]>
Commit | Line | Data |
---|---|---|
494b00c7 CD |
1 | /* |
2 | * ARM implementation of KVM hooks | |
3 | * | |
4 | * Copyright Christoffer Dall 2009-2010 | |
5 | * | |
6 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
7 | * See the COPYING file in the top-level directory. | |
8 | * | |
9 | */ | |
10 | ||
11 | #include <stdio.h> | |
12 | #include <sys/types.h> | |
13 | #include <sys/ioctl.h> | |
14 | #include <sys/mman.h> | |
15 | ||
16 | #include <linux/kvm.h> | |
17 | ||
18 | #include "qemu-common.h" | |
19 | #include "qemu/timer.h" | |
20 | #include "sysemu/sysemu.h" | |
21 | #include "sysemu/kvm.h" | |
eb035b48 | 22 | #include "kvm_arm.h" |
494b00c7 | 23 | #include "cpu.h" |
bd2be150 | 24 | #include "hw/arm/arm.h" |
494b00c7 CD |
25 | |
26 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { | |
27 | KVM_CAP_LAST_INFO | |
28 | }; | |
29 | ||
30 | int kvm_arch_init(KVMState *s) | |
31 | { | |
32 | /* For ARM interrupt delivery is always asynchronous, | |
33 | * whether we are using an in-kernel VGIC or not. | |
34 | */ | |
35 | kvm_async_interrupts_allowed = true; | |
36 | return 0; | |
37 | } | |
38 | ||
39 | unsigned long kvm_arch_vcpu_id(CPUState *cpu) | |
40 | { | |
41 | return cpu->cpu_index; | |
42 | } | |
43 | ||
44 | int kvm_arch_init_vcpu(CPUState *cs) | |
45 | { | |
46 | struct kvm_vcpu_init init; | |
81635574 PM |
47 | int ret; |
48 | uint64_t v; | |
49 | struct kvm_one_reg r; | |
494b00c7 CD |
50 | |
51 | init.target = KVM_ARM_TARGET_CORTEX_A15; | |
52 | memset(init.features, 0, sizeof(init.features)); | |
81635574 PM |
53 | ret = kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); |
54 | if (ret) { | |
55 | return ret; | |
56 | } | |
57 | /* Query the kernel to make sure it supports 32 VFP | |
58 | * registers: QEMU's "cortex-a15" CPU is always a | |
59 | * VFP-D32 core. The simplest way to do this is just | |
60 | * to attempt to read register d31. | |
61 | */ | |
62 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31; | |
63 | r.addr = (uintptr_t)(&v); | |
64 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
65 | if (ret == ENOENT) { | |
66 | return EINVAL; | |
67 | } | |
68 | return ret; | |
494b00c7 CD |
69 | } |
70 | ||
eb035b48 PM |
71 | /* We track all the KVM devices which need their memory addresses |
72 | * passing to the kernel in a list of these structures. | |
73 | * When board init is complete we run through the list and | |
74 | * tell the kernel the base addresses of the memory regions. | |
75 | * We use a MemoryListener to track mapping and unmapping of | |
76 | * the regions during board creation, so the board models don't | |
77 | * need to do anything special for the KVM case. | |
78 | */ | |
79 | typedef struct KVMDevice { | |
80 | struct kvm_arm_device_addr kda; | |
81 | MemoryRegion *mr; | |
82 | QSLIST_ENTRY(KVMDevice) entries; | |
83 | } KVMDevice; | |
84 | ||
85 | static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head; | |
86 | ||
87 | static void kvm_arm_devlistener_add(MemoryListener *listener, | |
88 | MemoryRegionSection *section) | |
89 | { | |
90 | KVMDevice *kd; | |
91 | ||
92 | QSLIST_FOREACH(kd, &kvm_devices_head, entries) { | |
93 | if (section->mr == kd->mr) { | |
94 | kd->kda.addr = section->offset_within_address_space; | |
95 | } | |
96 | } | |
97 | } | |
98 | ||
99 | static void kvm_arm_devlistener_del(MemoryListener *listener, | |
100 | MemoryRegionSection *section) | |
101 | { | |
