]> Git Repo - qemu.git/blame - qemu-doc.texi
migration: fix small leaks
[qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
44cb280d 4@include version.texi
e080e785
SW
5
6@documentlanguage en
7@documentencoding UTF-8
8
44cb280d 9@settitle QEMU version @value{VERSION} User Documentation
debc7065
FB
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
386405f7 13
a1a32b05
SW
14@ifinfo
15@direntry
16* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
17@end direntry
18@end ifinfo
19
0806e3f6 20@iftex
386405f7
FB
21@titlepage
22@sp 7
44cb280d 23@center @titlefont{QEMU version @value{VERSION}}
debc7065
FB
24@sp 1
25@center @titlefont{User Documentation}
386405f7
FB
26@sp 3
27@end titlepage
0806e3f6 28@end iftex
386405f7 29
debc7065
FB
30@ifnottex
31@node Top
32@top
33
34@menu
35* Introduction::
debc7065
FB
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
3f2ce724 38* QEMU Guest Agent::
83195237 39* QEMU User space emulator::
78e87797 40* Implementation notes::
eb22aeca 41* Deprecated features::
7544a042 42* License::
debc7065
FB
43* Index::
44@end menu
45@end ifnottex
46
47@contents
48
49@node Introduction
386405f7
FB
50@chapter Introduction
51
debc7065
FB
52@menu
53* intro_features:: Features
54@end menu
55
56@node intro_features
322d0c66 57@section Features
386405f7 58
1f673135
FB
59QEMU is a FAST! processor emulator using dynamic translation to
60achieve good emulation speed.
1eb20527 61
1f3e7e41 62@cindex operating modes
1eb20527 63QEMU has two operating modes:
0806e3f6 64
d7e5edca 65@itemize
7544a042 66@cindex system emulation
1f3e7e41 67@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
7544a042 72@cindex user mode emulation
1f3e7e41 73@item User mode emulation. In this mode, QEMU can launch
83195237 74processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
75launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
76to ease cross-compilation and cross-debugging.
1eb20527
FB
77
78@end itemize
79
1f3e7e41
PB
80QEMU has the following features:
81
82@itemize
83@item QEMU can run without a host kernel driver and yet gives acceptable
84performance. It uses dynamic translation to native code for reasonable speed,
85with support for self-modifying code and precise exceptions.
86
87@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
88Windows) and architectures.
89
90@item It performs accurate software emulation of the FPU.
91@end itemize
322d0c66 92
1f3e7e41 93QEMU user mode emulation has the following features:
52c00a5f 94@itemize
1f3e7e41
PB
95@item Generic Linux system call converter, including most ioctls.
96
97@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
98
99@item Accurate signal handling by remapping host signals to target signals.
100@end itemize
101
102QEMU full system emulation has the following features:
103@itemize
104@item
105QEMU uses a full software MMU for maximum portability.
106
107@item
108QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
109execute most of the guest code natively, while
110continuing to emulate the rest of the machine.
111
112@item
113Various hardware devices can be emulated and in some cases, host
114devices (e.g. serial and parallel ports, USB, drives) can be used
115transparently by the guest Operating System. Host device passthrough
116can be used for talking to external physical peripherals (e.g. a
117webcam, modem or tape drive).
118
119@item
120Symmetric multiprocessing (SMP) support. Currently, an in-kernel
121accelerator is required to use more than one host CPU for emulation.
122
52c00a5f 123@end itemize
386405f7 124
0806e3f6 125
debc7065 126@node QEMU PC System emulator
3f9f3aa1 127@chapter QEMU PC System emulator
7544a042 128@cindex system emulation (PC)
1eb20527 129
debc7065
FB
130@menu
131* pcsys_introduction:: Introduction
132* pcsys_quickstart:: Quick Start
133* sec_invocation:: Invocation
a40db1b3
PM
134* pcsys_keys:: Keys in the graphical frontends
135* mux_keys:: Keys in the character backend multiplexer
debc7065
FB
136* pcsys_monitor:: QEMU Monitor
137* disk_images:: Disk Images
138* pcsys_network:: Network emulation
576fd0a1 139* pcsys_other_devs:: Other Devices
debc7065
FB
140* direct_linux_boot:: Direct Linux Boot
141* pcsys_usb:: USB emulation
f858dcae 142* vnc_security:: VNC security
debc7065
FB
143* gdb_usage:: GDB usage
144* pcsys_os_specific:: Target OS specific information
145@end menu
146
147@node pcsys_introduction
0806e3f6
FB
148@section Introduction
149
150@c man begin DESCRIPTION
151
3f9f3aa1
FB
152The QEMU PC System emulator simulates the
153following peripherals:
0806e3f6
FB
154
155@itemize @minus
5fafdf24 156@item
15a34c63 157i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 158@item
15a34c63
FB
159Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
160extensions (hardware level, including all non standard modes).
0806e3f6
FB
161@item
162PS/2 mouse and keyboard
5fafdf24 163@item
15a34c63 1642 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
165@item
166Floppy disk
5fafdf24 167@item
3a2eeac0 168PCI and ISA network adapters
0806e3f6 169@item
05d5818c
FB
170Serial ports
171@item
23076bb3
CM
172IPMI BMC, either and internal or external one
173@item
c0fe3827
FB
174Creative SoundBlaster 16 sound card
175@item
176ENSONIQ AudioPCI ES1370 sound card
177@item
e5c9a13e
AZ
178Intel 82801AA AC97 Audio compatible sound card
179@item
7d72e762
GH
180Intel HD Audio Controller and HDA codec
181@item
2d983446 182Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 183@item
26463dbc
AZ
184Gravis Ultrasound GF1 sound card
185@item
cc53d26d 186CS4231A compatible sound card
187@item
a92ff8c1 188PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
189@end itemize
190
3f9f3aa1
FB
191SMP is supported with up to 255 CPUs.
192
a8ad4159 193QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
194VGA BIOS.
195
c0fe3827
FB
196QEMU uses YM3812 emulation by Tatsuyuki Satoh.
197
2d983446 198QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 199by Tibor "TS" Schütz.
423d65f4 200
1a1a0e20 201Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 202QEMU must be told to not have parallel ports to have working GUS.
720036a5 203
204@example
3804da9d 205qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 206@end example
207
208Alternatively:
209@example
3804da9d 210qemu-system-i386 dos.img -device gus,irq=5
720036a5 211@end example
212
213Or some other unclaimed IRQ.
214
cc53d26d 215CS4231A is the chip used in Windows Sound System and GUSMAX products
216
0806e3f6
FB
217@c man end
218
debc7065 219@node pcsys_quickstart
1eb20527 220@section Quick Start
7544a042 221@cindex quick start
1eb20527 222
285dc330 223Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
224
225@example
3804da9d 226qemu-system-i386 linux.img
0806e3f6
FB
227@end example
228
229Linux should boot and give you a prompt.
230
6cc721cf 231@node sec_invocation
ec410fc9
FB
232@section Invocation
233
234@example
0806e3f6 235@c man begin SYNOPSIS
8485140f 236@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 237@c man end
ec410fc9
FB
238@end example
239
0806e3f6 240@c man begin OPTIONS
d2c639d6
BS
241@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
242targets do not need a disk image.
ec410fc9 243
5824d651 244@include qemu-options.texi
ec410fc9 245
3e11db9a
FB
246@c man end
247
debc7065 248@node pcsys_keys
a40db1b3 249@section Keys in the graphical frontends
3e11db9a
FB
250
251@c man begin OPTIONS
252
de1db2a1
BH
253During the graphical emulation, you can use special key combinations to change
254modes. The default key mappings are shown below, but if you use @code{-alt-grab}
255then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
256@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
257
a1b74fe8 258@table @key
f9859310 259@item Ctrl-Alt-f
7544a042 260@kindex Ctrl-Alt-f
a1b74fe8 261Toggle full screen
a0a821a4 262
d6a65ba3
JK
263@item Ctrl-Alt-+
264@kindex Ctrl-Alt-+
265Enlarge the screen
266
267@item Ctrl-Alt--
268@kindex Ctrl-Alt--
269Shrink the screen
270
c4a735f9 271@item Ctrl-Alt-u
7544a042 272@kindex Ctrl-Alt-u
c4a735f9 273Restore the screen's un-scaled dimensions
274
f9859310 275@item Ctrl-Alt-n
7544a042 276@kindex Ctrl-Alt-n
a0a821a4
FB
277Switch to virtual console 'n'. Standard console mappings are:
278@table @emph
279@item 1
280Target system display
281@item 2
282Monitor
283@item 3
284Serial port
a1b74fe8
FB
285@end table
286
f9859310 287@item Ctrl-Alt
7544a042 288@kindex Ctrl-Alt
a0a821a4
FB
289Toggle mouse and keyboard grab.
290@end table
291
7544a042
SW
292@kindex Ctrl-Up
293@kindex Ctrl-Down
294@kindex Ctrl-PageUp
295@kindex Ctrl-PageDown
3e11db9a
FB
296In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
297@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
298
a40db1b3
PM
299@c man end
300
301@node mux_keys
302@section Keys in the character backend multiplexer
303
304@c man begin OPTIONS
305
306During emulation, if you are using a character backend multiplexer
307(which is the default if you are using @option{-nographic}) then
308several commands are available via an escape sequence. These
309key sequences all start with an escape character, which is @key{Ctrl-a}
310by default, but can be changed with @option{-echr}. The list below assumes
311you're using the default.
ec410fc9
FB
312
313@table @key
a1b74fe8 314@item Ctrl-a h
7544a042 315@kindex Ctrl-a h
ec410fc9 316Print this help
3b46e624 317@item Ctrl-a x
7544a042 318@kindex Ctrl-a x
366dfc52 319Exit emulator
3b46e624 320@item Ctrl-a s
7544a042 321@kindex Ctrl-a s
1f47a922 322Save disk data back to file (if -snapshot)
20d8a3ed 323@item Ctrl-a t
7544a042 324@kindex Ctrl-a t
d2c639d6 325Toggle console timestamps
a1b74fe8 326@item Ctrl-a b
7544a042 327@kindex Ctrl-a b
1f673135 328Send break (magic sysrq in Linux)
a1b74fe8 329@item Ctrl-a c
7544a042 330@kindex Ctrl-a c
a40db1b3
PM
331Rotate between the frontends connected to the multiplexer (usually
332this switches between the monitor and the console)
a1b74fe8 333@item Ctrl-a Ctrl-a
a40db1b3
PM
334@kindex Ctrl-a Ctrl-a
335Send the escape character to the frontend
ec410fc9 336@end table
0806e3f6
FB
337@c man end
338
339@ignore
340
1f673135
FB
341@c man begin SEEALSO
342The HTML documentation of QEMU for more precise information and Linux
343user mode emulator invocation.
344@c man end
345
346@c man begin AUTHOR
347Fabrice Bellard
348@c man end
349
350@end ignore
351
debc7065 352@node pcsys_monitor
1f673135 353@section QEMU Monitor
7544a042 354@cindex QEMU monitor
1f673135
FB
355
356The QEMU monitor is used to give complex commands to the QEMU
357emulator. You can use it to:
358
359@itemize @minus
360
361@item
e598752a 362Remove or insert removable media images
89dfe898 363(such as CD-ROM or floppies).
1f673135 364
5fafdf24 365@item
1f673135
FB
366Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
367from a disk file.
368
369@item Inspect the VM state without an external debugger.
370
371@end itemize
372
373@subsection Commands
374
375The following commands are available:
376
2313086a 377@include qemu-monitor.texi
0806e3f6 378
2cd8af2d
PB
379@include qemu-monitor-info.texi
380
1f673135
FB
381@subsection Integer expressions
382
383The monitor understands integers expressions for every integer
384argument. You can use register names to get the value of specifics
385CPU registers by prefixing them with @emph{$}.
ec410fc9 386
1f47a922
FB
387@node disk_images
388@section Disk Images
389
ee29bdb6
PB
390QEMU supports many disk image formats, including growable disk images
391(their size increase as non empty sectors are written), compressed and
392encrypted disk images.
1f47a922 393
debc7065
FB
394@menu
395* disk_images_quickstart:: Quick start for disk image creation
396* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 397* vm_snapshots:: VM snapshots
debc7065 398* qemu_img_invocation:: qemu-img Invocation
975b092b 399* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 400* disk_images_formats:: Disk image file formats
19cb3738 401* host_drives:: Using host drives
debc7065 402* disk_images_fat_images:: Virtual FAT disk images
75818250 403* disk_images_nbd:: NBD access
42af9c30 404* disk_images_sheepdog:: Sheepdog disk images
00984e39 405* disk_images_iscsi:: iSCSI LUNs
8809e289 406* disk_images_gluster:: GlusterFS disk images
0a12ec87 407* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
408@end menu
409
410@node disk_images_quickstart
acd935ef
FB
411@subsection Quick start for disk image creation
412
413You can create a disk image with the command:
1f47a922 414@example
acd935ef 415qemu-img create myimage.img mysize
1f47a922 416@end example
acd935ef
FB
417where @var{myimage.img} is the disk image filename and @var{mysize} is its
418size in kilobytes. You can add an @code{M} suffix to give the size in
419megabytes and a @code{G} suffix for gigabytes.
420
debc7065 421See @ref{qemu_img_invocation} for more information.
