]>
Commit | Line | Data |
---|---|---|
2da776db MH |
1 | /* |
2 | * RDMA protocol and interfaces | |
3 | * | |
4 | * Copyright IBM, Corp. 2010-2013 | |
6ddd2d76 | 5 | * Copyright Red Hat, Inc. 2015-2016 |
2da776db MH |
6 | * |
7 | * Authors: | |
8 | * Michael R. Hines <[email protected]> | |
9 | * Jiuxing Liu <[email protected]> | |
6ddd2d76 | 10 | * Daniel P. Berrange <[email protected]> |
2da776db MH |
11 | * |
12 | * This work is licensed under the terms of the GNU GPL, version 2 or | |
13 | * later. See the COPYING file in the top-level directory. | |
14 | * | |
15 | */ | |
1393a485 | 16 | #include "qemu/osdep.h" |
da34e65c | 17 | #include "qapi/error.h" |
2da776db | 18 | #include "qemu-common.h" |
f348b6d1 | 19 | #include "qemu/cutils.h" |
e1a3ecee | 20 | #include "rdma.h" |
6666c96a | 21 | #include "migration.h" |
08a0aee1 | 22 | #include "qemu-file.h" |
7b1e1a22 | 23 | #include "ram.h" |
40014d81 | 24 | #include "qemu-file-channel.h" |
d49b6836 | 25 | #include "qemu/error-report.h" |
2da776db MH |
26 | #include "qemu/main-loop.h" |
27 | #include "qemu/sockets.h" | |
28 | #include "qemu/bitmap.h" | |
10817bf0 | 29 | #include "qemu/coroutine.h" |
2da776db MH |
30 | #include <sys/socket.h> |
31 | #include <netdb.h> | |
32 | #include <arpa/inet.h> | |
2da776db | 33 | #include <rdma/rdma_cma.h> |
733252de | 34 | #include "trace.h" |
2da776db MH |
35 | |
36 | /* | |
37 | * Print and error on both the Monitor and the Log file. | |
38 | */ | |
39 | #define ERROR(errp, fmt, ...) \ | |
40 | do { \ | |
66988941 | 41 | fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \ |
2da776db MH |
42 | if (errp && (*(errp) == NULL)) { \ |
43 | error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \ | |
44 | } \ | |
45 | } while (0) | |
46 | ||
47 | #define RDMA_RESOLVE_TIMEOUT_MS 10000 | |
48 | ||
49 | /* Do not merge data if larger than this. */ | |
50 | #define RDMA_MERGE_MAX (2 * 1024 * 1024) | |
51 | #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096) | |
52 | ||
53 | #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */ | |
54 | ||
55 | /* | |
56 | * This is only for non-live state being migrated. | |
57 | * Instead of RDMA_WRITE messages, we use RDMA_SEND | |
58 | * messages for that state, which requires a different | |
59 | * delivery design than main memory. | |
60 | */ | |
61 | #define RDMA_SEND_INCREMENT 32768 | |
62 | ||
63 | /* | |
64 | * Maximum size infiniband SEND message | |
65 | */ | |
66 | #define RDMA_CONTROL_MAX_BUFFER (512 * 1024) | |
67 | #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096 | |
68 | ||
69 | #define RDMA_CONTROL_VERSION_CURRENT 1 | |
70 | /* | |
71 | * Capabilities for negotiation. | |
72 | */ | |
73 | #define RDMA_CAPABILITY_PIN_ALL 0x01 | |
74 | ||
75 | /* | |
76 | * Add the other flags above to this list of known capabilities | |
77 | * as they are introduced. | |
78 | */ | |
79 | static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL; | |
80 | ||
81 | #define CHECK_ERROR_STATE() \ | |
82 | do { \ | |
83 | if (rdma->error_state) { \ | |
84 | if (!rdma->error_reported) { \ | |
733252de DDAG |
85 | error_report("RDMA is in an error state waiting migration" \ |
86 | " to abort!"); \ | |
2da776db MH |
87 | rdma->error_reported = 1; \ |
88 | } \ | |
89 | return rdma->error_state; \ | |
90 | } \ | |
2562755e | 91 | } while (0) |
2da776db MH |
92 | |
93 | /* | |
94 | * A work request ID is 64-bits and we split up these bits | |
95 | * into 3 parts: | |
96 | * | |
97 | * bits 0-15 : type of control message, 2^16 | |
98 | * bits 16-29: ram block index, 2^14 | |
99 | * bits 30-63: ram block chunk number, 2^34 | |
100 | * | |
101 | * The last two bit ranges are only used for RDMA writes, | |
102 | * in order to track their completion and potentially | |
103 | * also track unregistration status of the message. | |
104 | */ | |
105 | #define RDMA_WRID_TYPE_SHIFT 0UL | |
106 | #define RDMA_WRID_BLOCK_SHIFT 16UL | |
107 | #define RDMA_WRID_CHUNK_SHIFT 30UL | |
108 | ||
109 | #define RDMA_WRID_TYPE_MASK \ | |
110 | ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL) | |
111 | ||
112 | #define RDMA_WRID_BLOCK_MASK \ | |
113 | (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL)) | |
114 | ||
115 | #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK) | |
116 | ||
117 | /* | |
118 | * RDMA migration protocol: | |
119 | * 1. RDMA Writes (data messages, i.e. RAM) | |
120 | * 2. IB Send/Recv (control channel messages) | |
121 | */ | |
122 | enum { | |
123 | RDMA_WRID_NONE = 0, | |
124 | RDMA_WRID_RDMA_WRITE = 1, | |
125 | RDMA_WRID_SEND_CONTROL = 2000, | |
126 | RDMA_WRID_RECV_CONTROL = 4000, | |
127 | }; | |
128 | ||
2ae31aea | 129 | static const char *wrid_desc[] = { |
2da776db MH |
130 | [RDMA_WRID_NONE] = "NONE", |
131 | [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA", | |
132 | [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND", | |
133 | [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV", | |
134 | }; | |
135 | ||
136 | /* | |
137 | * Work request IDs for IB SEND messages only (not RDMA writes). | |
138 | * This is used by the migration protocol to transmit | |
139 | * control messages (such as device state and registration commands) | |
140 | * | |
141 | * We could use more WRs, but we have enough for now. | |
142 | */ | |
143 | enum { | |
144 | RDMA_WRID_READY = 0, | |
145 | RDMA_WRID_DATA, | |
146 | RDMA_WRID_CONTROL, | |
147 | RDMA_WRID_MAX, | |
148 | }; | |
149 | ||
150 | /* | |
151 | * SEND/RECV IB Control Messages. | |
152 | */ | |
153 | enum { | |
154 | RDMA_CONTROL_NONE = 0, | |
155 | RDMA_CONTROL_ERROR, | |
156 | RDMA_CONTROL_READY, /* ready to receive */ | |
157 | RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */ | |
158 | RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */ | |
159 | RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */ | |
160 | RDMA_CONTROL_COMPRESS, /* page contains repeat values */ | |
161 | RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */ | |
162 | RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */ | |
163 | RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */ | |
164 | RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */ | |
165 | RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */ | |
166 | }; | |
167 | ||
2da776db MH |
168 | |
169 | /* | |
170 | * Memory and MR structures used to represent an IB Send/Recv work request. | |
171 | * This is *not* used for RDMA writes, only IB Send/Recv. | |
172 | */ | |
173 | typedef struct { | |
174 | uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */ | |
175 | struct ibv_mr *control_mr; /* registration metadata */ | |
176 | size_t control_len; /* length of the message */ | |
177 | uint8_t *control_curr; /* start of unconsumed bytes */ | |
178 | } RDMAWorkRequestData; | |
179 | ||
180 | /* | |
181 | * Negotiate RDMA capabilities during connection-setup time. | |
182 | */ | |
183 | typedef struct { | |
184 | uint32_t version; | |
185 | uint32_t flags; | |
186 | } RDMACapabilities; | |
187 | ||
188 | static void caps_to_network(RDMACapabilities *cap) | |
189 | { | |
190 | cap->version = htonl(cap->version); | |
191 | cap->flags = htonl(cap->flags); | |
192 | } | |
193 | ||
194 | static void network_to_caps(RDMACapabilities *cap) | |
195 | { | |
196 | cap->version = ntohl(cap->version); | |
197 | cap->flags = ntohl(cap->flags); | |
198 | } | |
199 | ||
200 | /* | |
201 | * Representation of a RAMBlock from an RDMA perspective. | |
202 | * This is not transmitted, only local. | |
203 | * This and subsequent structures cannot be linked lists | |
204 | * because we're using a single IB message to transmit | |
205 | * the information. It's small anyway, so a list is overkill. | |
206 | */ | |
207 | typedef struct RDMALocalBlock { | |
4fb5364b DDAG |
208 | char *block_name; |
209 | uint8_t *local_host_addr; /* local virtual address */ | |
210 | uint64_t remote_host_addr; /* remote virtual address */ | |
211 | uint64_t offset; | |
212 | uint64_t length; | |
213 | struct ibv_mr **pmr; /* MRs for chunk-level registration */ | |
214 | struct ibv_mr *mr; /* MR for non-chunk-level registration */ | |
215 | uint32_t *remote_keys; /* rkeys for chunk-level registration */ | |
216 | uint32_t remote_rkey; /* rkeys for non-chunk-level registration */ | |
217 | int index; /* which block are we */ | |
e4d63320 | 218 | unsigned int src_index; /* (Only used on dest) */ |
4fb5364b DDAG |
219 | bool is_ram_block; |
220 | int nb_chunks; | |
2da776db MH |
221 | unsigned long *transit_bitmap; |
222 | unsigned long *unregister_bitmap; | |
223 | } RDMALocalBlock; | |
224 | ||
225 | /* | |
226 | * Also represents a RAMblock, but only on the dest. | |
227 | * This gets transmitted by the dest during connection-time | |
228 | * to the source VM and then is used to populate the | |
229 | * corresponding RDMALocalBlock with | |
230 | * the information needed to perform the actual RDMA. | |
231 | */ | |
a97270ad | 232 | typedef struct QEMU_PACKED RDMADestBlock { |
2da776db MH |
233 | uint64_t remote_host_addr; |
234 | uint64_t offset; | |
235 | uint64_t length; | |
236 | uint32_t remote_rkey; | |
237 | uint32_t padding; | |
a97270ad | 238 | } RDMADestBlock; |
2da776db | 239 | |
482a33c5 DDAG |
240 | static const char *control_desc(unsigned int rdma_control) |
241 | { | |
242 | static const char *strs[] = { | |
243 | [RDMA_CONTROL_NONE] = "NONE", | |
244 | [RDMA_CONTROL_ERROR] = "ERROR", | |
245 | [RDMA_CONTROL_READY] = "READY", | |
246 | [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE", | |
247 | [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST", | |
248 | [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT", | |
249 | [RDMA_CONTROL_COMPRESS] = "COMPRESS", | |
250 | [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST", | |
251 | [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT", | |
252 | [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED", | |
253 | [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST", | |
254 | [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED", | |
255 | }; | |
256 | ||
257 | if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) { | |
258 | return "??BAD CONTROL VALUE??"; | |
259 | } | |
260 | ||
261 | return strs[rdma_control]; | |
262 | } | |
263 | ||
2da776db MH |
264 | static uint64_t htonll(uint64_t v) |
265 | { | |
266 | union { uint32_t lv[2]; uint64_t llv; } u; | |
267 | u.lv[0] = htonl(v >> 32); | |
268 | u.lv[1] = htonl(v & 0xFFFFFFFFULL); | |
269 | return u.llv; | |
270 | } | |
271 | ||
272 | static uint64_t ntohll(uint64_t v) { | |
273 | union { uint32_t lv[2]; uint64_t llv; } u; | |
274 | u.llv = v; | |
275 | return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]); | |
276 | } | |
277 | ||
a97270ad | 278 | static void dest_block_to_network(RDMADestBlock *db) |
2da776db | 279 | { |
a97270ad DDAG |
280 | db->remote_host_addr = htonll(db->remote_host_addr); |
281 | db->offset = htonll(db->offset); | |
282 | db->length = htonll(db->length); | |
283 | db->remote_rkey = htonl(db->remote_rkey); | |
2da776db MH |
284 | } |
285 | ||
a97270ad | 286 | static void network_to_dest_block(RDMADestBlock *db) |
2da776db | 287 | { |
a97270ad DDAG |
288 | db->remote_host_addr = ntohll(db->remote_host_addr); |
289 | db->offset = ntohll(db->offset); | |
290 | db->length = ntohll(db->length); | |
291 | db->remote_rkey = ntohl(db->remote_rkey); | |
2da776db MH |
292 | } |
293 | ||
294 | /* | |
295 | * Virtual address of the above structures used for transmitting | |
296 | * the RAMBlock descriptions at connection-time. | |
297 | * This structure is *not* transmitted. | |
298 | */ | |
299 | typedef struct RDMALocalBlocks { | |
300 | int nb_blocks; | |
301 | bool init; /* main memory init complete */ | |
302 | RDMALocalBlock *block; | |
303 | } RDMALocalBlocks; | |
304 | ||
305 | /* | |
306 | * Main data structure for RDMA state. | |
307 | * While there is only one copy of this structure being allocated right now, | |
308 | * this is the place where one would start if you wanted to consider | |
309 | * having more than one RDMA connection open at the same time. | |
310 | */ | |
311 | typedef struct RDMAContext { | |
312 | char *host; | |
313 | int port; | |
314 | ||
1f22364b | 315 | RDMAWorkRequestData wr_data[RDMA_WRID_MAX]; |
2da776db MH |
316 | |
317 | /* | |
318 | * This is used by *_exchange_send() to figure out whether or not | |
319 | * the initial "READY" message has already been received or not. | |
320 | * This is because other functions may potentially poll() and detect | |
321 | * the READY message before send() does, in which case we need to | |
322 | * know if it completed. | |
323 | */ | |
324 | int control_ready_expected; | |
325 | ||
326 | /* number of outstanding writes */ | |
327 | int nb_sent; | |
328 | ||
329 | /* store info about current buffer so that we can | |
330 | merge it with future sends */ | |
331 | uint64_t current_addr; | |
332 | uint64_t current_length; | |
333 | /* index of ram block the current buffer belongs to */ | |
334 | int current_index; | |
335 | /* index of the chunk in the current ram block */ | |
336 | int current_chunk; | |
337 | ||
338 | bool pin_all; | |
339 | ||
340 | /* | |
341 | * infiniband-specific variables for opening the device | |
342 | * and maintaining connection state and so forth. | |
343 | * | |
344 | * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in | |
345 | * cm_id->verbs, cm_id->channel, and cm_id->qp. | |
346 | */ | |
347 | struct rdma_cm_id *cm_id; /* connection manager ID */ | |
348 | struct rdma_cm_id *listen_id; | |
5a91337c | 349 | bool connected; |
2da776db MH |
350 | |
351 | struct ibv_context *verbs; | |
352 | struct rdma_event_channel *channel; | |
353 | struct ibv_qp *qp; /* queue pair */ | |
354 | struct ibv_comp_channel *comp_channel; /* completion channel */ | |
355 | struct ibv_pd *pd; /* protection domain */ | |
356 | struct ibv_cq *cq; /* completion queue */ | |
357 | ||
358 | /* | |
359 | * If a previous write failed (perhaps because of a failed | |
360 | * memory registration, then do not attempt any future work | |
361 | * and remember the error state. | |
362 | */ | |
363 | int error_state; | |
364 | int error_reported; | |
cd5ea070 | 365 | int received_error; |
2da776db MH |
366 | |
367 | /* | |
368 | * Description of ram blocks used throughout the code. | |
369 | */ | |
370 | RDMALocalBlocks local_ram_blocks; | |
a97270ad | 371 | RDMADestBlock *dest_blocks; |
2da776db | 372 | |
e4d63320 DDAG |
373 | /* Index of the next RAMBlock received during block registration */ |
374 | unsigned int next_src_index; | |
375 | ||
2da776db MH |
376 | /* |
377 | * Migration on *destination* started. | |
378 | * Then use coroutine yield function. | |
379 | * Source runs in a thread, so we don't care. | |
380 | */ | |
381 | int migration_started_on_destination; | |
382 | ||
383 | int total_registrations; | |
384 | int total_writes; | |
385 | ||
386 | int unregister_current, unregister_next; | |
387 | uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX]; | |
388 | ||
389 | GHashTable *blockmap; | |
390 | } RDMAContext; | |
391 | ||
6ddd2d76 DB |
392 | #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma" |
393 | #define QIO_CHANNEL_RDMA(obj) \ | |
394 | OBJECT_CHECK(QIOChannelRDMA, (obj), TYPE_QIO_CHANNEL_RDMA) | |
395 | ||
396 | typedef struct QIOChannelRDMA QIOChannelRDMA; | |
397 | ||
398 | ||
399 | struct QIOChannelRDMA { | |
400 | QIOChannel parent; | |
2da776db | 401 | RDMAContext *rdma; |
6ddd2d76 | 402 | QEMUFile *file; |
2da776db | 403 | size_t len; |
6ddd2d76 DB |
404 | bool blocking; /* XXX we don't actually honour this yet */ |
405 | }; | |
2da776db MH |
406 | |
407 | /* | |
408 | * Main structure for IB Send/Recv control messages. | |
409 | * This gets prepended at the beginning of every Send/Recv. | |
410 | */ | |
411 | typedef struct QEMU_PACKED { | |
412 | uint32_t len; /* Total length of data portion */ | |
413 | uint32_t type; /* which control command to perform */ | |
414 | uint32_t repeat; /* number of commands in data portion of same type */ | |
415 | uint32_t padding; | |
416 | } RDMAControlHeader; | |
417 | ||
418 | static void control_to_network(RDMAControlHeader *control) | |
419 | { | |
420 | control->type = htonl(control->type); | |
421 | control->len = htonl(control->len); | |
422 | control->repeat = htonl(control->repeat); | |
423 | } | |
424 | ||
425 | static void network_to_control(RDMAControlHeader *control) | |
426 | { | |
427 | control->type = ntohl(control->type); | |
428 | control->len = ntohl(control->len); | |
429 | control->repeat = ntohl(control->repeat); | |
430 | } | |
431 | ||
432 | /* | |
433 | * Register a single Chunk. | |
434 | * Information sent by the source VM to inform the dest | |
435 | * to register an single chunk of memory before we can perform | |
436 | * the actual RDMA operation. | |
437 | */ | |
438 | typedef struct QEMU_PACKED { | |
439 | union QEMU_PACKED { | |
b12f7777 | 440 | uint64_t current_addr; /* offset into the ram_addr_t space */ |
2da776db MH |
441 | uint64_t chunk; /* chunk to lookup if unregistering */ |
442 | } key; | |
443 | uint32_t current_index; /* which ramblock the chunk belongs to */ | |
444 | uint32_t padding; | |
445 | uint64_t chunks; /* how many sequential chunks to register */ | |
446 | } RDMARegister; | |
447 | ||
b12f7777 | 448 | static void register_to_network(RDMAContext *rdma, RDMARegister *reg) |
2da776db | 449 | { |
b12f7777 DDAG |
450 | RDMALocalBlock *local_block; |
451 | local_block = &rdma->local_ram_blocks.block[reg->current_index]; | |
452 | ||
