | |
57fec1fe FB |
132 | void cpu_gen_init(void) |
133 | { | |
134 | tcg_context_init(&tcg_ctx); | |
57fec1fe FB |
135 | } |
136 | ||
d19893da | 137 | /* return non zero if the very first instruction is invalid so that |
5fafdf24 | 138 | the virtual CPU can trigger an exception. |
d19893da FB |
139 | |
140 | '*gen_code_size_ptr' contains the size of the generated code (host | |
141 | code). | |
142 | */ | |
9349b4f9 | 143 | int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr) |
d19893da | 144 | { |
57fec1fe | 145 | TCGContext *s = &tcg_ctx; |
d19893da FB |
146 | uint8_t *gen_code_buf; |
147 | int gen_code_size; | |
57fec1fe FB |
148 | #ifdef CONFIG_PROFILER |
149 | int64_t ti; | |
150 | #endif | |
151 | ||
152 | #ifdef CONFIG_PROFILER | |
b67d9a52 FB |
153 | s->tb_count1++; /* includes aborted translations because of |
154 | exceptions */ | |
57fec1fe FB |
155 | ti = profile_getclock(); |
156 | #endif | |
157 | tcg_func_start(s); | |
d19893da | 158 | |
2cfc5f17 TS |
159 | gen_intermediate_code(env, tb); |
160 | ||
ec6338ba | 161 | /* generate machine code */ |
57fec1fe | 162 | gen_code_buf = tb->tc_ptr; |
ec6338ba FB |
163 | tb->tb_next_offset[0] = 0xffff; |
164 | tb->tb_next_offset[1] = 0xffff; | |
57fec1fe | 165 | s->tb_next_offset = tb->tb_next_offset; |
4cbb86e1 | 166 | #ifdef USE_DIRECT_JUMP |
57fec1fe FB |
167 | s->tb_jmp_offset = tb->tb_jmp_offset; |
168 | s->tb_next = NULL; | |
d19893da | 169 | #else |
57fec1fe FB |
170 | s->tb_jmp_offset = NULL; |
171 | s->tb_next = tb->tb_next; | |
d19893da | 172 | #endif |
57fec1fe FB |
173 | |
174 | #ifdef CONFIG_PROFILER | |
b67d9a52 FB |
175 | s->tb_count++; |
176 | s->interm_time += profile_getclock() - ti; | |
177 | s->code_time -= profile_getclock(); | |
57fec1fe | 178 | #endif |
54604f74 | 179 | gen_code_size = tcg_gen_code(s, gen_code_buf); |
d19893da | 180 | *gen_code_size_ptr = gen_code_size; |
57fec1fe | 181 | #ifdef CONFIG_PROFILER |
b67d9a52 FB |
182 | s->code_time += profile_getclock(); |
183 | s->code_in_len += tb->size; | |
184 | s->code_out_len += gen_code_size; | |
57fec1fe FB |
185 | #endif |
186 | ||
d19893da | 187 | #ifdef DEBUG_DISAS |
8fec2b8c | 188 | if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) { |
93fcfe39 AL |
189 | qemu_log("OUT: [size=%d]\n", *gen_code_size_ptr); |
190 | log_disas(tb->tc_ptr, *gen_code_size_ptr); | |
191 | qemu_log("\n"); | |
31b1a7b4 | 192 | qemu_log_flush(); |
d19893da FB |
193 | } |
194 | #endif | |
195 | return 0; | |
196 | } | |
197 | ||
5fafdf24 | 198 | /* The cpu state corresponding to 'searched_pc' is restored. |
d19893da | 199 | */ |
74f10515 | 200 | static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, |
a8a826a3 | 201 | uintptr_t searched_pc) |
d19893da | 202 | { |
74f10515 | 203 | CPUArchState *env = cpu->env_ptr; |
57fec1fe FB |
204 | TCGContext *s = &tcg_ctx; |
205 | int j; | |
6375e09e | 206 | uintptr_t tc_ptr; |
57fec1fe FB |
207 | #ifdef CONFIG_PROFILER |
208 | int64_t ti; | |
209 | #endif | |
210 | ||
211 | #ifdef CONFIG_PROFILER | |
212 | ti = profile_getclock(); | |
213 | #endif | |
214 | tcg_func_start(s); | |
d19893da | 215 | |
2cfc5f17 | 216 | gen_intermediate_code_pc(env, tb); |
3b46e624 | 217 | |
2e70f6ef PB |
218 | if (use_icount) { |
219 | /* Reset the cycle counter to the start of the block. */ | |
28ecfd7a | 220 | cpu->icount_decr.u16.low += tb->icount; |
2e70f6ef | 221 | /* Clear the IO flag. */ |
99df7dce | 222 | cpu->can_do_io = 0; |
2e70f6ef PB |
223 | } |
224 | ||
d19893da | 225 | /* find opc index corresponding to search_pc */ |
6375e09e | 226 | tc_ptr = (uintptr_t)tb->tc_ptr; |
d19893da FB |
227 | if (searched_pc < tc_ptr) |
228 | return -1; | |
57fec1fe FB |
229 | |
230 | s->tb_next_offset = tb->tb_next_offset; | |
231 | #ifdef USE_DIRECT_JUMP | |
232 | s->tb_jmp_offset = tb->tb_jmp_offset; | |
233 | s->tb_next = NULL; | |
234 | #else | |
235 | s->tb_jmp_offset = NULL; | |
236 | s->tb_next = tb->tb_next; | |
237 | #endif | |
54604f74 | 238 | j = tcg_gen_code_search_pc(s, (uint8_t *)tc_ptr, searched_pc - tc_ptr); |
57fec1fe FB |
239 | if (j < 0) |
240 | return -1; | |
d19893da | 241 | /* now find start of instruction before */ |
ab1103de | 242 | while (s->gen_opc_instr_start[j] == 0) { |
d19893da | 243 | j--; |
ab1103de | 244 | } |
28ecfd7a | 245 | cpu->icount_decr.u16.low -= s->gen_opc_icount[j]; |
3b46e624 | 246 | |
e87b7cb0 | 247 | restore_state_to_opc(env, tb, j); |
57fec1fe FB |
248 | |
249 | #ifdef CONFIG_PROFILER | |
b67d9a52 FB |
250 | s->restore_time += profile_getclock() - ti; |
251 | s->restore_count++; | |
57fec1fe | 252 | #endif |
d19893da FB |
253 | return 0; |
254 | } | |
5b6dd868 | 255 | |
3f38f309 | 256 | bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr) |
a8a826a3 BS |
257 | { |
258 | TranslationBlock *tb; | |
259 | ||
260 | tb = tb_find_pc(retaddr); | |
261 | if (tb) { | |
74f10515 | 262 | cpu_restore_state_from_tb(cpu, tb, retaddr); |
a8a826a3 BS |
263 | return true; |
264 | } | |
265 | return false; | |
266 | } | |
267 | ||
5b6dd868 BS |
268 | #ifdef _WIN32 |
269 | static inline void map_exec(void *addr, long size) | |
270 | { | |
271 | DWORD old_protect; | |
272 | VirtualProtect(addr, size, | |
273 | PAGE_EXECUTE_READWRITE, &old_protect); | |
274 | } | |
275 | #else | |
276 | static inline void map_exec(void *addr, long size) | |
277 | { | |
278 | unsigned long start, end, page_size; | |
279 | ||
280 | page_size = getpagesize(); | |
281 | start = (unsigned long)addr; | |
282 | start &= ~(page_size - 1); | |
283 | ||
284 | end = (unsigned long)addr + size; | |
285 | end += page_size - 1; | |
286 | end &= ~(page_size - 1); | |
287 | ||
288 | mprotect((void *)start, end - start, | |
289 | PROT_READ | PROT_WRITE | PROT_EXEC); | |
290 | } | |
291 | #endif | |
292 | ||
47c16ed5 | 293 | void page_size_init(void) |
5b6dd868 BS |
294 | { |
295 | /* NOTE: we can always suppose that qemu_host_page_size >= | |
296 | TARGET_PAGE_SIZE */ | |
297 | #ifdef _WIN32 | |
47c16ed5 | 298 | SYSTEM_INFO system_info; |
5b6dd868 | 299 | |
47c16ed5 AK |
300 | GetSystemInfo(&system_info); |
301 | qemu_real_host_page_size = system_info.dwPageSize; | |
5b6dd868 BS |
302 | #else |
303 | qemu_real_host_page_size = getpagesize(); | |
304 | #endif | |
305 | if (qemu_host_page_size == 0) { | |
306 | qemu_host_page_size = qemu_real_host_page_size; | |
307 | } | |
308 | if (qemu_host_page_size < TARGET_PAGE_SIZE) { | |
309 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
310 | } | |
311 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |
47c16ed5 | 312 | } |
5b6dd868 | 313 | |
47c16ed5 AK |
314 | static void page_init(void) |
315 | { | |
316 | page_size_init(); | |
5b6dd868 BS |
317 | #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) |
318 | { | |
319 | #ifdef HAVE_KINFO_GETVMMAP | |
320 | struct kinfo_vmentry *freep; | |
321 | int i, cnt; | |
322 | ||
323 | freep = kinfo_getvmmap(getpid(), &cnt); | |
324 | if (freep) { | |
325 | mmap_lock(); | |
326 | for (i = 0; i < cnt; i++) { | |
327 | unsigned long startaddr, endaddr; | |
328 | ||
329 | startaddr = freep[i].kve_start; | |
330 | endaddr = freep[i].kve_end; | |
331 | if (h2g_valid(startaddr)) { | |
332 | startaddr = h2g(startaddr) & TARGET_PAGE_MASK; | |
333 | ||
334 | if (h2g_valid(endaddr)) { | |
335 | endaddr = h2g(endaddr); | |
336 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
337 | } else { | |
338 | #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS | |
339 | endaddr = ~0ul; | |
340 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
341 | #endif | |
342 | } | |
343 | } | |
344 | } | |
345 | free(freep); | |
346 | mmap_unlock(); | |
347 | } | |
348 | #else | |
349 | FILE *f; | |
350 | ||
351 | last_brk = (unsigned long)sbrk(0); | |
352 | ||
353 | f = fopen("/compat/linux/proc/self/maps", "r"); | |
354 | if (f) { | |
355 | mmap_lock(); | |
356 | ||
357 | do { | |