1f47a922 422
debc7065 423@node disk_images_snapshot_mode
1f47a922
FB
424@subsection Snapshot mode
425
426If you use the option @option{-snapshot}, all disk images are
427considered as read only. When sectors in written, they are written in
428a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
429write back to the raw disk images by using the @code{commit} monitor
430command (or @key{C-a s} in the serial console).
1f47a922 431
13a2e80f
FB
432@node vm_snapshots
433@subsection VM snapshots
434
435VM snapshots are snapshots of the complete virtual machine including
436CPU state, RAM, device state and the content of all the writable
437disks. In order to use VM snapshots, you must have at least one non
438removable and writable block device using the @code{qcow2} disk image
439format. Normally this device is the first virtual hard drive.
440
441Use the monitor command @code{savevm} to create a new VM snapshot or
442replace an existing one. A human readable name can be assigned to each
19d36792 443snapshot in addition to its numerical ID.
13a2e80f
FB
444
445Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
446a VM snapshot. @code{info snapshots} lists the available snapshots
447with their associated information:
448
449@example
450(qemu) info snapshots
451Snapshot devices: hda
452Snapshot list (from hda):
453ID TAG VM SIZE DATE VM CLOCK
4541 start 41M 2006-08-06 12:38:02 00:00:14.954
4552 40M 2006-08-06 12:43:29 00:00:18.633
4563 msys 40M 2006-08-06 12:44:04 00:00:23.514
457@end example
458
459A VM snapshot is made of a VM state info (its size is shown in
460@code{info snapshots}) and a snapshot of every writable disk image.
461The VM state info is stored in the first @code{qcow2} non removable
462and writable block device. The disk image snapshots are stored in
463every disk image. The size of a snapshot in a disk image is difficult
464to evaluate and is not shown by @code{info snapshots} because the
465associated disk sectors are shared among all the snapshots to save
19d36792
FB
466disk space (otherwise each snapshot would need a full copy of all the
467disk images).
13a2e80f
FB
468
469When using the (unrelated) @code{-snapshot} option
470(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
471but they are deleted as soon as you exit QEMU.
472
473VM snapshots currently have the following known limitations:
474@itemize
5fafdf24 475@item
13a2e80f
FB
476They cannot cope with removable devices if they are removed or
477inserted after a snapshot is done.
5fafdf24 478@item
13a2e80f
FB
479A few device drivers still have incomplete snapshot support so their
480state is not saved or restored properly (in particular USB).
481@end itemize
482
acd935ef
FB
483@node qemu_img_invocation
484@subsection @code{qemu-img} Invocation
1f47a922 485
acd935ef 486@include qemu-img.texi
05efe46e 487
975b092b
TS
488@node qemu_nbd_invocation
489@subsection @code{qemu-nbd} Invocation
490
491@include qemu-nbd.texi
492
d3067b02
KW
493@node disk_images_formats
494@subsection Disk image file formats
495
496QEMU supports many image file formats that can be used with VMs as well as with
497any of the tools (like @code{qemu-img}). This includes the preferred formats
498raw and qcow2 as well as formats that are supported for compatibility with
499older QEMU versions or other hypervisors.
500
501Depending on the image format, different options can be passed to
502@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
503This section describes each format and the options that are supported for it.
504
505@table @option
506@item raw
507
508Raw disk image format. This format has the advantage of
509being simple and easily exportable to all other emulators. If your
510file system supports @emph{holes} (for example in ext2 or ext3 on
511Linux or NTFS on Windows), then only the written sectors will reserve
512space. Use @code{qemu-img info} to know the real size used by the
513image or @code{ls -ls} on Unix/Linux.
514
06247428
HT
515Supported options:
516@table @code
517@item preallocation
518Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
519@code{falloc} mode preallocates space for image by calling posix_fallocate().
520@code{full} mode preallocates space for image by writing zeros to underlying
521storage.
522@end table
523
d3067b02
KW
524@item qcow2
525QEMU image format, the most versatile format. Use it to have smaller
526images (useful if your filesystem does not supports holes, for example
a1f688f4
MA
527on Windows), zlib based compression and support of multiple VM
528snapshots.
d3067b02
KW
529
530Supported options:
531@table @code
532@item compat
7fa9e1f9
SH
533Determines the qcow2 version to use. @code{compat=0.10} uses the
534traditional image format that can be read by any QEMU since 0.10.
d3067b02 535@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
536newer understand (this is the default). Amongst others, this includes
537zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
538
539@item backing_file
540File name of a base image (see @option{create} subcommand)
541@item backing_fmt
542Image format of the base image
543@item encryption
12f7efd0 544This option is deprecated and equivalent to @code{encrypt.format=aes}
d3067b02 545
12f7efd0
DB
546@item encrypt.format
547
548If this is set to @code{luks}, it requests that the qcow2 payload (not
549qcow2 header) be encrypted using the LUKS format. The passphrase to
550use to unlock the LUKS key slot is given by the @code{encrypt.key-secret}
551parameter. LUKS encryption parameters can be tuned with the other
552@code{encrypt.*} parameters.
553
554If this is set to @code{aes}, the image is encrypted with 128-bit AES-CBC.
555The encryption key is given by the @code{encrypt.key-secret} parameter.
556This encryption format is considered to be flawed by modern cryptography
557standards, suffering from a number of design problems:
136cd19d
DB
558
559@itemize @minus
560@item The AES-CBC cipher is used with predictable initialization vectors based
561on the sector number. This makes it vulnerable to chosen plaintext attacks
562which can reveal the existence of encrypted data.
563@item The user passphrase is directly used as the encryption key. A poorly
564chosen or short passphrase will compromise the security of the encryption.
565@item In the event of the passphrase being compromised there is no way to
566change the passphrase to protect data in any qcow images. The files must
567be cloned, using a different encryption passphrase in the new file. The
568original file must then be securely erased using a program like shred,
569though even this is ineffective with many modern storage technologies.
570@end itemize
571
12f7efd0
DB
572The use of this is no longer supported in system emulators. Support only
573remains in the command line utilities, for the purposes of data liberation
574and interoperability with old versions of QEMU. The @code{luks} format
575should be used instead.
576
577@item encrypt.key-secret
578
579Provides the ID of a @code{secret} object that contains the passphrase
580(@code{encrypt.format=luks}) or encryption key (@code{encrypt.format=aes}).
581
582@item encrypt.cipher-alg
583
584Name of the cipher algorithm and key length. Currently defaults
585to @code{aes-256}. Only used when @code{encrypt.format=luks}.
586
587@item encrypt.cipher-mode
588
589Name of the encryption mode to use. Currently defaults to @code{xts}.
590Only used when @code{encrypt.format=luks}.
591
592@item encrypt.ivgen-alg
593
594Name of the initialization vector generator algorithm. Currently defaults
595to @code{plain64}. Only used when @code{encrypt.format=luks}.
596
597@item encrypt.ivgen-hash-alg
598
599Name of the hash algorithm to use with the initialization vector generator
600(if required). Defaults to @code{sha256}. Only used when @code{encrypt.format=luks}.
601
602@item encrypt.hash-alg
603
604Name of the hash algorithm to use for PBKDF algorithm
605Defaults to @code{sha256}. Only used when @code{encrypt.format=luks}.
606
607@item encrypt.iter-time
608
609Amount of time, in milliseconds, to use for PBKDF algorithm per key slot.
610Defaults to @code{2000}. Only used when @code{encrypt.format=luks}.
d3067b02
KW
611
612@item cluster_size
613Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
614sizes can improve the image file size whereas larger cluster sizes generally
615provide better performance.
616
617@item preallocation
0e4271b7
HT
618Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
619@code{full}). An image with preallocated metadata is initially larger but can
620improve performance when the image needs to grow. @code{falloc} and @code{full}
621preallocations are like the same options of @code{raw} format, but sets up
622metadata also.
d3067b02
KW
623
624@item lazy_refcounts
625If this option is set to @code{on}, reference count updates are postponed with
626the goal of avoiding metadata I/O and improving performance. This is
627particularly interesting with @option{cache=writethrough} which doesn't batch
628metadata updates. The tradeoff is that after a host crash, the reference count
629tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
630check -r all} is required, which may take some time.
631
632This option can only be enabled if @code{compat=1.1} is specified.
633
4ab15590 634@item nocow
bc3a7f90 635If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
636valid on btrfs, no effect on other file systems.
637
638Btrfs has low performance when hosting a VM image file, even more when the guest
639on the VM also using btrfs as file system. Turning off COW is a way to mitigate
640this bad performance. Generally there are two ways to turn off COW on btrfs:
641a) Disable it by mounting with nodatacow, then all newly created files will be
642NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
643does.
644
645Note: this option is only valid to new or empty files. If there is an existing
646file which is COW and has data blocks already, it couldn't be changed to NOCOW
647by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 648the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 649
d3067b02
KW
650@end table
651
652@item qed
653Old QEMU image format with support for backing files and compact image files
654(when your filesystem or transport medium does not support holes).
655
656When converting QED images to qcow2, you might want to consider using the
657@code{lazy_refcounts=on} option to get a more QED-like behaviour.
658
659Supported options:
660@table @code
661@item backing_file
662File name of a base image (see @option{create} subcommand).
663@item backing_fmt
664Image file format of backing file (optional). Useful if the format cannot be
665autodetected because it has no header, like some vhd/vpc files.
666@item cluster_size
667Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
668cluster sizes can improve the image file size whereas larger cluster sizes
669generally provide better performance.
670@item table_size
671Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
672and 16). There is normally no need to change this value but this option can be
673used for performance benchmarking.
674@end table
675
676@item qcow
677Old QEMU image format with support for backing files, compact image files,
678encryption and compression.
679
680Supported options:
681@table @code
682@item backing_file
683File name of a base image (see @option{create} subcommand)
684@item encryption
12f7efd0
DB
685This option is deprecated and equivalent to @code{encrypt.format=aes}
686
687@item encrypt.format
688If this is set to @code{aes}, the image is encrypted with 128-bit AES-CBC.
689The encryption key is given by the @code{encrypt.key-secret} parameter.
690This encryption format is considered to be flawed by modern cryptography
691standards, suffering from a number of design problems enumerated previously
692against the @code{qcow2} image format.
693
694The use of this is no longer supported in system emulators. Support only
695remains in the command line utilities, for the purposes of data liberation
696and interoperability with old versions of QEMU.
697
698Users requiring native encryption should use the @code{qcow2} format
699instead with @code{encrypt.format=luks}.
700
701@item encrypt.key-secret
702
703Provides the ID of a @code{secret} object that contains the encryption
704key (@code{encrypt.format=aes}).
705
706@end table
707
708@item luks
709
710LUKS v1 encryption format, compatible with Linux dm-crypt/cryptsetup
711
712Supported options:
713@table @code
714
715@item key-secret
716
717Provides the ID of a @code{secret} object that contains the passphrase.
718
719@item cipher-alg
720
721Name of the cipher algorithm and key length. Currently defaults
722to @code{aes-256}.
723
724@item cipher-mode
725
726Name of the encryption mode to use. Currently defaults to @code{xts}.
727
728@item ivgen-alg
729
730Name of the initialization vector generator algorithm. Currently defaults
731to @code{plain64}.
732
733@item ivgen-hash-alg
734
735Name of the hash algorithm to use with the initialization vector generator
736(if required). Defaults to @code{sha256}.
737
738@item hash-alg
739
740Name of the hash algorithm to use for PBKDF algorithm
741Defaults to @code{sha256}.
742
743@item iter-time
744
745Amount of time, in milliseconds, to use for PBKDF algorithm per key slot.
746Defaults to @code{2000}.
747
d3067b02
KW
748@end table
749
d3067b02
KW
750@item vdi
751VirtualBox 1.1 compatible image format.
752Supported options:
753@table @code
754@item static
755If this option is set to @code{on}, the image is created with metadata
756preallocation.
757@end table
758
759@item vmdk
760VMware 3 and 4 compatible image format.
761
762Supported options:
763@table @code
764@item backing_file
765File name of a base image (see @option{create} subcommand).
766@item compat6
767Create a VMDK version 6 image (instead of version 4)
f249924e
JK
768@item hwversion
769Specify vmdk virtual hardware version. Compat6 flag cannot be enabled
770if hwversion is specified.
d3067b02
KW
771@item subformat
772Specifies which VMDK subformat to use. Valid options are
773@code{monolithicSparse} (default),
774@code{monolithicFlat},
775@code{twoGbMaxExtentSparse},
776@code{twoGbMaxExtentFlat} and
777@code{streamOptimized}.
778@end table
779
780@item vpc
781VirtualPC compatible image format (VHD).
782Supported options:
783@table @code
784@item subformat
785Specifies which VHD subformat to use. Valid options are
786@code{dynamic} (default) and @code{fixed}.
787@end table
8282db1b
JC
788
789@item VHDX
790Hyper-V compatible image format (VHDX).
791Supported options:
792@table @code
793@item subformat
794Specifies which VHDX subformat to use. Valid options are
795@code{dynamic} (default) and @code{fixed}.
796@item block_state_zero
30af51ce
JC
797Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
798or @code{off}. When set to @code{off}, new blocks will be created as
799@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
800arbitrary data for those blocks. Do not set to @code{off} when using
801@code{qemu-img convert} with @code{subformat=dynamic}.
8282db1b
JC
802@item block_size
803Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
804@item log_size
805Log size; min 1 MB.