102 | KVMDevice *kd; | |
103 | ||
104 | QSLIST_FOREACH(kd, &kvm_devices_head, entries) { | |
105 | if (section->mr == kd->mr) { | |
106 | kd->kda.addr = -1; | |
107 | } | |
108 | } | |
109 | } | |
110 | ||
111 | static MemoryListener devlistener = { | |
112 | .region_add = kvm_arm_devlistener_add, | |
113 | .region_del = kvm_arm_devlistener_del, | |
114 | }; | |
115 | ||
116 | static void kvm_arm_machine_init_done(Notifier *notifier, void *data) | |
117 | { | |
118 | KVMDevice *kd, *tkd; | |
119 | ||
120 | memory_listener_unregister(&devlistener); | |
121 | QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { | |
122 | if (kd->kda.addr != -1) { | |
123 | if (kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, | |
124 | &kd->kda) < 0) { | |
125 | fprintf(stderr, "KVM_ARM_SET_DEVICE_ADDRESS failed: %s\n", | |
126 | strerror(errno)); | |
127 | abort(); | |
128 | } | |
129 | } | |
130 | g_free(kd); | |
131 | } | |
132 | } | |
133 | ||
134 | static Notifier notify = { | |
135 | .notify = kvm_arm_machine_init_done, | |
136 | }; | |
137 | ||
138 | void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid) | |
139 | { | |
140 | KVMDevice *kd; | |
141 | ||
142 | if (!kvm_irqchip_in_kernel()) { | |
143 | return; | |
144 | } | |
145 | ||
146 | if (QSLIST_EMPTY(&kvm_devices_head)) { | |
147 | memory_listener_register(&devlistener, NULL); | |
148 | qemu_add_machine_init_done_notifier(¬ify); | |
149 | } | |
150 | kd = g_new0(KVMDevice, 1); | |
151 | kd->mr = mr; | |
152 | kd->kda.id = devid; | |
153 | kd->kda.addr = -1; | |
154 | QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); | |
155 | } | |
156 | ||
494b00c7 CD |
157 | typedef struct Reg { |
158 | uint64_t id; | |
159 | int offset; | |
160 | } Reg; | |
161 | ||
162 | #define COREREG(KERNELNAME, QEMUFIELD) \ | |
163 | { \ | |
164 | KVM_REG_ARM | KVM_REG_SIZE_U32 | \ | |
165 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \ | |
166 | offsetof(CPUARMState, QEMUFIELD) \ | |
167 | } | |
168 | ||
169 | #define CP15REG(CRN, CRM, OPC1, OPC2, QEMUFIELD) \ | |
170 | { \ | |
171 | KVM_REG_ARM | KVM_REG_SIZE_U32 | \ | |
172 | (15 << KVM_REG_ARM_COPROC_SHIFT) | \ | |
173 | ((CRN) << KVM_REG_ARM_32_CRN_SHIFT) | \ | |
174 | ((CRM) << KVM_REG_ARM_CRM_SHIFT) | \ | |
175 | ((OPC1) << KVM_REG_ARM_OPC1_SHIFT) | \ | |
176 | ((OPC2) << KVM_REG_ARM_32_OPC2_SHIFT), \ | |
177 | offsetof(CPUARMState, QEMUFIELD) \ | |
178 | } | |
179 | ||
81635574 PM |
180 | #define VFPSYSREG(R) \ |
181 | { \ | |
182 | KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \ | |
183 | KVM_REG_ARM_VFP_##R, \ | |
184 | offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \ | |
185 | } | |
186 | ||
494b00c7 CD |
187 | static const Reg regs[] = { |
188 | /* R0_usr .. R14_usr */ | |
189 | COREREG(usr_regs.uregs[0], regs[0]), | |
190 | COREREG(usr_regs.uregs[1], regs[1]), | |
191 | COREREG(usr_regs.uregs[2], regs[2]), | |
192 | COREREG(usr_regs.uregs[3], regs[3]), | |
193 | COREREG(usr_regs.uregs[4], regs[4]), | |
194 | COREREG(usr_regs.uregs[5], regs[5]), | |
195 | COREREG(usr_regs.uregs[6], regs[6]), | |
196 | COREREG(usr_regs.uregs[7], regs[7]), | |
197 | COREREG(usr_regs.uregs[8], usr_regs[0]), | |
198 | COREREG(usr_regs.uregs[9], usr_regs[1]), | |
199 | COREREG(usr_regs.uregs[10], usr_regs[2]), | |
200 | COREREG(usr_regs.uregs[11], usr_regs[3]), | |
201 | COREREG(usr_regs.uregs[12], usr_regs[4]), | |
202 | COREREG(usr_regs.uregs[13], banked_r13[0]), | |