358 | unsigned long startaddr, endaddr; | |
359 | int n; | |
360 | ||
361 | n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); | |
362 | ||
363 | if (n == 2 && h2g_valid(startaddr)) { | |
364 | startaddr = h2g(startaddr) & TARGET_PAGE_MASK; | |
365 | ||
366 | if (h2g_valid(endaddr)) { | |
367 | endaddr = h2g(endaddr); | |
368 | } else { | |
369 | endaddr = ~0ul; | |
370 | } | |
371 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
372 | } | |
373 | } while (!feof(f)); | |
374 | ||
375 | fclose(f); | |
376 | mmap_unlock(); | |
377 | } | |
378 | #endif | |
379 | } | |
380 | #endif | |
381 | } | |
382 | ||
383 | static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) | |
384 | { | |
385 | PageDesc *pd; | |
386 | void **lp; | |
387 | int i; | |
388 | ||
389 | #if defined(CONFIG_USER_ONLY) | |
390 | /* We can't use g_malloc because it may recurse into a locked mutex. */ | |
391 | # define ALLOC(P, SIZE) \ | |
392 | do { \ | |
393 | P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \ | |
394 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \ | |
395 | } while (0) | |
396 | #else | |
397 | # define ALLOC(P, SIZE) \ | |
398 | do { P = g_malloc0(SIZE); } while (0) | |
399 | #endif | |
400 | ||
401 | /* Level 1. Always allocated. */ | |
402 | lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1)); | |
403 | ||
404 | /* Level 2..N-1. */ | |
03f49957 | 405 | for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) { |
5b6dd868 BS |
406 | void **p = *lp; |
407 | ||
408 | if (p == NULL) { | |
409 | if (!alloc) { | |
410 | return NULL; | |
411 | } | |
03f49957 | 412 | ALLOC(p, sizeof(void *) * V_L2_SIZE); |
5b6dd868 BS |
413 | *lp = p; |
414 | } | |
415 | ||
03f49957 | 416 | lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); |
5b6dd868 BS |
417 | } |
418 | ||
419 | pd = *lp; | |
420 | if (pd == NULL) { | |
421 | if (!alloc) { | |
422 | return NULL; | |
423 | } | |
03f49957 | 424 | ALLOC(pd, sizeof(PageDesc) * V_L2_SIZE); |
5b6dd868 BS |
425 | *lp = pd; |
426 | } | |
427 | ||
428 | #undef ALLOC | |
429 | ||
03f49957 | 430 | return pd + (index & (V_L2_SIZE - 1)); |
5b6dd868 BS |
431 | } |
432 | ||
433 | static inline PageDesc *page_find(tb_page_addr_t index) | |
434 | { | |
435 | return page_find_alloc(index, 0); | |
436 | } | |
437 | ||
438 | #if !defined(CONFIG_USER_ONLY) | |
439 | #define mmap_lock() do { } while (0) | |
440 | #define mmap_unlock() do { } while (0) | |
441 | #endif | |
442 | ||
443 | #if defined(CONFIG_USER_ONLY) | |
444 | /* Currently it is not recommended to allocate big chunks of data in | |
445 | user mode. It will change when a dedicated libc will be used. */ | |
446 | /* ??? 64-bit hosts ought to have no problem mmaping data outside the | |
447 | region in which the guest needs to run. Revisit this. */ | |
448 | #define USE_STATIC_CODE_GEN_BUFFER | |
449 | #endif | |
450 | ||
451 | /* ??? Should configure for this, not list operating systems here. */ | |
452 | #if (defined(__linux__) \ | |
453 | || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \ | |
454 | || defined(__DragonFly__) || defined(__OpenBSD__) \ | |
455 | || defined(__NetBSD__)) | |
456 | # define USE_MMAP | |
457 | #endif | |
458 | ||
459 | /* Minimum size of the code gen buffer. This number is randomly chosen, | |
460 | but not so small that we can't have a fair number of TB's live. */ | |
461 | #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024) | |
462 | ||
463 | /* Maximum size of the code gen buffer we'd like to use. Unless otherwise | |
464 | indicated, this is constrained by the range of direct branches on the | |
465 | host cpu, as used by the TCG implementation of goto_tb. */ | |
466 | #if defined(__x86_64__) | |
467 | # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) | |
468 | #elif defined(__sparc__) | |
469 | # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) | |
4a136e0a CF |
470 | #elif defined(__aarch64__) |
471 | # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024) | |
5b6dd868 BS |
472 | #elif defined(__arm__) |
473 | # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024) | |
474 | #elif defined(__s390x__) | |
475 | /* We have a +- 4GB range on the branches; leave some slop. */ | |
476 | # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024) | |
477 | #else | |
478 | # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) | |
479 | #endif | |
480 | ||
481 | #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024) | |
482 | ||
483 | #define DEFAULT_CODE_GEN_BUFFER_SIZE \ | |
484 | (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ | |
485 | ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) | |
486 | ||
487 | static inline size_t size_code_gen_buffer(size_t tb_size) | |
488 | { | |
489 | /* Size the buffer. */ | |
490 | if (tb_size == 0) { | |
491 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
492 | tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
493 | #else | |
494 | /* ??? Needs adjustments. */ | |
495 | /* ??? If we relax the requirement that CONFIG_USER_ONLY use the | |
496 | static buffer, we could size this on RESERVED_VA, on the text | |
497 | segment size of the executable, or continue to use the default. */ | |
498 | tb_size = (unsigned long)(ram_size / 4); | |
499 | #endif | |
500 | } | |
501 | if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { | |
502 | tb_size = MIN_CODE_GEN_BUFFER_SIZE; | |
503 | } | |
504 | if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { | |
505 | tb_size = MAX_CODE_GEN_BUFFER_SIZE; | |
506 | } | |
0b0d3320 | 507 | tcg_ctx.code_gen_buffer_size = tb_size; |
5b6dd868 BS |
508 | return tb_size; |
509 | } | |
510 | ||
511 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
512 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] | |
513 | __attribute__((aligned(CODE_GEN_ALIGN))); | |
514 | ||
515 | static inline void *alloc_code_gen_buffer(void) | |
516 | { | |
0b0d3320 | 517 | map_exec(static_code_gen_buffer, tcg_ctx.code_gen_buffer_size); |
5b6dd868 BS |
518 | return static_code_gen_buffer; |
519 | } | |
520 | #elif defined(USE_MMAP) | |
521 | static inline void *alloc_code_gen_buffer(void) | |
522 | { | |
523 | int flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
524 | uintptr_t start = 0; | |
525 | void *buf; | |
526 | ||
527 | /* Constrain the position of the buffer based on the host cpu. | |
528 | Note that these addresses are chosen in concert with the | |
529 | addresses assigned in the relevant linker script file. */ | |
530 | # if defined(__PIE__) || defined(__PIC__) | |
531 | /* Don't bother setting a preferred location if we're building | |
532 | a position-independent executable. We're more likely to get | |
533 | an address near the main executable if we let the kernel | |
534 | choose the address. */ | |
535 | # elif defined(__x86_64__) && defined(MAP_32BIT) | |
536 | /* Force the memory down into low memory with the executable. | |
537 | Leave the choice of exact location with the kernel. */ | |
538 | flags |= MAP_32BIT; | |
539 | /* Cannot expect to map more than 800MB in low memory. */ | |
0b0d3320 EV |
540 | if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) { |
541 | tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024; | |
5b6dd868 BS |
542 | } |
543 | # elif defined(__sparc__) | |
544 | start = 0x40000000ul; | |
545 | # elif defined(__s390x__) | |
546 | start = 0x90000000ul; | |
547 | # endif | |
548 | ||
0b0d3320 | 549 | buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size, |
5b6dd868 BS |
550 | PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0); |
551 | return buf == MAP_FAILED ? NULL : buf; | |
552 | } | |
553 | #else | |
554 | static inline void *alloc_code_gen_buffer(void) | |
555 | { | |
0b0d3320 | 556 | void *buf = g_malloc(tcg_ctx.code_gen_buffer_size); |
5b6dd868 BS |
557 | |
558 | if (buf) { | |