806@end table
d3067b02
KW
807@end table
808
809@subsubsection Read-only formats
810More disk image file formats are supported in a read-only mode.
811@table @option
812@item bochs
813Bochs images of @code{growing} type.
814@item cloop
815Linux Compressed Loop image, useful only to reuse directly compressed
816CD-ROM images present for example in the Knoppix CD-ROMs.
817@item dmg
818Apple disk image.
819@item parallels
820Parallels disk image format.
821@end table
822
823
19cb3738
FB
824@node host_drives
825@subsection Using host drives
826
827In addition to disk image files, QEMU can directly access host
828devices. We describe here the usage for QEMU version >= 0.8.3.
829
830@subsubsection Linux
831
832On Linux, you can directly use the host device filename instead of a
4be456f1 833disk image filename provided you have enough privileges to access
92a539d2 834it. For example, use @file{/dev/cdrom} to access to the CDROM.
19cb3738 835
f542086d 836@table @code
19cb3738
FB
837@item CD
838You can specify a CDROM device even if no CDROM is loaded. QEMU has
839specific code to detect CDROM insertion or removal. CDROM ejection by
840the guest OS is supported. Currently only data CDs are supported.
841@item Floppy
842You can specify a floppy device even if no floppy is loaded. Floppy
843removal is currently not detected accurately (if you change floppy
844without doing floppy access while the floppy is not loaded, the guest
845OS will think that the same floppy is loaded).
92a539d2
MA
846Use of the host's floppy device is deprecated, and support for it will
847be removed in a future release.
19cb3738
FB
848@item Hard disks
849Hard disks can be used. Normally you must specify the whole disk
850(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
851see it as a partitioned disk. WARNING: unless you know what you do, it
852is better to only make READ-ONLY accesses to the hard disk otherwise
853you may corrupt your host data (use the @option{-snapshot} command
854line option or modify the device permissions accordingly).
855@end table
856
857@subsubsection Windows
858
01781963
FB
859@table @code
860@item CD
4be456f1 861The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
862alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
863supported as an alias to the first CDROM drive.
19cb3738 864
e598752a 865Currently there is no specific code to handle removable media, so it
19cb3738
FB
866is better to use the @code{change} or @code{eject} monitor commands to
867change or eject media.
01781963 868@item Hard disks
89dfe898 869Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
870where @var{N} is the drive number (0 is the first hard disk).
871
872WARNING: unless you know what you do, it is better to only make
873READ-ONLY accesses to the hard disk otherwise you may corrupt your
874host data (use the @option{-snapshot} command line so that the
875modifications are written in a temporary file).
876@end table
877
19cb3738
FB
878
879@subsubsection Mac OS X
880
5fafdf24 881@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 882
e598752a 883Currently there is no specific code to handle removable media, so it
19cb3738
FB
884is better to use the @code{change} or @code{eject} monitor commands to
885change or eject media.
886
debc7065 887@node disk_images_fat_images
2c6cadd4
FB
888@subsection Virtual FAT disk images
889
890QEMU can automatically create a virtual FAT disk image from a
891directory tree. In order to use it, just type:
892
5fafdf24 893@example
3804da9d 894qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
895@end example
896
897Then you access access to all the files in the @file{/my_directory}
898directory without having to copy them in a disk image or to export
899them via SAMBA or NFS. The default access is @emph{read-only}.
900
901Floppies can be emulated with the @code{:floppy:} option:
902
5fafdf24 903@example
3804da9d 904qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
905@end example
906
907A read/write support is available for testing (beta stage) with the
908@code{:rw:} option:
909
5fafdf24 910@example
3804da9d 911qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
912@end example
913
914What you should @emph{never} do:
915@itemize
916@item use non-ASCII filenames ;
917@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
918@item expect it to work when loadvm'ing ;
919@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
920@end itemize
921
75818250
TS
922@node disk_images_nbd
923@subsection NBD access
924
925QEMU can access directly to block device exported using the Network Block Device
926protocol.
927
928@example
1d7d2a9d 929qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
930@end example
931
932If the NBD server is located on the same host, you can use an unix socket instead
933of an inet socket:
934
935@example
1d7d2a9d 936qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
937@end example
938
939In this case, the block device must be exported using qemu-nbd:
940
941@example
942qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
943@end example
944
9d85d557 945The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
946@example
947qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
948@end example
949
1d7d2a9d 950@noindent
75818250
TS
951and then you can use it with two guests:
952@example
1d7d2a9d
PB
953qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
954qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
955@end example
956
1d7d2a9d
PB
957If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
958own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 959@example
1d7d2a9d
PB
960qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
961qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
962@end example
963
964The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
965also available. Here are some example of the older syntax:
966@example
967qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
968qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
969qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
970@end example
971
42af9c30
MK
972@node disk_images_sheepdog
973@subsection Sheepdog disk images
974
975Sheepdog is a distributed storage system for QEMU. It provides highly
976available block level storage volumes that can be attached to
977QEMU-based virtual machines.
978
979You can create a Sheepdog disk image with the command:
980@example
5d6768e3 981qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
982@end example
983where @var{image} is the Sheepdog image name and @var{size} is its
984size.
985
986To import the existing @var{filename} to Sheepdog, you can use a
987convert command.
988@example
5d6768e3 989qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
990@end example
991
992You can boot from the Sheepdog disk image with the command:
993@example
5d6768e3 994qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
995@end example
996
997You can also create a snapshot of the Sheepdog image like qcow2.
998@example
5d6768e3 999qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
1000@end example
1001where @var{tag} is a tag name of the newly created snapshot.
1002
1003To boot from the Sheepdog snapshot, specify the tag name of the
1004snapshot.
1005@example
5d6768e3 1006qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
1007@end example
1008
1009You can create a cloned image from the existing snapshot.
1010@example
5d6768e3 1011qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
1012@end example
1013where @var{base} is a image name of the source snapshot and @var{tag}
1014is its tag name.
1015
1b8bbb46
MK
1016You can use an unix socket instead of an inet socket:
1017
1018@example
1019qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
1020@end example
1021
42af9c30
MK
1022If the Sheepdog daemon doesn't run on the local host, you need to
1023specify one of the Sheepdog servers to connect to.
1024@example
5d6768e3
MK
1025qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
1026qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
1027@end example
1028
00984e39
RS
1029@node disk_images_iscsi
1030@subsection iSCSI LUNs
1031
1032iSCSI is a popular protocol used to access SCSI devices across a computer
1033network.
1034
1035There are two different ways iSCSI devices can be used by QEMU.
1036
1037The first method is to mount the iSCSI LUN on the host, and make it appear as
1038any other ordinary SCSI device on the host and then to access this device as a
1039/dev/sd device from QEMU. How to do this differs between host OSes.
1040
1041The second method involves using the iSCSI initiator that is built into
1042QEMU. This provides a mechanism that works the same way regardless of which
1043host OS you are running QEMU on. This section will describe this second method
1044of using iSCSI together with QEMU.
1045
1046In QEMU, iSCSI devices are described using special iSCSI URLs
1047
1048@example
1049URL syntax:
1050iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
1051@end example
1052
1053Username and password are optional and only used if your target is set up
1054using CHAP authentication for access control.
1055Alternatively the username and password can also be set via environment
1056variables to have these not show up in the process list
1057
1058@example
1059export LIBISCSI_CHAP_USERNAME=<username>
1060export LIBISCSI_CHAP_PASSWORD=<password>
1061iscsi://<host>/<target-iqn-name>/<lun>
1062@end example
1063
f9dadc98
RS
1064Various session related parameters can be set via special options, either
1065in a configuration file provided via '-readconfig' or directly on the
1066command line.
1067
31459f46
RS
1068If the initiator-name is not specified qemu will use a default name
1069of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
1070virtual machine.
1071
1072
f9dadc98
RS
1073@example
1074Setting a specific initiator name to use when logging in to the target
1075-iscsi initiator-name=iqn.qemu.test:my-initiator
1076@end example
1077
1078@example
1079Controlling which type of header digest to negotiate with the target
1080-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1081@end example
1082
1083These can also be set via a configuration file
1084@example
1085[iscsi]
1086 user = "CHAP username"
1087 password = "CHAP password"
1088 initiator-name = "iqn.qemu.test:my-initiator"
1089 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1090 header-digest = "CRC32C"
1091@end example
1092
1093
1094Setting the target name allows different options for different targets
1095@example
1096[iscsi "iqn.target.name"]
1097 user = "CHAP username"
1098 password = "CHAP password"
1099 initiator-name = "iqn.qemu.test:my-initiator"
1100 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1101 header-digest = "CRC32C"
1102@end example
1103
1104
1105Howto use a configuration file to set iSCSI configuration options:
1106@example
1107cat >iscsi.conf <<EOF
1108[iscsi]
1109 user = "me"
1110 password = "my password"
1111 initiator-name = "iqn.qemu.test:my-initiator"
1112 header-digest = "CRC32C"
1113EOF
1114
1115qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1116 -readconfig iscsi.conf
1117@end example
1118
1119
00984e39
RS
1120Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1121@example
1122This example shows how to set up an iSCSI target with one CDROM and one DISK
1123using the Linux STGT software target. This target is available on Red Hat based
1124systems as the package 'scsi-target-utils'.
1125
1126tgtd --iscsi portal=127.0.0.1:3260
1127tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1128tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1129 -b /IMAGES/disk.img --device-type=disk
1130tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1131 -b /IMAGES/cd.iso --device-type=cd
1132tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1133
f9dadc98
RS
1134qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1135 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1136 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1137@end example
1138
8809e289
BR
1139@node disk_images_gluster
1140@subsection GlusterFS disk images
00984e39 1141
736a83fa 1142GlusterFS is a user space distributed file system.
8809e289
BR
1143
1144You can boot from the GlusterFS disk image with the command:
1145@example
76b5550f
PKK
1146URI:
1147qemu-system-x86_64 -drive file=gluster[+@var{type}]://[@var{host}[:@var{port}]]/@var{volume}/@var{path}
1148 [?socket=...][,file.debug=9][,file.logfile=...]
1149
1150JSON:
1151qemu-system-x86_64 'json:@{"driver":"qcow2",
1152 "file":@{"driver":"gluster",
1153 "volume":"testvol","path":"a.img","debug":9,"logfile":"...",
1154 "server":[@{"type":"tcp","host":"...","port":"..."@},
1155 @{"type":"unix","socket":"..."@}]@}@}'
8809e289
BR
1156@end example
1157
1158@var{gluster} is the protocol.
1159
76b5550f 1160@var{type} specifies the transport type used to connect to gluster
8809e289 1161management daemon (glusterd). Valid transport types are
76b5550f
PKK
1162tcp and unix. In the URI form, if a transport type isn't specified,
1163then tcp type is assumed.
8809e289 1164
76b5550f
PKK
1165@var{host} specifies the server where the volume file specification for
1166the given volume resides. This can be either a hostname or an ipv4 address.
1167If transport type is unix, then @var{host} field should not be specified.
8809e289
BR
1168Instead @var{socket} field needs to be populated with the path to unix domain
1169socket.
1170
1171@var{port} is the port number on which glusterd is listening. This is optional
76b5550f
PKK
1172and if not specified, it defaults to port 24007. If the transport type is unix,
1173then @var{port} should not be specified.
1174
1175@var{volume} is the name of the gluster volume which contains the disk image.
1176
1177@var{path} is the path to the actual disk image that resides on gluster volume.
1178
1179@var{debug} is the logging level of the gluster protocol driver. Debug levels
1180are 0-9, with 9 being the most verbose, and 0 representing no debugging output.
1181The default level is 4. The current logging levels defined in the gluster source
1182are 0 - None, 1 - Emergency, 2 - Alert, 3 - Critical, 4 - Error, 5 - Warning,
11836 - Notice, 7 - Info, 8 - Debug, 9 - Trace
1184
1185@var{logfile} is a commandline option to mention log file path which helps in
1186logging to the specified file and also help in persisting the gfapi logs. The
1187default is stderr.
1188
8809e289 1189
8809e289 1190
8809e289
BR
1191
1192You can create a GlusterFS disk image with the command:
1193@example
76b5550f 1194qemu-img create gluster://@var{host}/@var{volume}/@var{path} @var{size}
8809e289
BR
1195@end example
1196
1197Examples
1198@example
1199qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1200qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1201qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1202qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1203qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1204qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1205qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1206qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
76b5550f
PKK
1207qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log
1208qemu-system-x86_64 'json:@{"driver":"qcow2",
1209 "file":@{"driver":"gluster",
1210 "volume":"testvol","path":"a.img",
1211 "debug":9,"logfile":"/var/log/qemu-gluster.log",
1212 "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
1213 @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
1214qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
1215 file.debug=9,file.logfile=/var/log/qemu-gluster.log,
1216 file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
1217 file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
8809e289 1218@end example
00984e39 1219
0a12ec87
RJ
1220@node disk_images_ssh
1221@subsection Secure Shell (ssh) disk images
1222
1223You can access disk images located on a remote ssh server
1224by using the ssh protocol:
1225
1226@example
1227qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1228@end example
1229
1230Alternative syntax using properties:
1231
1232@example
1233qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1234@end example
1235
1236@var{ssh} is the protocol.
1237
1238@var{user} is the remote user. If not specified, then the local
1239username is tried.