203 | COREREG(usr_regs.uregs[14], banked_r14[0]), | |
204 | /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */ | |
205 | COREREG(svc_regs[0], banked_r13[1]), | |
206 | COREREG(svc_regs[1], banked_r14[1]), | |
207 | COREREG(svc_regs[2], banked_spsr[1]), | |
208 | COREREG(abt_regs[0], banked_r13[2]), | |
209 | COREREG(abt_regs[1], banked_r14[2]), | |
210 | COREREG(abt_regs[2], banked_spsr[2]), | |
211 | COREREG(und_regs[0], banked_r13[3]), | |
212 | COREREG(und_regs[1], banked_r14[3]), | |
213 | COREREG(und_regs[2], banked_spsr[3]), | |
214 | COREREG(irq_regs[0], banked_r13[4]), | |
215 | COREREG(irq_regs[1], banked_r14[4]), | |
216 | COREREG(irq_regs[2], banked_spsr[4]), | |
217 | /* R8_fiq .. R14_fiq and SPSR_fiq */ | |
218 | COREREG(fiq_regs[0], fiq_regs[0]), | |
219 | COREREG(fiq_regs[1], fiq_regs[1]), | |
220 | COREREG(fiq_regs[2], fiq_regs[2]), | |
221 | COREREG(fiq_regs[3], fiq_regs[3]), | |
222 | COREREG(fiq_regs[4], fiq_regs[4]), | |
223 | COREREG(fiq_regs[5], banked_r13[5]), | |
224 | COREREG(fiq_regs[6], banked_r14[5]), | |
225 | COREREG(fiq_regs[7], banked_spsr[5]), | |
226 | /* R15 */ | |
227 | COREREG(usr_regs.uregs[15], regs[15]), | |
228 | /* A non-comprehensive set of cp15 registers. | |
229 | * TODO: drive this from the cp_regs hashtable instead. | |
230 | */ | |
231 | CP15REG(1, 0, 0, 0, cp15.c1_sys), /* SCTLR */ | |
232 | CP15REG(2, 0, 0, 2, cp15.c2_control), /* TTBCR */ | |
233 | CP15REG(3, 0, 0, 0, cp15.c3), /* DACR */ | |
81635574 PM |
234 | /* VFP system registers */ |
235 | VFPSYSREG(FPSID), | |
236 | VFPSYSREG(MVFR1), | |
237 | VFPSYSREG(MVFR0), | |
238 | VFPSYSREG(FPEXC), | |
239 | VFPSYSREG(FPINST), | |
240 | VFPSYSREG(FPINST2), | |
494b00c7 CD |
241 | }; |
242 | ||
243 | int kvm_arch_put_registers(CPUState *cs, int level) | |
244 | { | |
245 | ARMCPU *cpu = ARM_CPU(cs); | |
246 | CPUARMState *env = &cpu->env; | |
247 | struct kvm_one_reg r; | |
248 | int mode, bn; | |
249 | int ret, i; | |
81635574 | 250 | uint32_t cpsr, fpscr; |
494b00c7 CD |
251 | uint64_t ttbr; |
252 | ||
253 | /* Make sure the banked regs are properly set */ | |
254 | mode = env->uncached_cpsr & CPSR_M; | |
255 | bn = bank_number(mode); | |
256 | if (mode == ARM_CPU_MODE_FIQ) { | |
257 | memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
258 | } else { | |
259 | memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
260 | } | |
261 | env->banked_r13[bn] = env->regs[13]; | |
262 | env->banked_r14[bn] = env->regs[14]; | |
263 | env->banked_spsr[bn] = env->spsr; | |
264 | ||
265 | /* Now we can safely copy stuff down to the kernel */ | |
266 | for (i = 0; i < ARRAY_SIZE(regs); i++) { | |
267 | r.id = regs[i].id; | |
268 | r.addr = (uintptr_t)(env) + regs[i].offset; | |
269 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
270 | if (ret) { | |
271 | return ret; | |
272 | } | |
273 | } | |
274 | ||
275 | /* Special cases which aren't a single CPUARMState field */ | |
276 | cpsr = cpsr_read(env); | |
277 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | | |
278 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr); | |
279 | r.addr = (uintptr_t)(&cpsr); | |
280 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
281 | if (ret) { | |
282 | return ret; | |
283 | } | |
284 | ||
285 | /* TTBR0: cp15 crm=2 opc1=0 */ | |
286 | ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0; | |
287 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) | | |
