Commit | Line | Data |
---|---|---|
ea2384d3 FB |
1 | /* |
2 | * Block driver for the QCOW format | |
3 | * | |
4 | * Copyright (c) 2004 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | #include "vl.h" | |
25 | #include "block_int.h" | |
28d34b82 | 26 | #include <zlib.h> |
ea2384d3 FB |
27 | #include "aes.h" |
28 | ||
29 | /**************************************************************/ | |
30 | /* QEMU COW block driver with compression and encryption support */ | |
31 | ||
32 | #define QCOW_MAGIC (('Q' << 24) | ('F' << 16) | ('I' << 8) | 0xfb) | |
33 | #define QCOW_VERSION 1 | |
34 | ||
35 | #define QCOW_CRYPT_NONE 0 | |
36 | #define QCOW_CRYPT_AES 1 | |
37 | ||
38 | #define QCOW_OFLAG_COMPRESSED (1LL << 63) | |
39 | ||
40 | typedef struct QCowHeader { | |
41 | uint32_t magic; | |
42 | uint32_t version; | |
43 | uint64_t backing_file_offset; | |
44 | uint32_t backing_file_size; | |
45 | uint32_t mtime; | |
46 | uint64_t size; /* in bytes */ | |
47 | uint8_t cluster_bits; | |
48 | uint8_t l2_bits; | |
49 | uint32_t crypt_method; | |
50 | uint64_t l1_table_offset; | |
51 | } QCowHeader; | |
52 | ||
53 | #define L2_CACHE_SIZE 16 | |
54 | ||
55 | typedef struct BDRVQcowState { | |
56 | int fd; | |
57 | int cluster_bits; | |
58 | int cluster_size; | |
59 | int cluster_sectors; | |
60 | int l2_bits; | |
61 | int l2_size; | |
62 | int l1_size; | |
63 | uint64_t cluster_offset_mask; | |
64 | uint64_t l1_table_offset; | |
65 | uint64_t *l1_table; | |
66 | uint64_t *l2_cache; | |
67 | uint64_t l2_cache_offsets[L2_CACHE_SIZE]; | |
68 | uint32_t l2_cache_counts[L2_CACHE_SIZE]; | |
69 | uint8_t *cluster_cache; | |
70 | uint8_t *cluster_data; | |
71 | uint64_t cluster_cache_offset; | |
72 | uint32_t crypt_method; /* current crypt method, 0 if no key yet */ | |
73 | uint32_t crypt_method_header; | |
74 | AES_KEY aes_encrypt_key; | |
75 | AES_KEY aes_decrypt_key; | |
76 | } BDRVQcowState; | |
77 | ||
78 | static int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset); | |
79 | ||
80 | static int qcow_probe(const uint8_t *buf, int buf_size, const char *filename) | |
81 | { | |
82 | const QCowHeader *cow_header = (const void *)buf; | |
83 | ||
84 | if (be32_to_cpu(cow_header->magic) == QCOW_MAGIC && | |
85 | be32_to_cpu(cow_header->version) == QCOW_VERSION) | |
86 | return 100; | |
87 | else | |
88 | return 0; | |
89 | } | |
90 | ||
91 | static int qcow_open(BlockDriverState *bs, const char *filename) | |
92 | { | |
93 | BDRVQcowState *s = bs->opaque; | |
94 | int fd, len, i, shift; | |
95 | QCowHeader header; | |
96 | ||
97 | fd = open(filename, O_RDWR | O_BINARY | O_LARGEFILE); | |
98 | if (fd < 0) { | |
99 | fd = open(filename, O_RDONLY | O_BINARY | O_LARGEFILE); | |
100 | if (fd < 0) | |
101 | return -1; | |
102 | } | |
103 | s->fd = fd; | |
104 | if (read(fd, &header, sizeof(header)) != sizeof(header)) | |
105 | goto fail; | |
106 | be32_to_cpus(&header.magic); | |
107 | be32_to_cpus(&header.version); | |
108 | be64_to_cpus(&header.backing_file_offset); | |