1240
1241@var{server} specifies the remote ssh server. Any ssh server can be
1242used, but it must implement the sftp-server protocol. Most Unix/Linux
1243systems should work without requiring any extra configuration.
1244
1245@var{port} is the port number on which sshd is listening. By default
1246the standard ssh port (22) is used.
1247
1248@var{path} is the path to the disk image.
1249
1250The optional @var{host_key_check} parameter controls how the remote
1251host's key is checked. The default is @code{yes} which means to use
1252the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1253turns off known-hosts checking. Or you can check that the host key
1254matches a specific fingerprint:
1255@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1256(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1257tools only use MD5 to print fingerprints).
1258
1259Currently authentication must be done using ssh-agent. Other
1260authentication methods may be supported in future.
1261
9a2d462e
RJ
1262Note: Many ssh servers do not support an @code{fsync}-style operation.
1263The ssh driver cannot guarantee that disk flush requests are
1264obeyed, and this causes a risk of disk corruption if the remote
1265server or network goes down during writes. The driver will
1266print a warning when @code{fsync} is not supported:
1267
1268warning: ssh server @code{ssh.example.com:22} does not support fsync
1269
1270With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1271supported.
0a12ec87 1272
debc7065 1273@node pcsys_network
9d4fb82e
FB
1274@section Network emulation
1275
4be456f1 1276QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1277target) and can connect them to an arbitrary number of Virtual Local
1278Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1279VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1280simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1281network stack can replace the TAP device to have a basic network
1282connection.
1283
1284@subsection VLANs
9d4fb82e 1285
41d03949
FB
1286QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1287connection between several network devices. These devices can be for
1288example QEMU virtual Ethernet cards or virtual Host ethernet devices
1289(TAP devices).
9d4fb82e 1290
41d03949
FB
1291@subsection Using TAP network interfaces
1292
1293This is the standard way to connect QEMU to a real network. QEMU adds
1294a virtual network device on your host (called @code{tapN}), and you
1295can then configure it as if it was a real ethernet card.
9d4fb82e 1296
8f40c388
FB
1297@subsubsection Linux host
1298
9d4fb82e
FB
1299As an example, you can download the @file{linux-test-xxx.tar.gz}
1300archive and copy the script @file{qemu-ifup} in @file{/etc} and
1301configure properly @code{sudo} so that the command @code{ifconfig}
1302contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1303that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1304device @file{/dev/net/tun} must be present.
1305
ee0f4751
FB
1306See @ref{sec_invocation} to have examples of command lines using the
1307TAP network interfaces.
9d4fb82e 1308
8f40c388
FB
1309@subsubsection Windows host
1310
1311There is a virtual ethernet driver for Windows 2000/XP systems, called
1312TAP-Win32. But it is not included in standard QEMU for Windows,
1313so you will need to get it separately. It is part of OpenVPN package,
1314so download OpenVPN from : @url{http://openvpn.net/}.
1315
9d4fb82e
FB
1316@subsection Using the user mode network stack
1317
41d03949
FB
1318By using the option @option{-net user} (default configuration if no
1319@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1320network stack (you don't need root privilege to use the virtual
41d03949 1321network). The virtual network configuration is the following:
9d4fb82e
FB
1322
1323@example
1324
41d03949
FB
1325 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1326 | (10.0.2.2)
9d4fb82e 1327 |
2518bd0d 1328 ----> DNS server (10.0.2.3)
3b46e624 1329 |
2518bd0d 1330 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1331@end example
1332
1333The QEMU VM behaves as if it was behind a firewall which blocks all
1334incoming connections. You can use a DHCP client to automatically
41d03949
FB
1335configure the network in the QEMU VM. The DHCP server assign addresses
1336to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1337
1338In order to check that the user mode network is working, you can ping
1339the address 10.0.2.2 and verify that you got an address in the range
134010.0.2.x from the QEMU virtual DHCP server.
1341
37cbfcce
GH
1342Note that ICMP traffic in general does not work with user mode networking.
1343@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1344however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1345ping sockets to allow @code{ping} to the Internet. The host admin has to set
1346the ping_group_range in order to grant access to those sockets. To allow ping
1347for GID 100 (usually users group):
1348
1349@example
1350echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1351@end example
b415a407 1352
9bf05444
FB
1353When using the built-in TFTP server, the router is also the TFTP
1354server.
1355
c8c6afa8
TH
1356When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
1357connections can be redirected from the host to the guest. It allows for
1358example to redirect X11, telnet or SSH connections.
443f1376 1359
41d03949
FB
1360@subsection Connecting VLANs between QEMU instances
1361
1362Using the @option{-net socket} option, it is possible to make VLANs
1363that span several QEMU instances. See @ref{sec_invocation} to have a
1364basic example.
1365
576fd0a1 1366@node pcsys_other_devs
6cbf4c8c
CM
1367@section Other Devices
1368
1369@subsection Inter-VM Shared Memory device
1370
5400c02b
MA
1371On Linux hosts, a shared memory device is available. The basic syntax
1372is:
6cbf4c8c
CM
1373
1374@example
5400c02b
MA
1375qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
1376@end example
1377
1378where @var{hostmem} names a host memory backend. For a POSIX shared
1379memory backend, use something like
1380
1381@example
1382-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
1383@end example
1384
1385If desired, interrupts can be sent between guest VMs accessing the same shared
1386memory region. Interrupt support requires using a shared memory server and
1387using a chardev socket to connect to it. The code for the shared memory server
1388is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1389memory server is:
1390
1391@example
a75eb03b 1392# First start the ivshmem server once and for all
50d34c4e 1393ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
1394
1395# Then start your qemu instances with matching arguments
5400c02b 1396qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 1397 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
1398@end example
1399
1400When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1401using the same server to communicate via interrupts. Guests can read their
1309cf44 1402VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 1403
62a830b6
MA
1404@subsubsection Migration with ivshmem
1405
5400c02b
MA
1406With device property @option{master=on}, the guest will copy the shared
1407memory on migration to the destination host. With @option{master=off},
1408the guest will not be able to migrate with the device attached. In the
1409latter case, the device should be detached and then reattached after
1410migration using the PCI hotplug support.
6cbf4c8c 1411
62a830b6
MA
1412At most one of the devices sharing the same memory can be master. The
1413master must complete migration before you plug back the other devices.
1414
7d4f4bda
MAL
1415@subsubsection ivshmem and hugepages
1416
1417Instead of specifying the <shm size> using POSIX shm, you may specify
1418a memory backend that has hugepage support:
1419
1420@example
5400c02b
MA
1421qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
1422 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
1423@end example
1424
1425ivshmem-server also supports hugepages mount points with the
1426@option{-m} memory path argument.
1427
9d4fb82e
FB
1428@node direct_linux_boot
1429@section Direct Linux Boot
1f673135
FB
1430
1431This section explains how to launch a Linux kernel inside QEMU without
1432having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1433kernel testing.
1f673135 1434
ee0f4751 1435The syntax is:
1f673135 1436@example
3804da9d 1437qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1438@end example
1439
ee0f4751
FB
1440Use @option{-kernel} to provide the Linux kernel image and
1441@option{-append} to give the kernel command line arguments. The
1442@option{-initrd} option can be used to provide an INITRD image.
1f673135 1443
ee0f4751
FB
1444When using the direct Linux boot, a disk image for the first hard disk
1445@file{hda} is required because its boot sector is used to launch the
1446Linux kernel.
1f673135 1447
ee0f4751
FB
1448If you do not need graphical output, you can disable it and redirect
1449the virtual serial port and the QEMU monitor to the console with the
1450@option{-nographic} option. The typical command line is:
1f673135 1451@example
3804da9d
SW
1452qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1453 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1454@end example
1455
ee0f4751
FB
1456Use @key{Ctrl-a c} to switch between the serial console and the
1457monitor (@pxref{pcsys_keys}).
1f673135 1458
debc7065 1459@node pcsys_usb
b389dbfb
FB
1460@section USB emulation
1461
a92ff8c1
TH
1462QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
1463plug virtual USB devices or real host USB devices (only works with certain
1464host operating systems). QEMU will automatically create and connect virtual
1465USB hubs as necessary to connect multiple USB devices.
b389dbfb 1466
0aff66b5
PB
1467@menu
1468* usb_devices::
1469* host_usb_devices::
1470@end menu
1471@node usb_devices
1472@subsection Connecting USB devices
b389dbfb 1473
a92ff8c1
TH
1474USB devices can be connected with the @option{-device usb-...} command line
1475option or the @code{device_add} monitor command. Available devices are:
b389dbfb 1476
db380c06 1477@table @code
a92ff8c1 1478@item usb-mouse
0aff66b5 1479Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 1480@item usb-tablet
c6d46c20 1481Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1482This means QEMU is able to report the mouse position without having
0aff66b5 1483to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
1484@item usb-storage,drive=@var{drive_id}
1485Mass storage device backed by @var{drive_id} (@pxref{disk_images})
1486@item usb-uas
1487USB attached SCSI device, see
1488@url{http://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
1489for details
1490@item usb-bot
1491Bulk-only transport storage device, see
1492@url{http://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
1493for details here, too
1494@item usb-mtp,x-root=@var{dir}
1495Media transfer protocol device, using @var{dir} as root of the file tree
1496that is presented to the guest.
1497@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
1498Pass through the host device identified by @var{bus} and @var{addr}
1499@item usb-host,vendorid=@var{vendor},productid=@var{product}
1500Pass through the host device identified by @var{vendor} and @var{product} ID
1501@item usb-wacom-tablet
f6d2a316
AZ
1502Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1503above but it can be used with the tslib library because in addition to touch
1504coordinates it reports touch pressure.
a92ff8c1 1505@item usb-kbd
47b2d338 1506Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 1507@item usb-serial,chardev=@var{id}
db380c06 1508Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
1509device @var{id}.
1510@item usb-braille,chardev=@var{id}
2e4d9fb1 1511Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
1512or fake device referenced by @var{id}.
1513@item usb-net[,netdev=@var{id}]
1514Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
1515specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 1516For instance, user-mode networking can be used with
6c9f886c 1517@example
a92ff8c1 1518qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 1519@end example
a92ff8c1
TH
1520@item usb-ccid
1521Smartcard reader device
1522@item usb-audio
1523USB audio device
1524@item usb-bt-dongle
1525Bluetooth dongle for the transport layer of HCI. It is connected to HCI
1526scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
1527Note that the syntax for the @code{-device usb-bt-dongle} option is not as
1528useful yet as it was with the legacy @code{-usbdevice} option. So to
1529configure an USB bluetooth device, you might need to use
1530"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
1531bluetooth dongle whose type is specified in the same format as with
2d564691
AZ
1532the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1533no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1534This USB device implements the USB Transport Layer of HCI. Example
1535usage:
1536@example
8485140f 1537@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 1538@end example
0aff66b5 1539@end table
b389dbfb 1540
0aff66b5 1541@node host_usb_devices
b389dbfb
FB
1542@subsection Using host USB devices on a Linux host
1543
1544WARNING: this is an experimental feature. QEMU will slow down when
1545using it. USB devices requiring real time streaming (i.e. USB Video
1546Cameras) are not supported yet.
1547
1548@enumerate
5fafdf24 1549@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1550is actually using the USB device. A simple way to do that is simply to
1551disable the corresponding kernel module by renaming it from @file{mydriver.o}
1552to @file{mydriver.o.disabled}.
1553
1554@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1555@example
1556ls /proc/bus/usb
1557001 devices drivers
1558@end example
1559
1560@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1561@example
1562chown -R myuid /proc/bus/usb
1563@end example
1564
1565@item Launch QEMU and do in the monitor:
5fafdf24 1566@example
b389dbfb
FB
1567info usbhost
1568 Device 1.2, speed 480 Mb/s
1569 Class 00: USB device 1234:5678, USB DISK
1570@end example
1571You should see the list of the devices you can use (Never try to use
1572hubs, it won't work).
1573
1574@item Add the device in QEMU by using:
5fafdf24 1575@example
a92ff8c1 1576device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
1577@end example
1578
a92ff8c1
TH
1579Normally the guest OS should report that a new USB device is plugged.
1580You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
1581
1582@item Now you can try to use the host USB device in QEMU.
1583
1584@end enumerate
1585
1586When relaunching QEMU, you may have to unplug and plug again the USB
1587device to make it work again (this is a bug).
1588
f858dcae
TS
1589@node vnc_security
1590@section VNC security
1591
1592The VNC server capability provides access to the graphical console
1593of the guest VM across the network. This has a number of security
1594considerations depending on the deployment scenarios.
1595
1596@menu
1597* vnc_sec_none::
1598* vnc_sec_password::
1599* vnc_sec_certificate::
1600* vnc_sec_certificate_verify::
1601* vnc_sec_certificate_pw::
2f9606b3
AL
1602* vnc_sec_sasl::
1603* vnc_sec_certificate_sasl::
f858dcae 1604* vnc_generate_cert::
2f9606b3 1605* vnc_setup_sasl::
f858dcae
TS
1606@end menu
1607@node vnc_sec_none
1608@subsection Without passwords
1609
1610The simplest VNC server setup does not include any form of authentication.
1611For this setup it is recommended to restrict it to listen on a UNIX domain
1612socket only. For example
1613
1614@example
3804da9d 1615qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1616@end example
1617
1618This ensures that only users on local box with read/write access to that
1619path can access the VNC server. To securely access the VNC server from a
1620remote machine, a combination of netcat+ssh can be used to provide a secure
1621tunnel.