288 | (2 << KVM_REG_ARM_CRM_SHIFT) | (0 << KVM_REG_ARM_OPC1_SHIFT); | |
289 | r.addr = (uintptr_t)(&ttbr); | |
290 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
291 | if (ret) { | |
292 | return ret; | |
293 | } | |
294 | ||
295 | /* TTBR1: cp15 crm=2 opc1=1 */ | |
296 | ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1; | |
297 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) | | |
298 | (2 << KVM_REG_ARM_CRM_SHIFT) | (1 << KVM_REG_ARM_OPC1_SHIFT); | |
299 | r.addr = (uintptr_t)(&ttbr); | |
300 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
81635574 PM |
301 | if (ret) { |
302 | return ret; | |
303 | } | |
304 | ||
305 | /* VFP registers */ | |
306 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP; | |
307 | for (i = 0; i < 32; i++) { | |
308 | r.addr = (uintptr_t)(&env->vfp.regs[i]); | |
309 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
310 | if (ret) { | |
311 | return ret; | |
312 | } | |
313 | r.id++; | |
314 | } | |
315 | ||
316 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | | |
317 | KVM_REG_ARM_VFP_FPSCR; | |
318 | fpscr = vfp_get_fpscr(env); | |
319 | r.addr = (uintptr_t)&fpscr; | |
320 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
494b00c7 CD |
321 | |
322 | return ret; | |
323 | } | |
324 | ||
325 | int kvm_arch_get_registers(CPUState *cs) | |
326 | { | |
327 | ARMCPU *cpu = ARM_CPU(cs); | |
328 | CPUARMState *env = &cpu->env; | |
329 | struct kvm_one_reg r; | |
330 | int mode, bn; | |
331 | int ret, i; | |
81635574 | 332 | uint32_t cpsr, fpscr; |
494b00c7 CD |
333 | uint64_t ttbr; |
334 | ||
335 | for (i = 0; i < ARRAY_SIZE(regs); i++) { | |
336 | r.id = regs[i].id; | |
337 | r.addr = (uintptr_t)(env) + regs[i].offset; | |
338 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
339 | if (ret) { | |
340 | return ret; | |
341 | } | |
342 | } | |
343 | ||
344 | /* Special cases which aren't a single CPUARMState field */ | |
345 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | | |
346 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr); | |
347 | r.addr = (uintptr_t)(&cpsr); | |
348 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
349 | if (ret) { | |
350 | return ret; | |
351 | } | |
352 | cpsr_write(env, cpsr, 0xffffffff); | |
353 | ||
354 | /* TTBR0: cp15 crm=2 opc1=0 */ | |
355 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) | | |
356 | (2 << KVM_REG_ARM_CRM_SHIFT) | (0 << KVM_REG_ARM_OPC1_SHIFT); | |
357 | r.addr = (uintptr_t)(&ttbr); | |
358 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
359 | if (ret) { | |
360 | return ret; | |
361 | } | |
362 | env->cp15.c2_base0_hi = ttbr >> 32; | |
363 | env->cp15.c2_base0 = ttbr; | |
364 | ||
365 | /* TTBR1: cp15 crm=2 opc1=1 */ | |
366 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) | | |
367 | (2 << KVM_REG_ARM_CRM_SHIFT) | (1 << KVM_REG_ARM_OPC1_SHIFT); | |
368 | r.addr = (uintptr_t)(&ttbr); | |
369 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
370 | if (ret) { | |
371 | return ret; | |
372 | } | |
373 | env->cp15.c2_base1_hi = ttbr >> 32; | |
374 | env->cp15.c2_base1 = ttbr; | |
375 | ||
376 | /* Make sure the current mode regs are properly set */ | |
377 | mode = env->uncached_cpsr & CPSR_M; | |
378 | bn = bank_number(mode); | |
379 | if (mode == ARM_CPU_MODE_FIQ) { | |
380 | memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); | |
381 | } else { | |
382 | memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); | |