0b0d3320 | 559 | map_exec(buf, tcg_ctx.code_gen_buffer_size); |
5b6dd868 BS |
560 | } |
561 | return buf; | |
562 | } | |
563 | #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */ | |
564 | ||
565 | static inline void code_gen_alloc(size_t tb_size) | |
566 | { | |
0b0d3320 EV |
567 | tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size); |
568 | tcg_ctx.code_gen_buffer = alloc_code_gen_buffer(); | |
569 | if (tcg_ctx.code_gen_buffer == NULL) { | |
5b6dd868 BS |
570 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); |
571 | exit(1); | |
572 | } | |
573 | ||
0b0d3320 EV |
574 | qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size, |
575 | QEMU_MADV_HUGEPAGE); | |
5b6dd868 BS |
576 | |
577 | /* Steal room for the prologue at the end of the buffer. This ensures | |
578 | (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches | |
579 | from TB's to the prologue are going to be in range. It also means | |
580 | that we don't need to mark (additional) portions of the data segment | |
581 | as executable. */ | |
0b0d3320 EV |
582 | tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer + |
583 | tcg_ctx.code_gen_buffer_size - 1024; | |
584 | tcg_ctx.code_gen_buffer_size -= 1024; | |
5b6dd868 | 585 | |
0b0d3320 | 586 | tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size - |
5b6dd868 | 587 | (TCG_MAX_OP_SIZE * OPC_BUF_SIZE); |
0b0d3320 EV |
588 | tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size / |
589 | CODE_GEN_AVG_BLOCK_SIZE; | |
5e5f07e0 EV |
590 | tcg_ctx.tb_ctx.tbs = |
591 | g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock)); | |
5b6dd868 BS |
592 | } |
593 | ||
594 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |
595 | (in bytes) allocated to the translation buffer. Zero means default | |
596 | size. */ | |
597 | void tcg_exec_init(unsigned long tb_size) | |
598 | { | |
599 | cpu_gen_init(); | |
600 | code_gen_alloc(tb_size); | |
0b0d3320 EV |
601 | tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer; |
602 | tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size); | |
5b6dd868 BS |
603 | page_init(); |
604 | #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE) | |
605 | /* There's no guest base to take into account, so go ahead and | |
606 | initialize the prologue now. */ | |
607 | tcg_prologue_init(&tcg_ctx); | |
608 | #endif | |
609 | } | |
610 | ||
611 | bool tcg_enabled(void) | |
612 | { | |
0b0d3320 | 613 | return tcg_ctx.code_gen_buffer != NULL; |
5b6dd868 BS |
614 | } |
615 | ||
616 | /* Allocate a new translation block. Flush the translation buffer if | |
617 | too many translation blocks or too much generated code. */ | |
618 | static TranslationBlock *tb_alloc(target_ulong pc) | |
619 | { | |
620 | TranslationBlock *tb; | |
621 | ||
5e5f07e0 | 622 | if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks || |
0b0d3320 EV |
623 | (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >= |
624 | tcg_ctx.code_gen_buffer_max_size) { | |
5b6dd868 BS |
625 | return NULL; |
626 | } | |
5e5f07e0 | 627 | tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++]; |
5b6dd868 BS |
628 | tb->pc = pc; |
629 | tb->cflags = 0; | |
630 | return tb; | |
631 | } | |
632 | ||
633 | void tb_free(TranslationBlock *tb) | |
634 | { | |
635 | /* In practice this is mostly used for single use temporary TB | |
636 | Ignore the hard cases and just back up if this TB happens to | |
637 | be the last one generated. */ | |
5e5f07e0 EV |
638 | if (tcg_ctx.tb_ctx.nb_tbs > 0 && |
639 | tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) { | |
0b0d3320 | 640 | tcg_ctx.code_gen_ptr = tb->tc_ptr; |
5e5f07e0 | 641 | tcg_ctx.tb_ctx.nb_tbs--; |
5b6dd868 BS |
642 | } |
643 | } | |
644 | ||
645 | static inline void invalidate_page_bitmap(PageDesc *p) | |
646 | { | |
647 | if (p->code_bitmap) { | |
648 | g_free(p->code_bitmap); | |
649 | p->code_bitmap = NULL; | |
650 | } | |
651 | p->code_write_count = 0; | |
652 | } | |
653 | ||
654 | /* Set to NULL all the 'first_tb' fields in all PageDescs. */ | |
655 | static void page_flush_tb_1(int level, void **lp) | |
656 | { | |
657 | int i; | |
658 | ||
659 | if (*lp == NULL) { | |
660 | return; | |
661 | } | |
662 | if (level == 0) { | |
663 | PageDesc *pd = *lp; | |
664 | ||
03f49957 | 665 | for (i = 0; i < V_L2_SIZE; ++i) { |
5b6dd868 BS |
666 | pd[i].first_tb = NULL; |
667 | invalidate_page_bitmap(pd + i); | |
668 | } | |
669 | } else { | |
670 | void **pp = *lp; | |
671 | ||
03f49957 | 672 | for (i = 0; i < V_L2_SIZE; ++i) { |
5b6dd868 BS |
673 | page_flush_tb_1(level - 1, pp + i); |
674 | } | |
675 | } | |
676 | } | |
677 | ||
678 | static void page_flush_tb(void) | |
679 | { | |
680 | int i; | |
681 | ||
682 | for (i = 0; i < V_L1_SIZE; i++) { | |
03f49957 | 683 | page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i); |
5b6dd868 BS |
684 | } |
685 | } | |
686 | ||
687 | /* flush all the translation blocks */ | |
688 | /* XXX: tb_flush is currently not thread safe */ | |
689 | void tb_flush(CPUArchState *env1) | |
690 | { | |
a47dddd7 | 691 | CPUState *cpu = ENV_GET_CPU(env1); |
5b6dd868 BS |
692 | |
693 | #if defined(DEBUG_FLUSH) | |
694 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", | |
0b0d3320 | 695 | (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer), |
5e5f07e0 | 696 | tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ? |
0b0d3320 | 697 | ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) / |
5e5f07e0 | 698 | tcg_ctx.tb_ctx.nb_tbs : 0); |
5b6dd868 | 699 | #endif |
0b0d3320 EV |
700 | if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) |
701 | > tcg_ctx.code_gen_buffer_size) { | |
a47dddd7 | 702 | cpu_abort(cpu, "Internal error: code buffer overflow\n"); |
5b6dd868 | 703 | } |
5e5f07e0 | 704 | tcg_ctx.tb_ctx.nb_tbs = 0; |
5b6dd868 | 705 | |
bdc44640 | 706 | CPU_FOREACH(cpu) { |
8cd70437 | 707 | memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); |
5b6dd868 BS |
708 | } |
709 | ||
eb2535f4 | 710 | memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash)); |
5b6dd868 BS |
711 | page_flush_tb(); |
712 | ||
0b0d3320 | 713 | tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer; |
5b6dd868 BS |
714 | /* XXX: flush processor icache at this point if cache flush is |
715 | expensive */ | |
5e5f07e0 | 716 | tcg_ctx.tb_ctx.tb_flush_count++; |
5b6dd868 BS |
717 | } |
718 | ||
719 | #ifdef DEBUG_TB_CHECK | |
720 | ||
721 | static void tb_invalidate_check(target_ulong address) | |
722 | { | |
723 | TranslationBlock *tb; | |
724 | int i; | |
725 | ||
726 | address &= TARGET_PAGE_MASK; | |
727 | for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) { | |
5e5f07e0 | 728 | for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { |
5b6dd868 BS |
729 | if (!(address + TARGET_PAGE_SIZE <= tb->pc || |
730 | address >= tb->pc + tb->size)) { | |
731 | printf("ERROR invalidate: address=" TARGET_FMT_lx | |
732 | " PC=%08lx size=%04x\n", | |
733 | address, (long)tb->pc, tb->size); | |
734 | } | |
735 | } | |
736 | } | |
737 | } | |
738 | ||
739 | /* verify that all the pages have correct rights for code */ | |
740 | static void tb_page_check(void) | |
741 | { | |
742 | TranslationBlock *tb; | |
743 | int i, flags1, flags2; | |
744 | ||
745 | for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) { | |
5e5f07e0 EV |
746 | for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL; |
747 | tb = tb->phys_hash_next) { | |
5b6dd868 BS |
748 | flags1 = page_get_flags(tb->pc); |
749 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
750 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
751 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
752 | (long)tb->pc, tb->size, flags1, flags2); | |
753 | } | |
754 | } | |
755 | } | |
756 | } | |
757 | ||
758 | #endif | |
759 | ||
0c884d16 | 760 | static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb) |