453 | if (local_block->is_ram_block) { | |
454 | /* | |
455 | * current_addr as passed in is an address in the local ram_addr_t | |
456 | * space, we need to translate this for the destination | |
457 | */ | |
458 | reg->key.current_addr -= local_block->offset; | |
459 | reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset; | |
460 | } | |
2da776db MH |
461 | reg->key.current_addr = htonll(reg->key.current_addr); |
462 | reg->current_index = htonl(reg->current_index); | |
463 | reg->chunks = htonll(reg->chunks); | |
464 | } | |
465 | ||
466 | static void network_to_register(RDMARegister *reg) | |
467 | { | |
468 | reg->key.current_addr = ntohll(reg->key.current_addr); | |
469 | reg->current_index = ntohl(reg->current_index); | |
470 | reg->chunks = ntohll(reg->chunks); | |
471 | } | |
472 | ||
473 | typedef struct QEMU_PACKED { | |
474 | uint32_t value; /* if zero, we will madvise() */ | |
475 | uint32_t block_idx; /* which ram block index */ | |
b12f7777 | 476 | uint64_t offset; /* Address in remote ram_addr_t space */ |
2da776db MH |
477 | uint64_t length; /* length of the chunk */ |
478 | } RDMACompress; | |
479 | ||
b12f7777 | 480 | static void compress_to_network(RDMAContext *rdma, RDMACompress *comp) |
2da776db MH |
481 | { |
482 | comp->value = htonl(comp->value); | |
b12f7777 DDAG |
483 | /* |
484 | * comp->offset as passed in is an address in the local ram_addr_t | |
485 | * space, we need to translate this for the destination | |
486 | */ | |
487 | comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset; | |
488 | comp->offset += rdma->dest_blocks[comp->block_idx].offset; | |
2da776db MH |
489 | comp->block_idx = htonl(comp->block_idx); |
490 | comp->offset = htonll(comp->offset); | |
491 | comp->length = htonll(comp->length); | |
492 | } | |
493 | ||
494 | static void network_to_compress(RDMACompress *comp) | |
495 | { | |
496 | comp->value = ntohl(comp->value); | |
497 | comp->block_idx = ntohl(comp->block_idx); | |
498 | comp->offset = ntohll(comp->offset); | |
499 | comp->length = ntohll(comp->length); | |
500 | } | |
501 | ||
502 | /* | |
503 | * The result of the dest's memory registration produces an "rkey" | |
504 | * which the source VM must reference in order to perform | |
505 | * the RDMA operation. | |
506 | */ | |
507 | typedef struct QEMU_PACKED { | |
508 | uint32_t rkey; | |
509 | uint32_t padding; | |
510 | uint64_t host_addr; | |
511 | } RDMARegisterResult; | |
512 | ||
513 | static void result_to_network(RDMARegisterResult *result) | |
514 | { | |
515 | result->rkey = htonl(result->rkey); | |
516 | result->host_addr = htonll(result->host_addr); | |
517 | }; | |
518 | ||
519 | static void network_to_result(RDMARegisterResult *result) | |
520 | { | |
521 | result->rkey = ntohl(result->rkey); | |
522 | result->host_addr = ntohll(result->host_addr); | |
523 | }; | |
524 | ||
525 | const char *print_wrid(int wrid); | |
526 | static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, | |
527 | uint8_t *data, RDMAControlHeader *resp, | |
528 | int *resp_idx, | |
529 | int (*callback)(RDMAContext *rdma)); | |
530 | ||
dd286ed7 IY |
531 | static inline uint64_t ram_chunk_index(const uint8_t *start, |
532 | const uint8_t *host) | |
2da776db MH |
533 | { |
534 | return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT; | |
535 | } | |
536 | ||
dd286ed7 | 537 | static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block, |
2da776db MH |
538 | uint64_t i) |
539 | { | |
fbce8c25 SW |
540 | return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr + |
541 | (i << RDMA_REG_CHUNK_SHIFT)); | |
2da776db MH |
542 | } |
543 | ||
dd286ed7 IY |
544 | static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block, |
545 | uint64_t i) | |
2da776db MH |
546 | { |
547 | uint8_t *result = ram_chunk_start(rdma_ram_block, i) + | |
548 | (1UL << RDMA_REG_CHUNK_SHIFT); | |
549 | ||
550 | if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) { | |
551 | result = rdma_ram_block->local_host_addr + rdma_ram_block->length; | |
552 | } | |
553 | ||
554 | return result; | |
555 | } | |
556 | ||
4fb5364b DDAG |
557 | static int rdma_add_block(RDMAContext *rdma, const char *block_name, |
558 | void *host_addr, | |
2da776db MH |
559 | ram_addr_t block_offset, uint64_t length) |
560 | { | |
561 | RDMALocalBlocks *local = &rdma->local_ram_blocks; | |
760ff4be | 562 | RDMALocalBlock *block; |
2da776db MH |
563 | RDMALocalBlock *old = local->block; |
564 | ||
97f3ad35 | 565 | local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1); |
2da776db MH |
566 | |
567 | if (local->nb_blocks) { | |
568 | int x; | |
569 | ||
760ff4be DDAG |
570 | if (rdma->blockmap) { |
571 | for (x = 0; x < local->nb_blocks; x++) { | |
572 | g_hash_table_remove(rdma->blockmap, | |
573 | (void *)(uintptr_t)old[x].offset); | |
574 | g_hash_table_insert(rdma->blockmap, | |
575 | (void *)(uintptr_t)old[x].offset, | |
576 | &local->block[x]); | |
577 | } | |
2da776db MH |
578 | } |
579 | memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks); | |
580 | g_free(old); | |
581 | } | |
582 | ||
583 | block = &local->block[local->nb_blocks]; | |
584 | ||
4fb5364b | 585 | block->block_name = g_strdup(block_name); |
2da776db MH |
586 | block->local_host_addr = host_addr; |
587 | block->offset = block_offset; | |
588 | block->length = length; | |
589 | block->index = local->nb_blocks; | |
e4d63320 | 590 | block->src_index = ~0U; /* Filled in by the receipt of the block list */ |
2da776db MH |
591 | block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL; |
592 | block->transit_bitmap = bitmap_new(block->nb_chunks); | |
593 | bitmap_clear(block->transit_bitmap, 0, block->nb_chunks); | |
594 | block->unregister_bitmap = bitmap_new(block->nb_chunks); | |
595 | bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks); | |
97f3ad35 | 596 | block->remote_keys = g_new0(uint32_t, block->nb_chunks); |
2da776db MH |
597 | |
598 | block->is_ram_block = local->init ? false : true; | |
599 | ||
760ff4be | 600 | if (rdma->blockmap) { |
80e60c6e | 601 | g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block); |
760ff4be | 602 | } |
2da776db | 603 | |
4fb5364b DDAG |
604 | trace_rdma_add_block(block_name, local->nb_blocks, |
605 | (uintptr_t) block->local_host_addr, | |
ba795761 | 606 | block->offset, block->length, |
fbce8c25 | 607 | (uintptr_t) (block->local_host_addr + block->length), |
ba795761 DDAG |
608 | BITS_TO_LONGS(block->nb_chunks) * |
609 | sizeof(unsigned long) * 8, | |
610 | block->nb_chunks); | |
2da776db MH |
611 | |
612 | local->nb_blocks++; | |
613 | ||
614 | return 0; | |
615 | } | |
616 | ||
617 | /* | |
618 | * Memory regions need to be registered with the device and queue pairs setup | |
619 | * in advanced before the migration starts. This tells us where the RAM blocks | |
620 | * are so that we can register them individually. | |
621 | */ | |
e3807054 | 622 | static int qemu_rdma_init_one_block(const char *block_name, void *host_addr, |
2da776db MH |
623 | ram_addr_t block_offset, ram_addr_t length, void *opaque) |
624 | { | |
4fb5364b | 625 | return rdma_add_block(opaque, block_name, host_addr, block_offset, length); |
2da776db MH |
626 | } |
627 | ||
628 | /* | |
629 | * Identify the RAMBlocks and their quantity. They will be references to | |
630 | * identify chunk boundaries inside each RAMBlock and also be referenced | |
631 | * during dynamic page registration. | |
632 | */ | |
633 | static int qemu_rdma_init_ram_blocks(RDMAContext *rdma) | |
634 | { | |
635 | RDMALocalBlocks *local = &rdma->local_ram_blocks; | |
636 | ||
637 | assert(rdma->blockmap == NULL); | |
2da776db MH |
638 | memset(local, 0, sizeof *local); |
639 | qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma); | |
733252de | 640 | trace_qemu_rdma_init_ram_blocks(local->nb_blocks); |
97f3ad35 MA |
641 | rdma->dest_blocks = g_new0(RDMADestBlock, |
642 | rdma->local_ram_blocks.nb_blocks); | |
2da776db MH |
643 | local->init = true; |
644 | return 0; | |
645 | } | |
646 | ||
03fcab38 DDAG |
647 | /* |
648 | * Note: If used outside of cleanup, the caller must ensure that the destination | |
649 | * block structures are also updated | |
650 | */ | |
651 | static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block) | |
2da776db MH |
652 | { |
653 | RDMALocalBlocks *local = &rdma->local_ram_blocks; | |
2da776db MH |
654 | RDMALocalBlock *old = local->block; |
655 | int x; | |
656 | ||
03fcab38 DDAG |
657 | if (rdma->blockmap) { |
658 | g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset); | |
659 | } | |
2da776db MH |
660 | if (block->pmr) { |
661 | int j; | |
662 | ||
663 | for (j = 0; j < block->nb_chunks; j++) { | |
664 | if (!block->pmr[j]) { | |
665 | continue; | |
666 | } | |
667 | ibv_dereg_mr(block->pmr[j]); | |
668 | rdma->total_registrations--; | |
669 | } | |
670 | g_free(block->pmr); | |
671 | block->pmr = NULL; | |
672 | } | |
673 | ||
674 | if (block->mr) { | |
675 | ibv_dereg_mr(block->mr); | |
676 | rdma->total_registrations--; | |
677 | block->mr = NULL; | |
678 | } | |
679 | ||
680 | g_free(block->transit_bitmap); | |
681 | block->transit_bitmap = NULL; | |
682 | ||
683 | g_free(block->unregister_bitmap); | |
684 | block->unregister_bitmap = NULL; | |
685 | ||
686 | g_free(block->remote_keys); | |
687 | block->remote_keys = NULL; | |
688 | ||
4fb5364b DDAG |
689 | g_free(block->block_name); |
690 | block->block_name = NULL; | |
691 | ||
03fcab38 DDAG |
692 | if (rdma->blockmap) { |
693 | for (x = 0; x < local->nb_blocks; x++) { | |
694 | g_hash_table_remove(rdma->blockmap, | |
695 | (void *)(uintptr_t)old[x].offset); | |
696 | } | |
2da776db MH |
697 | } |
698 | ||
699 | if (local->nb_blocks > 1) { | |
700 | ||
97f3ad35 | 701 | local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1); |
2da776db MH |
702 | |
703 | if (block->index) { | |
704 | memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index); | |
705 | } | |
706 | ||
707 | if (block->index < (local->nb_blocks - 1)) { | |
708 | memcpy(local->block + block->index, old + (block->index + 1), | |
709 | sizeof(RDMALocalBlock) * | |
710 | (local->nb_blocks - (block->index + 1))); | |
71cd7306 LC |
711 | for (x = block->index; x < local->nb_blocks - 1; x++) { |
712 | local->block[x].index--; | |
713 | } | |
2da776db MH |
714 | } |
715 | } else { | |
716 | assert(block == local->block); | |
717 | local->block = NULL; | |
718 | } | |
719 | ||
03fcab38 | 720 | trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr, |
733252de | 721 | block->offset, block->length, |
fbce8c25 | 722 | (uintptr_t)(block->local_host_addr + block->length), |
733252de DDAG |
723 | BITS_TO_LONGS(block->nb_chunks) * |
724 | sizeof(unsigned long) * 8, block->nb_chunks); | |
2da776db MH |
725 | |
726 | g_free(old); | |
727 | ||
728 | local->nb_blocks--; | |
729 | ||
03fcab38 | 730 | if (local->nb_blocks && rdma->blockmap) { |
2da776db | 731 | for (x = 0; x < local->nb_blocks; x++) { |
fbce8c25 SW |
732 | g_hash_table_insert(rdma->blockmap, |
733 | (void *)(uintptr_t)local->block[x].offset, | |
734 | &local->block[x]); | |
2da776db MH |
735 | } |
736 | } | |
737 | ||
738 | return 0; | |
739 | } | |
740 | ||
741 | /* | |
742 | * Put in the log file which RDMA device was opened and the details | |
743 | * associated with that device. | |
744 | */ | |
745 | static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs) | |
746 | { | |
7fc5b13f MH |
747 | struct ibv_port_attr port; |
748 | ||
749 | if (ibv_query_port(verbs, 1, &port)) { | |
733252de | 750 | error_report("Failed to query port information"); |
7fc5b13f MH |
751 | return; |
752 | } | |
753 | ||
2da776db MH |
754 | printf("%s RDMA Device opened: kernel name %s " |
755 | "uverbs device name %s, " | |
7fc5b13f MH |
756 | "infiniband_verbs class device path %s, " |
757 | "infiniband class device path %s, " | |
758 | "transport: (%d) %s\n", | |
2da776db MH |
759 | who, |
760 | verbs->device->name, | |
761 | verbs->device->dev_name, | |
762 | verbs->device->dev_path, | |
7fc5b13f MH |
763 | verbs->device->ibdev_path, |
764 | port.link_layer, | |
765 | (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" : | |
02942db7 | 766 | ((port.link_layer == IBV_LINK_LAYER_ETHERNET) |
7fc5b13f | 767 | ? "Ethernet" : "Unknown")); |
2da776db MH |
768 | } |
769 | ||
770 | /* | |
771 | * Put in the log file the RDMA gid addressing information, | |
772 | * useful for folks who have trouble understanding the | |
773 | * RDMA device hierarchy in the kernel. | |
774 | */ | |
775 | static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id) | |
776 | { | |
777 | char sgid[33]; | |
778 | char dgid[33]; | |
779 | inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid); | |
780 | inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid); | |
733252de | 781 | trace_qemu_rdma_dump_gid(who, sgid, dgid); |
2da776db MH |
782 | } |
783 | ||
7fc5b13f MH |
784 | /* |
785 | * As of now, IPv6 over RoCE / iWARP is not supported by linux. | |
786 | * We will try the next addrinfo struct, and fail if there are | |
787 | * no other valid addresses to bind against. | |
788 | * | |
789 | * If user is listening on '[::]', then we will not have a opened a device | |
790 | * yet and have no way of verifying if the device is RoCE or not. | |
791 | * | |
792 | * In this case, the source VM will throw an error for ALL types of | |
793 | * connections (both IPv4 and IPv6) if the destination machine does not have | |
794 | * a regular infiniband network available for use. | |
795 | * | |
4c293dc6 | 796 | * The only way to guarantee that an error is thrown for broken kernels is |
7fc5b13f MH |
797 | * for the management software to choose a *specific* interface at bind time |
798 | * and validate what time of hardware it is. | |
799 | * | |
800 | * Unfortunately, this puts the user in a fix: | |
02942db7 | 801 | * |
7fc5b13f MH |
802 | * If the source VM connects with an IPv4 address without knowing that the |
803 | * destination has bound to '[::]' the migration will unconditionally fail | |
b6af0975 | 804 | * unless the management software is explicitly listening on the IPv4 |
7fc5b13f MH |
805 | * address while using a RoCE-based device. |
806 | * | |
807 | * If the source VM connects with an IPv6 address, then we're OK because we can | |
808 | * throw an error on the source (and similarly on the destination). | |
02942db7 | 809 | * |
7fc5b13f MH |
810 | * But in mixed environments, this will be broken for a while until it is fixed |
811 | * inside linux. | |
812 | * | |
813 | * We do provide a *tiny* bit of help in this function: We can list all of the | |
814 | * devices in the system and check to see if all the devices are RoCE or | |
02942db7 | 815 | * Infiniband. |
7fc5b13f MH |
816 | * |
817 | * If we detect that we have a *pure* RoCE environment, then we can safely | |
4c293dc6 | 818 | * thrown an error even if the management software has specified '[::]' as the |
7fc5b13f MH |
819 | * bind address. |
820 | * | |
821 | * However, if there is are multiple hetergeneous devices, then we cannot make | |
822 | * this assumption and the user just has to be sure they know what they are | |
823 | * doing. | |
824 | * | |
825 | * Patches are being reviewed on linux-rdma. | |
826 | */ | |
bbfb89e3 | 827 | static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp) |
7fc5b13f MH |
828 | { |
829 | struct ibv_port_attr port_attr; | |
830 | ||
831 | /* This bug only exists in linux, to our knowledge. */ | |
832 | #ifdef CONFIG_LINUX | |
833 | ||
02942db7 | 834 | /* |
7fc5b13f | 835 | * Verbs are only NULL if management has bound to '[::]'. |
02942db7 | 836 | * |
7fc5b13f MH |
837 | * Let's iterate through all the devices and see if there any pure IB |
838 | * devices (non-ethernet). | |
02942db7 | 839 | * |
7fc5b13f | 840 | * If not, then we can safely proceed with the migration. |
4c293dc6 | 841 | * Otherwise, there are no guarantees until the bug is fixed in linux. |
7fc5b13f MH |
842 | */ |
843 | if (!verbs) { | |
02942db7 | 844 | int num_devices, x; |
7fc5b13f MH |
845 | struct ibv_device ** dev_list = ibv_get_device_list(&num_devices); |
846 | bool roce_found = false; | |
847 | bool ib_found = false; | |
848 | ||
849 | for (x = 0; x < num_devices; x++) { | |
850 | verbs = ibv_open_device(dev_list[x]); | |
5b61d575 PR |
851 | if (!verbs) { |
852 | if (errno == EPERM) { | |
853 | continue; | |
854 | } else { | |
855 | return -EINVAL; | |
856 | } | |
857 | } | |
7fc5b13f MH |
858 | |
859 | if (ibv_query_port(verbs, 1, &port_attr)) { | |
860 | ibv_close_device(verbs); | |
861 | ERROR(errp, "Could not query initial IB port"); | |
862 | return -EINVAL; | |
863 | } | |
864 | ||
865 | if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) { | |
866 | ib_found = true; | |
867 | } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { | |
868 | roce_found = true; | |
869 | } | |
870 | ||
871 | ibv_close_device(verbs); | |
872 | ||
873 | } | |
874 | ||
875 | if (roce_found) { | |
876 | if (ib_found) { | |
877 | fprintf(stderr, "WARN: migrations may fail:" | |
878 | " IPv6 over RoCE / iWARP in linux" | |
879 | " is broken. But since you appear to have a" | |
880 | " mixed RoCE / IB environment, be sure to only" | |
881 | " migrate over the IB fabric until the kernel " | |
882 | " fixes the bug.\n"); | |
883 | } else { | |
884 | ERROR(errp, "You only have RoCE / iWARP devices in your systems" | |
885 | " and your management software has specified '[::]'" | |
886 | ", but IPv6 over RoCE / iWARP is not supported in Linux."); | |
887 | return -ENONET; | |
888 | } | |
889 | } | |
890 | ||
891 | return 0; | |