109 | be32_to_cpus(&header.backing_file_size); | |
110 | be32_to_cpus(&header.mtime); | |
111 | be64_to_cpus(&header.size); | |
112 | be32_to_cpus(&header.crypt_method); | |
113 | be64_to_cpus(&header.l1_table_offset); | |
114 | ||
115 | if (header.magic != QCOW_MAGIC || header.version != QCOW_VERSION) | |
116 | goto fail; | |
117 | if (header.size <= 1 || header.cluster_bits < 9) | |
118 | goto fail; | |
119 | if (header.crypt_method > QCOW_CRYPT_AES) | |
120 | goto fail; | |
121 | s->crypt_method_header = header.crypt_method; | |
122 | if (s->crypt_method_header) | |
123 | bs->encrypted = 1; | |
124 | s->cluster_bits = header.cluster_bits; | |
125 | s->cluster_size = 1 << s->cluster_bits; | |
126 | s->cluster_sectors = 1 << (s->cluster_bits - 9); | |
127 | s->l2_bits = header.l2_bits; | |
128 | s->l2_size = 1 << s->l2_bits; | |
129 | bs->total_sectors = header.size / 512; | |
130 | s->cluster_offset_mask = (1LL << (63 - s->cluster_bits)) - 1; | |
131 | ||
132 | /* read the level 1 table */ | |
133 | shift = s->cluster_bits + s->l2_bits; | |
134 | s->l1_size = (header.size + (1LL << shift) - 1) >> shift; | |
135 | ||
136 | s->l1_table_offset = header.l1_table_offset; | |
137 | s->l1_table = qemu_malloc(s->l1_size * sizeof(uint64_t)); | |
138 | if (!s->l1_table) | |
139 | goto fail; | |
d5249393 | 140 | lseek(fd, s->l1_table_offset, SEEK_SET); |
ea2384d3 FB |
141 | if (read(fd, s->l1_table, s->l1_size * sizeof(uint64_t)) != |
142 | s->l1_size * sizeof(uint64_t)) | |
143 | goto fail; | |
144 | for(i = 0;i < s->l1_size; i++) { | |
145 | be64_to_cpus(&s->l1_table[i]); | |
146 | } | |
147 | /* alloc L2 cache */ | |
148 | s->l2_cache = qemu_malloc(s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t)); | |
149 | if (!s->l2_cache) | |
150 | goto fail; | |
151 | s->cluster_cache = qemu_malloc(s->cluster_size); | |
152 | if (!s->cluster_cache) | |
153 | goto fail; | |
154 | s->cluster_data = qemu_malloc(s->cluster_size); | |
155 | if (!s->cluster_data) | |
156 | goto fail; | |
157 | s->cluster_cache_offset = -1; | |
158 | ||
159 | /* read the backing file name */ | |
160 | if (header.backing_file_offset != 0) { | |
161 | len = header.backing_file_size; | |
162 | if (len > 1023) | |
163 | len = 1023; | |
d5249393 | 164 | lseek(fd, header.backing_file_offset, SEEK_SET); |
ea2384d3 FB |
165 | if (read(fd, bs->backing_file, len) != len) |
166 | goto fail; | |
167 | bs->backing_file[len] = '\0'; | |
168 | } | |
169 | return 0; | |
170 | ||
171 | fail: | |
172 | qemu_free(s->l1_table); | |
173 | qemu_free(s->l2_cache); | |
174 | qemu_free(s->cluster_cache); | |
175 | qemu_free(s->cluster_data); | |
176 | close(fd); | |
177 | return -1; | |
178 | } | |
179 | ||
180 | static int qcow_set_key(BlockDriverState *bs, const char *key) | |
181 | { | |
182 | BDRVQcowState *s = bs->opaque; | |
183 | uint8_t keybuf[16]; | |
184 | int len, i; | |
185 | ||
186 | memset(keybuf, 0, 16); | |
187 | len = strlen(key); | |
188 | if (len > 16) | |
189 | len = 16; | |
190 | /* XXX: we could compress the chars to 7 bits to increase | |