1622
1623@node vnc_sec_password
1624@subsection With passwords
1625
1626The VNC protocol has limited support for password based authentication. Since
1627the protocol limits passwords to 8 characters it should not be considered
1628to provide high security. The password can be fairly easily brute-forced by
1629a client making repeat connections. For this reason, a VNC server using password
1630authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1631or UNIX domain sockets. Password authentication is not supported when operating
1632in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1633authentication is requested with the @code{password} option, and then once QEMU
1634is running the password is set with the monitor. Until the monitor is used to
1635set the password all clients will be rejected.
f858dcae
TS
1636
1637@example
3804da9d 1638qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1639(qemu) change vnc password
1640Password: ********
1641(qemu)
1642@end example
1643
1644@node vnc_sec_certificate
1645@subsection With x509 certificates
1646
1647The QEMU VNC server also implements the VeNCrypt extension allowing use of
1648TLS for encryption of the session, and x509 certificates for authentication.
1649The use of x509 certificates is strongly recommended, because TLS on its
1650own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1651support provides a secure session, but no authentication. This allows any
1652client to connect, and provides an encrypted session.
1653
1654@example
3804da9d 1655qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1656@end example
1657
1658In the above example @code{/etc/pki/qemu} should contain at least three files,
1659@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1660users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1661NB the @code{server-key.pem} file should be protected with file mode 0600 to
1662only be readable by the user owning it.
1663
1664@node vnc_sec_certificate_verify
1665@subsection With x509 certificates and client verification
1666
1667Certificates can also provide a means to authenticate the client connecting.
1668The server will request that the client provide a certificate, which it will
1669then validate against the CA certificate. This is a good choice if deploying
1670in an environment with a private internal certificate authority.
1671
1672@example
3804da9d 1673qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1674@end example
1675
1676
1677@node vnc_sec_certificate_pw
1678@subsection With x509 certificates, client verification and passwords
1679
1680Finally, the previous method can be combined with VNC password authentication
1681to provide two layers of authentication for clients.
1682
1683@example
3804da9d 1684qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1685(qemu) change vnc password
1686Password: ********
1687(qemu)
1688@end example
1689
2f9606b3
AL
1690
1691@node vnc_sec_sasl
1692@subsection With SASL authentication
1693
1694The SASL authentication method is a VNC extension, that provides an
1695easily extendable, pluggable authentication method. This allows for
1696integration with a wide range of authentication mechanisms, such as
1697PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1698The strength of the authentication depends on the exact mechanism
1699configured. If the chosen mechanism also provides a SSF layer, then
1700it will encrypt the datastream as well.
1701
1702Refer to the later docs on how to choose the exact SASL mechanism
1703used for authentication, but assuming use of one supporting SSF,
1704then QEMU can be launched with:
1705
1706@example
3804da9d 1707qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1708@end example
1709
1710@node vnc_sec_certificate_sasl
1711@subsection With x509 certificates and SASL authentication
1712
1713If the desired SASL authentication mechanism does not supported
1714SSF layers, then it is strongly advised to run it in combination
1715with TLS and x509 certificates. This provides securely encrypted
1716data stream, avoiding risk of compromising of the security
1717credentials. This can be enabled, by combining the 'sasl' option
1718with the aforementioned TLS + x509 options:
1719
1720@example
3804da9d 1721qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1722@end example
1723
1724
f858dcae
TS
1725@node vnc_generate_cert
1726@subsection Generating certificates for VNC
1727
1728The GNU TLS packages provides a command called @code{certtool} which can
1729be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1730is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1731each server. If using certificates for authentication, then each client
1732will also need to be issued a certificate. The recommendation is for the
1733server to keep its certificates in either @code{/etc/pki/qemu} or for
1734unprivileged users in @code{$HOME/.pki/qemu}.
1735
1736@menu
1737* vnc_generate_ca::
1738* vnc_generate_server::
1739* vnc_generate_client::
1740@end menu
1741@node vnc_generate_ca
1742@subsubsection Setup the Certificate Authority
1743
1744This step only needs to be performed once per organization / organizational
1745unit. First the CA needs a private key. This key must be kept VERY secret
1746and secure. If this key is compromised the entire trust chain of the certificates
1747issued with it is lost.
1748
1749@example
1750# certtool --generate-privkey > ca-key.pem
1751@end example
1752
1753A CA needs to have a public certificate. For simplicity it can be a self-signed
1754certificate, or one issue by a commercial certificate issuing authority. To
1755generate a self-signed certificate requires one core piece of information, the
1756name of the organization.
1757
1758@example
1759# cat > ca.info <<EOF
1760cn = Name of your organization
1761ca
1762cert_signing_key
1763EOF
1764# certtool --generate-self-signed \
1765 --load-privkey ca-key.pem
1766 --template ca.info \
1767 --outfile ca-cert.pem
1768@end example
1769
1770The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1771TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1772
1773@node vnc_generate_server
1774@subsubsection Issuing server certificates
1775
1776Each server (or host) needs to be issued with a key and certificate. When connecting
1777the certificate is sent to the client which validates it against the CA certificate.
1778The core piece of information for a server certificate is the hostname. This should
1779be the fully qualified hostname that the client will connect with, since the client
1780will typically also verify the hostname in the certificate. On the host holding the
1781secure CA private key:
1782
1783@example
1784# cat > server.info <<EOF
1785organization = Name of your organization
1786cn = server.foo.example.com
1787tls_www_server
1788encryption_key
1789signing_key
1790EOF
1791# certtool --generate-privkey > server-key.pem
1792# certtool --generate-certificate \
1793 --load-ca-certificate ca-cert.pem \
1794 --load-ca-privkey ca-key.pem \
63c693f8 1795 --load-privkey server-key.pem \
f858dcae
TS
1796 --template server.info \
1797 --outfile server-cert.pem
1798@end example
1799
1800The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1801to the server for which they were generated. The @code{server-key.pem} is security
1802sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1803
1804@node vnc_generate_client
1805@subsubsection Issuing client certificates
1806
1807If the QEMU VNC server is to use the @code{x509verify} option to validate client
1808certificates as its authentication mechanism, each client also needs to be issued
1809a certificate. The client certificate contains enough metadata to uniquely identify
1810the client, typically organization, state, city, building, etc. On the host holding
1811the secure CA private key:
1812
1813@example
1814# cat > client.info <<EOF
1815country = GB
1816state = London
1817locality = London
63c693f8 1818organization = Name of your organization
f858dcae
TS
1819cn = client.foo.example.com
1820tls_www_client
1821encryption_key
1822signing_key
1823EOF
1824# certtool --generate-privkey > client-key.pem
1825# certtool --generate-certificate \
1826 --load-ca-certificate ca-cert.pem \
1827 --load-ca-privkey ca-key.pem \
1828 --load-privkey client-key.pem \
1829 --template client.info \
1830 --outfile client-cert.pem
1831@end example
1832
1833The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1834copied to the client for which they were generated.
1835
2f9606b3
AL
1836
1837@node vnc_setup_sasl
1838
1839@subsection Configuring SASL mechanisms
1840
1841The following documentation assumes use of the Cyrus SASL implementation on a
1842Linux host, but the principals should apply to any other SASL impl. When SASL
1843is enabled, the mechanism configuration will be loaded from system default
1844SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1845unprivileged user, an environment variable SASL_CONF_PATH can be used
1846to make it search alternate locations for the service config.
1847
c6a9a9f5
DB
1848If the TLS option is enabled for VNC, then it will provide session encryption,
1849otherwise the SASL mechanism will have to provide encryption. In the latter
1850case the list of possible plugins that can be used is drastically reduced. In
1851fact only the GSSAPI SASL mechanism provides an acceptable level of security
1852by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1853mechanism, however, it has multiple serious flaws described in detail in
1854RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1855provides a simple username/password auth facility similar to DIGEST-MD5, but
1856does not support session encryption, so can only be used in combination with
1857TLS.
1858
1859When not using TLS the recommended configuration is
2f9606b3
AL
1860
1861@example
c6a9a9f5
DB
1862mech_list: gssapi
1863keytab: /etc/qemu/krb5.tab
2f9606b3
AL
1864@end example
1865
c6a9a9f5
DB
1866This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1867the server principal stored in /etc/qemu/krb5.tab. For this to work the
1868administrator of your KDC must generate a Kerberos principal for the server,
1869with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1870'somehost.example.com' with the fully qualified host name of the machine
1871running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3 1872
c6a9a9f5
DB
1873When using TLS, if username+password authentication is desired, then a
1874reasonable configuration is
2f9606b3
AL
1875
1876@example
c6a9a9f5
DB
1877mech_list: scram-sha-1
1878sasldb_path: /etc/qemu/passwd.db
2f9606b3
AL
1879@end example
1880
c6a9a9f5
DB
1881The saslpasswd2 program can be used to populate the passwd.db file with
1882accounts.
2f9606b3 1883
c6a9a9f5
DB
1884Other SASL configurations will be left as an exercise for the reader. Note that
1885all mechanisms except GSSAPI, should be combined with use of TLS to ensure a
1886secure data channel.
2f9606b3 1887
0806e3f6 1888@node gdb_usage
da415d54
FB
1889@section GDB usage
1890
1891QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1892'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1893
b65ee4fa 1894In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1895gdb connection:
1896@example
3804da9d
SW
1897qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1898 -append "root=/dev/hda"
da415d54
FB
1899Connected to host network interface: tun0
1900Waiting gdb connection on port 1234
1901@end example
1902
1903Then launch gdb on the 'vmlinux' executable:
1904@example
1905> gdb vmlinux
1906@end example
1907
1908In gdb, connect to QEMU:
1909@example
6c9bf893 1910(gdb) target remote localhost:1234
da415d54
FB
1911@end example
1912
1913Then you can use gdb normally. For example, type 'c' to launch the kernel:
1914@example
1915(gdb) c
1916@end example
1917
0806e3f6
FB
1918Here are some useful tips in order to use gdb on system code:
1919
1920@enumerate
1921@item
1922Use @code{info reg} to display all the CPU registers.
1923@item
1924Use @code{x/10i $eip} to display the code at the PC position.
1925@item
1926Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1927@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1928@end enumerate
1929
60897d36
EI
1930Advanced debugging options:
1931
b6af0975 1932The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1933@table @code
60897d36
EI
1934@item maintenance packet qqemu.sstepbits
1935
1936This will display the MASK bits used to control the single stepping IE:
1937@example
1938(gdb) maintenance packet qqemu.sstepbits
1939sending: "qqemu.sstepbits"
1940received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1941@end example
1942@item maintenance packet qqemu.sstep
1943
1944This will display the current value of the mask used when single stepping IE:
1945@example
1946(gdb) maintenance packet qqemu.sstep
1947sending: "qqemu.sstep"
1948received: "0x7"
1949@end example
1950@item maintenance packet Qqemu.sstep=HEX_VALUE
1951
1952This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1953@example
1954(gdb) maintenance packet Qqemu.sstep=0x5
1955sending: "qemu.sstep=0x5"
1956received: "OK"
1957@end example
94d45e44 1958@end table
60897d36 1959
debc7065 1960@node pcsys_os_specific
1a084f3d
FB
1961@section Target OS specific information
1962
1963@subsection Linux
1964
15a34c63
FB
1965To have access to SVGA graphic modes under X11, use the @code{vesa} or
1966the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1967color depth in the guest and the host OS.
1a084f3d 1968
e3371e62
FB
1969When using a 2.6 guest Linux kernel, you should add the option
1970@code{clock=pit} on the kernel command line because the 2.6 Linux
1971kernels make very strict real time clock checks by default that QEMU
1972cannot simulate exactly.
1973
7c3fc84d
FB
1974When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1975not activated because QEMU is slower with this patch. The QEMU
1976Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1977Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1978patch by default. Newer kernels don't have it.
1979
1a084f3d
FB
1980@subsection Windows
1981
1982If you have a slow host, using Windows 95 is better as it gives the
1983best speed. Windows 2000 is also a good choice.
1984
e3371e62
FB
1985@subsubsection SVGA graphic modes support
1986
1987QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1988card. All Windows versions starting from Windows 95 should recognize
1989and use this graphic card. For optimal performances, use 16 bit color
1990depth in the guest and the host OS.
1a084f3d 1991
3cb0853a
FB
1992If you are using Windows XP as guest OS and if you want to use high
1993resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
19941280x1024x16), then you should use the VESA VBE virtual graphic card
1995(option @option{-std-vga}).
1996
e3371e62
FB
1997@subsubsection CPU usage reduction
1998
1999Windows 9x does not correctly use the CPU HLT
15a34c63
FB
2000instruction. The result is that it takes host CPU cycles even when
2001idle. You can install the utility from
3ba34a70
TH
2002@url{http://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
2003to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 2004
9d0a8e6f 2005@subsubsection Windows 2000 disk full problem
e3371e62 2006
9d0a8e6f
FB
2007Windows 2000 has a bug which gives a disk full problem during its
2008installation. When installing it, use the @option{-win2k-hack} QEMU
2009option to enable a specific workaround. After Windows 2000 is
2010installed, you no longer need this option (this option slows down the
2011IDE transfers).
e3371e62 2012
6cc721cf
FB
2013@subsubsection Windows 2000 shutdown
2014
2015Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2016can. It comes from the fact that Windows 2000 does not automatically
2017use the APM driver provided by the BIOS.