892 | } | |
893 | ||
894 | /* | |
895 | * If we have a verbs context, that means that some other than '[::]' was | |
02942db7 SW |
896 | * used by the management software for binding. In which case we can |
897 | * actually warn the user about a potentially broken kernel. | |
7fc5b13f MH |
898 | */ |
899 | ||
900 | /* IB ports start with 1, not 0 */ | |
901 | if (ibv_query_port(verbs, 1, &port_attr)) { | |
902 | ERROR(errp, "Could not query initial IB port"); | |
903 | return -EINVAL; | |
904 | } | |
905 | ||
906 | if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { | |
907 | ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 " | |
908 | "(but patches on linux-rdma in progress)"); | |
909 | return -ENONET; | |
910 | } | |
911 | ||
912 | #endif | |
913 | ||
914 | return 0; | |
915 | } | |
916 | ||
2da776db MH |
917 | /* |
918 | * Figure out which RDMA device corresponds to the requested IP hostname | |
919 | * Also create the initial connection manager identifiers for opening | |
920 | * the connection. | |
921 | */ | |
922 | static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp) | |
923 | { | |
924 | int ret; | |
7fc5b13f | 925 | struct rdma_addrinfo *res; |
2da776db MH |
926 | char port_str[16]; |
927 | struct rdma_cm_event *cm_event; | |
928 | char ip[40] = "unknown"; | |
7fc5b13f | 929 | struct rdma_addrinfo *e; |
2da776db MH |
930 | |
931 | if (rdma->host == NULL || !strcmp(rdma->host, "")) { | |
66988941 | 932 | ERROR(errp, "RDMA hostname has not been set"); |
7fc5b13f | 933 | return -EINVAL; |
2da776db MH |
934 | } |
935 | ||
936 | /* create CM channel */ | |
937 | rdma->channel = rdma_create_event_channel(); | |
938 | if (!rdma->channel) { | |
66988941 | 939 | ERROR(errp, "could not create CM channel"); |
7fc5b13f | 940 | return -EINVAL; |
2da776db MH |
941 | } |
942 | ||
943 | /* create CM id */ | |
944 | ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP); | |
945 | if (ret) { | |
66988941 | 946 | ERROR(errp, "could not create channel id"); |
2da776db MH |
947 | goto err_resolve_create_id; |
948 | } | |
949 | ||
950 | snprintf(port_str, 16, "%d", rdma->port); | |
951 | port_str[15] = '\0'; | |
952 | ||
7fc5b13f | 953 | ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); |
2da776db | 954 | if (ret < 0) { |
7fc5b13f | 955 | ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); |
2da776db MH |
956 | goto err_resolve_get_addr; |
957 | } | |
958 | ||
6470215b MH |
959 | for (e = res; e != NULL; e = e->ai_next) { |
960 | inet_ntop(e->ai_family, | |
7fc5b13f | 961 | &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); |
733252de | 962 | trace_qemu_rdma_resolve_host_trying(rdma->host, ip); |
2da776db | 963 | |
7fc5b13f | 964 | ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr, |
6470215b MH |
965 | RDMA_RESOLVE_TIMEOUT_MS); |
966 | if (!ret) { | |
c89aa2f1 | 967 | if (e->ai_family == AF_INET6) { |
bbfb89e3 | 968 | ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp); |
c89aa2f1 MH |
969 | if (ret) { |
970 | continue; | |
971 | } | |
7fc5b13f | 972 | } |
6470215b MH |
973 | goto route; |
974 | } | |
2da776db MH |
975 | } |
976 | ||
6470215b MH |
977 | ERROR(errp, "could not resolve address %s", rdma->host); |
978 | goto err_resolve_get_addr; | |
979 | ||
980 | route: | |
2da776db MH |
981 | qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id); |
982 | ||
983 | ret = rdma_get_cm_event(rdma->channel, &cm_event); | |
984 | if (ret) { | |
66988941 | 985 | ERROR(errp, "could not perform event_addr_resolved"); |
2da776db MH |
986 | goto err_resolve_get_addr; |
987 | } | |
988 | ||
989 | if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) { | |
66988941 | 990 | ERROR(errp, "result not equal to event_addr_resolved %s", |
2da776db MH |
991 | rdma_event_str(cm_event->event)); |
992 | perror("rdma_resolve_addr"); | |
2a934347 | 993 | rdma_ack_cm_event(cm_event); |
7fc5b13f | 994 | ret = -EINVAL; |
2da776db MH |
995 | goto err_resolve_get_addr; |
996 | } | |
997 | rdma_ack_cm_event(cm_event); | |
998 | ||
999 | /* resolve route */ | |
1000 | ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS); | |
1001 | if (ret) { | |
66988941 | 1002 | ERROR(errp, "could not resolve rdma route"); |
2da776db MH |
1003 | goto err_resolve_get_addr; |
1004 | } | |
1005 | ||
1006 | ret = rdma_get_cm_event(rdma->channel, &cm_event); | |
1007 | if (ret) { | |
66988941 | 1008 | ERROR(errp, "could not perform event_route_resolved"); |
2da776db MH |
1009 | goto err_resolve_get_addr; |
1010 | } | |
1011 | if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) { | |
66988941 | 1012 | ERROR(errp, "result not equal to event_route_resolved: %s", |
2da776db MH |
1013 | rdma_event_str(cm_event->event)); |
1014 | rdma_ack_cm_event(cm_event); | |
7fc5b13f | 1015 | ret = -EINVAL; |
2da776db MH |
1016 | goto err_resolve_get_addr; |
1017 | } | |
1018 | rdma_ack_cm_event(cm_event); | |
1019 | rdma->verbs = rdma->cm_id->verbs; | |
1020 | qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs); | |
1021 | qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id); | |
1022 | return 0; | |
1023 | ||
1024 | err_resolve_get_addr: | |
1025 | rdma_destroy_id(rdma->cm_id); | |
1026 | rdma->cm_id = NULL; | |
1027 | err_resolve_create_id: | |
1028 | rdma_destroy_event_channel(rdma->channel); | |
1029 | rdma->channel = NULL; | |
7fc5b13f | 1030 | return ret; |
2da776db MH |
1031 | } |
1032 | ||
1033 | /* | |
1034 | * Create protection domain and completion queues | |
1035 | */ | |
1036 | static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma) | |
1037 | { | |
1038 | /* allocate pd */ | |
1039 | rdma->pd = ibv_alloc_pd(rdma->verbs); | |
1040 | if (!rdma->pd) { | |
733252de | 1041 | error_report("failed to allocate protection domain"); |
2da776db MH |
1042 | return -1; |
1043 | } | |
1044 | ||
1045 | /* create completion channel */ | |
1046 | rdma->comp_channel = ibv_create_comp_channel(rdma->verbs); | |
1047 | if (!rdma->comp_channel) { | |
733252de | 1048 | error_report("failed to allocate completion channel"); |
2da776db MH |
1049 | goto err_alloc_pd_cq; |
1050 | } | |
1051 | ||
1052 | /* | |
1053 | * Completion queue can be filled by both read and write work requests, | |
1054 | * so must reflect the sum of both possible queue sizes. | |
1055 | */ | |
1056 | rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3), | |
1057 | NULL, rdma->comp_channel, 0); | |
1058 | if (!rdma->cq) { | |
733252de | 1059 | error_report("failed to allocate completion queue"); |
2da776db MH |
1060 | goto err_alloc_pd_cq; |
1061 | } | |
1062 | ||
1063 | return 0; | |
1064 | ||
1065 | err_alloc_pd_cq: | |
1066 | if (rdma->pd) { | |
1067 | ibv_dealloc_pd(rdma->pd); | |
1068 | } | |
1069 | if (rdma->comp_channel) { | |
1070 | ibv_destroy_comp_channel(rdma->comp_channel); | |
1071 | } | |
1072 | rdma->pd = NULL; | |
1073 | rdma->comp_channel = NULL; | |
1074 | return -1; | |
1075 | ||
1076 | } | |
1077 | ||
1078 | /* | |
1079 | * Create queue pairs. | |
1080 | */ | |
1081 | static int qemu_rdma_alloc_qp(RDMAContext *rdma) | |
1082 | { | |
1083 | struct ibv_qp_init_attr attr = { 0 }; | |
1084 | int ret; | |
1085 | ||
1086 | attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX; | |
1087 | attr.cap.max_recv_wr = 3; | |
1088 | attr.cap.max_send_sge = 1; | |
1089 | attr.cap.max_recv_sge = 1; | |
1090 | attr.send_cq = rdma->cq; | |
1091 | attr.recv_cq = rdma->cq; | |
1092 | attr.qp_type = IBV_QPT_RC; | |
1093 | ||
1094 | ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr); | |
1095 | if (ret) { | |
1096 | return -1; | |
1097 | } | |
1098 | ||
1099 | rdma->qp = rdma->cm_id->qp; | |
1100 | return 0; | |
1101 | } | |
1102 | ||
1103 | static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma) | |
1104 | { | |
1105 | int i; | |
1106 | RDMALocalBlocks *local = &rdma->local_ram_blocks; | |
1107 | ||
1108 | for (i = 0; i < local->nb_blocks; i++) { | |
1109 | local->block[i].mr = | |
1110 | ibv_reg_mr(rdma->pd, | |
1111 | local->block[i].local_host_addr, | |
1112 | local->block[i].length, | |
1113 | IBV_ACCESS_LOCAL_WRITE | | |
1114 | IBV_ACCESS_REMOTE_WRITE | |
1115 | ); | |
1116 | if (!local->block[i].mr) { | |
1117 | perror("Failed to register local dest ram block!\n"); | |
1118 | break; | |
1119 | } | |
1120 | rdma->total_registrations++; | |
1121 | } | |
1122 | ||
1123 | if (i >= local->nb_blocks) { | |
1124 | return 0; | |
1125 | } | |
1126 | ||
1127 | for (i--; i >= 0; i--) { | |
1128 | ibv_dereg_mr(local->block[i].mr); | |
1129 | rdma->total_registrations--; | |
1130 | } | |
1131 | ||
1132 | return -1; | |
1133 | ||
1134 | } | |
1135 | ||
1136 | /* | |
1137 | * Find the ram block that corresponds to the page requested to be | |
1138 | * transmitted by QEMU. | |
1139 | * | |
1140 | * Once the block is found, also identify which 'chunk' within that | |
1141 | * block that the page belongs to. | |
1142 | * | |
1143 | * This search cannot fail or the migration will fail. | |
1144 | */ | |
1145 | static int qemu_rdma_search_ram_block(RDMAContext *rdma, | |
fbce8c25 | 1146 | uintptr_t block_offset, |
2da776db MH |
1147 | uint64_t offset, |
1148 | uint64_t length, | |
1149 | uint64_t *block_index, | |
1150 | uint64_t *chunk_index) | |
1151 | { | |
1152 | uint64_t current_addr = block_offset + offset; | |
1153 | RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, | |
1154 | (void *) block_offset); | |
1155 | assert(block); | |
1156 | assert(current_addr >= block->offset); | |
1157 | assert((current_addr + length) <= (block->offset + block->length)); | |
1158 | ||
1159 | *block_index = block->index; | |
1160 | *chunk_index = ram_chunk_index(block->local_host_addr, | |
1161 | block->local_host_addr + (current_addr - block->offset)); | |
1162 | ||
1163 | return 0; | |
1164 | } | |
1165 | ||
1166 | /* | |
1167 | * Register a chunk with IB. If the chunk was already registered | |
1168 | * previously, then skip. | |
1169 | * | |
1170 | * Also return the keys associated with the registration needed | |
1171 | * to perform the actual RDMA operation. | |
1172 | */ | |
1173 | static int qemu_rdma_register_and_get_keys(RDMAContext *rdma, | |
3ac040c0 | 1174 | RDMALocalBlock *block, uintptr_t host_addr, |
2da776db MH |
1175 | uint32_t *lkey, uint32_t *rkey, int chunk, |
1176 | uint8_t *chunk_start, uint8_t *chunk_end) | |
1177 | { | |
1178 | if (block->mr) { | |
1179 | if (lkey) { | |
1180 | *lkey = block->mr->lkey; | |
1181 | } | |
1182 | if (rkey) { | |
1183 | *rkey = block->mr->rkey; | |
1184 | } | |
1185 | return 0; | |
1186 | } | |
1187 | ||
1188 | /* allocate memory to store chunk MRs */ | |
1189 | if (!block->pmr) { | |
97f3ad35 | 1190 | block->pmr = g_new0(struct ibv_mr *, block->nb_chunks); |
2da776db MH |
1191 | } |
1192 | ||
1193 | /* | |
1194 | * If 'rkey', then we're the destination, so grant access to the source. | |
1195 | * | |
1196 | * If 'lkey', then we're the source VM, so grant access only to ourselves. | |
1197 | */ | |
1198 | if (!block->pmr[chunk]) { | |
1199 | uint64_t len = chunk_end - chunk_start; | |
1200 | ||
733252de | 1201 | trace_qemu_rdma_register_and_get_keys(len, chunk_start); |
2da776db MH |
1202 | |
1203 | block->pmr[chunk] = ibv_reg_mr(rdma->pd, | |
1204 | chunk_start, len, | |
1205 | (rkey ? (IBV_ACCESS_LOCAL_WRITE | | |
1206 | IBV_ACCESS_REMOTE_WRITE) : 0)); | |
1207 | ||
1208 | if (!block->pmr[chunk]) { | |
1209 | perror("Failed to register chunk!"); | |
1210 | fprintf(stderr, "Chunk details: block: %d chunk index %d" | |
3ac040c0 SW |
1211 | " start %" PRIuPTR " end %" PRIuPTR |
1212 | " host %" PRIuPTR | |
1213 | " local %" PRIuPTR " registrations: %d\n", | |
1214 | block->index, chunk, (uintptr_t)chunk_start, | |
1215 | (uintptr_t)chunk_end, host_addr, | |
1216 | (uintptr_t)block->local_host_addr, | |
2da776db MH |
1217 | rdma->total_registrations); |
1218 | return -1; | |
1219 | } | |
1220 | rdma->total_registrations++; | |
1221 | } | |
1222 | ||
1223 | if (lkey) { | |
1224 | *lkey = block->pmr[chunk]->lkey; | |
1225 | } | |
1226 | if (rkey) { | |
1227 | *rkey = block->pmr[chunk]->rkey; | |
1228 | } | |
1229 | return 0; | |
1230 | } | |
1231 | ||
1232 | /* | |
1233 | * Register (at connection time) the memory used for control | |
1234 | * channel messages. | |
1235 | */ | |
1236 | static int qemu_rdma_reg_control(RDMAContext *rdma, int idx) | |
1237 | { | |
1238 | rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd, | |
1239 | rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER, | |
1240 | IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); | |
1241 | if (rdma->wr_data[idx].control_mr) { | |
1242 | rdma->total_registrations++; | |
1243 | return 0; | |
1244 | } | |
733252de | 1245 | error_report("qemu_rdma_reg_control failed"); |
2da776db MH |
1246 | return -1; |
1247 | } | |
1248 | ||
1249 | const char *print_wrid(int wrid) | |
1250 | { | |
1251 | if (wrid >= RDMA_WRID_RECV_CONTROL) { | |
1252 | return wrid_desc[RDMA_WRID_RECV_CONTROL]; | |
1253 | } | |
1254 | return wrid_desc[wrid]; | |
1255 | } | |
1256 | ||
1257 | /* | |
1258 | * RDMA requires memory registration (mlock/pinning), but this is not good for | |
1259 | * overcommitment. | |
1260 | * | |
1261 | * In preparation for the future where LRU information or workload-specific | |
1262 | * writable writable working set memory access behavior is available to QEMU | |
1263 | * it would be nice to have in place the ability to UN-register/UN-pin | |
1264 | * particular memory regions from the RDMA hardware when it is determine that | |
1265 | * those regions of memory will likely not be accessed again in the near future. | |
1266 | * | |
1267 | * While we do not yet have such information right now, the following | |
1268 | * compile-time option allows us to perform a non-optimized version of this | |
1269 | * behavior. | |
1270 | * | |
1271 | * By uncommenting this option, you will cause *all* RDMA transfers to be | |
1272 | * unregistered immediately after the transfer completes on both sides of the | |
1273 | * connection. This has no effect in 'rdma-pin-all' mode, only regular mode. | |
1274 | * | |
1275 | * This will have a terrible impact on migration performance, so until future | |
1276 | * workload information or LRU information is available, do not attempt to use | |
1277 | * this feature except for basic testing. | |
1278 | */ | |
1279 | //#define RDMA_UNREGISTRATION_EXAMPLE | |
1280 | ||
1281 | /* | |
1282 | * Perform a non-optimized memory unregistration after every transfer | |
24ec68ef | 1283 | * for demonstration purposes, only if pin-all is not requested. |
2da776db MH |
1284 | * |
1285 | * Potential optimizations: | |
1286 | * 1. Start a new thread to run this function continuously | |
1287 | - for bit clearing | |
1288 | - and for receipt of unregister messages | |
1289 | * 2. Use an LRU. | |
1290 | * 3. Use workload hints. | |
1291 | */ | |
1292 | static int qemu_rdma_unregister_waiting(RDMAContext *rdma) | |
1293 | { | |
1294 | while (rdma->unregistrations[rdma->unregister_current]) { | |
1295 | int ret; | |
1296 | uint64_t wr_id = rdma->unregistrations[rdma->unregister_current]; | |
1297 | uint64_t chunk = | |
1298 | (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; | |
1299 | uint64_t index = | |
1300 | (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; | |
1301 | RDMALocalBlock *block = | |
1302 | &(rdma->local_ram_blocks.block[index]); | |
1303 | RDMARegister reg = { .current_index = index }; | |
1304 | RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED, | |
1305 | }; | |
1306 | RDMAControlHeader head = { .len = sizeof(RDMARegister), | |
1307 | .type = RDMA_CONTROL_UNREGISTER_REQUEST, | |
1308 | .repeat = 1, | |
1309 | }; | |
1310 | ||
733252de DDAG |
1311 | trace_qemu_rdma_unregister_waiting_proc(chunk, |
1312 | rdma->unregister_current); | |
2da776db MH |
1313 | |
1314 | rdma->unregistrations[rdma->unregister_current] = 0; | |
1315 | rdma->unregister_current++; | |
1316 | ||
1317 | if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) { | |
1318 | rdma->unregister_current = 0; | |
1319 | } | |
1320 | ||
1321 | ||
1322 | /* | |
1323 | * Unregistration is speculative (because migration is single-threaded | |
1324 | * and we cannot break the protocol's inifinband message ordering). | |
1325 | * Thus, if the memory is currently being used for transmission, | |
1326 | * then abort the attempt to unregister and try again | |
1327 | * later the next time a completion is received for this memory. | |
1328 | */ | |
1329 | clear_bit(chunk, block->unregister_bitmap); | |
1330 | ||
1331 | if (test_bit(chunk, block->transit_bitmap)) { | |
733252de | 1332 | trace_qemu_rdma_unregister_waiting_inflight(chunk); |
2da776db MH |
1333 | continue; |
1334 | } | |
1335 | ||
733252de | 1336 | trace_qemu_rdma_unregister_waiting_send(chunk); |
2da776db MH |
1337 | |
1338 | ret = ibv_dereg_mr(block->pmr[chunk]); | |
1339 | block->pmr[chunk] = NULL; | |
1340 | block->remote_keys[chunk] = 0; | |
1341 | ||
1342 | if (ret != 0) { | |
1343 | perror("unregistration chunk failed"); | |
1344 | return -ret; | |
1345 | } | |
1346 | rdma->total_registrations--; | |
1347 | ||
1348 | reg.key.chunk = chunk; | |
b12f7777 | 1349 | register_to_network(rdma, ®); |
2da776db MH |
1350 | ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, |
1351 | &resp, NULL, NULL); | |
1352 | if (ret < 0) { | |
1353 | return ret; | |
1354 | } | |
1355 | ||
733252de | 1356 | trace_qemu_rdma_unregister_waiting_complete(chunk); |
2da776db MH |
1357 | } |
1358 | ||
1359 | return 0; | |
1360 | } | |
1361 | ||
1362 | static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index, | |