5b6dd868 BS |
761 | { |
762 | TranslationBlock *tb1; | |
763 | ||
764 | for (;;) { | |
765 | tb1 = *ptb; | |
766 | if (tb1 == tb) { | |
0c884d16 | 767 | *ptb = tb1->phys_hash_next; |
5b6dd868 BS |
768 | break; |
769 | } | |
0c884d16 | 770 | ptb = &tb1->phys_hash_next; |
5b6dd868 BS |
771 | } |
772 | } | |
773 | ||
774 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) | |
775 | { | |
776 | TranslationBlock *tb1; | |
777 | unsigned int n1; | |
778 | ||
779 | for (;;) { | |
780 | tb1 = *ptb; | |
781 | n1 = (uintptr_t)tb1 & 3; | |
782 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |
783 | if (tb1 == tb) { | |
784 | *ptb = tb1->page_next[n1]; | |
785 | break; | |
786 | } | |
787 | ptb = &tb1->page_next[n1]; | |
788 | } | |
789 | } | |
790 | ||
791 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) | |
792 | { | |
793 | TranslationBlock *tb1, **ptb; | |
794 | unsigned int n1; | |
795 | ||
796 | ptb = &tb->jmp_next[n]; | |
797 | tb1 = *ptb; | |
798 | if (tb1) { | |
799 | /* find tb(n) in circular list */ | |
800 | for (;;) { | |
801 | tb1 = *ptb; | |
802 | n1 = (uintptr_t)tb1 & 3; | |
803 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |
804 | if (n1 == n && tb1 == tb) { | |
805 | break; | |
806 | } | |
807 | if (n1 == 2) { | |
808 | ptb = &tb1->jmp_first; | |
809 | } else { | |
810 | ptb = &tb1->jmp_next[n1]; | |
811 | } | |
812 | } | |
813 | /* now we can suppress tb(n) from the list */ | |
814 | *ptb = tb->jmp_next[n]; | |
815 | ||
816 | tb->jmp_next[n] = NULL; | |
817 | } | |
818 | } | |
819 | ||
820 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
821 | another TB */ | |
822 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
823 | { | |
824 | tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n])); | |
825 | } | |
826 | ||
0c884d16 | 827 | /* invalidate one TB */ |
5b6dd868 BS |
828 | void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) |
829 | { | |
182735ef | 830 | CPUState *cpu; |
5b6dd868 BS |
831 | PageDesc *p; |
832 | unsigned int h, n1; | |
833 | tb_page_addr_t phys_pc; | |
834 | TranslationBlock *tb1, *tb2; | |
835 | ||
836 | /* remove the TB from the hash list */ | |
837 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
838 | h = tb_phys_hash_func(phys_pc); | |
5e5f07e0 | 839 | tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb); |
5b6dd868 BS |
840 | |
841 | /* remove the TB from the page list */ | |
842 | if (tb->page_addr[0] != page_addr) { | |
843 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
844 | tb_page_remove(&p->first_tb, tb); | |
845 | invalidate_page_bitmap(p); | |
846 | } | |
847 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
848 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
849 | tb_page_remove(&p->first_tb, tb); | |
850 | invalidate_page_bitmap(p); | |
851 | } | |
852 | ||
5e5f07e0 | 853 | tcg_ctx.tb_ctx.tb_invalidated_flag = 1; |
5b6dd868 BS |
854 | |
855 | /* remove the TB from the hash list */ | |
856 | h = tb_jmp_cache_hash_func(tb->pc); | |
bdc44640 | 857 | CPU_FOREACH(cpu) { |
8cd70437 AF |
858 | if (cpu->tb_jmp_cache[h] == tb) { |
859 | cpu->tb_jmp_cache[h] = NULL; | |
5b6dd868 BS |
860 | } |
861 | } | |
862 | ||
863 | /* suppress this TB from the two jump lists */ | |
864 | tb_jmp_remove(tb, 0); | |
865 | tb_jmp_remove(tb, 1); | |
866 | ||
867 | /* suppress any remaining jumps to this TB */ | |
868 | tb1 = tb->jmp_first; | |
869 | for (;;) { | |
870 | n1 = (uintptr_t)tb1 & 3; | |
871 | if (n1 == 2) { | |
872 | break; | |
873 | } | |
874 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |
875 | tb2 = tb1->jmp_next[n1]; | |
876 | tb_reset_jump(tb1, n1); | |
877 | tb1->jmp_next[n1] = NULL; | |
878 | tb1 = tb2; | |
879 | } | |
880 | tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */ | |
881 | ||
5e5f07e0 | 882 | tcg_ctx.tb_ctx.tb_phys_invalidate_count++; |
5b6dd868 BS |
883 | } |
884 | ||
885 | static inline void set_bits(uint8_t *tab, int start, int len) | |
886 | { | |
887 | int end, mask, end1; | |
888 | ||
889 | end = start + len; | |
890 | tab += start >> 3; | |
891 | mask = 0xff << (start & 7); | |
892 | if ((start & ~7) == (end & ~7)) { | |
893 | if (start < end) { | |
894 | mask &= ~(0xff << (end & 7)); | |
895 | *tab |= mask; | |
896 | } | |
897 | } else { | |
898 | *tab++ |= mask; | |
899 | start = (start + 8) & ~7; | |
900 | end1 = end & ~7; | |
901 | while (start < end1) { | |
902 | *tab++ = 0xff; | |
903 | start += 8; | |
904 | } | |
905 | if (start < end) { | |
906 | mask = ~(0xff << (end & 7)); | |
907 | *tab |= mask; | |
908 | } | |
909 | } | |
910 | } | |
911 | ||
912 | static void build_page_bitmap(PageDesc *p) | |
913 | { | |
914 | int n, tb_start, tb_end; | |
915 | TranslationBlock *tb; | |
916 | ||
917 | p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8); | |
918 | ||
919 | tb = p->first_tb; | |
920 | while (tb != NULL) { | |
921 | n = (uintptr_t)tb & 3; | |
922 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |
923 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
924 | if (n == 0) { | |
925 | /* NOTE: tb_end may be after the end of the page, but | |
926 | it is not a problem */ | |
927 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
928 | tb_end = tb_start + tb->size; | |
929 | if (tb_end > TARGET_PAGE_SIZE) { | |
930 | tb_end = TARGET_PAGE_SIZE; | |
931 | } | |
932 | } else { | |
933 | tb_start = 0; | |
934 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
935 | } | |
936 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |
937 | tb = tb->page_next[n]; | |
938 | } | |
939 | } | |
940 | ||
648f034c | 941 | TranslationBlock *tb_gen_code(CPUState *cpu, |
5b6dd868 BS |
942 | target_ulong pc, target_ulong cs_base, |
943 | int flags, int cflags) | |
944 | { | |
648f034c | 945 | CPUArchState *env = cpu->env_ptr; |
5b6dd868 BS |
946 | TranslationBlock *tb; |
947 | uint8_t *tc_ptr; | |
948 | tb_page_addr_t phys_pc, phys_page2; | |
949 | target_ulong virt_page2; | |
950 | int code_gen_size; | |
951 | ||
952 | phys_pc = get_page_addr_code(env, pc); | |
953 | tb = tb_alloc(pc); | |
954 | if (!tb) { | |
955 | /* flush must be done */ | |
956 | tb_flush(env); | |
957 | /* cannot fail at this point */ | |
958 | tb = tb_alloc(pc); | |
959 | /* Don't forget to invalidate previous TB info. */ | |
5e5f07e0 | 960 | tcg_ctx.tb_ctx.tb_invalidated_flag = 1; |
5b6dd868 | 961 | } |
0b0d3320 | 962 | tc_ptr = tcg_ctx.code_gen_ptr; |
5b6dd868 BS |
963 | tb->tc_ptr = tc_ptr; |
964 | tb->cs_base = cs_base; | |
965 | tb->flags = flags; | |
966 | tb->cflags = cflags; | |
967 | cpu_gen_code(env, tb, &code_gen_size); | |
0b0d3320 EV |
968 | tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr + |
969 | code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); | |
5b6dd868 BS |
970 | |
971 | /* check next page if needed */ | |
972 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; | |
973 | phys_page2 = -1; | |
974 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { | |
975 | phys_page2 = get_page_addr_code(env, virt_page2); | |
976 | } | |
977 | tb_link_page(tb, phys_pc, phys_page2); | |
978 | return tb; | |
979 | } | |
980 | ||
981 | /* | |
982 | * Invalidate all TBs which intersect with the target physical address range | |
983 | * [start;end[. NOTE: start and end may refer to *different* physical pages. | |
984 | * 'is_cpu_write_access' should be true if called from a real cpu write | |
985 | * access: the virtual CPU will exit the current TB if code is modified inside | |
986 | * this TB. | |
987 | */ | |
988 | void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end, | |
989 | int is_cpu_write_access) | |
990 | { | |
991 | while (start < end) { | |
992 | tb_invalidate_phys_page_range(start, end, is_cpu_write_access); | |
993 | start &= TARGET_PAGE_MASK; | |
994 | start += TARGET_PAGE_SIZE; | |
995 | } | |
996 | } | |
997 | ||
998 | /* | |