191 | entropy */ | |
192 | for(i = 0;i < len;i++) { | |
193 | keybuf[i] = key[i]; | |
194 | } | |
195 | s->crypt_method = s->crypt_method_header; | |
196 | ||
197 | if (AES_set_encrypt_key(keybuf, 128, &s->aes_encrypt_key) != 0) | |
198 | return -1; | |
199 | if (AES_set_decrypt_key(keybuf, 128, &s->aes_decrypt_key) != 0) | |
200 | return -1; | |
201 | #if 0 | |
202 | /* test */ | |
203 | { | |
204 | uint8_t in[16]; | |
205 | uint8_t out[16]; | |
206 | uint8_t tmp[16]; | |
207 | for(i=0;i<16;i++) | |
208 | in[i] = i; | |
209 | AES_encrypt(in, tmp, &s->aes_encrypt_key); | |
210 | AES_decrypt(tmp, out, &s->aes_decrypt_key); | |
211 | for(i = 0; i < 16; i++) | |
212 | printf(" %02x", tmp[i]); | |
213 | printf("\n"); | |
214 | for(i = 0; i < 16; i++) | |
215 | printf(" %02x", out[i]); | |
216 | printf("\n"); | |
217 | } | |
218 | #endif | |
219 | return 0; | |
220 | } | |
221 | ||
222 | /* The crypt function is compatible with the linux cryptoloop | |
223 | algorithm for < 4 GB images. NOTE: out_buf == in_buf is | |
224 | supported */ | |
225 | static void encrypt_sectors(BDRVQcowState *s, int64_t sector_num, | |
226 | uint8_t *out_buf, const uint8_t *in_buf, | |
227 | int nb_sectors, int enc, | |
228 | const AES_KEY *key) | |
229 | { | |
230 | union { | |
231 | uint64_t ll[2]; | |
232 | uint8_t b[16]; | |
233 | } ivec; | |
234 | int i; | |
235 | ||
236 | for(i = 0; i < nb_sectors; i++) { | |
237 | ivec.ll[0] = cpu_to_le64(sector_num); | |
238 | ivec.ll[1] = 0; | |
239 | AES_cbc_encrypt(in_buf, out_buf, 512, key, | |
240 | ivec.b, enc); | |
241 | sector_num++; | |
242 | in_buf += 512; | |
243 | out_buf += 512; | |
244 | } | |
245 | } | |
246 | ||
247 | /* 'allocate' is: | |
248 | * | |
249 | * 0 to not allocate. | |
250 | * | |
251 | * 1 to allocate a normal cluster (for sector indexes 'n_start' to | |
252 | * 'n_end') | |
253 | * | |
254 | * 2 to allocate a compressed cluster of size | |
255 | * 'compressed_size'. 'compressed_size' must be > 0 and < | |
256 | * cluster_size | |
257 | * | |
258 | * return 0 if not allocated. | |
259 | */ | |
260 | static uint64_t get_cluster_offset(BlockDriverState *bs, | |
261 | uint64_t offset, int allocate, | |
262 | int compressed_size, | |
263 | int n_start, int n_end) | |
264 | { | |
265 | BDRVQcowState *s = bs->opaque; | |
266 | int min_index, i, j, l1_index, l2_index; | |
267 | uint64_t l2_offset, *l2_table, cluster_offset, tmp; | |
268 | uint32_t min_count; | |
269 | int new_l2_table; | |
270 | ||
271 | l1_index = offset >> (s->l2_bits + s->cluster_bits); | |
272 | l2_offset = s->l1_table[l1_index]; | |
273 | new_l2_table = 0; | |
274 | if (!l2_offset) { | |
275 | if (!allocate) | |
276 | return 0; | |
277 | /* allocate a new l2 entry */ | |
d5249393 | 278 | l2_offset = lseek(s->fd, 0, SEEK_END); |
ea2384d3 FB |
279 | /* round to cluster size */ |
280 | l2_offset = (l2_offset + s->cluster_size - 1) & ~(s->cluster_size - 1); | |
281 | /* update the L1 entry */ | |
282 | s->l1_table[l1_index] = l2_offset; | |