1363 | uint64_t chunk) | |
1364 | { | |
1365 | uint64_t result = wr_id & RDMA_WRID_TYPE_MASK; | |
1366 | ||
1367 | result |= (index << RDMA_WRID_BLOCK_SHIFT); | |
1368 | result |= (chunk << RDMA_WRID_CHUNK_SHIFT); | |
1369 | ||
1370 | return result; | |
1371 | } | |
1372 | ||
1373 | /* | |
1374 | * Set bit for unregistration in the next iteration. | |
1375 | * We cannot transmit right here, but will unpin later. | |
1376 | */ | |
1377 | static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index, | |
1378 | uint64_t chunk, uint64_t wr_id) | |
1379 | { | |
1380 | if (rdma->unregistrations[rdma->unregister_next] != 0) { | |
733252de | 1381 | error_report("rdma migration: queue is full"); |
2da776db MH |
1382 | } else { |
1383 | RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); | |
1384 | ||
1385 | if (!test_and_set_bit(chunk, block->unregister_bitmap)) { | |
733252de DDAG |
1386 | trace_qemu_rdma_signal_unregister_append(chunk, |
1387 | rdma->unregister_next); | |
2da776db MH |
1388 | |
1389 | rdma->unregistrations[rdma->unregister_next++] = | |
1390 | qemu_rdma_make_wrid(wr_id, index, chunk); | |
1391 | ||
1392 | if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) { | |
1393 | rdma->unregister_next = 0; | |
1394 | } | |
1395 | } else { | |
733252de | 1396 | trace_qemu_rdma_signal_unregister_already(chunk); |
2da776db MH |
1397 | } |
1398 | } | |
1399 | } | |
1400 | ||
1401 | /* | |
1402 | * Consult the connection manager to see a work request | |
1403 | * (of any kind) has completed. | |
1404 | * Return the work request ID that completed. | |
1405 | */ | |
88571882 IY |
1406 | static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out, |
1407 | uint32_t *byte_len) | |
2da776db MH |
1408 | { |
1409 | int ret; | |
1410 | struct ibv_wc wc; | |
1411 | uint64_t wr_id; | |
1412 | ||
1413 | ret = ibv_poll_cq(rdma->cq, 1, &wc); | |
1414 | ||
1415 | if (!ret) { | |
1416 | *wr_id_out = RDMA_WRID_NONE; | |
1417 | return 0; | |
1418 | } | |
1419 | ||
1420 | if (ret < 0) { | |
733252de | 1421 | error_report("ibv_poll_cq return %d", ret); |
2da776db MH |
1422 | return ret; |
1423 | } | |
1424 | ||
1425 | wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK; | |
1426 | ||
1427 | if (wc.status != IBV_WC_SUCCESS) { | |
1428 | fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n", | |
1429 | wc.status, ibv_wc_status_str(wc.status)); | |
1430 | fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]); | |
1431 | ||
1432 | return -1; | |
1433 | } | |
1434 | ||
1435 | if (rdma->control_ready_expected && | |
1436 | (wr_id >= RDMA_WRID_RECV_CONTROL)) { | |
733252de | 1437 | trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL], |
2da776db MH |
1438 | wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent); |
1439 | rdma->control_ready_expected = 0; | |
1440 | } | |
1441 | ||
1442 | if (wr_id == RDMA_WRID_RDMA_WRITE) { | |
1443 | uint64_t chunk = | |
1444 | (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; | |
1445 | uint64_t index = | |
1446 | (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; | |
1447 | RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); | |
1448 | ||
733252de | 1449 | trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent, |
fbce8c25 SW |
1450 | index, chunk, block->local_host_addr, |
1451 | (void *)(uintptr_t)block->remote_host_addr); | |
2da776db MH |
1452 | |
1453 | clear_bit(chunk, block->transit_bitmap); | |
1454 | ||
1455 | if (rdma->nb_sent > 0) { | |
1456 | rdma->nb_sent--; | |
1457 | } | |
1458 | ||
1459 | if (!rdma->pin_all) { | |
1460 | /* | |
1461 | * FYI: If one wanted to signal a specific chunk to be unregistered | |
1462 | * using LRU or workload-specific information, this is the function | |
1463 | * you would call to do so. That chunk would then get asynchronously | |
1464 | * unregistered later. | |
1465 | */ | |
1466 | #ifdef RDMA_UNREGISTRATION_EXAMPLE | |
1467 | qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id); | |
1468 | #endif | |
1469 | } | |
1470 | } else { | |
733252de | 1471 | trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent); |
2da776db MH |
1472 | } |
1473 | ||
1474 | *wr_id_out = wc.wr_id; | |
88571882 IY |
1475 | if (byte_len) { |
1476 | *byte_len = wc.byte_len; | |
1477 | } | |
2da776db MH |
1478 | |
1479 | return 0; | |
1480 | } | |
1481 | ||
9c98cfbe DDAG |
1482 | /* Wait for activity on the completion channel. |
1483 | * Returns 0 on success, none-0 on error. | |
1484 | */ | |
1485 | static int qemu_rdma_wait_comp_channel(RDMAContext *rdma) | |
1486 | { | |
1487 | /* | |
1488 | * Coroutine doesn't start until migration_fd_process_incoming() | |
1489 | * so don't yield unless we know we're running inside of a coroutine. | |
1490 | */ | |
1491 | if (rdma->migration_started_on_destination) { | |
1492 | yield_until_fd_readable(rdma->comp_channel->fd); | |
1493 | } else { | |
1494 | /* This is the source side, we're in a separate thread | |
1495 | * or destination prior to migration_fd_process_incoming() | |
1496 | * we can't yield; so we have to poll the fd. | |
1497 | * But we need to be able to handle 'cancel' or an error | |
1498 | * without hanging forever. | |
1499 | */ | |
1500 | while (!rdma->error_state && !rdma->received_error) { | |
1501 | GPollFD pfds[1]; | |
1502 | pfds[0].fd = rdma->comp_channel->fd; | |
1503 | pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR; | |
1504 | /* 0.1s timeout, should be fine for a 'cancel' */ | |
1505 | switch (qemu_poll_ns(pfds, 1, 100 * 1000 * 1000)) { | |
1506 | case 1: /* fd active */ | |
1507 | return 0; | |
1508 | ||
1509 | case 0: /* Timeout, go around again */ | |
1510 | break; | |
1511 | ||
1512 | default: /* Error of some type - | |
1513 | * I don't trust errno from qemu_poll_ns | |
1514 | */ | |
1515 | error_report("%s: poll failed", __func__); | |
1516 | return -EPIPE; | |
1517 | } | |
1518 | ||
1519 | if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) { | |
1520 | /* Bail out and let the cancellation happen */ | |
1521 | return -EPIPE; | |
1522 | } | |
1523 | } | |
1524 | } | |
1525 | ||
1526 | if (rdma->received_error) { | |
1527 | return -EPIPE; | |
1528 | } | |
1529 | return rdma->error_state; | |
1530 | } | |
1531 | ||
2da776db MH |
1532 | /* |
1533 | * Block until the next work request has completed. | |
1534 | * | |
1535 | * First poll to see if a work request has already completed, | |
1536 | * otherwise block. | |
1537 | * | |
1538 | * If we encounter completed work requests for IDs other than | |
1539 | * the one we're interested in, then that's generally an error. | |
1540 | * | |
1541 | * The only exception is actual RDMA Write completions. These | |
1542 | * completions only need to be recorded, but do not actually | |
1543 | * need further processing. | |
1544 | */ | |
88571882 IY |
1545 | static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested, |
1546 | uint32_t *byte_len) | |
2da776db MH |
1547 | { |
1548 | int num_cq_events = 0, ret = 0; | |
1549 | struct ibv_cq *cq; | |
1550 | void *cq_ctx; | |
1551 | uint64_t wr_id = RDMA_WRID_NONE, wr_id_in; | |
1552 | ||
1553 | if (ibv_req_notify_cq(rdma->cq, 0)) { | |
1554 | return -1; | |
1555 | } | |
1556 | /* poll cq first */ | |
1557 | while (wr_id != wrid_requested) { | |
88571882 | 1558 | ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); |
2da776db MH |
1559 | if (ret < 0) { |
1560 | return ret; | |
1561 | } | |
1562 | ||
1563 | wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; | |
1564 | ||
1565 | if (wr_id == RDMA_WRID_NONE) { | |
1566 | break; | |
1567 | } | |
1568 | if (wr_id != wrid_requested) { | |
733252de DDAG |
1569 | trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested), |
1570 | wrid_requested, print_wrid(wr_id), wr_id); | |
2da776db MH |
1571 | } |
1572 | } | |
1573 | ||
1574 | if (wr_id == wrid_requested) { | |
1575 | return 0; | |
1576 | } | |
1577 | ||
1578 | while (1) { | |
9c98cfbe DDAG |
1579 | ret = qemu_rdma_wait_comp_channel(rdma); |
1580 | if (ret) { | |
1581 | goto err_block_for_wrid; | |
2da776db MH |
1582 | } |
1583 | ||
0b3c15f0 DDAG |
1584 | ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx); |
1585 | if (ret) { | |
2da776db MH |
1586 | perror("ibv_get_cq_event"); |
1587 | goto err_block_for_wrid; | |
1588 | } | |
1589 | ||
1590 | num_cq_events++; | |
1591 | ||
0b3c15f0 DDAG |
1592 | ret = -ibv_req_notify_cq(cq, 0); |
1593 | if (ret) { | |
2da776db MH |
1594 | goto err_block_for_wrid; |
1595 | } | |
1596 | ||
1597 | while (wr_id != wrid_requested) { | |
88571882 | 1598 | ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); |
2da776db MH |
1599 | if (ret < 0) { |
1600 | goto err_block_for_wrid; | |
1601 | } | |
1602 | ||
1603 | wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; | |
1604 | ||
1605 | if (wr_id == RDMA_WRID_NONE) { | |
1606 | break; | |
1607 | } | |
1608 | if (wr_id != wrid_requested) { | |
733252de DDAG |
1609 | trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested), |
1610 | wrid_requested, print_wrid(wr_id), wr_id); | |
2da776db MH |
1611 | } |
1612 | } | |
1613 | ||
1614 | if (wr_id == wrid_requested) { | |
1615 | goto success_block_for_wrid; | |
1616 | } | |
1617 | } | |
1618 | ||
1619 | success_block_for_wrid: | |
1620 | if (num_cq_events) { | |
1621 | ibv_ack_cq_events(cq, num_cq_events); | |
1622 | } | |
1623 | return 0; | |
1624 | ||
1625 | err_block_for_wrid: | |
1626 | if (num_cq_events) { | |
1627 | ibv_ack_cq_events(cq, num_cq_events); | |
1628 | } | |
0b3c15f0 DDAG |
1629 | |
1630 | rdma->error_state = ret; | |
2da776db MH |
1631 | return ret; |
1632 | } | |
1633 | ||
1634 | /* | |
1635 | * Post a SEND message work request for the control channel | |
1636 | * containing some data and block until the post completes. | |
1637 | */ | |
1638 | static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf, | |
1639 | RDMAControlHeader *head) | |
1640 | { | |
1641 | int ret = 0; | |
1f22364b | 1642 | RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL]; |
2da776db MH |
1643 | struct ibv_send_wr *bad_wr; |
1644 | struct ibv_sge sge = { | |
fbce8c25 | 1645 | .addr = (uintptr_t)(wr->control), |
2da776db MH |
1646 | .length = head->len + sizeof(RDMAControlHeader), |
1647 | .lkey = wr->control_mr->lkey, | |
1648 | }; | |
1649 | struct ibv_send_wr send_wr = { | |
1650 | .wr_id = RDMA_WRID_SEND_CONTROL, | |
1651 | .opcode = IBV_WR_SEND, | |
1652 | .send_flags = IBV_SEND_SIGNALED, | |
1653 | .sg_list = &sge, | |
1654 | .num_sge = 1, | |
1655 | }; | |
1656 | ||
482a33c5 | 1657 | trace_qemu_rdma_post_send_control(control_desc(head->type)); |
2da776db MH |
1658 | |
1659 | /* | |
1660 | * We don't actually need to do a memcpy() in here if we used | |
1661 | * the "sge" properly, but since we're only sending control messages | |
1662 | * (not RAM in a performance-critical path), then its OK for now. | |
1663 | * | |
1664 | * The copy makes the RDMAControlHeader simpler to manipulate | |
1665 | * for the time being. | |
1666 | */ | |
6f1484ed | 1667 | assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head)); |
2da776db MH |
1668 | memcpy(wr->control, head, sizeof(RDMAControlHeader)); |
1669 | control_to_network((void *) wr->control); | |
1670 | ||
1671 | if (buf) { | |
1672 | memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len); | |
1673 | } | |
1674 | ||
1675 | ||
e325b49a | 1676 | ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); |
2da776db | 1677 | |
e325b49a | 1678 | if (ret > 0) { |
733252de | 1679 | error_report("Failed to use post IB SEND for control"); |
e325b49a | 1680 | return -ret; |
2da776db MH |
1681 | } |
1682 | ||
88571882 | 1683 | ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL); |
2da776db | 1684 | if (ret < 0) { |
733252de | 1685 | error_report("rdma migration: send polling control error"); |
2da776db MH |
1686 | } |
1687 | ||
1688 | return ret; | |
1689 | } | |
1690 | ||
1691 | /* | |
1692 | * Post a RECV work request in anticipation of some future receipt | |
1693 | * of data on the control channel. | |
1694 | */ | |
1695 | static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx) | |
1696 | { | |
1697 | struct ibv_recv_wr *bad_wr; | |
1698 | struct ibv_sge sge = { | |
fbce8c25 | 1699 | .addr = (uintptr_t)(rdma->wr_data[idx].control), |
2da776db MH |
1700 | .length = RDMA_CONTROL_MAX_BUFFER, |
1701 | .lkey = rdma->wr_data[idx].control_mr->lkey, | |
1702 | }; | |
1703 | ||
1704 | struct ibv_recv_wr recv_wr = { | |
1705 | .wr_id = RDMA_WRID_RECV_CONTROL + idx, | |
1706 | .sg_list = &sge, | |
1707 | .num_sge = 1, | |
1708 | }; | |
1709 | ||
1710 | ||
1711 | if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) { | |
1712 | return -1; | |
1713 | } | |
1714 | ||
1715 | return 0; | |
1716 | } | |
1717 | ||
1718 | /* | |
1719 | * Block and wait for a RECV control channel message to arrive. | |
1720 | */ | |
1721 | static int qemu_rdma_exchange_get_response(RDMAContext *rdma, | |
1722 | RDMAControlHeader *head, int expecting, int idx) | |
1723 | { | |
88571882 IY |
1724 | uint32_t byte_len; |
1725 | int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx, | |
1726 | &byte_len); | |
2da776db MH |
1727 | |
1728 | if (ret < 0) { | |
733252de | 1729 | error_report("rdma migration: recv polling control error!"); |
2da776db MH |
1730 | return ret; |
1731 | } | |
1732 | ||
1733 | network_to_control((void *) rdma->wr_data[idx].control); | |
1734 | memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader)); | |
1735 | ||
482a33c5 | 1736 | trace_qemu_rdma_exchange_get_response_start(control_desc(expecting)); |
2da776db MH |
1737 | |
1738 | if (expecting == RDMA_CONTROL_NONE) { | |
482a33c5 | 1739 | trace_qemu_rdma_exchange_get_response_none(control_desc(head->type), |
733252de | 1740 | head->type); |
2da776db | 1741 | } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) { |
733252de DDAG |
1742 | error_report("Was expecting a %s (%d) control message" |
1743 | ", but got: %s (%d), length: %d", | |
482a33c5 DDAG |
1744 | control_desc(expecting), expecting, |
1745 | control_desc(head->type), head->type, head->len); | |
cd5ea070 DDAG |
1746 | if (head->type == RDMA_CONTROL_ERROR) { |
1747 | rdma->received_error = true; | |
1748 | } | |
2da776db MH |
1749 | return -EIO; |
1750 | } | |
6f1484ed | 1751 | if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) { |
81b07353 | 1752 | error_report("too long length: %d", head->len); |
6f1484ed IY |
1753 | return -EINVAL; |
1754 | } | |
88571882 | 1755 | if (sizeof(*head) + head->len != byte_len) { |
733252de | 1756 | error_report("Malformed length: %d byte_len %d", head->len, byte_len); |
88571882 IY |
1757 | return -EINVAL; |
1758 | } | |
2da776db MH |
1759 | |
1760 | return 0; | |
1761 | } | |
1762 | ||
1763 | /* | |
1764 | * When a RECV work request has completed, the work request's | |
1765 | * buffer is pointed at the header. | |
1766 | * | |
1767 | * This will advance the pointer to the data portion | |
1768 | * of the control message of the work request's buffer that | |
1769 | * was populated after the work request finished. | |
1770 | */ | |
1771 | static void qemu_rdma_move_header(RDMAContext *rdma, int idx, | |
1772 | RDMAControlHeader *head) | |
1773 | { | |
1774 | rdma->wr_data[idx].control_len = head->len; | |
1775 | rdma->wr_data[idx].control_curr = | |
1776 | rdma->wr_data[idx].control + sizeof(RDMAControlHeader); | |
1777 | } | |
1778 | ||
1779 | /* | |
1780 | * This is an 'atomic' high-level operation to deliver a single, unified | |
1781 | * control-channel message. | |
1782 | * | |
1783 | * Additionally, if the user is expecting some kind of reply to this message, | |
1784 | * they can request a 'resp' response message be filled in by posting an | |
1785 | * additional work request on behalf of the user and waiting for an additional | |
1786 | * completion. | |
1787 | * | |
1788 | * The extra (optional) response is used during registration to us from having | |
1789 | * to perform an *additional* exchange of message just to provide a response by | |
1790 | * instead piggy-backing on the acknowledgement. | |
1791 | */ | |
1792 | static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, | |
1793 | uint8_t *data, RDMAControlHeader *resp, | |
1794 | int *resp_idx, | |
1795 | int (*callback)(RDMAContext *rdma)) | |
1796 | { | |
1797 | int ret = 0; | |
1798 | ||
1799 | /* | |
1800 | * Wait until the dest is ready before attempting to deliver the message | |
1801 | * by waiting for a READY message. | |
1802 | */ | |
1803 | if (rdma->control_ready_expected) { | |
1804 | RDMAControlHeader resp; | |
1805 | ret = qemu_rdma_exchange_get_response(rdma, | |
1806 | &resp, RDMA_CONTROL_READY, RDMA_WRID_READY); | |
1807 | if (ret < 0) { | |
1808 | return ret; | |
1809 | } | |
1810 | } | |
1811 | ||
1812 | /* | |
1813 | * If the user is expecting a response, post a WR in anticipation of it. | |
1814 | */ | |
1815 | if (resp) { | |
1816 | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA); | |
1817 | if (ret) { | |
733252de | 1818 | error_report("rdma migration: error posting" |
2da776db MH |
1819 | " extra control recv for anticipated result!"); |
1820 | return ret; | |
1821 | } | |
1822 | } | |
1823 | ||
1824 | /* | |
1825 | * Post a WR to replace the one we just consumed for the READY message. | |
1826 | */ | |
1827 | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); | |
1828 | if (ret) { | |
733252de | 1829 | error_report("rdma migration: error posting first control recv!"); |
2da776db MH |
1830 | return ret; |
1831 | } | |
1832 | ||
1833 | /* | |
1834 | * Deliver the control message that was requested. | |
1835 | */ | |