999 | * Invalidate all TBs which intersect with the target physical address range | |
1000 | * [start;end[. NOTE: start and end must refer to the *same* physical page. | |
1001 | * 'is_cpu_write_access' should be true if called from a real cpu write | |
1002 | * access: the virtual CPU will exit the current TB if code is modified inside | |
1003 | * this TB. | |
1004 | */ | |
1005 | void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, | |
1006 | int is_cpu_write_access) | |
1007 | { | |
1008 | TranslationBlock *tb, *tb_next, *saved_tb; | |
4917cf44 | 1009 | CPUState *cpu = current_cpu; |
baea4fae | 1010 | #if defined(TARGET_HAS_PRECISE_SMC) |
4917cf44 AF |
1011 | CPUArchState *env = NULL; |
1012 | #endif | |
5b6dd868 BS |
1013 | tb_page_addr_t tb_start, tb_end; |
1014 | PageDesc *p; | |
1015 | int n; | |
1016 | #ifdef TARGET_HAS_PRECISE_SMC | |
1017 | int current_tb_not_found = is_cpu_write_access; | |
1018 | TranslationBlock *current_tb = NULL; | |
1019 | int current_tb_modified = 0; | |
1020 | target_ulong current_pc = 0; | |
1021 | target_ulong current_cs_base = 0; | |
1022 | int current_flags = 0; | |
1023 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
1024 | ||
1025 | p = page_find(start >> TARGET_PAGE_BITS); | |
1026 | if (!p) { | |
1027 | return; | |
1028 | } | |
1029 | if (!p->code_bitmap && | |
1030 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && | |
1031 | is_cpu_write_access) { | |
1032 | /* build code bitmap */ | |
1033 | build_page_bitmap(p); | |
1034 | } | |
baea4fae | 1035 | #if defined(TARGET_HAS_PRECISE_SMC) |
4917cf44 AF |
1036 | if (cpu != NULL) { |
1037 | env = cpu->env_ptr; | |
d77953b9 | 1038 | } |
4917cf44 | 1039 | #endif |
5b6dd868 BS |
1040 | |
1041 | /* we remove all the TBs in the range [start, end[ */ | |
1042 | /* XXX: see if in some cases it could be faster to invalidate all | |
1043 | the code */ | |
1044 | tb = p->first_tb; | |
1045 | while (tb != NULL) { | |
1046 | n = (uintptr_t)tb & 3; | |
1047 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |
1048 | tb_next = tb->page_next[n]; | |
1049 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
1050 | if (n == 0) { | |
1051 | /* NOTE: tb_end may be after the end of the page, but | |
1052 | it is not a problem */ | |
1053 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
1054 | tb_end = tb_start + tb->size; | |
1055 | } else { | |
1056 | tb_start = tb->page_addr[1]; | |
1057 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
1058 | } | |
1059 | if (!(tb_end <= start || tb_start >= end)) { | |
1060 | #ifdef TARGET_HAS_PRECISE_SMC | |
1061 | if (current_tb_not_found) { | |
1062 | current_tb_not_found = 0; | |
1063 | current_tb = NULL; | |
93afeade | 1064 | if (cpu->mem_io_pc) { |
5b6dd868 | 1065 | /* now we have a real cpu fault */ |
93afeade | 1066 | current_tb = tb_find_pc(cpu->mem_io_pc); |
5b6dd868 BS |
1067 | } |
1068 | } | |
1069 | if (current_tb == tb && | |
1070 | (current_tb->cflags & CF_COUNT_MASK) != 1) { | |
1071 | /* If we are modifying the current TB, we must stop | |
1072 | its execution. We could be more precise by checking | |
1073 | that the modification is after the current PC, but it | |
1074 | would require a specialized function to partially | |
1075 | restore the CPU state */ | |
1076 | ||
1077 | current_tb_modified = 1; | |
74f10515 | 1078 | cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc); |
5b6dd868 BS |
1079 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
1080 | ¤t_flags); | |
1081 | } | |
1082 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
1083 | /* we need to do that to handle the case where a signal | |
1084 | occurs while doing tb_phys_invalidate() */ | |
1085 | saved_tb = NULL; | |
d77953b9 AF |
1086 | if (cpu != NULL) { |
1087 | saved_tb = cpu->current_tb; | |
1088 | cpu->current_tb = NULL; | |
5b6dd868 BS |
1089 | } |
1090 | tb_phys_invalidate(tb, -1); | |
d77953b9 AF |
1091 | if (cpu != NULL) { |
1092 | cpu->current_tb = saved_tb; | |
c3affe56 AF |
1093 | if (cpu->interrupt_request && cpu->current_tb) { |
1094 | cpu_interrupt(cpu, cpu->interrupt_request); | |
5b6dd868 BS |
1095 | } |
1096 | } | |
1097 | } | |
1098 | tb = tb_next; | |
1099 | } | |
1100 | #if !defined(CONFIG_USER_ONLY) | |
1101 | /* if no code remaining, no need to continue to use slow writes */ | |
1102 | if (!p->first_tb) { | |
1103 | invalidate_page_bitmap(p); | |
1104 | if (is_cpu_write_access) { | |
baea4fae | 1105 | tlb_unprotect_code_phys(cpu, start, cpu->mem_io_vaddr); |
5b6dd868 BS |
1106 | } |
1107 | } | |
1108 | #endif | |
1109 | #ifdef TARGET_HAS_PRECISE_SMC | |
1110 | if (current_tb_modified) { | |
1111 | /* we generate a block containing just the instruction | |
1112 | modifying the memory. It will ensure that it cannot modify | |
1113 | itself */ | |
d77953b9 | 1114 | cpu->current_tb = NULL; |
648f034c | 1115 | tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1); |
0ea8cb88 | 1116 | cpu_resume_from_signal(cpu, NULL); |
5b6dd868 BS |
1117 | } |
1118 | #endif | |
1119 | } | |
1120 | ||
1121 | /* len must be <= 8 and start must be a multiple of len */ | |
1122 | void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len) | |
1123 | { | |
1124 | PageDesc *p; | |
1125 | int offset, b; | |
1126 | ||
1127 | #if 0 | |
1128 | if (1) { | |
1129 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", | |
1130 | cpu_single_env->mem_io_vaddr, len, | |
1131 | cpu_single_env->eip, | |
1132 | cpu_single_env->eip + | |
1133 | (intptr_t)cpu_single_env->segs[R_CS].base); | |
1134 | } | |
1135 | #endif | |
1136 | p = page_find(start >> TARGET_PAGE_BITS); | |
1137 | if (!p) { | |
1138 | return; | |
1139 | } | |
1140 | if (p->code_bitmap) { | |
1141 | offset = start & ~TARGET_PAGE_MASK; | |
1142 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |
1143 | if (b & ((1 << len) - 1)) { | |
1144 | goto do_invalidate; | |
1145 | } | |
1146 | } else { | |
1147 | do_invalidate: | |
1148 | tb_invalidate_phys_page_range(start, start + len, 1); | |
1149 | } | |
1150 | } | |
1151 | ||
1152 | #if !defined(CONFIG_SOFTMMU) | |
1153 | static void tb_invalidate_phys_page(tb_page_addr_t addr, | |
d02532f0 AG |
1154 | uintptr_t pc, void *puc, |
1155 | bool locked) | |
5b6dd868 BS |
1156 | { |
1157 | TranslationBlock *tb; | |
1158 | PageDesc *p; | |
1159 | int n; | |
1160 | #ifdef TARGET_HAS_PRECISE_SMC | |
1161 | TranslationBlock *current_tb = NULL; | |
4917cf44 AF |
1162 | CPUState *cpu = current_cpu; |
1163 | CPUArchState *env = NULL; | |
5b6dd868 BS |
1164 | int current_tb_modified = 0; |
1165 | target_ulong current_pc = 0; | |
1166 | target_ulong current_cs_base = 0; | |
1167 | int current_flags = 0; | |
1168 | #endif | |
1169 | ||
1170 | addr &= TARGET_PAGE_MASK; | |
1171 | p = page_find(addr >> TARGET_PAGE_BITS); | |
1172 | if (!p) { | |
1173 | return; | |
1174 | } | |
1175 | tb = p->first_tb; | |
1176 | #ifdef TARGET_HAS_PRECISE_SMC | |
1177 | if (tb && pc != 0) { | |
1178 | current_tb = tb_find_pc(pc); | |
1179 | } | |
4917cf44 AF |
1180 | if (cpu != NULL) { |
1181 | env = cpu->env_ptr; | |
d77953b9 | 1182 | } |
5b6dd868 BS |
1183 | #endif |
1184 | while (tb != NULL) { | |
1185 | n = (uintptr_t)tb & 3; | |
1186 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |
1187 | #ifdef TARGET_HAS_PRECISE_SMC | |
1188 | if (current_tb == tb && | |
1189 | (current_tb->cflags & CF_COUNT_MASK) != 1) { | |
1190 | /* If we are modifying the current TB, we must stop | |
1191 | its execution. We could be more precise by checking | |
1192 | that the modification is after the current PC, but it | |
1193 | would require a specialized function to partially | |
1194 | restore the CPU state */ | |
1195 | ||
1196 | current_tb_modified = 1; | |
74f10515 | 1197 | cpu_restore_state_from_tb(cpu, current_tb, pc); |
5b6dd868 BS |
1198 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
1199 | ¤t_flags); | |