283 | tmp = cpu_to_be64(l2_offset); | |
d5249393 | 284 | lseek(s->fd, s->l1_table_offset + l1_index * sizeof(tmp), SEEK_SET); |
ea2384d3 FB |
285 | if (write(s->fd, &tmp, sizeof(tmp)) != sizeof(tmp)) |
286 | return 0; | |
287 | new_l2_table = 1; | |
288 | } | |
289 | for(i = 0; i < L2_CACHE_SIZE; i++) { | |
290 | if (l2_offset == s->l2_cache_offsets[i]) { | |
291 | /* increment the hit count */ | |
292 | if (++s->l2_cache_counts[i] == 0xffffffff) { | |
293 | for(j = 0; j < L2_CACHE_SIZE; j++) { | |
294 | s->l2_cache_counts[j] >>= 1; | |
295 | } | |
296 | } | |
297 | l2_table = s->l2_cache + (i << s->l2_bits); | |
298 | goto found; | |
299 | } | |
300 | } | |
301 | /* not found: load a new entry in the least used one */ | |
302 | min_index = 0; | |
303 | min_count = 0xffffffff; | |
304 | for(i = 0; i < L2_CACHE_SIZE; i++) { | |
305 | if (s->l2_cache_counts[i] < min_count) { | |
306 | min_count = s->l2_cache_counts[i]; | |
307 | min_index = i; | |
308 | } | |
309 | } | |
310 | l2_table = s->l2_cache + (min_index << s->l2_bits); | |
311 | lseek(s->fd, l2_offset, SEEK_SET); | |
312 | if (new_l2_table) { | |
313 | memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); | |
314 | if (write(s->fd, l2_table, s->l2_size * sizeof(uint64_t)) != | |
315 | s->l2_size * sizeof(uint64_t)) | |
316 | return 0; | |
317 | } else { | |
318 | if (read(s->fd, l2_table, s->l2_size * sizeof(uint64_t)) != | |
319 | s->l2_size * sizeof(uint64_t)) | |
320 | return 0; | |
321 | } | |
322 | s->l2_cache_offsets[min_index] = l2_offset; | |
323 | s->l2_cache_counts[min_index] = 1; | |
324 | found: | |
325 | l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); | |
326 | cluster_offset = be64_to_cpu(l2_table[l2_index]); | |
327 | if (!cluster_offset || | |
328 | ((cluster_offset & QCOW_OFLAG_COMPRESSED) && allocate == 1)) { | |
329 | if (!allocate) | |
330 | return 0; | |
331 | /* allocate a new cluster */ | |
332 | if ((cluster_offset & QCOW_OFLAG_COMPRESSED) && | |
333 | (n_end - n_start) < s->cluster_sectors) { | |
334 | /* if the cluster is already compressed, we must | |
335 | decompress it in the case it is not completely | |
336 | overwritten */ | |
337 | if (decompress_cluster(s, cluster_offset) < 0) | |
338 | return 0; | |
d5249393 | 339 | cluster_offset = lseek(s->fd, 0, SEEK_END); |
ea2384d3 FB |
340 | cluster_offset = (cluster_offset + s->cluster_size - 1) & |
341 | ~(s->cluster_size - 1); | |
342 | /* write the cluster content */ | |
d5249393 | 343 | lseek(s->fd, cluster_offset, SEEK_SET); |
ea2384d3 FB |
344 | if (write(s->fd, s->cluster_cache, s->cluster_size) != |
345 | s->cluster_size) | |
346 | return -1; | |
347 | } else { | |
d5249393 | 348 | cluster_offset = lseek(s->fd, 0, SEEK_END); |
ea2384d3 FB |
349 | if (allocate == 1) { |
350 | /* round to cluster size */ | |
351 | cluster_offset = (cluster_offset + s->cluster_size - 1) & | |
352 | ~(s->cluster_size - 1); | |
353 | ftruncate(s->fd, cluster_offset + s->cluster_size); | |
354 | /* if encrypted, we must initialize the cluster | |