1836 | ret = qemu_rdma_post_send_control(rdma, data, head); | |
1837 | ||
1838 | if (ret < 0) { | |
733252de | 1839 | error_report("Failed to send control buffer!"); |
2da776db MH |
1840 | return ret; |
1841 | } | |
1842 | ||
1843 | /* | |
1844 | * If we're expecting a response, block and wait for it. | |
1845 | */ | |
1846 | if (resp) { | |
1847 | if (callback) { | |
733252de | 1848 | trace_qemu_rdma_exchange_send_issue_callback(); |
2da776db MH |
1849 | ret = callback(rdma); |
1850 | if (ret < 0) { | |
1851 | return ret; | |
1852 | } | |
1853 | } | |
1854 | ||
482a33c5 | 1855 | trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type)); |
2da776db MH |
1856 | ret = qemu_rdma_exchange_get_response(rdma, resp, |
1857 | resp->type, RDMA_WRID_DATA); | |
1858 | ||
1859 | if (ret < 0) { | |
1860 | return ret; | |
1861 | } | |
1862 | ||
1863 | qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp); | |
1864 | if (resp_idx) { | |
1865 | *resp_idx = RDMA_WRID_DATA; | |
1866 | } | |
482a33c5 | 1867 | trace_qemu_rdma_exchange_send_received(control_desc(resp->type)); |
2da776db MH |
1868 | } |
1869 | ||
1870 | rdma->control_ready_expected = 1; | |
1871 | ||
1872 | return 0; | |
1873 | } | |
1874 | ||
1875 | /* | |
1876 | * This is an 'atomic' high-level operation to receive a single, unified | |
1877 | * control-channel message. | |
1878 | */ | |
1879 | static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head, | |
1880 | int expecting) | |
1881 | { | |
1882 | RDMAControlHeader ready = { | |
1883 | .len = 0, | |
1884 | .type = RDMA_CONTROL_READY, | |
1885 | .repeat = 1, | |
1886 | }; | |
1887 | int ret; | |
1888 | ||
1889 | /* | |
1890 | * Inform the source that we're ready to receive a message. | |
1891 | */ | |
1892 | ret = qemu_rdma_post_send_control(rdma, NULL, &ready); | |
1893 | ||
1894 | if (ret < 0) { | |
733252de | 1895 | error_report("Failed to send control buffer!"); |
2da776db MH |
1896 | return ret; |
1897 | } | |
1898 | ||
1899 | /* | |
1900 | * Block and wait for the message. | |
1901 | */ | |
1902 | ret = qemu_rdma_exchange_get_response(rdma, head, | |
1903 | expecting, RDMA_WRID_READY); | |
1904 | ||
1905 | if (ret < 0) { | |
1906 | return ret; | |
1907 | } | |
1908 | ||
1909 | qemu_rdma_move_header(rdma, RDMA_WRID_READY, head); | |
1910 | ||
1911 | /* | |
1912 | * Post a new RECV work request to replace the one we just consumed. | |
1913 | */ | |
1914 | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); | |
1915 | if (ret) { | |
733252de | 1916 | error_report("rdma migration: error posting second control recv!"); |
2da776db MH |
1917 | return ret; |
1918 | } | |
1919 | ||
1920 | return 0; | |
1921 | } | |
1922 | ||
1923 | /* | |
1924 | * Write an actual chunk of memory using RDMA. | |
1925 | * | |
1926 | * If we're using dynamic registration on the dest-side, we have to | |
1927 | * send a registration command first. | |
1928 | */ | |
1929 | static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma, | |
1930 | int current_index, uint64_t current_addr, | |
1931 | uint64_t length) | |
1932 | { | |
1933 | struct ibv_sge sge; | |
1934 | struct ibv_send_wr send_wr = { 0 }; | |
1935 | struct ibv_send_wr *bad_wr; | |
1936 | int reg_result_idx, ret, count = 0; | |
1937 | uint64_t chunk, chunks; | |
1938 | uint8_t *chunk_start, *chunk_end; | |
1939 | RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]); | |
1940 | RDMARegister reg; | |
1941 | RDMARegisterResult *reg_result; | |
1942 | RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT }; | |
1943 | RDMAControlHeader head = { .len = sizeof(RDMARegister), | |
1944 | .type = RDMA_CONTROL_REGISTER_REQUEST, | |
1945 | .repeat = 1, | |
1946 | }; | |
1947 | ||
1948 | retry: | |
fbce8c25 | 1949 | sge.addr = (uintptr_t)(block->local_host_addr + |
2da776db MH |
1950 | (current_addr - block->offset)); |
1951 | sge.length = length; | |
1952 | ||
fbce8c25 SW |
1953 | chunk = ram_chunk_index(block->local_host_addr, |
1954 | (uint8_t *)(uintptr_t)sge.addr); | |
2da776db MH |
1955 | chunk_start = ram_chunk_start(block, chunk); |
1956 | ||
1957 | if (block->is_ram_block) { | |
1958 | chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT); | |
1959 | ||
1960 | if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { | |
1961 | chunks--; | |
1962 | } | |
1963 | } else { | |
1964 | chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT); | |
1965 | ||
1966 | if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { | |
1967 | chunks--; | |
1968 | } | |
1969 | } | |
1970 | ||
733252de DDAG |
1971 | trace_qemu_rdma_write_one_top(chunks + 1, |
1972 | (chunks + 1) * | |
1973 | (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024); | |
2da776db MH |
1974 | |
1975 | chunk_end = ram_chunk_end(block, chunk + chunks); | |
1976 | ||
1977 | if (!rdma->pin_all) { | |
1978 | #ifdef RDMA_UNREGISTRATION_EXAMPLE | |
1979 | qemu_rdma_unregister_waiting(rdma); | |
1980 | #endif | |
1981 | } | |
1982 | ||
1983 | while (test_bit(chunk, block->transit_bitmap)) { | |
1984 | (void)count; | |
733252de | 1985 | trace_qemu_rdma_write_one_block(count++, current_index, chunk, |
2da776db MH |
1986 | sge.addr, length, rdma->nb_sent, block->nb_chunks); |
1987 | ||
88571882 | 1988 | ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); |
2da776db MH |
1989 | |
1990 | if (ret < 0) { | |
733252de | 1991 | error_report("Failed to Wait for previous write to complete " |
2da776db | 1992 | "block %d chunk %" PRIu64 |
733252de | 1993 | " current %" PRIu64 " len %" PRIu64 " %d", |
2da776db MH |
1994 | current_index, chunk, sge.addr, length, rdma->nb_sent); |
1995 | return ret; | |
1996 | } | |
1997 | } | |
1998 | ||
1999 | if (!rdma->pin_all || !block->is_ram_block) { | |
2000 | if (!block->remote_keys[chunk]) { | |
2001 | /* | |
2002 | * This chunk has not yet been registered, so first check to see | |
2003 | * if the entire chunk is zero. If so, tell the other size to | |
2004 | * memset() + madvise() the entire chunk without RDMA. | |
2005 | */ | |
2006 | ||
a1febc49 | 2007 | if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) { |
2da776db MH |
2008 | RDMACompress comp = { |
2009 | .offset = current_addr, | |
2010 | .value = 0, | |
2011 | .block_idx = current_index, | |
2012 | .length = length, | |
2013 | }; | |
2014 | ||
2015 | head.len = sizeof(comp); | |
2016 | head.type = RDMA_CONTROL_COMPRESS; | |
2017 | ||
733252de DDAG |
2018 | trace_qemu_rdma_write_one_zero(chunk, sge.length, |
2019 | current_index, current_addr); | |
2da776db | 2020 | |
b12f7777 | 2021 | compress_to_network(rdma, &comp); |
2da776db MH |
2022 | ret = qemu_rdma_exchange_send(rdma, &head, |
2023 | (uint8_t *) &comp, NULL, NULL, NULL); | |
2024 | ||
2025 | if (ret < 0) { | |
2026 | return -EIO; | |
2027 | } | |
2028 | ||
2029 | acct_update_position(f, sge.length, true); | |
2030 | ||
2031 | return 1; | |
2032 | } | |
2033 | ||
2034 | /* | |
2035 | * Otherwise, tell other side to register. | |
2036 | */ | |
2037 | reg.current_index = current_index; | |
2038 | if (block->is_ram_block) { | |
2039 | reg.key.current_addr = current_addr; | |
2040 | } else { | |
2041 | reg.key.chunk = chunk; | |
2042 | } | |
2043 | reg.chunks = chunks; | |
2044 | ||
733252de DDAG |
2045 | trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index, |
2046 | current_addr); | |
2da776db | 2047 | |
b12f7777 | 2048 | register_to_network(rdma, ®); |
2da776db MH |
2049 | ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, |
2050 | &resp, ®_result_idx, NULL); | |
2051 | if (ret < 0) { | |
2052 | return ret; | |
2053 | } | |
2054 | ||
2055 | /* try to overlap this single registration with the one we sent. */ | |
3ac040c0 | 2056 | if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr, |
2da776db MH |
2057 | &sge.lkey, NULL, chunk, |
2058 | chunk_start, chunk_end)) { | |
733252de | 2059 | error_report("cannot get lkey"); |
2da776db MH |
2060 | return -EINVAL; |
2061 | } | |
2062 | ||
2063 | reg_result = (RDMARegisterResult *) | |
2064 | rdma->wr_data[reg_result_idx].control_curr; | |
2065 | ||
2066 | network_to_result(reg_result); | |
2067 | ||
733252de DDAG |
2068 | trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk], |
2069 | reg_result->rkey, chunk); | |
2da776db MH |
2070 | |
2071 | block->remote_keys[chunk] = reg_result->rkey; | |
2072 | block->remote_host_addr = reg_result->host_addr; | |
2073 | } else { | |
2074 | /* already registered before */ | |
3ac040c0 | 2075 | if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr, |
2da776db MH |
2076 | &sge.lkey, NULL, chunk, |
2077 | chunk_start, chunk_end)) { | |
733252de | 2078 | error_report("cannot get lkey!"); |
2da776db MH |
2079 | return -EINVAL; |
2080 | } | |
2081 | } | |
2082 | ||
2083 | send_wr.wr.rdma.rkey = block->remote_keys[chunk]; | |
2084 | } else { | |
2085 | send_wr.wr.rdma.rkey = block->remote_rkey; | |
2086 | ||
3ac040c0 | 2087 | if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr, |
2da776db MH |
2088 | &sge.lkey, NULL, chunk, |
2089 | chunk_start, chunk_end)) { | |
733252de | 2090 | error_report("cannot get lkey!"); |
2da776db MH |
2091 | return -EINVAL; |
2092 | } | |
2093 | } | |
2094 | ||
2095 | /* | |
2096 | * Encode the ram block index and chunk within this wrid. | |
2097 | * We will use this information at the time of completion | |
2098 | * to figure out which bitmap to check against and then which | |
2099 | * chunk in the bitmap to look for. | |
2100 | */ | |
2101 | send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE, | |
2102 | current_index, chunk); | |
2103 | ||
2104 | send_wr.opcode = IBV_WR_RDMA_WRITE; | |
2105 | send_wr.send_flags = IBV_SEND_SIGNALED; | |
2106 | send_wr.sg_list = &sge; | |
2107 | send_wr.num_sge = 1; | |
2108 | send_wr.wr.rdma.remote_addr = block->remote_host_addr + | |
2109 | (current_addr - block->offset); | |
2110 | ||
733252de DDAG |
2111 | trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr, |
2112 | sge.length); | |
2da776db MH |
2113 | |
2114 | /* | |
2115 | * ibv_post_send() does not return negative error numbers, | |
2116 | * per the specification they are positive - no idea why. | |
2117 | */ | |
2118 | ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); | |
2119 | ||
2120 | if (ret == ENOMEM) { | |
733252de | 2121 | trace_qemu_rdma_write_one_queue_full(); |
88571882 | 2122 | ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); |
2da776db | 2123 | if (ret < 0) { |
733252de DDAG |
2124 | error_report("rdma migration: failed to make " |
2125 | "room in full send queue! %d", ret); | |
2da776db MH |
2126 | return ret; |
2127 | } | |
2128 | ||
2129 | goto retry; | |
2130 | ||
2131 | } else if (ret > 0) { | |
2132 | perror("rdma migration: post rdma write failed"); | |
2133 | return -ret; | |
2134 | } | |
2135 | ||
2136 | set_bit(chunk, block->transit_bitmap); | |
2137 | acct_update_position(f, sge.length, false); | |
2138 | rdma->total_writes++; | |
2139 | ||
2140 | return 0; | |
2141 | } | |
2142 | ||
2143 | /* | |
2144 | * Push out any unwritten RDMA operations. | |
2145 | * | |
2146 | * We support sending out multiple chunks at the same time. | |
2147 | * Not all of them need to get signaled in the completion queue. | |
2148 | */ | |
2149 | static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma) | |
2150 | { | |
2151 | int ret; | |
2152 | ||
2153 | if (!rdma->current_length) { | |
2154 | return 0; | |
2155 | } | |
2156 | ||
2157 | ret = qemu_rdma_write_one(f, rdma, | |
2158 | rdma->current_index, rdma->current_addr, rdma->current_length); | |
2159 | ||
2160 | if (ret < 0) { | |
2161 | return ret; | |
2162 | } | |
2163 | ||
2164 | if (ret == 0) { | |
2165 | rdma->nb_sent++; | |
733252de | 2166 | trace_qemu_rdma_write_flush(rdma->nb_sent); |
2da776db MH |
2167 | } |
2168 | ||
2169 | rdma->current_length = 0; | |
2170 | rdma->current_addr = 0; | |
2171 | ||
2172 | return 0; | |
2173 | } | |
2174 | ||
2175 | static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma, | |
2176 | uint64_t offset, uint64_t len) | |
2177 | { | |
44b59494 IY |
2178 | RDMALocalBlock *block; |
2179 | uint8_t *host_addr; | |
2180 | uint8_t *chunk_end; | |
2181 | ||
2182 | if (rdma->current_index < 0) { | |
2183 | return 0; | |
2184 | } | |
2185 | ||
2186 | if (rdma->current_chunk < 0) { | |
2187 | return 0; | |
2188 | } | |
2189 | ||
2190 | block = &(rdma->local_ram_blocks.block[rdma->current_index]); | |
2191 | host_addr = block->local_host_addr + (offset - block->offset); | |
2192 | chunk_end = ram_chunk_end(block, rdma->current_chunk); | |
2da776db MH |
2193 | |
2194 | if (rdma->current_length == 0) { | |
2195 | return 0; | |
2196 | } | |
2197 | ||
2198 | /* | |
2199 | * Only merge into chunk sequentially. | |
2200 | */ | |
2201 | if (offset != (rdma->current_addr + rdma->current_length)) { | |
2202 | return 0; | |
2203 | } | |
2204 | ||
2da776db MH |
2205 | if (offset < block->offset) { |
2206 | return 0; | |
2207 | } | |
2208 | ||
2209 | if ((offset + len) > (block->offset + block->length)) { | |
2210 | return 0; | |
2211 | } | |
2212 | ||
2da776db MH |
2213 | if ((host_addr + len) > chunk_end) { |
2214 | return 0; | |
2215 | } | |
2216 | ||
2217 | return 1; | |
2218 | } | |
2219 | ||
2220 | /* | |
2221 | * We're not actually writing here, but doing three things: | |
2222 | * | |
2223 | * 1. Identify the chunk the buffer belongs to. | |
2224 | * 2. If the chunk is full or the buffer doesn't belong to the current | |
2225 | * chunk, then start a new chunk and flush() the old chunk. | |
2226 | * 3. To keep the hardware busy, we also group chunks into batches | |
2227 | * and only require that a batch gets acknowledged in the completion | |
2228 | * qeueue instead of each individual chunk. | |
2229 | */ | |
2230 | static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma, | |
2231 | uint64_t block_offset, uint64_t offset, | |
2232 | uint64_t len) | |
2233 | { | |
2234 | uint64_t current_addr = block_offset + offset; | |
2235 | uint64_t index = rdma->current_index; | |
2236 | uint64_t chunk = rdma->current_chunk; | |
2237 | int ret; | |
2238 | ||
2239 | /* If we cannot merge it, we flush the current buffer first. */ | |
2240 | if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) { | |
2241 | ret = qemu_rdma_write_flush(f, rdma); | |
2242 | if (ret) { | |
2243 | return ret; | |
2244 | } | |
2245 | rdma->current_length = 0; | |
2246 | rdma->current_addr = current_addr; | |
2247 | ||
2248 | ret = qemu_rdma_search_ram_block(rdma, block_offset, | |
2249 | offset, len, &index, &chunk); | |
2250 | if (ret) { | |
733252de | 2251 | error_report("ram block search failed"); |
2da776db MH |
2252 | return ret; |
2253 | } | |
2254 | rdma->current_index = index; | |
2255 | rdma->current_chunk = chunk; | |
2256 | } | |
2257 | ||
2258 | /* merge it */ | |
2259 | rdma->current_length += len; | |
2260 | ||
2261 | /* flush it if buffer is too large */ | |
2262 | if (rdma->current_length >= RDMA_MERGE_MAX) { | |
2263 | return qemu_rdma_write_flush(f, rdma); | |
2264 | } | |
2265 | ||
2266 | return 0; | |
2267 | } | |
2268 | ||
2269 | static void qemu_rdma_cleanup(RDMAContext *rdma) | |
2270 | { | |
2271 | struct rdma_cm_event *cm_event; | |
2272 | int ret, idx; | |
2273 | ||
5a91337c | 2274 | if (rdma->cm_id && rdma->connected) { |
32bce196 DDAG |
2275 | if ((rdma->error_state || |
2276 | migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) && | |
2277 | !rdma->received_error) { | |
2da776db MH |
2278 | RDMAControlHeader head = { .len = 0, |
2279 | .type = RDMA_CONTROL_ERROR, | |
2280 | .repeat = 1, | |
2281 | }; | |
733252de | 2282 | error_report("Early error. Sending error."); |
2da776db MH |
2283 | qemu_rdma_post_send_control(rdma, NULL, &head); |
2284 | } | |
2285 | ||
2286 | ret = rdma_disconnect(rdma->cm_id); | |
2287 | if (!ret) { | |
733252de | 2288 | trace_qemu_rdma_cleanup_waiting_for_disconnect(); |
2da776db MH |
2289 | ret = rdma_get_cm_event(rdma->channel, &cm_event); |
2290 | if (!ret) { | |
2291 | rdma_ack_cm_event(cm_event); | |
2292 | } | |
2293 | } | |
733252de | 2294 | trace_qemu_rdma_cleanup_disconnect(); |
5a91337c | 2295 | rdma->connected = false; |
2da776db MH |
2296 | } |
2297 | ||
a97270ad DDAG |
2298 | g_free(rdma->dest_blocks); |
2299 | rdma->dest_blocks = NULL; | |
2da776db | 2300 | |
1f22364b | 2301 | for (idx = 0; idx < RDMA_WRID_MAX; idx++) { |
2da776db MH |
2302 | if (rdma->wr_data[idx].control_mr) { |
2303 | rdma->total_registrations--; | |
2304 | ibv_dereg_mr(rdma->wr_data[idx].control_mr); | |
2305 | } | |
2306 | rdma->wr_data[idx].control_mr = NULL; | |
2307 | } | |
2308 | ||
2309 | if (rdma->local_ram_blocks.block) { | |
2310 | while (rdma->local_ram_blocks.nb_blocks) { | |
03fcab38 | 2311 | rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]); |
2da776db MH |
2312 | } |
2313 | } | |
2314 | ||
80b262e1 PR |
2315 | if (rdma->qp) { |
2316 | rdma_destroy_qp(rdma->cm_id); | |
2317 | rdma->qp = NULL; | |
2318 | } | |
2da776db MH |
2319 | if (rdma->cq) { |
2320 | ibv_destroy_cq(rdma->cq); | |
2321 | rdma->cq = NULL; | |
2322 | } | |
2323 | if (rdma->comp_channel) { | |
2324 | ibv_destroy_comp_channel(rdma->comp_channel); | |
2325 | rdma->comp_channel = NULL; | |
2326 | } | |
2327 | if (rdma->pd) { | |
2328 | ibv_dealloc_pd(rdma->pd); | |
2329 | rdma->pd = NULL; | |
2330 | } | |
2da776db MH |
2331 | if (rdma->cm_id) { |
2332 | rdma_destroy_id(rdma->cm_id); | |
2333 | rdma->cm_id = NULL; | |
2334 | } | |
80b262e1 PR |
2335 | if (rdma->listen_id) { |
2336 | rdma_destroy_id(rdma->listen_id); | |
2337 | rdma->listen_id = NULL; | |
2338 | } | |
2da776db MH |
2339 | if (rdma->channel) { |