1200 | } | |
1201 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
1202 | tb_phys_invalidate(tb, addr); | |
1203 | tb = tb->page_next[n]; | |
1204 | } | |
1205 | p->first_tb = NULL; | |
1206 | #ifdef TARGET_HAS_PRECISE_SMC | |
1207 | if (current_tb_modified) { | |
1208 | /* we generate a block containing just the instruction | |
1209 | modifying the memory. It will ensure that it cannot modify | |
1210 | itself */ | |
d77953b9 | 1211 | cpu->current_tb = NULL; |
648f034c | 1212 | tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1); |
d02532f0 AG |
1213 | if (locked) { |
1214 | mmap_unlock(); | |
1215 | } | |
0ea8cb88 | 1216 | cpu_resume_from_signal(cpu, puc); |
5b6dd868 BS |
1217 | } |
1218 | #endif | |
1219 | } | |
1220 | #endif | |
1221 | ||
1222 | /* add the tb in the target page and protect it if necessary */ | |
1223 | static inline void tb_alloc_page(TranslationBlock *tb, | |
1224 | unsigned int n, tb_page_addr_t page_addr) | |
1225 | { | |
1226 | PageDesc *p; | |
1227 | #ifndef CONFIG_USER_ONLY | |
1228 | bool page_already_protected; | |
1229 | #endif | |
1230 | ||
1231 | tb->page_addr[n] = page_addr; | |
1232 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1); | |
1233 | tb->page_next[n] = p->first_tb; | |
1234 | #ifndef CONFIG_USER_ONLY | |
1235 | page_already_protected = p->first_tb != NULL; | |
1236 | #endif | |
1237 | p->first_tb = (TranslationBlock *)((uintptr_t)tb | n); | |
1238 | invalidate_page_bitmap(p); | |
1239 | ||
1240 | #if defined(TARGET_HAS_SMC) || 1 | |
1241 | ||
1242 | #if defined(CONFIG_USER_ONLY) | |
1243 | if (p->flags & PAGE_WRITE) { | |
1244 | target_ulong addr; | |
1245 | PageDesc *p2; | |
1246 | int prot; | |
1247 | ||
1248 | /* force the host page as non writable (writes will have a | |
1249 | page fault + mprotect overhead) */ | |
1250 | page_addr &= qemu_host_page_mask; | |
1251 | prot = 0; | |
1252 | for (addr = page_addr; addr < page_addr + qemu_host_page_size; | |
1253 | addr += TARGET_PAGE_SIZE) { | |
1254 | ||
1255 | p2 = page_find(addr >> TARGET_PAGE_BITS); | |
1256 | if (!p2) { | |
1257 | continue; | |
1258 | } | |
1259 | prot |= p2->flags; | |
1260 | p2->flags &= ~PAGE_WRITE; | |
1261 | } | |
1262 | mprotect(g2h(page_addr), qemu_host_page_size, | |
1263 | (prot & PAGE_BITS) & ~PAGE_WRITE); | |
1264 | #ifdef DEBUG_TB_INVALIDATE | |
1265 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", | |
1266 | page_addr); | |
1267 | #endif | |
1268 | } | |
1269 | #else | |
1270 | /* if some code is already present, then the pages are already | |
1271 | protected. So we handle the case where only the first TB is | |
1272 | allocated in a physical page */ | |
1273 | if (!page_already_protected) { | |
1274 | tlb_protect_code(page_addr); | |
1275 | } | |
1276 | #endif | |
1277 | ||
1278 | #endif /* TARGET_HAS_SMC */ | |
1279 | } | |
1280 | ||
1281 | /* add a new TB and link it to the physical page tables. phys_page2 is | |
1282 | (-1) to indicate that only one page contains the TB. */ | |
1283 | static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, | |
1284 | tb_page_addr_t phys_page2) | |
1285 | { | |
1286 | unsigned int h; | |
1287 | TranslationBlock **ptb; | |
1288 | ||
1289 | /* Grab the mmap lock to stop another thread invalidating this TB | |
1290 | before we are done. */ | |
1291 | mmap_lock(); | |
1292 | /* add in the physical hash table */ | |
1293 | h = tb_phys_hash_func(phys_pc); | |
5e5f07e0 | 1294 | ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h]; |
5b6dd868 BS |
1295 | tb->phys_hash_next = *ptb; |
1296 | *ptb = tb; | |
1297 | ||
1298 | /* add in the page list */ | |
1299 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); | |
1300 | if (phys_page2 != -1) { | |
1301 | tb_alloc_page(tb, 1, phys_page2); | |
1302 | } else { | |
1303 | tb->page_addr[1] = -1; | |
1304 | } | |
1305 | ||
1306 | tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); | |
1307 | tb->jmp_next[0] = NULL; | |
1308 | tb->jmp_next[1] = NULL; | |
1309 | ||
1310 | /* init original jump addresses */ | |
1311 | if (tb->tb_next_offset[0] != 0xffff) { | |
1312 | tb_reset_jump(tb, 0); | |
1313 | } | |
1314 | if (tb->tb_next_offset[1] != 0xffff) { | |
1315 | tb_reset_jump(tb, 1); | |
1316 | } | |
1317 | ||
1318 | #ifdef DEBUG_TB_CHECK | |
1319 | tb_page_check(); | |
1320 | #endif | |
1321 | mmap_unlock(); | |
1322 | } | |
1323 | ||
5b6dd868 BS |
1324 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < |
1325 | tb[1].tc_ptr. Return NULL if not found */ | |
a8a826a3 | 1326 | static TranslationBlock *tb_find_pc(uintptr_t tc_ptr) |
5b6dd868 BS |
1327 | { |
1328 | int m_min, m_max, m; | |
1329 | uintptr_t v; | |
1330 | TranslationBlock *tb; | |
1331 | ||
5e5f07e0 | 1332 | if (tcg_ctx.tb_ctx.nb_tbs <= 0) { |
5b6dd868 BS |
1333 | return NULL; |
1334 | } | |
0b0d3320 EV |
1335 | if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer || |
1336 | tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) { | |
5b6dd868 BS |
1337 | return NULL; |
1338 | } | |
1339 | /* binary search (cf Knuth) */ | |
1340 | m_min = 0; | |
5e5f07e0 | 1341 | m_max = tcg_ctx.tb_ctx.nb_tbs - 1; |
5b6dd868 BS |
1342 | while (m_min <= m_max) { |
1343 | m = (m_min + m_max) >> 1; | |
5e5f07e0 | 1344 | tb = &tcg_ctx.tb_ctx.tbs[m]; |
5b6dd868 BS |
1345 | v = (uintptr_t)tb->tc_ptr; |
1346 | if (v == tc_ptr) { | |
1347 | return tb; | |
1348 | } else if (tc_ptr < v) { | |
1349 | m_max = m - 1; | |
1350 | } else { | |
1351 | m_min = m + 1; | |
1352 | } | |
1353 | } | |
5e5f07e0 | 1354 | return &tcg_ctx.tb_ctx.tbs[m_max]; |
5b6dd868 BS |
1355 | } |
1356 | ||
5b6dd868 | 1357 | #if defined(TARGET_HAS_ICE) && !defined(CONFIG_USER_ONLY) |
29d8ec7b | 1358 | void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr) |
5b6dd868 BS |
1359 | { |
1360 | ram_addr_t ram_addr; | |
5c8a00ce | 1361 | MemoryRegion *mr; |
149f54b5 | 1362 | hwaddr l = 1; |
5b6dd868 | 1363 | |
29d8ec7b | 1364 | mr = address_space_translate(as, addr, &addr, &l, false); |
5c8a00ce PB |
1365 | if (!(memory_region_is_ram(mr) |
1366 | || memory_region_is_romd(mr))) { | |
5b6dd868 BS |
1367 | return; |
1368 | } | |
5c8a00ce | 1369 | ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK) |
149f54b5 | 1370 | + addr; |
5b6dd868 BS |
1371 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); |
1372 | } | |
1373 | #endif /* TARGET_HAS_ICE && !defined(CONFIG_USER_ONLY) */ | |
1374 | ||
239c51a5 | 1375 | void tb_check_watchpoint(CPUState *cpu) |
5b6dd868 BS |
1376 | { |
1377 | TranslationBlock *tb; | |
1378 | ||
93afeade | 1379 | tb = tb_find_pc(cpu->mem_io_pc); |
5b6dd868 | 1380 | if (!tb) { |
a47dddd7 | 1381 | cpu_abort(cpu, "check_watchpoint: could not find TB for pc=%p", |
93afeade | 1382 | (void *)cpu->mem_io_pc); |
5b6dd868 | 1383 | } |
74f10515 | 1384 | cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc); |
5b6dd868 BS |
1385 | tb_phys_invalidate(tb, -1); |
1386 | } | |
1387 | ||
1388 | #ifndef CONFIG_USER_ONLY | |
1389 | /* mask must never be zero, except for A20 change call */ | |
c3affe56 | 1390 | static void tcg_handle_interrupt(CPUState *cpu, int mask) |
5b6dd868 | 1391 | { |
5b6dd868 BS |
1392 | int old_mask; |
1393 | ||
259186a7 AF |
1394 | old_mask = cpu->interrupt_request; |
1395 | cpu->interrupt_request |= mask; | |
5b6dd868 BS |
1396 | |
1397 | /* | |
1398 | * If called from iothread context, wake the target cpu in | |
1399 | * case its halted. | |
1400 | */ | |
1401 | if (!qemu_cpu_is_self(cpu)) { | |
1402 | qemu_cpu_kick(cpu); | |
1403 | return; | |
1404 | } | |
1405 | ||
1406 | if (use_icount) { | |
28ecfd7a | 1407 | cpu->icount_decr.u16.high = 0xffff; |
99df7dce | 1408 | if (!cpu_can_do_io(cpu) |
5b6dd868 | 1409 | && (mask & ~old_mask) != 0) { |
a47dddd7 | 1410 | cpu_abort(cpu, "Raised interrupt while not in I/O function"); |
5b6dd868 BS |
1411 | } |
1412 | } else { | |
378df4b2 | 1413 | cpu->tcg_exit_req = 1; |