2018
2019In order to correct that, do the following (thanks to Struan
2020Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2021Add/Troubleshoot a device => Add a new device & Next => No, select the
2022hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2023(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 2024correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
2025
2026@subsubsection Share a directory between Unix and Windows
2027
c8c6afa8
TH
2028See @ref{sec_invocation} about the help of the option
2029@option{'-netdev user,smb=...'}.
6cc721cf 2030
2192c332 2031@subsubsection Windows XP security problem
e3371e62
FB
2032
2033Some releases of Windows XP install correctly but give a security
2034error when booting:
2035@example
2036A problem is preventing Windows from accurately checking the
2037license for this computer. Error code: 0x800703e6.
2038@end example
e3371e62 2039
2192c332
FB
2040The workaround is to install a service pack for XP after a boot in safe
2041mode. Then reboot, and the problem should go away. Since there is no
2042network while in safe mode, its recommended to download the full
2043installation of SP1 or SP2 and transfer that via an ISO or using the
2044vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 2045
a0a821a4
FB
2046@subsection MS-DOS and FreeDOS
2047
2048@subsubsection CPU usage reduction
2049
2050DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70
TH
2051it takes host CPU cycles even when idle. You can install the utility from
2052@url{http://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
2053to solve this problem.
a0a821a4 2054
debc7065 2055@node QEMU System emulator for non PC targets
3f9f3aa1
FB
2056@chapter QEMU System emulator for non PC targets
2057
2058QEMU is a generic emulator and it emulates many non PC
2059machines. Most of the options are similar to the PC emulator. The
4be456f1 2060differences are mentioned in the following sections.
3f9f3aa1 2061
debc7065 2062@menu
7544a042 2063* PowerPC System emulator::
24d4de45
TS
2064* Sparc32 System emulator::
2065* Sparc64 System emulator::
2066* MIPS System emulator::
2067* ARM System emulator::
2068* ColdFire System emulator::
7544a042
SW
2069* Cris System emulator::
2070* Microblaze System emulator::
2071* SH4 System emulator::
3aeaea65 2072* Xtensa System emulator::
debc7065
FB
2073@end menu
2074
7544a042
SW
2075@node PowerPC System emulator
2076@section PowerPC System emulator
2077@cindex system emulation (PowerPC)
1a084f3d 2078
15a34c63
FB
2079Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2080or PowerMac PowerPC system.
1a084f3d 2081
b671f9ed 2082QEMU emulates the following PowerMac peripherals:
1a084f3d 2083
15a34c63 2084@itemize @minus
5fafdf24 2085@item
006f3a48 2086UniNorth or Grackle PCI Bridge
15a34c63
FB
2087@item
2088PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 2089@item
15a34c63 20902 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 2091@item
15a34c63
FB
2092NE2000 PCI adapters
2093@item
2094Non Volatile RAM
2095@item
2096VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
2097@end itemize
2098
b671f9ed 2099QEMU emulates the following PREP peripherals:
52c00a5f
FB
2100
2101@itemize @minus
5fafdf24 2102@item
15a34c63
FB
2103PCI Bridge
2104@item
2105PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 2106@item
52c00a5f
FB
21072 IDE interfaces with hard disk and CD-ROM support
2108@item
2109Floppy disk
5fafdf24 2110@item
15a34c63 2111NE2000 network adapters
52c00a5f
FB
2112@item
2113Serial port
2114@item
2115PREP Non Volatile RAM
15a34c63
FB
2116@item
2117PC compatible keyboard and mouse.
52c00a5f
FB
2118@end itemize
2119
15a34c63 2120QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 2121@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 2122
992e5acd 2123Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
2124for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
2125v2) portable firmware implementation. The goal is to implement a 100%
2126IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 2127
15a34c63
FB
2128@c man begin OPTIONS
2129
2130The following options are specific to the PowerPC emulation:
2131
2132@table @option
2133
4e257e5e 2134@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 2135
340fb41b 2136Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 2137
4e257e5e 2138@item -prom-env @var{string}
95efd11c
BS
2139
2140Set OpenBIOS variables in NVRAM, for example:
2141
2142@example
2143qemu-system-ppc -prom-env 'auto-boot?=false' \
2144 -prom-env 'boot-device=hd:2,\yaboot' \
2145 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2146@end example
2147
2148These variables are not used by Open Hack'Ware.
2149
15a34c63
FB
2150@end table
2151
5fafdf24 2152@c man end
15a34c63
FB
2153
2154
52c00a5f 2155More information is available at
3f9f3aa1 2156@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 2157
24d4de45
TS
2158@node Sparc32 System emulator
2159@section Sparc32 System emulator
7544a042 2160@cindex system emulation (Sparc32)
e80cfcfc 2161
34a3d239
BS
2162Use the executable @file{qemu-system-sparc} to simulate the following
2163Sun4m architecture machines:
2164@itemize @minus
2165@item
2166SPARCstation 4
2167@item
2168SPARCstation 5
2169@item
2170SPARCstation 10
2171@item
2172SPARCstation 20
2173@item
2174SPARCserver 600MP
2175@item
2176SPARCstation LX
2177@item
2178SPARCstation Voyager
2179@item
2180SPARCclassic
2181@item
2182SPARCbook
2183@end itemize
2184
2185The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2186but Linux limits the number of usable CPUs to 4.
e80cfcfc 2187
6a4e1771 2188QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2189
2190@itemize @minus
3475187d 2191@item
6a4e1771 2192IOMMU
e80cfcfc 2193@item
33632788 2194TCX or cgthree Frame buffer
5fafdf24 2195@item
e80cfcfc
FB
2196Lance (Am7990) Ethernet
2197@item
34a3d239 2198Non Volatile RAM M48T02/M48T08
e80cfcfc 2199@item
3475187d
FB
2200Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2201and power/reset logic
2202@item
2203ESP SCSI controller with hard disk and CD-ROM support
2204@item
6a3b9cc9 2205Floppy drive (not on SS-600MP)
a2502b58
BS
2206@item
2207CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2208@end itemize
2209
6a3b9cc9
BS
2210The number of peripherals is fixed in the architecture. Maximum
2211memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2212others 2047MB.
3475187d 2213
30a604f3 2214Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2215@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2216firmware implementation. The goal is to implement a 100% IEEE
22171275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2218
2219A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2220the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 2221most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2222don't work probably due to interface issues between OpenBIOS and
2223Solaris.
3475187d
FB
2224
2225@c man begin OPTIONS
2226
a2502b58 2227The following options are specific to the Sparc32 emulation:
3475187d
FB
2228
2229@table @option
2230
4e257e5e 2231@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2232
33632788
MCA
2233Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2234option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2235of 1152x900x8 for people who wish to use OBP.
3475187d 2236
4e257e5e 2237@item -prom-env @var{string}
66508601
BS
2238
2239Set OpenBIOS variables in NVRAM, for example:
2240
2241@example
2242qemu-system-sparc -prom-env 'auto-boot?=false' \
2243 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2244@end example
2245
6a4e1771 2246@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2247
2248Set the emulated machine type. Default is SS-5.
2249
3475187d
FB
2250@end table
2251
5fafdf24 2252@c man end
3475187d 2253
24d4de45
TS
2254@node Sparc64 System emulator
2255@section Sparc64 System emulator
7544a042 2256@cindex system emulation (Sparc64)
e80cfcfc 2257
34a3d239
BS
2258Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2259(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
2260Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2261able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
2262Sun4v emulator is still a work in progress.
2263
2264The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
2265of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
2266and is able to boot the disk.s10hw2 Solaris image.
2267@example
2268qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
2269 -nographic -m 256 \
2270 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
2271@end example
2272
b756921a 2273
c7ba218d 2274QEMU emulates the following peripherals:
83469015
FB
2275
2276@itemize @minus
2277@item
5fafdf24 2278UltraSparc IIi APB PCI Bridge
83469015
FB
2279@item
2280PCI VGA compatible card with VESA Bochs Extensions
2281@item
34a3d239
BS
2282PS/2 mouse and keyboard
2283@item
83469015
FB
2284Non Volatile RAM M48T59
2285@item
2286PC-compatible serial ports
c7ba218d
BS
2287@item
22882 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2289@item
2290Floppy disk
83469015
FB
2291@end itemize
2292
c7ba218d
BS
2293@c man begin OPTIONS
2294
2295The following options are specific to the Sparc64 emulation:
2296
2297@table @option
2298
4e257e5e 2299@item -prom-env @var{string}
34a3d239
BS
2300
2301Set OpenBIOS variables in NVRAM, for example:
2302
2303@example
2304qemu-system-sparc64 -prom-env 'auto-boot?=false'
2305@end example
2306
a2664ca0 2307@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
2308
2309Set the emulated machine type. The default is sun4u.
2310
2311@end table
2312
2313@c man end
2314
24d4de45
TS
2315@node MIPS System emulator
2316@section MIPS System emulator
7544a042 2317@cindex system emulation (MIPS)
9d0a8e6f 2318
d9aedc32
TS
2319Four executables cover simulation of 32 and 64-bit MIPS systems in
2320both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2321@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2322Five different machine types are emulated:
24d4de45
TS
2323
2324@itemize @minus
2325@item
2326A generic ISA PC-like machine "mips"
2327@item
2328The MIPS Malta prototype board "malta"
2329@item
d9aedc32 2330An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2331@item
f0fc6f8f 2332MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2333@item
2334A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2335@end itemize
2336
2337The generic emulation is supported by Debian 'Etch' and is able to
2338install Debian into a virtual disk image. The following devices are
2339emulated:
3f9f3aa1
FB
2340
2341@itemize @minus
5fafdf24 2342@item
6bf5b4e8 2343A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2344@item
2345PC style serial port
2346@item
24d4de45
TS
2347PC style IDE disk
2348@item
3f9f3aa1
FB
2349NE2000 network card
2350@end itemize
2351
24d4de45
TS
2352The Malta emulation supports the following devices:
2353
2354@itemize @minus
2355@item
0b64d008 2356Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2357@item
2358PIIX4 PCI/USB/SMbus controller
2359@item
2360The Multi-I/O chip's serial device
2361@item
3a2eeac0 2362PCI network cards (PCnet32 and others)
24d4de45
TS
2363@item
2364Malta FPGA serial device
2365@item
1f605a76 2366Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2367@end itemize
2368
2369The ACER Pica emulation supports:
2370
2371@itemize @minus
2372@item
2373MIPS R4000 CPU
2374@item
2375PC-style IRQ and DMA controllers
2376@item
2377PC Keyboard
2378@item
2379IDE controller
2380@end itemize
3f9f3aa1 2381
b5e4946f 2382The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2383to what the proprietary MIPS emulator uses for running Linux.
2384It supports:
6bf5b4e8
TS
2385
2386@itemize @minus
2387@item
2388A range of MIPS CPUs, default is the 24Kf
2389@item
2390PC style serial port
2391@item
2392MIPSnet network emulation
2393@end itemize
2394
88cb0a02
AJ
2395The MIPS Magnum R4000 emulation supports:
2396
2397@itemize @minus
2398@item
2399MIPS R4000 CPU
2400@item
2401PC-style IRQ controller
2402@item
2403PC Keyboard
2404@item
2405SCSI controller
2406@item
2407G364 framebuffer
2408@end itemize
2409
2410
24d4de45
TS
2411@node ARM System emulator
2412@section ARM System emulator
7544a042 2413@cindex system emulation (ARM)
3f9f3aa1
FB
2414
2415Use the executable @file{qemu-system-arm} to simulate a ARM
2416machine. The ARM Integrator/CP board is emulated with the following
2417devices:
2418
2419@itemize @minus
2420@item
9ee6e8bb 2421ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2422@item
2423Two PL011 UARTs
5fafdf24 2424@item
3f9f3aa1 2425SMC 91c111 Ethernet adapter
00a9bf19
PB
2426@item
2427PL110 LCD controller
2428@item
2429PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2430@item
2431PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2432@end itemize
2433
2434The ARM Versatile baseboard is emulated with the following devices:
2435
2436@itemize @minus
2437@item
9ee6e8bb 2438ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2439@item
2440PL190 Vectored Interrupt Controller
2441@item
2442Four PL011 UARTs
5fafdf24 2443@item
00a9bf19
PB
2444SMC 91c111 Ethernet adapter
2445@item
2446PL110 LCD controller
2447@item
2448PL050 KMI with PS/2 keyboard and mouse.
2449@item
2450PCI host bridge. Note the emulated PCI bridge only provides access to
2451PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2452This means some devices (eg. ne2k_pci NIC) are not usable, and others
2453(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2454mapped control registers.
e6de1bad
PB
2455@item
2456PCI OHCI USB controller.
2457@item
2458LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2459@item
2460PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2461@end itemize
2462
21a88941
PB
2463Several variants of the ARM RealView baseboard are emulated,
2464including the EB, PB-A8 and PBX-A9. Due to interactions with the
2465bootloader, only certain Linux kernel configurations work out
2466of the box on these boards.
2467
2468Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2469enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2470should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2471disabled and expect 1024M RAM.