2340 | rdma_destroy_event_channel(rdma->channel); | |
2341 | rdma->channel = NULL; | |
2342 | } | |
e1d0fb37 IY |
2343 | g_free(rdma->host); |
2344 | rdma->host = NULL; | |
2da776db MH |
2345 | } |
2346 | ||
2347 | ||
bbfb89e3 | 2348 | static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp) |
2da776db MH |
2349 | { |
2350 | int ret, idx; | |
2351 | Error *local_err = NULL, **temp = &local_err; | |
2352 | ||
2353 | /* | |
2354 | * Will be validated against destination's actual capabilities | |
2355 | * after the connect() completes. | |
2356 | */ | |
2357 | rdma->pin_all = pin_all; | |
2358 | ||
2359 | ret = qemu_rdma_resolve_host(rdma, temp); | |
2360 | if (ret) { | |
2361 | goto err_rdma_source_init; | |
2362 | } | |
2363 | ||
2364 | ret = qemu_rdma_alloc_pd_cq(rdma); | |
2365 | if (ret) { | |
2366 | ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()" | |
2367 | " limits may be too low. Please check $ ulimit -a # and " | |
66988941 | 2368 | "search for 'ulimit -l' in the output"); |
2da776db MH |
2369 | goto err_rdma_source_init; |
2370 | } | |
2371 | ||
2372 | ret = qemu_rdma_alloc_qp(rdma); | |
2373 | if (ret) { | |
66988941 | 2374 | ERROR(temp, "rdma migration: error allocating qp!"); |
2da776db MH |
2375 | goto err_rdma_source_init; |
2376 | } | |
2377 | ||
2378 | ret = qemu_rdma_init_ram_blocks(rdma); | |
2379 | if (ret) { | |
66988941 | 2380 | ERROR(temp, "rdma migration: error initializing ram blocks!"); |
2da776db MH |
2381 | goto err_rdma_source_init; |
2382 | } | |
2383 | ||
760ff4be DDAG |
2384 | /* Build the hash that maps from offset to RAMBlock */ |
2385 | rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal); | |
2386 | for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) { | |
2387 | g_hash_table_insert(rdma->blockmap, | |
2388 | (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset, | |
2389 | &rdma->local_ram_blocks.block[idx]); | |
2390 | } | |
2391 | ||
1f22364b | 2392 | for (idx = 0; idx < RDMA_WRID_MAX; idx++) { |
2da776db MH |
2393 | ret = qemu_rdma_reg_control(rdma, idx); |
2394 | if (ret) { | |
66988941 | 2395 | ERROR(temp, "rdma migration: error registering %d control!", |
2da776db MH |
2396 | idx); |
2397 | goto err_rdma_source_init; | |
2398 | } | |
2399 | } | |
2400 | ||
2401 | return 0; | |
2402 | ||
2403 | err_rdma_source_init: | |
2404 | error_propagate(errp, local_err); | |
2405 | qemu_rdma_cleanup(rdma); | |
2406 | return -1; | |
2407 | } | |
2408 | ||
2409 | static int qemu_rdma_connect(RDMAContext *rdma, Error **errp) | |
2410 | { | |
2411 | RDMACapabilities cap = { | |
2412 | .version = RDMA_CONTROL_VERSION_CURRENT, | |
2413 | .flags = 0, | |
2414 | }; | |
2415 | struct rdma_conn_param conn_param = { .initiator_depth = 2, | |
2416 | .retry_count = 5, | |
2417 | .private_data = &cap, | |
2418 | .private_data_len = sizeof(cap), | |
2419 | }; | |
2420 | struct rdma_cm_event *cm_event; | |
2421 | int ret; | |
2422 | ||
2423 | /* | |
2424 | * Only negotiate the capability with destination if the user | |
2425 | * on the source first requested the capability. | |
2426 | */ | |
2427 | if (rdma->pin_all) { | |
733252de | 2428 | trace_qemu_rdma_connect_pin_all_requested(); |
2da776db MH |
2429 | cap.flags |= RDMA_CAPABILITY_PIN_ALL; |
2430 | } | |
2431 | ||
2432 | caps_to_network(&cap); | |
2433 | ||
9cf2bab2 DDAG |
2434 | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); |
2435 | if (ret) { | |
2436 | ERROR(errp, "posting second control recv"); | |
2437 | goto err_rdma_source_connect; | |
2438 | } | |
2439 | ||
2da776db MH |
2440 | ret = rdma_connect(rdma->cm_id, &conn_param); |
2441 | if (ret) { | |
2442 | perror("rdma_connect"); | |
66988941 | 2443 | ERROR(errp, "connecting to destination!"); |
2da776db MH |
2444 | goto err_rdma_source_connect; |
2445 | } | |
2446 | ||
2447 | ret = rdma_get_cm_event(rdma->channel, &cm_event); | |
2448 | if (ret) { | |
2449 | perror("rdma_get_cm_event after rdma_connect"); | |
66988941 | 2450 | ERROR(errp, "connecting to destination!"); |
2da776db | 2451 | rdma_ack_cm_event(cm_event); |
2da776db MH |
2452 | goto err_rdma_source_connect; |
2453 | } | |
2454 | ||
2455 | if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { | |
2456 | perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect"); | |
66988941 | 2457 | ERROR(errp, "connecting to destination!"); |
2da776db | 2458 | rdma_ack_cm_event(cm_event); |
2da776db MH |
2459 | goto err_rdma_source_connect; |
2460 | } | |
5a91337c | 2461 | rdma->connected = true; |
2da776db MH |
2462 | |
2463 | memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); | |
2464 | network_to_caps(&cap); | |
2465 | ||
2466 | /* | |
2467 | * Verify that the *requested* capabilities are supported by the destination | |
2468 | * and disable them otherwise. | |
2469 | */ | |
2470 | if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) { | |
2471 | ERROR(errp, "Server cannot support pinning all memory. " | |
66988941 | 2472 | "Will register memory dynamically."); |
2da776db MH |
2473 | rdma->pin_all = false; |
2474 | } | |
2475 | ||
733252de | 2476 | trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all); |
2da776db MH |
2477 | |
2478 | rdma_ack_cm_event(cm_event); | |
2479 | ||
2da776db MH |
2480 | rdma->control_ready_expected = 1; |
2481 | rdma->nb_sent = 0; | |
2482 | return 0; | |
2483 | ||
2484 | err_rdma_source_connect: | |
2485 | qemu_rdma_cleanup(rdma); | |
2486 | return -1; | |
2487 | } | |
2488 | ||
2489 | static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp) | |
2490 | { | |
1dbd2fd9 | 2491 | int ret, idx; |
2da776db MH |
2492 | struct rdma_cm_id *listen_id; |
2493 | char ip[40] = "unknown"; | |
1dbd2fd9 | 2494 | struct rdma_addrinfo *res, *e; |
b58c8552 | 2495 | char port_str[16]; |
2da776db | 2496 | |
1f22364b | 2497 | for (idx = 0; idx < RDMA_WRID_MAX; idx++) { |
2da776db MH |
2498 | rdma->wr_data[idx].control_len = 0; |
2499 | rdma->wr_data[idx].control_curr = NULL; | |
2500 | } | |
2501 | ||
1dbd2fd9 | 2502 | if (!rdma->host || !rdma->host[0]) { |
66988941 | 2503 | ERROR(errp, "RDMA host is not set!"); |
2da776db MH |
2504 | rdma->error_state = -EINVAL; |
2505 | return -1; | |
2506 | } | |
2507 | /* create CM channel */ | |
2508 | rdma->channel = rdma_create_event_channel(); | |
2509 | if (!rdma->channel) { | |
66988941 | 2510 | ERROR(errp, "could not create rdma event channel"); |
2da776db MH |
2511 | rdma->error_state = -EINVAL; |
2512 | return -1; | |
2513 | } | |
2514 | ||
2515 | /* create CM id */ | |
2516 | ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP); | |
2517 | if (ret) { | |
66988941 | 2518 | ERROR(errp, "could not create cm_id!"); |
2da776db MH |
2519 | goto err_dest_init_create_listen_id; |
2520 | } | |
2521 | ||
b58c8552 MH |
2522 | snprintf(port_str, 16, "%d", rdma->port); |
2523 | port_str[15] = '\0'; | |
2da776db | 2524 | |
1dbd2fd9 MT |
2525 | ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); |
2526 | if (ret < 0) { | |
2527 | ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); | |
2528 | goto err_dest_init_bind_addr; | |
2529 | } | |
6470215b | 2530 | |
1dbd2fd9 MT |
2531 | for (e = res; e != NULL; e = e->ai_next) { |
2532 | inet_ntop(e->ai_family, | |
2533 | &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); | |
2534 | trace_qemu_rdma_dest_init_trying(rdma->host, ip); | |
2535 | ret = rdma_bind_addr(listen_id, e->ai_dst_addr); | |
2536 | if (ret) { | |
2537 | continue; | |
2da776db | 2538 | } |
1dbd2fd9 | 2539 | if (e->ai_family == AF_INET6) { |
bbfb89e3 | 2540 | ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp); |
1dbd2fd9 MT |
2541 | if (ret) { |
2542 | continue; | |
6470215b MH |
2543 | } |
2544 | } | |
1dbd2fd9 MT |
2545 | break; |
2546 | } | |
b58c8552 | 2547 | |
1dbd2fd9 | 2548 | if (!e) { |
6470215b MH |
2549 | ERROR(errp, "Error: could not rdma_bind_addr!"); |
2550 | goto err_dest_init_bind_addr; | |
2da776db | 2551 | } |
2da776db MH |
2552 | |
2553 | rdma->listen_id = listen_id; | |
2554 | qemu_rdma_dump_gid("dest_init", listen_id); | |
2555 | return 0; | |
2556 | ||
2557 | err_dest_init_bind_addr: | |
2558 | rdma_destroy_id(listen_id); | |
2559 | err_dest_init_create_listen_id: | |
2560 | rdma_destroy_event_channel(rdma->channel); | |
2561 | rdma->channel = NULL; | |
2562 | rdma->error_state = ret; | |
2563 | return ret; | |
2564 | ||
2565 | } | |
2566 | ||
2567 | static void *qemu_rdma_data_init(const char *host_port, Error **errp) | |
2568 | { | |
2569 | RDMAContext *rdma = NULL; | |
2570 | InetSocketAddress *addr; | |
2571 | ||
2572 | if (host_port) { | |
97f3ad35 | 2573 | rdma = g_new0(RDMAContext, 1); |
2da776db MH |
2574 | rdma->current_index = -1; |
2575 | rdma->current_chunk = -1; | |
2576 | ||
0785bd7a MA |
2577 | addr = g_new(InetSocketAddress, 1); |
2578 | if (!inet_parse(addr, host_port, NULL)) { | |
2da776db MH |
2579 | rdma->port = atoi(addr->port); |
2580 | rdma->host = g_strdup(addr->host); | |
2581 | } else { | |
2582 | ERROR(errp, "bad RDMA migration address '%s'", host_port); | |
2583 | g_free(rdma); | |
e325b49a | 2584 | rdma = NULL; |
2da776db | 2585 | } |
e325b49a MH |
2586 | |
2587 | qapi_free_InetSocketAddress(addr); | |
2da776db MH |
2588 | } |
2589 | ||
2590 | return rdma; | |
2591 | } | |
2592 | ||
2593 | /* | |
2594 | * QEMUFile interface to the control channel. | |
2595 | * SEND messages for control only. | |
971ae6ef | 2596 | * VM's ram is handled with regular RDMA messages. |
2da776db | 2597 | */ |
6ddd2d76 DB |
2598 | static ssize_t qio_channel_rdma_writev(QIOChannel *ioc, |
2599 | const struct iovec *iov, | |
2600 | size_t niov, | |
2601 | int *fds, | |
2602 | size_t nfds, | |
2603 | Error **errp) | |
2604 | { | |
2605 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc); | |
2606 | QEMUFile *f = rioc->file; | |
2607 | RDMAContext *rdma = rioc->rdma; | |
2da776db | 2608 | int ret; |
6ddd2d76 DB |
2609 | ssize_t done = 0; |
2610 | size_t i; | |
2da776db MH |
2611 | |
2612 | CHECK_ERROR_STATE(); | |
2613 | ||
2614 | /* | |
2615 | * Push out any writes that | |
971ae6ef | 2616 | * we're queued up for VM's ram. |
2da776db MH |
2617 | */ |
2618 | ret = qemu_rdma_write_flush(f, rdma); | |
2619 | if (ret < 0) { | |
2620 | rdma->error_state = ret; | |
2621 | return ret; | |
2622 | } | |
2623 | ||
6ddd2d76 DB |
2624 | for (i = 0; i < niov; i++) { |
2625 | size_t remaining = iov[i].iov_len; | |
2626 | uint8_t * data = (void *)iov[i].iov_base; | |
2627 | while (remaining) { | |
2628 | RDMAControlHeader head; | |
2da776db | 2629 | |
6ddd2d76 DB |
2630 | rioc->len = MIN(remaining, RDMA_SEND_INCREMENT); |
2631 | remaining -= rioc->len; | |
2da776db | 2632 | |
6ddd2d76 DB |
2633 | head.len = rioc->len; |
2634 | head.type = RDMA_CONTROL_QEMU_FILE; | |
2da776db | 2635 | |
6ddd2d76 | 2636 | ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL); |
2da776db | 2637 | |
6ddd2d76 DB |
2638 | if (ret < 0) { |
2639 | rdma->error_state = ret; | |
2640 | return ret; | |
2641 | } | |
2da776db | 2642 | |
6ddd2d76 DB |
2643 | data += rioc->len; |
2644 | done += rioc->len; | |
2645 | } | |
2da776db MH |
2646 | } |
2647 | ||
6ddd2d76 | 2648 | return done; |
2da776db MH |
2649 | } |
2650 | ||
2651 | static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf, | |
a202a4c0 | 2652 | size_t size, int idx) |
2da776db MH |
2653 | { |
2654 | size_t len = 0; | |
2655 | ||
2656 | if (rdma->wr_data[idx].control_len) { | |
733252de | 2657 | trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size); |
2da776db MH |
2658 | |
2659 | len = MIN(size, rdma->wr_data[idx].control_len); | |
2660 | memcpy(buf, rdma->wr_data[idx].control_curr, len); | |
2661 | rdma->wr_data[idx].control_curr += len; | |
2662 | rdma->wr_data[idx].control_len -= len; | |
2663 | } | |
2664 | ||
2665 | return len; | |
2666 | } | |
2667 | ||
2668 | /* | |
2669 | * QEMUFile interface to the control channel. | |
2670 | * RDMA links don't use bytestreams, so we have to | |
2671 | * return bytes to QEMUFile opportunistically. | |
2672 | */ | |
6ddd2d76 DB |
2673 | static ssize_t qio_channel_rdma_readv(QIOChannel *ioc, |
2674 | const struct iovec *iov, | |
2675 | size_t niov, | |
2676 | int **fds, | |
2677 | size_t *nfds, | |
2678 | Error **errp) | |
2679 | { | |
2680 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc); | |
2681 | RDMAContext *rdma = rioc->rdma; | |
2da776db MH |
2682 | RDMAControlHeader head; |
2683 | int ret = 0; | |
6ddd2d76 DB |
2684 | ssize_t i; |
2685 | size_t done = 0; | |
2da776db MH |
2686 | |
2687 | CHECK_ERROR_STATE(); | |
2688 | ||
6ddd2d76 DB |
2689 | for (i = 0; i < niov; i++) { |
2690 | size_t want = iov[i].iov_len; | |
2691 | uint8_t *data = (void *)iov[i].iov_base; | |
2da776db | 2692 | |
6ddd2d76 DB |
2693 | /* |
2694 | * First, we hold on to the last SEND message we | |
2695 | * were given and dish out the bytes until we run | |
2696 | * out of bytes. | |
2697 | */ | |
2698 | ret = qemu_rdma_fill(rioc->rdma, data, want, 0); | |
2699 | done += ret; | |
2700 | want -= ret; | |
2701 | /* Got what we needed, so go to next iovec */ | |
2702 | if (want == 0) { | |
2703 | continue; | |
2704 | } | |
2da776db | 2705 | |
6ddd2d76 DB |
2706 | /* If we got any data so far, then don't wait |
2707 | * for more, just return what we have */ | |
2708 | if (done > 0) { | |
2709 | break; | |
2710 | } | |
2da776db | 2711 | |
6ddd2d76 DB |
2712 | |
2713 | /* We've got nothing at all, so lets wait for | |
2714 | * more to arrive | |
2715 | */ | |
2716 | ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE); | |
2717 | ||
2718 | if (ret < 0) { | |
2719 | rdma->error_state = ret; | |
2720 | return ret; | |
2721 | } | |
2722 | ||
2723 | /* | |
2724 | * SEND was received with new bytes, now try again. | |
2725 | */ | |
2726 | ret = qemu_rdma_fill(rioc->rdma, data, want, 0); | |
2727 | done += ret; | |
2728 | want -= ret; | |
2729 | ||
2730 | /* Still didn't get enough, so lets just return */ | |
2731 | if (want) { | |
2732 | if (done == 0) { | |
2733 | return QIO_CHANNEL_ERR_BLOCK; | |
2734 | } else { | |
2735 | break; | |
2736 | } | |
2737 | } | |
2738 | } | |
2739 | rioc->len = done; | |
2740 | return rioc->len; | |
2da776db MH |
2741 | } |
2742 | ||
2743 | /* | |
2744 | * Block until all the outstanding chunks have been delivered by the hardware. | |
2745 | */ | |
2746 | static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma) | |
2747 | { | |
2748 | int ret; | |
2749 | ||
2750 | if (qemu_rdma_write_flush(f, rdma) < 0) { | |
2751 | return -EIO; | |
2752 | } | |
2753 | ||
2754 | while (rdma->nb_sent) { | |
88571882 | 2755 | ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); |
2da776db | 2756 | if (ret < 0) { |
733252de | 2757 | error_report("rdma migration: complete polling error!"); |
2da776db MH |
2758 | return -EIO; |
2759 | } | |
2760 | } | |
2761 | ||
2762 | qemu_rdma_unregister_waiting(rdma); | |
2763 | ||
2764 | return 0; | |
2765 | } | |
2766 | ||
6ddd2d76 DB |
2767 | |
2768 | static int qio_channel_rdma_set_blocking(QIOChannel *ioc, | |
2769 | bool blocking, | |
2770 | Error **errp) | |
2771 | { | |
2772 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc); | |
2773 | /* XXX we should make readv/writev actually honour this :-) */ | |
2774 | rioc->blocking = blocking; | |
2775 | return 0; | |
2776 | } | |
2777 | ||
2778 | ||
2779 | typedef struct QIOChannelRDMASource QIOChannelRDMASource; | |
2780 | struct QIOChannelRDMASource { | |
2781 | GSource parent; | |
2782 | QIOChannelRDMA *rioc; | |
2783 | GIOCondition condition; | |
2784 | }; | |
2785 | ||
2786 | static gboolean | |
2787 | qio_channel_rdma_source_prepare(GSource *source, | |
2788 | gint *timeout) | |
2789 | { | |
2790 | QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source; | |
2791 | RDMAContext *rdma = rsource->rioc->rdma; | |
2792 | GIOCondition cond = 0; | |
2793 | *timeout = -1; | |
2794 | ||
2795 | if (rdma->wr_data[0].control_len) { | |
2796 | cond |= G_IO_IN; | |
2797 | } | |
2798 | cond |= G_IO_OUT; | |
2799 | ||
2800 | return cond & rsource->condition; | |
2801 | } | |
2802 | ||
2803 | static gboolean | |
2804 | qio_channel_rdma_source_check(GSource *source) | |
2805 | { | |
2806 | QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source; | |
2807 | RDMAContext *rdma = rsource->rioc->rdma; | |
2808 | GIOCondition cond = 0; | |
2809 | ||
2810 | if (rdma->wr_data[0].control_len) { | |
2811 | cond |= G_IO_IN; | |
2812 | } | |
2813 | cond |= G_IO_OUT; | |
2814 | ||
2815 | return cond & rsource->condition; | |
2816 | } | |
2817 | ||
2818 | static gboolean | |
2819 | qio_channel_rdma_source_dispatch(GSource *source, | |
2820 | GSourceFunc callback, | |
2821 | gpointer user_data) | |
2822 | { | |
2823 | QIOChannelFunc func = (QIOChannelFunc)callback; | |
2824 | QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source; | |
2825 | RDMAContext *rdma = rsource->rioc->rdma; | |
2826 | GIOCondition cond = 0; | |
2827 | ||
2828 | if (rdma->wr_data[0].control_len) { | |
2829 | cond |= G_IO_IN; | |
2830 | } | |
2831 | cond |= G_IO_OUT; | |
2832 | ||
2833 | return (*func)(QIO_CHANNEL(rsource->rioc), | |
2834 | (cond & rsource->condition), | |
2835 | user_data); | |
2836 | } | |
2837 | ||
2838 | static void | |
2839 | qio_channel_rdma_source_finalize(GSource *source) | |
2840 | { | |
2841 | QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source; | |
2842 | ||
2843 | object_unref(OBJECT(ssource->rioc)); | |
2844 | } | |
2845 | ||
2846 | GSourceFuncs qio_channel_rdma_source_funcs = { | |
2847 | qio_channel_rdma_source_prepare, | |
2848 | qio_channel_rdma_source_check, | |
2849 | qio_channel_rdma_source_dispatch, | |
2850 | qio_channel_rdma_source_finalize | |
2851 | }; | |