5b6dd868 BS |
1414 | } |
1415 | } | |
1416 | ||
1417 | CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt; | |
1418 | ||
1419 | /* in deterministic execution mode, instructions doing device I/Os | |
1420 | must be at the end of the TB */ | |
90b40a69 | 1421 | void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) |
5b6dd868 | 1422 | { |
a47dddd7 | 1423 | #if defined(TARGET_MIPS) || defined(TARGET_SH4) |
90b40a69 | 1424 | CPUArchState *env = cpu->env_ptr; |
a47dddd7 | 1425 | #endif |
5b6dd868 BS |
1426 | TranslationBlock *tb; |
1427 | uint32_t n, cflags; | |
1428 | target_ulong pc, cs_base; | |
1429 | uint64_t flags; | |
1430 | ||
1431 | tb = tb_find_pc(retaddr); | |
1432 | if (!tb) { | |
a47dddd7 | 1433 | cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", |
5b6dd868 BS |
1434 | (void *)retaddr); |
1435 | } | |
28ecfd7a | 1436 | n = cpu->icount_decr.u16.low + tb->icount; |
74f10515 | 1437 | cpu_restore_state_from_tb(cpu, tb, retaddr); |
5b6dd868 BS |
1438 | /* Calculate how many instructions had been executed before the fault |
1439 | occurred. */ | |
28ecfd7a | 1440 | n = n - cpu->icount_decr.u16.low; |
5b6dd868 BS |
1441 | /* Generate a new TB ending on the I/O insn. */ |
1442 | n++; | |
1443 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
1444 | they were already the first instruction in the TB. If this is not | |
1445 | the first instruction in a TB then re-execute the preceding | |
1446 | branch. */ | |
1447 | #if defined(TARGET_MIPS) | |
1448 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
1449 | env->active_tc.PC -= 4; | |
28ecfd7a | 1450 | cpu->icount_decr.u16.low++; |
5b6dd868 BS |
1451 | env->hflags &= ~MIPS_HFLAG_BMASK; |
1452 | } | |
1453 | #elif defined(TARGET_SH4) | |
1454 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
1455 | && n > 1) { | |
1456 | env->pc -= 2; | |
28ecfd7a | 1457 | cpu->icount_decr.u16.low++; |
5b6dd868 BS |
1458 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); |
1459 | } | |
1460 | #endif | |
1461 | /* This should never happen. */ | |
1462 | if (n > CF_COUNT_MASK) { | |
a47dddd7 | 1463 | cpu_abort(cpu, "TB too big during recompile"); |
5b6dd868 BS |
1464 | } |
1465 | ||
1466 | cflags = n | CF_LAST_IO; | |
1467 | pc = tb->pc; | |
1468 | cs_base = tb->cs_base; | |
1469 | flags = tb->flags; | |
1470 | tb_phys_invalidate(tb, -1); | |
1471 | /* FIXME: In theory this could raise an exception. In practice | |
1472 | we have already translated the block once so it's probably ok. */ | |
648f034c | 1473 | tb_gen_code(cpu, pc, cs_base, flags, cflags); |
5b6dd868 BS |
1474 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not |
1475 | the first in the TB) then we end up generating a whole new TB and | |
1476 | repeating the fault, which is horribly inefficient. | |
1477 | Better would be to execute just this insn uncached, or generate a | |
1478 | second new TB. */ | |
0ea8cb88 | 1479 | cpu_resume_from_signal(cpu, NULL); |
5b6dd868 BS |
1480 | } |
1481 | ||
611d4f99 | 1482 | void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) |
5b6dd868 BS |
1483 | { |
1484 | unsigned int i; | |
1485 | ||
1486 | /* Discard jump cache entries for any tb which might potentially | |
1487 | overlap the flushed page. */ | |
1488 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
8cd70437 | 1489 | memset(&cpu->tb_jmp_cache[i], 0, |
5b6dd868 BS |
1490 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); |
1491 | ||
1492 | i = tb_jmp_cache_hash_page(addr); | |
8cd70437 | 1493 | memset(&cpu->tb_jmp_cache[i], 0, |
5b6dd868 BS |
1494 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); |
1495 | } | |
1496 | ||
1497 | void dump_exec_info(FILE *f, fprintf_function cpu_fprintf) | |
1498 | { | |
1499 | int i, target_code_size, max_target_code_size; | |
1500 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
1501 | TranslationBlock *tb; | |
1502 | ||
1503 | target_code_size = 0; | |
1504 | max_target_code_size = 0; | |
1505 | cross_page = 0; | |
1506 | direct_jmp_count = 0; | |
1507 | direct_jmp2_count = 0; | |
5e5f07e0 EV |
1508 | for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) { |
1509 | tb = &tcg_ctx.tb_ctx.tbs[i]; | |
5b6dd868 BS |
1510 | target_code_size += tb->size; |
1511 | if (tb->size > max_target_code_size) { | |
1512 | max_target_code_size = tb->size; | |
1513 | } | |
1514 | if (tb->page_addr[1] != -1) { | |
1515 | cross_page++; | |
1516 | } | |
1517 | if (tb->tb_next_offset[0] != 0xffff) { | |
1518 | direct_jmp_count++; | |
1519 | if (tb->tb_next_offset[1] != 0xffff) { | |
1520 | direct_jmp2_count++; | |
1521 | } | |
1522 | } | |
1523 | } | |
1524 | /* XXX: avoid using doubles ? */ | |
1525 | cpu_fprintf(f, "Translation buffer state:\n"); | |
1526 | cpu_fprintf(f, "gen code size %td/%zd\n", | |
0b0d3320 EV |
1527 | tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer, |
1528 | tcg_ctx.code_gen_buffer_max_size); | |
5b6dd868 | 1529 | cpu_fprintf(f, "TB count %d/%d\n", |
5e5f07e0 | 1530 | tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks); |
5b6dd868 | 1531 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", |
5e5f07e0 EV |
1532 | tcg_ctx.tb_ctx.nb_tbs ? target_code_size / |
1533 | tcg_ctx.tb_ctx.nb_tbs : 0, | |
1534 | max_target_code_size); | |
5b6dd868 | 1535 | cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n", |
5e5f07e0 EV |
1536 | tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr - |
1537 | tcg_ctx.code_gen_buffer) / | |
1538 | tcg_ctx.tb_ctx.nb_tbs : 0, | |
1539 | target_code_size ? (double) (tcg_ctx.code_gen_ptr - | |
1540 | tcg_ctx.code_gen_buffer) / | |
1541 | target_code_size : 0); | |
1542 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page, | |
1543 | tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) / | |
1544 | tcg_ctx.tb_ctx.nb_tbs : 0); | |
5b6dd868 BS |
1545 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", |
1546 | direct_jmp_count, | |
5e5f07e0 EV |
1547 | tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) / |
1548 | tcg_ctx.tb_ctx.nb_tbs : 0, | |
5b6dd868 | 1549 | direct_jmp2_count, |
5e5f07e0 EV |
1550 | tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) / |
1551 | tcg_ctx.tb_ctx.nb_tbs : 0); | |
5b6dd868 | 1552 | cpu_fprintf(f, "\nStatistics:\n"); |
5e5f07e0 EV |
1553 | cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count); |
1554 | cpu_fprintf(f, "TB invalidate count %d\n", | |
1555 | tcg_ctx.tb_ctx.tb_phys_invalidate_count); | |
5b6dd868 BS |
1556 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); |
1557 | tcg_dump_info(f, cpu_fprintf); | |
1558 | } | |
1559 | ||
1560 | #else /* CONFIG_USER_ONLY */ | |
1561 | ||
c3affe56 | 1562 | void cpu_interrupt(CPUState *cpu, int mask) |
5b6dd868 | 1563 | { |
259186a7 | 1564 | cpu->interrupt_request |= mask; |
378df4b2 | 1565 | cpu->tcg_exit_req = 1; |
5b6dd868 BS |
1566 | } |
1567 | ||
1568 | /* | |
1569 | * Walks guest process memory "regions" one by one | |
1570 | * and calls callback function 'fn' for each region. | |
1571 | */ | |
1572 | struct walk_memory_regions_data { | |
1573 | walk_memory_regions_fn fn; | |
1574 | void *priv; | |
1575 | uintptr_t start; | |
1576 | int prot; | |
1577 | }; | |
1578 | ||
1579 | static int walk_memory_regions_end(struct walk_memory_regions_data *data, | |
1580 | abi_ulong end, int new_prot) | |
1581 | { | |
1582 | if (data->start != -1ul) { | |
1583 | int rc = data->fn(data->priv, data->start, end, data->prot); | |
1584 | if (rc != 0) { | |
1585 | return rc; | |
1586 | } | |
1587 | } | |
1588 | ||
1589 | data->start = (new_prot ? end : -1ul); | |
1590 | data->prot = new_prot; | |
1591 | ||
1592 | return 0; | |
1593 | } | |
1594 | ||
1595 | static int walk_memory_regions_1(struct walk_memory_regions_data *data, | |
1596 | abi_ulong base, int level, void **lp) | |
1597 | { | |
1598 | abi_ulong pa; | |
1599 | int i, rc; | |
1600 | ||