2472
40c5c6cd 2473The following devices are emulated:
d7739d75
PB
2474
2475@itemize @minus
2476@item
f7c70325 2477ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2478@item
2479ARM AMBA Generic/Distributed Interrupt Controller
2480@item
2481Four PL011 UARTs
5fafdf24 2482@item
0ef849d7 2483SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2484@item
2485PL110 LCD controller
2486@item
2487PL050 KMI with PS/2 keyboard and mouse
2488@item
2489PCI host bridge
2490@item
2491PCI OHCI USB controller
2492@item
2493LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2494@item
2495PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2496@end itemize
2497
b00052e4
AZ
2498The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2499and "Terrier") emulation includes the following peripherals:
2500
2501@itemize @minus
2502@item
2503Intel PXA270 System-on-chip (ARM V5TE core)
2504@item
2505NAND Flash memory
2506@item
2507IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2508@item
2509On-chip OHCI USB controller
2510@item
2511On-chip LCD controller
2512@item
2513On-chip Real Time Clock
2514@item
2515TI ADS7846 touchscreen controller on SSP bus
2516@item
2517Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2518@item
2519GPIO-connected keyboard controller and LEDs
2520@item
549444e1 2521Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2522@item
2523Three on-chip UARTs
2524@item
2525WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2526@end itemize
2527
02645926
AZ
2528The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2529following elements:
2530
2531@itemize @minus
2532@item
2533Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2534@item
2535ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2536@item
2537On-chip LCD controller
2538@item
2539On-chip Real Time Clock
2540@item
2541TI TSC2102i touchscreen controller / analog-digital converter / Audio
2542CODEC, connected through MicroWire and I@math{^2}S busses
2543@item
2544GPIO-connected matrix keypad
2545@item
2546Secure Digital card connected to OMAP MMC/SD host
2547@item
2548Three on-chip UARTs
2549@end itemize
2550
c30bb264
AZ
2551Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2552emulation supports the following elements:
2553
2554@itemize @minus
2555@item
2556Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2557@item
2558RAM and non-volatile OneNAND Flash memories
2559@item
2560Display connected to EPSON remote framebuffer chip and OMAP on-chip
2561display controller and a LS041y3 MIPI DBI-C controller
2562@item
2563TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2564driven through SPI bus
2565@item
2566National Semiconductor LM8323-controlled qwerty keyboard driven
2567through I@math{^2}C bus
2568@item
2569Secure Digital card connected to OMAP MMC/SD host
2570@item
2571Three OMAP on-chip UARTs and on-chip STI debugging console
2572@item
40c5c6cd 2573A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2574@item
c30bb264
AZ
2575Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2576TUSB6010 chip - only USB host mode is supported
2577@item
2578TI TMP105 temperature sensor driven through I@math{^2}C bus
2579@item
2580TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2581@item
2582Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2583through CBUS
2584@end itemize
2585
9ee6e8bb
PB
2586The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2587devices:
2588
2589@itemize @minus
2590@item
2591Cortex-M3 CPU core.
2592@item
259364k Flash and 8k SRAM.
2594@item
2595Timers, UARTs, ADC and I@math{^2}C interface.
2596@item
2597OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2598@end itemize
2599
2600The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2601devices:
2602
2603@itemize @minus
2604@item
2605Cortex-M3 CPU core.
2606@item
2607256k Flash and 64k SRAM.
2608@item
2609Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2610@item
2611OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2612@end itemize
2613
57cd6e97
AZ
2614The Freecom MusicPal internet radio emulation includes the following
2615elements:
2616
2617@itemize @minus
2618@item
2619Marvell MV88W8618 ARM core.
2620@item
262132 MB RAM, 256 KB SRAM, 8 MB flash.
2622@item
2623Up to 2 16550 UARTs
2624@item
2625MV88W8xx8 Ethernet controller
2626@item
2627MV88W8618 audio controller, WM8750 CODEC and mixer
2628@item
e080e785 2629128×64 display with brightness control
57cd6e97
AZ
2630@item
26312 buttons, 2 navigation wheels with button function
2632@end itemize
2633
997641a8 2634The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2635The emulation includes the following elements:
997641a8
AZ
2636
2637@itemize @minus
2638@item
2639Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2640@item
2641ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2642V1
26431 Flash of 16MB and 1 Flash of 8MB
2644V2
26451 Flash of 32MB
2646@item
2647On-chip LCD controller
2648@item
2649On-chip Real Time Clock
2650@item
2651Secure Digital card connected to OMAP MMC/SD host
2652@item
2653Three on-chip UARTs
2654@end itemize
2655
3f9f3aa1
FB
2656A Linux 2.6 test image is available on the QEMU web site. More
2657information is available in the QEMU mailing-list archive.
9d0a8e6f 2658
d2c639d6
BS
2659@c man begin OPTIONS
2660
2661The following options are specific to the ARM emulation:
2662
2663@table @option
2664
2665@item -semihosting
2666Enable semihosting syscall emulation.
2667
2668On ARM this implements the "Angel" interface.
2669
2670Note that this allows guest direct access to the host filesystem,
2671so should only be used with trusted guest OS.
2672
2673@end table
2674
abc67eb6
TH
2675@c man end
2676
24d4de45
TS
2677@node ColdFire System emulator
2678@section ColdFire System emulator
7544a042
SW
2679@cindex system emulation (ColdFire)
2680@cindex system emulation (M68K)
209a4e69
PB
2681
2682Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2683The emulator is able to boot a uClinux kernel.
707e011b
PB
2684
2685The M5208EVB emulation includes the following devices:
2686
2687@itemize @minus
5fafdf24 2688@item
707e011b
PB
2689MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2690@item
2691Three Two on-chip UARTs.
2692@item
2693Fast Ethernet Controller (FEC)
2694@end itemize
2695
2696The AN5206 emulation includes the following devices:
209a4e69
PB
2697
2698@itemize @minus
5fafdf24 2699@item
209a4e69
PB
2700MCF5206 ColdFire V2 Microprocessor.
2701@item
2702Two on-chip UARTs.
2703@end itemize
2704
d2c639d6
BS
2705@c man begin OPTIONS
2706
7544a042 2707The following options are specific to the ColdFire emulation:
d2c639d6
BS
2708
2709@table @option
2710
2711@item -semihosting
2712Enable semihosting syscall emulation.
2713
2714On M68K this implements the "ColdFire GDB" interface used by libgloss.
2715
2716Note that this allows guest direct access to the host filesystem,
2717so should only be used with trusted guest OS.
2718
2719@end table
2720
abc67eb6
TH
2721@c man end
2722
7544a042
SW
2723@node Cris System emulator
2724@section Cris System emulator
2725@cindex system emulation (Cris)
2726
2727TODO
2728
2729@node Microblaze System emulator
2730@section Microblaze System emulator
2731@cindex system emulation (Microblaze)
2732
2733TODO
2734
2735@node SH4 System emulator
2736@section SH4 System emulator
2737@cindex system emulation (SH4)
2738
2739TODO
2740
3aeaea65
MF
2741@node Xtensa System emulator
2742@section Xtensa System emulator
2743@cindex system emulation (Xtensa)
2744
2745Two executables cover simulation of both Xtensa endian options,
2746@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2747Two different machine types are emulated:
2748
2749@itemize @minus
2750@item
2751Xtensa emulator pseudo board "sim"
2752@item
2753Avnet LX60/LX110/LX200 board
2754@end itemize
2755
b5e4946f 2756The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2757to one provided by the proprietary Tensilica ISS.
2758It supports:
2759
2760@itemize @minus
2761@item
2762A range of Xtensa CPUs, default is the DC232B
2763@item
2764Console and filesystem access via semihosting calls
2765@end itemize
2766
2767The Avnet LX60/LX110/LX200 emulation supports:
2768
2769@itemize @minus
2770@item
2771A range of Xtensa CPUs, default is the DC232B
2772@item
277316550 UART
2774@item
2775OpenCores 10/100 Mbps Ethernet MAC
2776@end itemize
2777
2778@c man begin OPTIONS
2779
2780The following options are specific to the Xtensa emulation:
2781
2782@table @option
2783
2784@item -semihosting
2785Enable semihosting syscall emulation.
2786
2787Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2788Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2789
2790Note that this allows guest direct access to the host filesystem,
2791so should only be used with trusted guest OS.
2792
2793@end table
3f2ce724 2794
abc67eb6
TH
2795@c man end
2796
3f2ce724
TH
2797@node QEMU Guest Agent
2798@chapter QEMU Guest Agent invocation
2799
2800@include qemu-ga.texi
2801
5fafdf24
TS
2802@node QEMU User space emulator
2803@chapter QEMU User space emulator
83195237
FB
2804
2805@menu
2806* Supported Operating Systems ::
0722cc42 2807* Features::
83195237 2808* Linux User space emulator::
84778508 2809* BSD User space emulator ::
83195237
FB
2810@end menu
2811
2812@node Supported Operating Systems
2813@section Supported Operating Systems
2814
2815The following OS are supported in user space emulation:
2816
2817@itemize @minus
2818@item
4be456f1 2819Linux (referred as qemu-linux-user)
83195237 2820@item
84778508 2821BSD (referred as qemu-bsd-user)
83195237
FB
2822@end itemize
2823
0722cc42
PB
2824@node Features
2825@section Features
2826
2827QEMU user space emulation has the following notable features:
2828
2829@table @strong
2830@item System call translation:
2831QEMU includes a generic system call translator. This means that
2832the parameters of the system calls can be converted to fix
2833endianness and 32/64-bit mismatches between hosts and targets.
2834IOCTLs can be converted too.
2835
2836@item POSIX signal handling:
2837QEMU can redirect to the running program all signals coming from
2838the host (such as @code{SIGALRM}), as well as synthesize signals from
2839virtual CPU exceptions (for example @code{SIGFPE} when the program
2840executes a division by zero).
2841
2842QEMU relies on the host kernel to emulate most signal system
2843calls, for example to emulate the signal mask. On Linux, QEMU
2844supports both normal and real-time signals.
2845
2846@item Threading:
2847On Linux, QEMU can emulate the @code{clone} syscall and create a real
2848host thread (with a separate virtual CPU) for each emulated thread.
2849Note that not all targets currently emulate atomic operations correctly.
2850x86 and ARM use a global lock in order to preserve their semantics.
2851@end table
2852
2853QEMU was conceived so that ultimately it can emulate itself. Although
2854it is not very useful, it is an important test to show the power of the
2855emulator.
2856
83195237
FB
2857@node Linux User space emulator
2858@section Linux User space emulator
386405f7 2859
debc7065
FB
2860@menu
2861* Quick Start::
2862* Wine launch::
2863* Command line options::
79737e4a 2864* Other binaries::
debc7065
FB
2865@end menu
2866
2867@node Quick Start
83195237 2868@subsection Quick Start
df0f11a0 2869
1f673135 2870In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2871itself and all the target (x86) dynamic libraries used by it.
386405f7 2872
1f673135 2873@itemize
386405f7 2874
1f673135
FB
2875@item On x86, you can just try to launch any process by using the native
2876libraries:
386405f7 2877
5fafdf24 2878@example
1f673135
FB
2879qemu-i386 -L / /bin/ls
2880@end example
386405f7 2881
1f673135
FB
2882@code{-L /} tells that the x86 dynamic linker must be searched with a
2883@file{/} prefix.
386405f7 2884
b65ee4fa
SW
2885@item Since QEMU is also a linux process, you can launch QEMU with
2886QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2887
5fafdf24 2888@example
1f673135
FB
2889qemu-i386 -L / qemu-i386 -L / /bin/ls
2890@end example
386405f7 2891
1f673135
FB
2892@item On non x86 CPUs, you need first to download at least an x86 glibc
2893(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2894@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2895
1f673135 2896@example
5fafdf24 2897unset LD_LIBRARY_PATH
1f673135 2898@end example
1eb87257 2899
1f673135 2900Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2901
1f673135
FB
2902@example
2903qemu-i386 tests/i386/ls
2904@end example
4c3b5a48 2905You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2906QEMU is automatically launched by the Linux kernel when you try to
2907launch x86 executables. It requires the @code{binfmt_misc} module in the
2908Linux kernel.
1eb87257 2909
1f673135
FB
2910@item The x86 version of QEMU is also included. You can try weird things such as:
2911@example
debc7065
FB
2912qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2913 /usr/local/qemu-i386/bin/ls-i386
1f673135 2914@end example
1eb20527 2915
1f673135 2916@end itemize
1eb20527 2917
debc7065 2918@node Wine launch
83195237 2919@subsection Wine launch
1eb20527 2920
1f673135 2921@itemize
386405f7 2922
1f673135
FB
2923@item Ensure that you have a working QEMU with the x86 glibc
2924distribution (see previous section). In order to verify it, you must be
2925able to do:
386405f7 2926
1f673135
FB
2927@example
2928qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2929@end example
386405f7 2930
1f673135 2931@item Download the binary x86 Wine install
5fafdf24 2932(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2933
1f673135 2934@item Configure Wine on your account. Look at the provided script
debc7065 2935@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2936@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2937
1f673135 2938@item Then you can try the example @file{putty.exe}:
386405f7 2939
1f673135 2940@example
debc7065
FB
2941qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2942 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2943@end example
386405f7 2944
1f673135 2945@end itemize
fd429f2f 2946
debc7065 2947@node Command line options
83195237 2948@subsection Command line options
1eb20527 2949
1f673135 2950@example
8485140f 2951@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2952@end example
1eb20527 2953
1f673135
FB
2954@table @option
2955@item -h
2956Print the help
3b46e624 2957@item -L path
1f673135
FB
2958Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2959@item -s size
2960Set the x86 stack size in bytes (default=524288)
34a3d239 2961@item -cpu model
c8057f95 2962Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2963@item -E @var{var}=@var{value}
2964Set environment @var{var} to @var{value}.