2852 | ||
2853 | static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc, | |
2854 | GIOCondition condition) | |
2da776db | 2855 | { |
6ddd2d76 DB |
2856 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc); |
2857 | QIOChannelRDMASource *ssource; | |
2858 | GSource *source; | |
2859 | ||
2860 | source = g_source_new(&qio_channel_rdma_source_funcs, | |
2861 | sizeof(QIOChannelRDMASource)); | |
2862 | ssource = (QIOChannelRDMASource *)source; | |
2863 | ||
2864 | ssource->rioc = rioc; | |
2865 | object_ref(OBJECT(rioc)); | |
2866 | ||
2867 | ssource->condition = condition; | |
2868 | ||
2869 | return source; | |
2870 | } | |
2871 | ||
2872 | ||
2873 | static int qio_channel_rdma_close(QIOChannel *ioc, | |
2874 | Error **errp) | |
2875 | { | |
2876 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc); | |
733252de | 2877 | trace_qemu_rdma_close(); |
6ddd2d76 | 2878 | if (rioc->rdma) { |
12c67ffb DDAG |
2879 | if (!rioc->rdma->error_state) { |
2880 | rioc->rdma->error_state = qemu_file_get_error(rioc->file); | |
2881 | } | |
6ddd2d76 DB |
2882 | qemu_rdma_cleanup(rioc->rdma); |
2883 | g_free(rioc->rdma); | |
2884 | rioc->rdma = NULL; | |
2da776db | 2885 | } |
2da776db MH |
2886 | return 0; |
2887 | } | |
2888 | ||
2889 | /* | |
2890 | * Parameters: | |
2891 | * @offset == 0 : | |
2892 | * This means that 'block_offset' is a full virtual address that does not | |
2893 | * belong to a RAMBlock of the virtual machine and instead | |
2894 | * represents a private malloc'd memory area that the caller wishes to | |
2895 | * transfer. | |
2896 | * | |
2897 | * @offset != 0 : | |
2898 | * Offset is an offset to be added to block_offset and used | |
2899 | * to also lookup the corresponding RAMBlock. | |
2900 | * | |
2901 | * @size > 0 : | |
2902 | * Initiate an transfer this size. | |
2903 | * | |
2904 | * @size == 0 : | |
2905 | * A 'hint' or 'advice' that means that we wish to speculatively | |
2906 | * and asynchronously unregister this memory. In this case, there is no | |
52f35022 | 2907 | * guarantee that the unregister will actually happen, for example, |
2da776db MH |
2908 | * if the memory is being actively transmitted. Additionally, the memory |
2909 | * may be re-registered at any future time if a write within the same | |
2910 | * chunk was requested again, even if you attempted to unregister it | |
2911 | * here. | |
2912 | * | |
2913 | * @size < 0 : TODO, not yet supported | |
2914 | * Unregister the memory NOW. This means that the caller does not | |
2915 | * expect there to be any future RDMA transfers and we just want to clean | |
2916 | * things up. This is used in case the upper layer owns the memory and | |
2917 | * cannot wait for qemu_fclose() to occur. | |
2918 | * | |
2919 | * @bytes_sent : User-specificed pointer to indicate how many bytes were | |
2920 | * sent. Usually, this will not be more than a few bytes of | |
2921 | * the protocol because most transfers are sent asynchronously. | |
2922 | */ | |
2923 | static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque, | |
2924 | ram_addr_t block_offset, ram_addr_t offset, | |
6e1dea46 | 2925 | size_t size, uint64_t *bytes_sent) |
2da776db | 2926 | { |
6ddd2d76 DB |
2927 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque); |
2928 | RDMAContext *rdma = rioc->rdma; | |
2da776db MH |
2929 | int ret; |
2930 | ||
2931 | CHECK_ERROR_STATE(); | |
2932 | ||
2933 | qemu_fflush(f); | |
2934 | ||
2935 | if (size > 0) { | |
2936 | /* | |
2937 | * Add this page to the current 'chunk'. If the chunk | |
2938 | * is full, or the page doen't belong to the current chunk, | |
2939 | * an actual RDMA write will occur and a new chunk will be formed. | |
2940 | */ | |
2941 | ret = qemu_rdma_write(f, rdma, block_offset, offset, size); | |
2942 | if (ret < 0) { | |
733252de | 2943 | error_report("rdma migration: write error! %d", ret); |
2da776db MH |
2944 | goto err; |
2945 | } | |
2946 | ||
2947 | /* | |
2948 | * We always return 1 bytes because the RDMA | |
2949 | * protocol is completely asynchronous. We do not yet know | |
2950 | * whether an identified chunk is zero or not because we're | |
2951 | * waiting for other pages to potentially be merged with | |
2952 | * the current chunk. So, we have to call qemu_update_position() | |
2953 | * later on when the actual write occurs. | |
2954 | */ | |
2955 | if (bytes_sent) { | |
2956 | *bytes_sent = 1; | |
2957 | } | |
2958 | } else { | |
2959 | uint64_t index, chunk; | |
2960 | ||
2961 | /* TODO: Change QEMUFileOps prototype to be signed: size_t => long | |
2962 | if (size < 0) { | |
2963 | ret = qemu_rdma_drain_cq(f, rdma); | |
2964 | if (ret < 0) { | |
2965 | fprintf(stderr, "rdma: failed to synchronously drain" | |
2966 | " completion queue before unregistration.\n"); | |
2967 | goto err; | |
2968 | } | |
2969 | } | |
2970 | */ | |
2971 | ||
2972 | ret = qemu_rdma_search_ram_block(rdma, block_offset, | |
2973 | offset, size, &index, &chunk); | |
2974 | ||
2975 | if (ret) { | |
733252de | 2976 | error_report("ram block search failed"); |
2da776db MH |
2977 | goto err; |
2978 | } | |
2979 | ||
2980 | qemu_rdma_signal_unregister(rdma, index, chunk, 0); | |
2981 | ||
2982 | /* | |
52f35022 | 2983 | * TODO: Synchronous, guaranteed unregistration (should not occur during |
2da776db MH |
2984 | * fast-path). Otherwise, unregisters will process on the next call to |
2985 | * qemu_rdma_drain_cq() | |
2986 | if (size < 0) { | |
2987 | qemu_rdma_unregister_waiting(rdma); | |
2988 | } | |
2989 | */ | |
2990 | } | |
2991 | ||
2992 | /* | |
2993 | * Drain the Completion Queue if possible, but do not block, | |
2994 | * just poll. | |
2995 | * | |
2996 | * If nothing to poll, the end of the iteration will do this | |
2997 | * again to make sure we don't overflow the request queue. | |
2998 | */ | |
2999 | while (1) { | |
3000 | uint64_t wr_id, wr_id_in; | |
88571882 | 3001 | int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL); |
2da776db | 3002 | if (ret < 0) { |
733252de | 3003 | error_report("rdma migration: polling error! %d", ret); |
2da776db MH |
3004 | goto err; |
3005 | } | |
3006 | ||
3007 | wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; | |
3008 | ||
3009 | if (wr_id == RDMA_WRID_NONE) { | |
3010 | break; | |
3011 | } | |
3012 | } | |
3013 | ||
3014 | return RAM_SAVE_CONTROL_DELAYED; | |
3015 | err: | |
3016 | rdma->error_state = ret; | |
3017 | return ret; | |
3018 | } | |
3019 | ||
3020 | static int qemu_rdma_accept(RDMAContext *rdma) | |
3021 | { | |
3022 | RDMACapabilities cap; | |
3023 | struct rdma_conn_param conn_param = { | |
3024 | .responder_resources = 2, | |
3025 | .private_data = &cap, | |
3026 | .private_data_len = sizeof(cap), | |
3027 | }; | |
3028 | struct rdma_cm_event *cm_event; | |
3029 | struct ibv_context *verbs; | |
3030 | int ret = -EINVAL; | |
3031 | int idx; | |
3032 | ||
3033 | ret = rdma_get_cm_event(rdma->channel, &cm_event); | |
3034 | if (ret) { | |
3035 | goto err_rdma_dest_wait; | |
3036 | } | |
3037 | ||
3038 | if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) { | |
3039 | rdma_ack_cm_event(cm_event); | |
3040 | goto err_rdma_dest_wait; | |
3041 | } | |
3042 | ||
3043 | memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); | |
3044 | ||
3045 | network_to_caps(&cap); | |
3046 | ||
3047 | if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) { | |
733252de | 3048 | error_report("Unknown source RDMA version: %d, bailing...", |
2da776db MH |
3049 | cap.version); |
3050 | rdma_ack_cm_event(cm_event); | |
3051 | goto err_rdma_dest_wait; | |
3052 | } | |
3053 | ||
3054 | /* | |
3055 | * Respond with only the capabilities this version of QEMU knows about. | |
3056 | */ | |
3057 | cap.flags &= known_capabilities; | |
3058 | ||
3059 | /* | |
3060 | * Enable the ones that we do know about. | |
3061 | * Add other checks here as new ones are introduced. | |
3062 | */ | |
3063 | if (cap.flags & RDMA_CAPABILITY_PIN_ALL) { | |
3064 | rdma->pin_all = true; | |
3065 | } | |
3066 | ||
3067 | rdma->cm_id = cm_event->id; | |
3068 | verbs = cm_event->id->verbs; | |
3069 | ||
3070 | rdma_ack_cm_event(cm_event); | |
3071 | ||
733252de | 3072 | trace_qemu_rdma_accept_pin_state(rdma->pin_all); |
2da776db MH |
3073 | |
3074 | caps_to_network(&cap); | |
3075 | ||
733252de | 3076 | trace_qemu_rdma_accept_pin_verbsc(verbs); |
2da776db MH |
3077 | |
3078 | if (!rdma->verbs) { | |
3079 | rdma->verbs = verbs; | |
3080 | } else if (rdma->verbs != verbs) { | |
733252de DDAG |
3081 | error_report("ibv context not matching %p, %p!", rdma->verbs, |
3082 | verbs); | |
2da776db MH |
3083 | goto err_rdma_dest_wait; |
3084 | } | |
3085 | ||
3086 | qemu_rdma_dump_id("dest_init", verbs); | |
3087 | ||
3088 | ret = qemu_rdma_alloc_pd_cq(rdma); | |
3089 | if (ret) { | |
733252de | 3090 | error_report("rdma migration: error allocating pd and cq!"); |
2da776db MH |
3091 | goto err_rdma_dest_wait; |
3092 | } | |
3093 | ||
3094 | ret = qemu_rdma_alloc_qp(rdma); | |
3095 | if (ret) { | |
733252de | 3096 | error_report("rdma migration: error allocating qp!"); |
2da776db MH |
3097 | goto err_rdma_dest_wait; |
3098 | } | |
3099 | ||
3100 | ret = qemu_rdma_init_ram_blocks(rdma); | |
3101 | if (ret) { | |
733252de | 3102 | error_report("rdma migration: error initializing ram blocks!"); |
2da776db MH |
3103 | goto err_rdma_dest_wait; |
3104 | } | |
3105 | ||
1f22364b | 3106 | for (idx = 0; idx < RDMA_WRID_MAX; idx++) { |
2da776db MH |
3107 | ret = qemu_rdma_reg_control(rdma, idx); |
3108 | if (ret) { | |
733252de | 3109 | error_report("rdma: error registering %d control", idx); |
2da776db MH |
3110 | goto err_rdma_dest_wait; |
3111 | } | |
3112 | } | |
3113 | ||
82e1cc4b | 3114 | qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL); |
2da776db MH |
3115 | |
3116 | ret = rdma_accept(rdma->cm_id, &conn_param); | |
3117 | if (ret) { | |
733252de | 3118 | error_report("rdma_accept returns %d", ret); |
2da776db MH |
3119 | goto err_rdma_dest_wait; |
3120 | } | |
3121 | ||
3122 | ret = rdma_get_cm_event(rdma->channel, &cm_event); | |
3123 | if (ret) { | |
733252de | 3124 | error_report("rdma_accept get_cm_event failed %d", ret); |
2da776db MH |
3125 | goto err_rdma_dest_wait; |
3126 | } | |
3127 | ||
3128 | if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { | |
733252de | 3129 | error_report("rdma_accept not event established"); |
2da776db MH |
3130 | rdma_ack_cm_event(cm_event); |
3131 | goto err_rdma_dest_wait; | |
3132 | } | |
3133 | ||
3134 | rdma_ack_cm_event(cm_event); | |
5a91337c | 3135 | rdma->connected = true; |
2da776db | 3136 | |
87772639 | 3137 | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); |
2da776db | 3138 | if (ret) { |
733252de | 3139 | error_report("rdma migration: error posting second control recv"); |
2da776db MH |
3140 | goto err_rdma_dest_wait; |
3141 | } | |
3142 | ||
3143 | qemu_rdma_dump_gid("dest_connect", rdma->cm_id); | |
3144 | ||
3145 | return 0; | |
3146 | ||
3147 | err_rdma_dest_wait: | |
3148 | rdma->error_state = ret; | |
3149 | qemu_rdma_cleanup(rdma); | |
3150 | return ret; | |
3151 | } | |
3152 | ||
e4d63320 DDAG |
3153 | static int dest_ram_sort_func(const void *a, const void *b) |
3154 | { | |
3155 | unsigned int a_index = ((const RDMALocalBlock *)a)->src_index; | |
3156 | unsigned int b_index = ((const RDMALocalBlock *)b)->src_index; | |
3157 | ||
3158 | return (a_index < b_index) ? -1 : (a_index != b_index); | |
3159 | } | |
3160 | ||
2da776db MH |
3161 | /* |
3162 | * During each iteration of the migration, we listen for instructions | |
3163 | * by the source VM to perform dynamic page registrations before they | |
3164 | * can perform RDMA operations. | |
3165 | * | |
3166 | * We respond with the 'rkey'. | |
3167 | * | |
3168 | * Keep doing this until the source tells us to stop. | |
3169 | */ | |
632e3a5c | 3170 | static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque) |
2da776db MH |
3171 | { |
3172 | RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult), | |
3173 | .type = RDMA_CONTROL_REGISTER_RESULT, | |
3174 | .repeat = 0, | |
3175 | }; | |
3176 | RDMAControlHeader unreg_resp = { .len = 0, | |
3177 | .type = RDMA_CONTROL_UNREGISTER_FINISHED, | |
3178 | .repeat = 0, | |
3179 | }; | |
3180 | RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT, | |
3181 | .repeat = 1 }; | |
6ddd2d76 DB |
3182 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque); |
3183 | RDMAContext *rdma = rioc->rdma; | |
2da776db MH |
3184 | RDMALocalBlocks *local = &rdma->local_ram_blocks; |
3185 | RDMAControlHeader head; | |
3186 | RDMARegister *reg, *registers; | |
3187 | RDMACompress *comp; | |
3188 | RDMARegisterResult *reg_result; | |
3189 | static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE]; | |
3190 | RDMALocalBlock *block; | |
3191 | void *host_addr; | |
3192 | int ret = 0; | |
3193 | int idx = 0; | |
3194 | int count = 0; | |
3195 | int i = 0; | |
3196 | ||
3197 | CHECK_ERROR_STATE(); | |
3198 | ||
3199 | do { | |
632e3a5c | 3200 | trace_qemu_rdma_registration_handle_wait(); |
2da776db MH |
3201 | |
3202 | ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE); | |
3203 | ||
3204 | if (ret < 0) { | |
3205 | break; | |
3206 | } | |
3207 | ||
3208 | if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) { | |
733252de DDAG |
3209 | error_report("rdma: Too many requests in this message (%d)." |
3210 | "Bailing.", head.repeat); | |
2da776db MH |
3211 | ret = -EIO; |
3212 | break; | |
3213 | } | |
3214 | ||
3215 | switch (head.type) { | |
3216 | case RDMA_CONTROL_COMPRESS: | |
3217 | comp = (RDMACompress *) rdma->wr_data[idx].control_curr; | |
3218 | network_to_compress(comp); | |
3219 | ||
733252de DDAG |
3220 | trace_qemu_rdma_registration_handle_compress(comp->length, |
3221 | comp->block_idx, | |
3222 | comp->offset); | |
afcddefd DDAG |
3223 | if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) { |
3224 | error_report("rdma: 'compress' bad block index %u (vs %d)", | |
3225 | (unsigned int)comp->block_idx, | |
3226 | rdma->local_ram_blocks.nb_blocks); | |
3227 | ret = -EIO; | |
24b41d66 | 3228 | goto out; |
afcddefd | 3229 | } |
2da776db MH |
3230 | block = &(rdma->local_ram_blocks.block[comp->block_idx]); |
3231 | ||
3232 | host_addr = block->local_host_addr + | |
3233 | (comp->offset - block->offset); | |
3234 | ||
3235 | ram_handle_compressed(host_addr, comp->value, comp->length); | |
3236 | break; | |
3237 | ||
3238 | case RDMA_CONTROL_REGISTER_FINISHED: | |
733252de | 3239 | trace_qemu_rdma_registration_handle_finished(); |
2da776db MH |
3240 | goto out; |
3241 | ||
3242 | case RDMA_CONTROL_RAM_BLOCKS_REQUEST: | |
733252de | 3243 | trace_qemu_rdma_registration_handle_ram_blocks(); |
2da776db | 3244 | |
e4d63320 DDAG |
3245 | /* Sort our local RAM Block list so it's the same as the source, |
3246 | * we can do this since we've filled in a src_index in the list | |
3247 | * as we received the RAMBlock list earlier. | |
3248 | */ | |
3249 | qsort(rdma->local_ram_blocks.block, | |
3250 | rdma->local_ram_blocks.nb_blocks, | |
3251 | sizeof(RDMALocalBlock), dest_ram_sort_func); | |
71cd7306 LC |
3252 | for (i = 0; i < local->nb_blocks; i++) { |
3253 | local->block[i].index = i; | |
3254 | } | |
3255 | ||
2da776db MH |
3256 | if (rdma->pin_all) { |
3257 | ret = qemu_rdma_reg_whole_ram_blocks(rdma); | |
3258 | if (ret) { | |
733252de DDAG |
3259 | error_report("rdma migration: error dest " |
3260 | "registering ram blocks"); | |
2da776db MH |
3261 | goto out; |
3262 | } | |
3263 | } | |
3264 | ||
3265 | /* | |
3266 | * Dest uses this to prepare to transmit the RAMBlock descriptions | |
3267 | * to the source VM after connection setup. | |
3268 | * Both sides use the "remote" structure to communicate and update | |
3269 | * their "local" descriptions with what was sent. | |
3270 | */ | |
3271 | for (i = 0; i < local->nb_blocks; i++) { | |
a97270ad | 3272 | rdma->dest_blocks[i].remote_host_addr = |
fbce8c25 | 3273 | (uintptr_t)(local->block[i].local_host_addr); |
2da776db MH |
3274 | |
3275 | if (rdma->pin_all) { | |
a97270ad | 3276 | rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey; |
2da776db MH |
3277 | } |
3278 | ||
a97270ad DDAG |
3279 | rdma->dest_blocks[i].offset = local->block[i].offset; |
3280 | rdma->dest_blocks[i].length = local->block[i].length; | |
2da776db | 3281 | |
a97270ad | 3282 | dest_block_to_network(&rdma->dest_blocks[i]); |
e4d63320 DDAG |
3283 | trace_qemu_rdma_registration_handle_ram_blocks_loop( |
3284 | local->block[i].block_name, | |
3285 | local->block[i].offset, | |
3286 | local->block[i].length, | |
3287 | local->block[i].local_host_addr, | |
3288 | local->block[i].src_index); | |
2da776db MH |
3289 | } |
3290 | ||
3291 | blocks.len = rdma->local_ram_blocks.nb_blocks | |
a97270ad | 3292 | * sizeof(RDMADestBlock); |
2da776db MH |
3293 | |
3294 | ||
3295 | ret = qemu_rdma_post_send_control(rdma, | |
a97270ad | 3296 | (uint8_t *) rdma->dest_blocks, &blocks); |
2da776db MH |
3297 | |
3298 | if (ret < 0) { | |
733252de | 3299 | error_report("rdma migration: error sending remote info"); |
2da776db MH |
3300 | goto out; |
3301 | } | |
3302 | ||
3303 | break; | |
3304 | case RDMA_CONTROL_REGISTER_REQUEST: | |
733252de | 3305 | trace_qemu_rdma_registration_handle_register(head.repeat); |
2da776db MH |
3306 | |
3307 | reg_resp.repeat = head.repeat; | |
3308 | registers = (RDMARegister *) rdma->wr_data[idx].control_curr; | |
3309 | ||
3310 | for (count = 0; count < head.repeat; count++) { | |
3311 | uint64_t chunk; | |
3312 | uint8_t *chunk_start, *chunk_end; | |
3313 | ||
3314 | reg = ®isters[count]; | |