1601 | if (*lp == NULL) { | |
1602 | return walk_memory_regions_end(data, base, 0); | |
1603 | } | |
1604 | ||
1605 | if (level == 0) { | |
1606 | PageDesc *pd = *lp; | |
1607 | ||
03f49957 | 1608 | for (i = 0; i < V_L2_SIZE; ++i) { |
5b6dd868 BS |
1609 | int prot = pd[i].flags; |
1610 | ||
1611 | pa = base | (i << TARGET_PAGE_BITS); | |
1612 | if (prot != data->prot) { | |
1613 | rc = walk_memory_regions_end(data, pa, prot); | |
1614 | if (rc != 0) { | |
1615 | return rc; | |
1616 | } | |
1617 | } | |
1618 | } | |
1619 | } else { | |
1620 | void **pp = *lp; | |
1621 | ||
03f49957 | 1622 | for (i = 0; i < V_L2_SIZE; ++i) { |
5b6dd868 | 1623 | pa = base | ((abi_ulong)i << |
03f49957 | 1624 | (TARGET_PAGE_BITS + V_L2_BITS * level)); |
5b6dd868 BS |
1625 | rc = walk_memory_regions_1(data, pa, level - 1, pp + i); |
1626 | if (rc != 0) { | |
1627 | return rc; | |
1628 | } | |
1629 | } | |
1630 | } | |
1631 | ||
1632 | return 0; | |
1633 | } | |
1634 | ||
1635 | int walk_memory_regions(void *priv, walk_memory_regions_fn fn) | |
1636 | { | |
1637 | struct walk_memory_regions_data data; | |
1638 | uintptr_t i; | |
1639 | ||
1640 | data.fn = fn; | |
1641 | data.priv = priv; | |
1642 | data.start = -1ul; | |
1643 | data.prot = 0; | |
1644 | ||
1645 | for (i = 0; i < V_L1_SIZE; i++) { | |
1646 | int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT, | |
03f49957 | 1647 | V_L1_SHIFT / V_L2_BITS - 1, l1_map + i); |
5b6dd868 BS |
1648 | |
1649 | if (rc != 0) { | |
1650 | return rc; | |
1651 | } | |
1652 | } | |
1653 | ||
1654 | return walk_memory_regions_end(&data, 0, 0); | |
1655 | } | |
1656 | ||
1657 | static int dump_region(void *priv, abi_ulong start, | |
1658 | abi_ulong end, unsigned long prot) | |
1659 | { | |
1660 | FILE *f = (FILE *)priv; | |
1661 | ||
1662 | (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx | |
1663 | " "TARGET_ABI_FMT_lx" %c%c%c\n", | |
1664 | start, end, end - start, | |
1665 | ((prot & PAGE_READ) ? 'r' : '-'), | |
1666 | ((prot & PAGE_WRITE) ? 'w' : '-'), | |
1667 | ((prot & PAGE_EXEC) ? 'x' : '-')); | |
1668 | ||
1669 | return 0; | |
1670 | } | |
1671 | ||
1672 | /* dump memory mappings */ | |
1673 | void page_dump(FILE *f) | |
1674 | { | |
227b8175 SW |
1675 | const int length = sizeof(abi_ulong) * 2; |
1676 | (void) fprintf(f, "%-*s %-*s %-*s %s\n", | |
1677 | length, "start", length, "end", length, "size", "prot"); | |
5b6dd868 BS |
1678 | walk_memory_regions(f, dump_region); |
1679 | } | |
1680 | ||
1681 | int page_get_flags(target_ulong address) | |
1682 | { | |
1683 | PageDesc *p; | |
1684 | ||
1685 | p = page_find(address >> TARGET_PAGE_BITS); | |
1686 | if (!p) { | |
1687 | return 0; | |
1688 | } | |
1689 | return p->flags; | |
1690 | } | |
1691 | ||
1692 | /* Modify the flags of a page and invalidate the code if necessary. | |
1693 | The flag PAGE_WRITE_ORG is positioned automatically depending | |
1694 | on PAGE_WRITE. The mmap_lock should already be held. */ | |
1695 | void page_set_flags(target_ulong start, target_ulong end, int flags) | |
1696 | { | |
1697 | target_ulong addr, len; | |
1698 | ||
1699 | /* This function should never be called with addresses outside the | |
1700 | guest address space. If this assert fires, it probably indicates | |
1701 | a missing call to h2g_valid. */ | |
1702 | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS | |
1703 | assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); | |
1704 | #endif | |
1705 | assert(start < end); | |
1706 | ||
1707 | start = start & TARGET_PAGE_MASK; | |
1708 | end = TARGET_PAGE_ALIGN(end); | |
1709 | ||
1710 | if (flags & PAGE_WRITE) { | |
1711 | flags |= PAGE_WRITE_ORG; | |
1712 | } | |
1713 | ||
1714 | for (addr = start, len = end - start; | |
1715 | len != 0; | |
1716 | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
1717 | PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
1718 | ||
1719 | /* If the write protection bit is set, then we invalidate | |
1720 | the code inside. */ | |
1721 | if (!(p->flags & PAGE_WRITE) && | |
1722 | (flags & PAGE_WRITE) && | |
1723 | p->first_tb) { | |
d02532f0 | 1724 | tb_invalidate_phys_page(addr, 0, NULL, false); |
5b6dd868 BS |
1725 | } |
1726 | p->flags = flags; | |
1727 | } | |
1728 | } | |
1729 | ||
1730 | int page_check_range(target_ulong start, target_ulong len, int flags) | |
1731 | { | |
1732 | PageDesc *p; | |
1733 | target_ulong end; | |
1734 | target_ulong addr; | |
1735 | ||
1736 | /* This function should never be called with addresses outside the | |
1737 | guest address space. If this assert fires, it probably indicates | |
1738 | a missing call to h2g_valid. */ | |
1739 | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS | |
1740 | assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); | |
1741 | #endif | |
1742 | ||
1743 | if (len == 0) { | |
1744 | return 0; | |
1745 | } | |
1746 | if (start + len - 1 < start) { | |
1747 | /* We've wrapped around. */ | |
1748 | return -1; | |
1749 | } | |
1750 | ||
1751 | /* must do before we loose bits in the next step */ | |
1752 | end = TARGET_PAGE_ALIGN(start + len); | |
1753 | start = start & TARGET_PAGE_MASK; | |
1754 | ||
1755 | for (addr = start, len = end - start; | |
1756 | len != 0; | |
1757 | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
1758 | p = page_find(addr >> TARGET_PAGE_BITS); | |
1759 | if (!p) { | |
1760 | return -1; | |
1761 | } | |
1762 | if (!(p->flags & PAGE_VALID)) { | |
1763 | return -1; | |
1764 | } | |
1765 | ||
1766 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { | |
1767 | return -1; | |
1768 | } | |
1769 | if (flags & PAGE_WRITE) { | |
1770 | if (!(p->flags & PAGE_WRITE_ORG)) { | |
1771 | return -1; | |
1772 | } | |
1773 | /* unprotect the page if it was put read-only because it | |
1774 | contains translated code */ | |
1775 | if (!(p->flags & PAGE_WRITE)) { | |
1776 | if (!page_unprotect(addr, 0, NULL)) { | |
1777 | return -1; | |
1778 | } | |
1779 | } | |
5b6dd868 BS |
1780 | } |
1781 | } | |
1782 | return 0; | |
1783 | } | |
1784 | ||
1785 | /* called from signal handler: invalidate the code and unprotect the | |
1786 | page. Return TRUE if the fault was successfully handled. */ | |
1787 | int page_unprotect(target_ulong address, uintptr_t pc, void *puc) | |
1788 | { | |
1789 | unsigned int prot; | |
1790 | PageDesc *p; | |
1791 | target_ulong host_start, host_end, addr; | |
1792 | ||
1793 | /* Technically this isn't safe inside a signal handler. However we | |
1794 | know this only ever happens in a synchronous SEGV handler, so in | |
1795 | practice it seems to be ok. */ | |
1796 | mmap_lock(); | |
1797 | ||
1798 | p = page_find(address >> TARGET_PAGE_BITS); | |
1799 | if (!p) { | |
1800 | mmap_unlock(); | |
1801 | return 0; | |
1802 | } | |
1803 | ||
1804 | /* if the page was really writable, then we change its | |
1805 | protection back to writable */ | |
1806 | if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) { | |
1807 | host_start = address & qemu_host_page_mask; | |
1808 | host_end = host_start + qemu_host_page_size; | |
1809 | ||
1810 | prot = 0; | |
1811 | for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) { | |
1812 | p = page_find(addr >> TARGET_PAGE_BITS); | |
1813 | p->flags |= PAGE_WRITE; | |
1814 | prot |= p->flags; | |
1815 | ||
1816 | /* and since the content will be modified, we must invalidate | |
1817 | the corresponding translated code. */ | |
d02532f0 | 1818 | tb_invalidate_phys_page(addr, pc, puc, true); |
5b6dd868 BS |
1819 | #ifdef DEBUG_TB_CHECK |
1820 | tb_invalidate_check(addr); | |
1821 | #endif | |
1822 | } | |
1823 | mprotect((void *)g2h(host_start), qemu_host_page_size, | |
1824 | prot & PAGE_BITS); | |
1825 | ||
1826 | mmap_unlock(); | |
1827 | return 1; | |
1828 | } | |
1829 | mmap_unlock(); | |
1830 | return 0; | |
1831 | } | |
1832 | #endif /* CONFIG_USER_ONLY */ |