383 | } | |
384 | env->regs[13] = env->banked_r13[bn]; | |
385 | env->regs[14] = env->banked_r14[bn]; | |
386 | env->spsr = env->banked_spsr[bn]; | |
387 | ||
388 | /* The main GET_ONE_REG loop above set c2_control, but we need to | |
389 | * update some extra cached precomputed values too. | |
390 | * When this is driven from the cp_regs hashtable then this ugliness | |
391 | * can disappear because we'll use the access function which sets | |
392 | * these values automatically. | |
393 | */ | |
394 | env->cp15.c2_mask = ~(0xffffffffu >> env->cp15.c2_control); | |
395 | env->cp15.c2_base_mask = ~(0x3fffu >> env->cp15.c2_control); | |
396 | ||
81635574 PM |
397 | /* VFP registers */ |
398 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP; | |
399 | for (i = 0; i < 32; i++) { | |
400 | r.addr = (uintptr_t)(&env->vfp.regs[i]); | |
401 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
402 | if (ret) { | |
403 | return ret; | |
404 | } | |
405 | r.id++; | |
406 | } | |
407 | ||
408 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | | |
409 | KVM_REG_ARM_VFP_FPSCR; | |
410 | r.addr = (uintptr_t)&fpscr; | |
411 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
412 | if (ret) { | |
413 | return ret; | |
414 | } | |
415 | vfp_set_fpscr(env, fpscr); | |
416 | ||
494b00c7 CD |
417 | return 0; |
418 | } | |
419 | ||
420 | void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) | |
421 | { | |
422 | } | |
423 | ||
424 | void kvm_arch_post_run(CPUState *cs, struct kvm_run *run) | |
425 | { | |
426 | } | |
427 | ||
428 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) | |
429 | { | |
430 | return 0; | |
431 | } | |
432 | ||
433 | void kvm_arch_reset_vcpu(CPUState *cs) | |
434 | { | |
435 | } | |
436 | ||
437 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) | |
438 | { | |
439 | return true; | |
440 | } | |
441 | ||
442 | int kvm_arch_process_async_events(CPUState *cs) | |
443 | { | |
444 | return 0; | |
445 | } | |
446 | ||
447 | int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr) | |
448 | { | |
449 | return 1; | |
450 | } | |
451 | ||
452 | int kvm_arch_on_sigbus(int code, void *addr) | |
453 | { | |
454 | return 1; | |
455 | } | |
456 | ||
457 | void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) | |
458 | { | |
459 | qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); | |
460 | } | |
461 | ||
462 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, | |
463 | struct kvm_sw_breakpoint *bp) | |
464 | { | |
465 | qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); | |
466 | return -EINVAL; | |
467 | } | |
468 | ||
469 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
470 | target_ulong len, int type) | |
471 | { | |
472 | qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); | |
473 | return -EINVAL; | |
474 | } | |
475 | ||
476 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
477 | target_ulong len, int type) | |
478 | { | |
479 | qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); | |
480 | return -EINVAL; | |
481 | } | |
482 | ||
483 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, | |
484 | struct kvm_sw_breakpoint *bp) | |
485 | { | |
486 | qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); | |
487 | return -EINVAL; | |
488 | } | |
489 | ||
490 | void kvm_arch_remove_all_hw_breakpoints(void) | |
491 | { | |
492 | qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); | |
493 | } |