2965@item -U @var{var}
2966Remove @var{var} from the environment.
379f6698
PB
2967@item -B offset
2968Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2969the address region required by guest applications is reserved on the host.
2970This option is currently only supported on some hosts.
68a1c816
PB
2971@item -R size
2972Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2973"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2974@end table
2975
1f673135 2976Debug options:
386405f7 2977
1f673135 2978@table @option
989b697d
PM
2979@item -d item1,...
2980Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2981@item -p pagesize
2982Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2983@item -g port
2984Wait gdb connection to port
1b530a6d
AJ
2985@item -singlestep
2986Run the emulation in single step mode.
1f673135 2987@end table
386405f7 2988
b01bcae6
AZ
2989Environment variables:
2990
2991@table @env
2992@item QEMU_STRACE
2993Print system calls and arguments similar to the 'strace' program
2994(NOTE: the actual 'strace' program will not work because the user
2995space emulator hasn't implemented ptrace). At the moment this is
2996incomplete. All system calls that don't have a specific argument
2997format are printed with information for six arguments. Many
2998flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2999@end table
b01bcae6 3000
79737e4a 3001@node Other binaries
83195237 3002@subsection Other binaries
79737e4a 3003
7544a042
SW
3004@cindex user mode (Alpha)
3005@command{qemu-alpha} TODO.
3006
3007@cindex user mode (ARM)
3008@command{qemu-armeb} TODO.
3009
3010@cindex user mode (ARM)
79737e4a
PB
3011@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
3012binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
3013configurations), and arm-uclinux bFLT format binaries.
3014
7544a042
SW
3015@cindex user mode (ColdFire)
3016@cindex user mode (M68K)
e6e5906b
PB
3017@command{qemu-m68k} is capable of running semihosted binaries using the BDM
3018(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
3019coldfire uClinux bFLT format binaries.
3020
79737e4a
PB
3021The binary format is detected automatically.
3022
7544a042
SW
3023@cindex user mode (Cris)
3024@command{qemu-cris} TODO.
3025
3026@cindex user mode (i386)
3027@command{qemu-i386} TODO.
3028@command{qemu-x86_64} TODO.
3029
3030@cindex user mode (Microblaze)
3031@command{qemu-microblaze} TODO.
3032
3033@cindex user mode (MIPS)
3034@command{qemu-mips} TODO.
3035@command{qemu-mipsel} TODO.
3036
e671711c
MV
3037@cindex user mode (NiosII)
3038@command{qemu-nios2} TODO.
3039
7544a042
SW
3040@cindex user mode (PowerPC)
3041@command{qemu-ppc64abi32} TODO.
3042@command{qemu-ppc64} TODO.
3043@command{qemu-ppc} TODO.
3044
3045@cindex user mode (SH4)
3046@command{qemu-sh4eb} TODO.
3047@command{qemu-sh4} TODO.
3048
3049@cindex user mode (SPARC)
34a3d239
BS
3050@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
3051
a785e42e
BS
3052@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
3053(Sparc64 CPU, 32 bit ABI).
3054
3055@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
3056SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
3057
84778508
BS
3058@node BSD User space emulator
3059@section BSD User space emulator
3060
3061@menu
3062* BSD Status::
3063* BSD Quick Start::
3064* BSD Command line options::
3065@end menu
3066
3067@node BSD Status
3068@subsection BSD Status
3069
3070@itemize @minus
3071@item
3072target Sparc64 on Sparc64: Some trivial programs work.
3073@end itemize
3074
3075@node BSD Quick Start
3076@subsection Quick Start
3077
3078In order to launch a BSD process, QEMU needs the process executable
3079itself and all the target dynamic libraries used by it.
3080
3081@itemize
3082
3083@item On Sparc64, you can just try to launch any process by using the native
3084libraries:
3085
3086@example
3087qemu-sparc64 /bin/ls
3088@end example
3089
3090@end itemize
3091
3092@node BSD Command line options
3093@subsection Command line options
3094
3095@example
8485140f 3096@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
3097@end example
3098
3099@table @option
3100@item -h
3101Print the help
3102@item -L path
3103Set the library root path (default=/)
3104@item -s size
3105Set the stack size in bytes (default=524288)
f66724c9
SW
3106@item -ignore-environment
3107Start with an empty environment. Without this option,
40c5c6cd 3108the initial environment is a copy of the caller's environment.
f66724c9
SW
3109@item -E @var{var}=@var{value}
3110Set environment @var{var} to @var{value}.
3111@item -U @var{var}
3112Remove @var{var} from the environment.
84778508
BS
3113@item -bsd type
3114Set the type of the emulated BSD Operating system. Valid values are
3115FreeBSD, NetBSD and OpenBSD (default).
3116@end table
3117
3118Debug options:
3119
3120@table @option
989b697d
PM
3121@item -d item1,...
3122Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
3123@item -p pagesize
3124Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
3125@item -singlestep
3126Run the emulation in single step mode.
84778508
BS
3127@end table
3128
47eacb4f 3129
78e87797
PB
3130@include qemu-tech.texi
3131
eb22aeca
DB
3132@node Deprecated features
3133@appendix Deprecated features
3134
3135In general features are intended to be supported indefinitely once
3136introduced into QEMU. In the event that a feature needs to be removed,
3137it will be listed in this appendix. The feature will remain functional
3138for 2 releases prior to actual removal. Deprecated features may also
3139generate warnings on the console when QEMU starts up, or if activated
3140via a monitor command, however, this is not a mandatory requirement.
3141
3142Prior to the 2.10.0 release there was no official policy on how
3143long features would be deprecated prior to their removal, nor
3144any documented list of which features were deprecated. Thus
3145any features deprecated prior to 2.10.0 will be treated as if
3146they were first deprecated in the 2.10.0 release.
3147
3148What follows is a list of all features currently marked as
3149deprecated.
3150
3151@section System emulator command line arguments
3152
3153@subsection -drive boot=on|off (since 1.3.0)
3154
3155The ``boot=on|off'' option to the ``-drive'' argument is
3156ignored. Applications should use the ``bootindex=N'' parameter
3157to set an absolute ordering between devices instead.
3158
3159@subsection -tdf (since 1.3.0)
3160
3161The ``-tdf'' argument is ignored. The behaviour implemented
3162by this argument is now the default when using the KVM PIT,
3163but can be requested explicitly using
3164``-global kvm-pit.lost_tick_policy=slew''.
3165
3166@subsection -no-kvm-pit-reinjection (since 1.3.0)
3167
3168The ``-no-kvm-pit-reinjection'' argument is now a
3169synonym for setting ``-global kvm-pit.lost_tick_policy=discard''.
3170
3171@subsection -no-kvm-irqchip (since 1.3.0)
3172
3173The ``-no-kvm-irqchip'' argument is now a synonym for
3174setting ``-machine kernel_irqchip=off''.
3175
3176@subsection -no-kvm-pit (since 1.3.0)
3177
3178The ``-no-kvm-pit'' argument is ignored. It is no longer
3179possible to disable the KVM PIT directly.
3180
3181@subsection -no-kvm (since 1.3.0)
3182
3183The ``-no-kvm'' argument is now a synonym for setting
3184``-machine accel=tcg''.
3185
3186@subsection -mon default=on (since 2.4.0)
3187
3188The ``default'' option to the ``-mon'' argument is
3189now ignored. When multiple monitors were enabled, it
3190indicated which monitor would receive log messages
3191from the various subsystems. This feature is no longer
3192required as messages are now only sent to the monitor
3193in response to explicitly monitor commands.
3194
3195@subsection -vnc tls (since 2.5.0)
3196
3197The ``-vnc tls'' argument is now a synonym for setting
3198``-object tls-creds-anon,id=tls0'' combined with
3199``-vnc tls-creds=tls0'
3200
3201@subsection -vnc x509 (since 2.5.0)
3202
3203The ``-vnc x509=/path/to/certs'' argument is now a
3204synonym for setting
3205``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=no''
3206combined with ``-vnc tls-creds=tls0'
3207
3208@subsection -vnc x509verify (since 2.5.0)
3209
3210The ``-vnc x509verify=/path/to/certs'' argument is now a
3211synonym for setting
3212``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=yes''
3213combined with ``-vnc tls-creds=tls0'
3214
3215@subsection -tftp (since 2.6.0)
3216
3217The ``-tftp /some/dir'' argument is now a synonym for setting
3218the ``-netdev user,tftp=/some/dir' argument. The new syntax
3219allows different settings to be provided per NIC.
3220
3221@subsection -bootp (since 2.6.0)
3222
3223The ``-bootp /some/file'' argument is now a synonym for setting
3224the ``-netdev user,bootp=/some/file' argument. The new syntax
3225allows different settings to be provided per NIC.
3226
3227@subsection -redir (since 2.6.0)
3228
3229The ``-redir ARGS'' argument is now a synonym for setting
3230the ``-netdev user,hostfwd=ARGS'' argument instead. The new
3231syntax allows different settings to be provided per NIC.
3232
3233@subsection -smb (since 2.6.0)
3234
3235The ``-smb /some/dir'' argument is now a synonym for setting
3236the ``-netdev user,smb=/some/dir'' argument instead. The new
3237syntax allows different settings to be provided per NIC.
3238
3239@subsection -net channel (since 2.6.0)
3240
3241The ``--net channel,ARGS'' argument is now a synonym for setting
3242the ``-netdev user,guestfwd=ARGS'' argument instead.
3243
3244@subsection -net vlan (since 2.9.0)
3245
3246The ``-net van=NN'' argument is partially replaced with the
3247new ``-netdev'' argument. The remaining use cases will no
3248longer be directly supported in QEMU.
3249
3250@subsection -drive if=scsi (since 2.9.0)
3251
3252The ``-drive if=scsi'' argument is replaced by the the
3253``-device BUS-TYPE'' argument combined with ``-drive if=none''.
3254
3255@subsection -net dump (since 2.10.0)
3256
3257The ``--net dump'' argument is now replaced with the
3258``-object filter-dump'' argument which works in combination
3259with the modern ``-netdev`` backends instead.
3260
3261@subsection -hdachs (since 2.10.0)
3262
3263The ``-hdachs'' argument is now a synonym for setting
3264the ``cyls'', ``heads'', ``secs'', and ``trans'' properties
3265on the ``ide-hd'' device using the ``-device'' argument.
3266The new syntax allows different settings to be provided
3267per disk.
3268
3269@subsection -usbdevice (since 2.10.0)
3270
3271The ``-usbdevice DEV'' argument is now a synonym for setting
3272the ``-device usb-DEV'' argument instead. The deprecated syntax
3273would automatically enable USB support on the machine type.
3274If using the new syntax, USB support must be explicitly
3275enabled via the ``-machine usb=on'' argument.
3276
3277@section qemu-img command line arguments
3278
3279@subsection convert -s (since 2.0.0)
3280
3281The ``convert -s snapshot_id_or_name'' argument is obsoleted
3282by the ``convert -l snapshot_param'' argument instead.
3283
3284@section System emulator human monitor commands
3285
3286@subsection usb_add (since 2.10.0)
3287
3288The ``usb_add'' command is replaced by the ``device_add'' command.
3289
3290@subsection usb_del (since 2.10.0)
3291
3292The ``usb_del'' command is replaced by the ``device_del'' command.
3293
3294@section System emulator devices
3295
3296@subsection ivshmem (since 2.6.0)
3297
3298The ``ivshmem'' device type is replaced by either the ``ivshmem-plain''
3299or ``ivshmem-doorbell`` device types.
3300
3301@subsection spapr-pci-vfio-host-bridge (since 2.6.0)
3302
3303The ``spapr-pci-vfio-host-bridge'' device type is replaced by
3304the ``spapr-pci-host-bridge'' device type.
3305
7544a042
SW
3306@node License
3307@appendix License
3308
3309QEMU is a trademark of Fabrice Bellard.
3310
2f8d8f01
TH
3311QEMU is released under the
3312@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
3313version 2. Parts of QEMU have specific licenses, see file
3314@url{http://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
7544a042 3315
debc7065 3316@node Index
7544a042
SW
3317@appendix Index
3318@menu
3319* Concept Index::
3320* Function Index::
3321* Keystroke Index::
3322* Program Index::
3323* Data Type Index::
3324* Variable Index::
3325@end menu
3326
3327@node Concept Index
3328@section Concept Index
3329This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3330@printindex cp
3331
7544a042
SW
3332@node Function Index
3333@section Function Index
3334This index could be used for command line options and monitor functions.
3335@printindex fn
3336
3337@node Keystroke Index
3338@section Keystroke Index
3339
3340This is a list of all keystrokes which have a special function
3341in system emulation.
3342
3343@printindex ky
3344
3345@node Program Index
3346@section Program Index
3347@printindex pg
3348
3349@node Data Type Index
3350@section Data Type Index
3351
3352This index could be used for qdev device names and options.
3353
3354@printindex tp
3355
3356@node Variable Index
3357@section Variable Index
3358@printindex vr
3359
debc7065 3360@bye
This page took 1.328674 seconds and 4 git commands to generate.