3315 | network_to_register(reg); | |
3316 | ||
3317 | reg_result = &results[count]; | |
3318 | ||
733252de | 3319 | trace_qemu_rdma_registration_handle_register_loop(count, |
2da776db MH |
3320 | reg->current_index, reg->key.current_addr, reg->chunks); |
3321 | ||
afcddefd DDAG |
3322 | if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) { |
3323 | error_report("rdma: 'register' bad block index %u (vs %d)", | |
3324 | (unsigned int)reg->current_index, | |
3325 | rdma->local_ram_blocks.nb_blocks); | |
3326 | ret = -ENOENT; | |
24b41d66 | 3327 | goto out; |
afcddefd | 3328 | } |
2da776db MH |
3329 | block = &(rdma->local_ram_blocks.block[reg->current_index]); |
3330 | if (block->is_ram_block) { | |
afcddefd DDAG |
3331 | if (block->offset > reg->key.current_addr) { |
3332 | error_report("rdma: bad register address for block %s" | |
3333 | " offset: %" PRIx64 " current_addr: %" PRIx64, | |
3334 | block->block_name, block->offset, | |
3335 | reg->key.current_addr); | |
3336 | ret = -ERANGE; | |
24b41d66 | 3337 | goto out; |
afcddefd | 3338 | } |
2da776db MH |
3339 | host_addr = (block->local_host_addr + |
3340 | (reg->key.current_addr - block->offset)); | |
3341 | chunk = ram_chunk_index(block->local_host_addr, | |
3342 | (uint8_t *) host_addr); | |
3343 | } else { | |
3344 | chunk = reg->key.chunk; | |
3345 | host_addr = block->local_host_addr + | |
3346 | (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT)); | |
afcddefd DDAG |
3347 | /* Check for particularly bad chunk value */ |
3348 | if (host_addr < (void *)block->local_host_addr) { | |
3349 | error_report("rdma: bad chunk for block %s" | |
3350 | " chunk: %" PRIx64, | |
3351 | block->block_name, reg->key.chunk); | |
3352 | ret = -ERANGE; | |
24b41d66 | 3353 | goto out; |
afcddefd | 3354 | } |
2da776db MH |
3355 | } |
3356 | chunk_start = ram_chunk_start(block, chunk); | |
3357 | chunk_end = ram_chunk_end(block, chunk + reg->chunks); | |
3358 | if (qemu_rdma_register_and_get_keys(rdma, block, | |
3ac040c0 | 3359 | (uintptr_t)host_addr, NULL, ®_result->rkey, |
2da776db | 3360 | chunk, chunk_start, chunk_end)) { |
733252de | 3361 | error_report("cannot get rkey"); |
2da776db MH |
3362 | ret = -EINVAL; |
3363 | goto out; | |
3364 | } | |
3365 | ||
fbce8c25 | 3366 | reg_result->host_addr = (uintptr_t)block->local_host_addr; |
2da776db | 3367 | |
733252de DDAG |
3368 | trace_qemu_rdma_registration_handle_register_rkey( |
3369 | reg_result->rkey); | |
2da776db MH |
3370 | |
3371 | result_to_network(reg_result); | |
3372 | } | |
3373 | ||
3374 | ret = qemu_rdma_post_send_control(rdma, | |
3375 | (uint8_t *) results, ®_resp); | |
3376 | ||
3377 | if (ret < 0) { | |
733252de | 3378 | error_report("Failed to send control buffer"); |
2da776db MH |
3379 | goto out; |
3380 | } | |
3381 | break; | |
3382 | case RDMA_CONTROL_UNREGISTER_REQUEST: | |
733252de | 3383 | trace_qemu_rdma_registration_handle_unregister(head.repeat); |
2da776db MH |
3384 | unreg_resp.repeat = head.repeat; |
3385 | registers = (RDMARegister *) rdma->wr_data[idx].control_curr; | |
3386 | ||
3387 | for (count = 0; count < head.repeat; count++) { | |
3388 | reg = ®isters[count]; | |
3389 | network_to_register(reg); | |
3390 | ||
733252de DDAG |
3391 | trace_qemu_rdma_registration_handle_unregister_loop(count, |
3392 | reg->current_index, reg->key.chunk); | |
2da776db MH |
3393 | |
3394 | block = &(rdma->local_ram_blocks.block[reg->current_index]); | |
3395 | ||
3396 | ret = ibv_dereg_mr(block->pmr[reg->key.chunk]); | |
3397 | block->pmr[reg->key.chunk] = NULL; | |
3398 | ||
3399 | if (ret != 0) { | |
3400 | perror("rdma unregistration chunk failed"); | |
3401 | ret = -ret; | |
3402 | goto out; | |
3403 | } | |
3404 | ||
3405 | rdma->total_registrations--; | |
3406 | ||
733252de DDAG |
3407 | trace_qemu_rdma_registration_handle_unregister_success( |
3408 | reg->key.chunk); | |
2da776db MH |
3409 | } |
3410 | ||
3411 | ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp); | |
3412 | ||
3413 | if (ret < 0) { | |
733252de | 3414 | error_report("Failed to send control buffer"); |
2da776db MH |
3415 | goto out; |
3416 | } | |
3417 | break; | |
3418 | case RDMA_CONTROL_REGISTER_RESULT: | |
733252de | 3419 | error_report("Invalid RESULT message at dest."); |
2da776db MH |
3420 | ret = -EIO; |
3421 | goto out; | |
3422 | default: | |
482a33c5 | 3423 | error_report("Unknown control message %s", control_desc(head.type)); |
2da776db MH |
3424 | ret = -EIO; |
3425 | goto out; | |
3426 | } | |
3427 | } while (1); | |
3428 | out: | |
3429 | if (ret < 0) { | |
3430 | rdma->error_state = ret; | |
3431 | } | |
3432 | return ret; | |
3433 | } | |
3434 | ||
e4d63320 DDAG |
3435 | /* Destination: |
3436 | * Called via a ram_control_load_hook during the initial RAM load section which | |
3437 | * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks | |
3438 | * on the source. | |
3439 | * We've already built our local RAMBlock list, but not yet sent the list to | |
3440 | * the source. | |
3441 | */ | |
6ddd2d76 DB |
3442 | static int |
3443 | rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name) | |
e4d63320 | 3444 | { |
6ddd2d76 | 3445 | RDMAContext *rdma = rioc->rdma; |
e4d63320 DDAG |
3446 | int curr; |
3447 | int found = -1; | |
3448 | ||
3449 | /* Find the matching RAMBlock in our local list */ | |
3450 | for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) { | |
3451 | if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) { | |
3452 | found = curr; | |
3453 | break; | |
3454 | } | |
3455 | } | |
3456 | ||
3457 | if (found == -1) { | |
3458 | error_report("RAMBlock '%s' not found on destination", name); | |
3459 | return -ENOENT; | |
3460 | } | |
3461 | ||
3462 | rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index; | |
3463 | trace_rdma_block_notification_handle(name, rdma->next_src_index); | |
3464 | rdma->next_src_index++; | |
3465 | ||
3466 | return 0; | |
3467 | } | |
3468 | ||
632e3a5c DDAG |
3469 | static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data) |
3470 | { | |
3471 | switch (flags) { | |
3472 | case RAM_CONTROL_BLOCK_REG: | |
e4d63320 | 3473 | return rdma_block_notification_handle(opaque, data); |
632e3a5c DDAG |
3474 | |
3475 | case RAM_CONTROL_HOOK: | |
3476 | return qemu_rdma_registration_handle(f, opaque); | |
3477 | ||
3478 | default: | |
3479 | /* Shouldn't be called with any other values */ | |
3480 | abort(); | |
3481 | } | |
3482 | } | |
3483 | ||
2da776db | 3484 | static int qemu_rdma_registration_start(QEMUFile *f, void *opaque, |
632e3a5c | 3485 | uint64_t flags, void *data) |
2da776db | 3486 | { |
6ddd2d76 DB |
3487 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque); |
3488 | RDMAContext *rdma = rioc->rdma; | |
2da776db MH |
3489 | |
3490 | CHECK_ERROR_STATE(); | |
3491 | ||
733252de | 3492 | trace_qemu_rdma_registration_start(flags); |
2da776db MH |
3493 | qemu_put_be64(f, RAM_SAVE_FLAG_HOOK); |
3494 | qemu_fflush(f); | |
3495 | ||
3496 | return 0; | |
3497 | } | |
3498 | ||
3499 | /* | |
3500 | * Inform dest that dynamic registrations are done for now. | |
3501 | * First, flush writes, if any. | |
3502 | */ | |
3503 | static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque, | |
632e3a5c | 3504 | uint64_t flags, void *data) |
2da776db MH |
3505 | { |
3506 | Error *local_err = NULL, **errp = &local_err; | |
6ddd2d76 DB |
3507 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque); |
3508 | RDMAContext *rdma = rioc->rdma; | |
2da776db MH |
3509 | RDMAControlHeader head = { .len = 0, .repeat = 1 }; |
3510 | int ret = 0; | |
3511 | ||
3512 | CHECK_ERROR_STATE(); | |
3513 | ||
3514 | qemu_fflush(f); | |
3515 | ret = qemu_rdma_drain_cq(f, rdma); | |
3516 | ||
3517 | if (ret < 0) { | |
3518 | goto err; | |
3519 | } | |
3520 | ||
3521 | if (flags == RAM_CONTROL_SETUP) { | |
3522 | RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT }; | |
3523 | RDMALocalBlocks *local = &rdma->local_ram_blocks; | |
e4d63320 | 3524 | int reg_result_idx, i, nb_dest_blocks; |
2da776db MH |
3525 | |
3526 | head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST; | |
733252de | 3527 | trace_qemu_rdma_registration_stop_ram(); |
2da776db MH |
3528 | |
3529 | /* | |
3530 | * Make sure that we parallelize the pinning on both sides. | |
3531 | * For very large guests, doing this serially takes a really | |
3532 | * long time, so we have to 'interleave' the pinning locally | |
3533 | * with the control messages by performing the pinning on this | |
3534 | * side before we receive the control response from the other | |
3535 | * side that the pinning has completed. | |
3536 | */ | |
3537 | ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp, | |
3538 | ®_result_idx, rdma->pin_all ? | |
3539 | qemu_rdma_reg_whole_ram_blocks : NULL); | |
3540 | if (ret < 0) { | |
66988941 | 3541 | ERROR(errp, "receiving remote info!"); |
2da776db MH |
3542 | return ret; |
3543 | } | |
3544 | ||
a97270ad | 3545 | nb_dest_blocks = resp.len / sizeof(RDMADestBlock); |
2da776db MH |
3546 | |
3547 | /* | |
3548 | * The protocol uses two different sets of rkeys (mutually exclusive): | |
3549 | * 1. One key to represent the virtual address of the entire ram block. | |
3550 | * (dynamic chunk registration disabled - pin everything with one rkey.) | |
3551 | * 2. One to represent individual chunks within a ram block. | |
3552 | * (dynamic chunk registration enabled - pin individual chunks.) | |
3553 | * | |
3554 | * Once the capability is successfully negotiated, the destination transmits | |
3555 | * the keys to use (or sends them later) including the virtual addresses | |
3556 | * and then propagates the remote ram block descriptions to his local copy. | |
3557 | */ | |
3558 | ||
a97270ad | 3559 | if (local->nb_blocks != nb_dest_blocks) { |
e4d63320 | 3560 | ERROR(errp, "ram blocks mismatch (Number of blocks %d vs %d) " |
2da776db | 3561 | "Your QEMU command line parameters are probably " |
e4d63320 DDAG |
3562 | "not identical on both the source and destination.", |
3563 | local->nb_blocks, nb_dest_blocks); | |
ef4b722d | 3564 | rdma->error_state = -EINVAL; |
2da776db MH |
3565 | return -EINVAL; |
3566 | } | |
3567 | ||
885e8f98 | 3568 | qemu_rdma_move_header(rdma, reg_result_idx, &resp); |
a97270ad | 3569 | memcpy(rdma->dest_blocks, |
885e8f98 | 3570 | rdma->wr_data[reg_result_idx].control_curr, resp.len); |
a97270ad DDAG |
3571 | for (i = 0; i < nb_dest_blocks; i++) { |
3572 | network_to_dest_block(&rdma->dest_blocks[i]); | |
2da776db | 3573 | |
e4d63320 DDAG |
3574 | /* We require that the blocks are in the same order */ |
3575 | if (rdma->dest_blocks[i].length != local->block[i].length) { | |
3576 | ERROR(errp, "Block %s/%d has a different length %" PRIu64 | |
3577 | "vs %" PRIu64, local->block[i].block_name, i, | |
3578 | local->block[i].length, | |
3579 | rdma->dest_blocks[i].length); | |
ef4b722d | 3580 | rdma->error_state = -EINVAL; |
2da776db MH |
3581 | return -EINVAL; |
3582 | } | |
e4d63320 DDAG |
3583 | local->block[i].remote_host_addr = |
3584 | rdma->dest_blocks[i].remote_host_addr; | |
3585 | local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey; | |
2da776db MH |
3586 | } |
3587 | } | |
3588 | ||
733252de | 3589 | trace_qemu_rdma_registration_stop(flags); |
2da776db MH |
3590 | |
3591 | head.type = RDMA_CONTROL_REGISTER_FINISHED; | |
3592 | ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL); | |
3593 | ||
3594 | if (ret < 0) { | |
3595 | goto err; | |
3596 | } | |
3597 | ||
3598 | return 0; | |
3599 | err: | |
3600 | rdma->error_state = ret; | |
3601 | return ret; | |
3602 | } | |
3603 | ||
0436e09f | 3604 | static const QEMUFileHooks rdma_read_hooks = { |
632e3a5c | 3605 | .hook_ram_load = rdma_load_hook, |
2da776db MH |
3606 | }; |
3607 | ||
0436e09f | 3608 | static const QEMUFileHooks rdma_write_hooks = { |
2da776db MH |
3609 | .before_ram_iterate = qemu_rdma_registration_start, |
3610 | .after_ram_iterate = qemu_rdma_registration_stop, | |
3611 | .save_page = qemu_rdma_save_page, | |
3612 | }; | |
3613 | ||
6ddd2d76 DB |
3614 | |
3615 | static void qio_channel_rdma_finalize(Object *obj) | |
3616 | { | |
3617 | QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj); | |
3618 | if (rioc->rdma) { | |
3619 | qemu_rdma_cleanup(rioc->rdma); | |
3620 | g_free(rioc->rdma); | |
3621 | rioc->rdma = NULL; | |
3622 | } | |
3623 | } | |
3624 | ||
3625 | static void qio_channel_rdma_class_init(ObjectClass *klass, | |
3626 | void *class_data G_GNUC_UNUSED) | |
3627 | { | |
3628 | QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass); | |
3629 | ||
3630 | ioc_klass->io_writev = qio_channel_rdma_writev; | |
3631 | ioc_klass->io_readv = qio_channel_rdma_readv; | |
3632 | ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking; | |
3633 | ioc_klass->io_close = qio_channel_rdma_close; | |
3634 | ioc_klass->io_create_watch = qio_channel_rdma_create_watch; | |
3635 | } | |
3636 | ||
3637 | static const TypeInfo qio_channel_rdma_info = { | |
3638 | .parent = TYPE_QIO_CHANNEL, | |
3639 | .name = TYPE_QIO_CHANNEL_RDMA, | |
3640 | .instance_size = sizeof(QIOChannelRDMA), | |
3641 | .instance_finalize = qio_channel_rdma_finalize, | |
3642 | .class_init = qio_channel_rdma_class_init, | |
3643 | }; | |
3644 | ||
3645 | static void qio_channel_rdma_register_types(void) | |
3646 | { | |
3647 | type_register_static(&qio_channel_rdma_info); | |
3648 | } | |
3649 | ||
3650 | type_init(qio_channel_rdma_register_types); | |
3651 | ||
3652 | static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode) | |
2da776db | 3653 | { |
6ddd2d76 | 3654 | QIOChannelRDMA *rioc; |
2da776db MH |
3655 | |
3656 | if (qemu_file_mode_is_not_valid(mode)) { | |
3657 | return NULL; | |
3658 | } | |
3659 | ||
6ddd2d76 DB |
3660 | rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA)); |
3661 | rioc->rdma = rdma; | |
2da776db MH |
3662 | |
3663 | if (mode[0] == 'w') { | |
6ddd2d76 DB |
3664 | rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc)); |
3665 | qemu_file_set_hooks(rioc->file, &rdma_write_hooks); | |
2da776db | 3666 | } else { |
6ddd2d76 DB |
3667 | rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc)); |
3668 | qemu_file_set_hooks(rioc->file, &rdma_read_hooks); | |
2da776db MH |
3669 | } |
3670 | ||
6ddd2d76 | 3671 | return rioc->file; |
2da776db MH |
3672 | } |
3673 | ||
3674 | static void rdma_accept_incoming_migration(void *opaque) | |
3675 | { | |
3676 | RDMAContext *rdma = opaque; | |
3677 | int ret; | |
3678 | QEMUFile *f; | |
3679 | Error *local_err = NULL, **errp = &local_err; | |
3680 | ||
24ec68ef | 3681 | trace_qemu_rdma_accept_incoming_migration(); |
2da776db MH |
3682 | ret = qemu_rdma_accept(rdma); |
3683 | ||
3684 | if (ret) { | |
66988941 | 3685 | ERROR(errp, "RDMA Migration initialization failed!"); |
2da776db MH |
3686 | return; |
3687 | } | |
3688 | ||
24ec68ef | 3689 | trace_qemu_rdma_accept_incoming_migration_accepted(); |
2da776db MH |
3690 | |
3691 | f = qemu_fopen_rdma(rdma, "rb"); | |
3692 | if (f == NULL) { | |
66988941 | 3693 | ERROR(errp, "could not qemu_fopen_rdma!"); |
2da776db MH |
3694 | qemu_rdma_cleanup(rdma); |
3695 | return; | |
3696 | } | |
3697 | ||
3698 | rdma->migration_started_on_destination = 1; | |
22724f49 | 3699 | migration_fd_process_incoming(f); |
2da776db MH |
3700 | } |
3701 | ||
3702 | void rdma_start_incoming_migration(const char *host_port, Error **errp) | |
3703 | { | |
3704 | int ret; | |
3705 | RDMAContext *rdma; | |
3706 | Error *local_err = NULL; | |
3707 | ||
733252de | 3708 | trace_rdma_start_incoming_migration(); |
2da776db MH |
3709 | rdma = qemu_rdma_data_init(host_port, &local_err); |
3710 | ||
3711 | if (rdma == NULL) { | |
3712 | goto err; | |
3713 | } | |
3714 | ||
3715 | ret = qemu_rdma_dest_init(rdma, &local_err); | |
3716 | ||
3717 | if (ret) { | |
3718 | goto err; | |
3719 | } | |
3720 | ||
733252de | 3721 | trace_rdma_start_incoming_migration_after_dest_init(); |
2da776db MH |
3722 | |
3723 | ret = rdma_listen(rdma->listen_id, 5); | |
3724 | ||
3725 | if (ret) { | |
66988941 | 3726 | ERROR(errp, "listening on socket!"); |
2da776db MH |
3727 | goto err; |
3728 | } | |
3729 | ||
733252de | 3730 | trace_rdma_start_incoming_migration_after_rdma_listen(); |
2da776db | 3731 | |
82e1cc4b FZ |
3732 | qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration, |
3733 | NULL, (void *)(intptr_t)rdma); | |
2da776db MH |
3734 | return; |
3735 | err: | |
3736 | error_propagate(errp, local_err); | |
3737 | g_free(rdma); | |
3738 | } | |
3739 | ||
3740 | void rdma_start_outgoing_migration(void *opaque, | |
3741 | const char *host_port, Error **errp) | |
3742 | { | |
3743 | MigrationState *s = opaque; | |
d59ce6f3 | 3744 | RDMAContext *rdma = qemu_rdma_data_init(host_port, errp); |
2da776db MH |
3745 | int ret = 0; |
3746 | ||
3747 | if (rdma == NULL) { | |
2da776db MH |
3748 | goto err; |
3749 | } | |
3750 | ||
bbfb89e3 FZ |
3751 | ret = qemu_rdma_source_init(rdma, |
3752 | s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp); | |
2da776db MH |
3753 | |
3754 | if (ret) { | |
3755 | goto err; | |
3756 | } | |
3757 | ||
733252de | 3758 | trace_rdma_start_outgoing_migration_after_rdma_source_init(); |
d59ce6f3 | 3759 | ret = qemu_rdma_connect(rdma, errp); |
2da776db MH |
3760 | |
3761 | if (ret) { | |
3762 | goto err; | |
3763 | } | |
3764 | ||
733252de | 3765 | trace_rdma_start_outgoing_migration_after_rdma_connect(); |
2da776db | 3766 | |
89a02a9f | 3767 | s->to_dst_file = qemu_fopen_rdma(rdma, "wb"); |
cce8040b | 3768 | migrate_fd_connect(s, NULL); |
2da776db MH |
3769 | return; |
3770 | err: | |
2da776db | 3771 | g_free(rdma); |
2da776db | 3772 | } |