355 | content which won't be written */ | |
356 | if (s->crypt_method && | |
357 | (n_end - n_start) < s->cluster_sectors) { | |
358 | uint64_t start_sect; | |
359 | start_sect = (offset & ~(s->cluster_size - 1)) >> 9; | |
360 | memset(s->cluster_data + 512, 0xaa, 512); | |
361 | for(i = 0; i < s->cluster_sectors; i++) { | |
362 | if (i < n_start || i >= n_end) { | |
363 | encrypt_sectors(s, start_sect + i, | |
364 | s->cluster_data, | |
365 | s->cluster_data + 512, 1, 1, | |
366 | &s->aes_encrypt_key); | |
d5249393 | 367 | lseek(s->fd, cluster_offset + i * 512, SEEK_SET); |
ea2384d3 FB |
368 | if (write(s->fd, s->cluster_data, 512) != 512) |
369 | return -1; | |
370 | } | |
371 | } | |
372 | } | |
373 | } else { | |
374 | cluster_offset |= QCOW_OFLAG_COMPRESSED | | |
375 | (uint64_t)compressed_size << (63 - s->cluster_bits); | |
376 | } | |
377 | } | |
378 | /* update L2 table */ | |
379 | tmp = cpu_to_be64(cluster_offset); | |
380 | l2_table[l2_index] = tmp; | |
d5249393 | 381 | lseek(s->fd, l2_offset + l2_index * sizeof(tmp), SEEK_SET); |
ea2384d3 FB |
382 | if (write(s->fd, &tmp, sizeof(tmp)) != sizeof(tmp)) |
383 | return 0; | |
384 | } | |
385 | return cluster_offset; | |
386 | } | |
387 | ||
388 | static int qcow_is_allocated(BlockDriverState *bs, int64_t sector_num, | |
389 | int nb_sectors, int *pnum) | |
390 | { | |
391 | BDRVQcowState *s = bs->opaque; | |
392 | int index_in_cluster, n; | |
393 | uint64_t cluster_offset; | |
394 | ||
395 | cluster_offset = get_cluster_offset(bs, sector_num << 9, 0, 0, 0, 0); | |
396 | index_in_cluster = sector_num & (s->cluster_sectors - 1); | |
397 | n = s->cluster_sectors - index_in_cluster; | |
398 | if (n > nb_sectors) | |
399 | n = nb_sectors; | |
400 | *pnum = n; | |
401 | return (cluster_offset != 0); | |
402 | } | |
403 | ||
404 | static int decompress_buffer(uint8_t *out_buf, int out_buf_size, | |
405 | const uint8_t *buf, int buf_size) | |
406 | { | |
407 | z_stream strm1, *strm = &strm1; | |
408 | int ret, out_len; | |
409 | ||
410 | memset(strm, 0, sizeof(*strm)); | |
411 | ||
412 | strm->next_in = (uint8_t *)buf; | |
413 | strm->avail_in = buf_size; | |
414 | strm->next_out = out_buf; | |
415 | strm->avail_out = out_buf_size; | |
416 | ||
417 | ret = inflateInit2(strm, -12); | |
418 | if (ret != Z_OK) | |
419 | return -1; | |
420 | ret = inflate(strm, Z_FINISH); | |
421 | out_len = strm->next_out - out_buf; | |
422 | if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || | |
423 | out_len != out_buf_size) { | |
424 | inflateEnd(strm); | |
425 | return -1; | |
426 | } | |
427 | inflateEnd(strm); | |
428 | return 0; | |
429 | } | |
430 | ||
431 | static int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset) | |
432 | { | |
433 | int ret, csize; | |
434 | uint64_t coffset; | |
435 | ||
436 | coffset = cluster_offset & s->cluster_offset_mask; | |
437 | if (s->cluster_cache_offset != coffset) { | |
438 | csize = cluster_offset >> (63 - s->cluster_bits); | |
439 | csize &= (s->cluster_size - 1); | |
d5249393 | 440 | lseek(s->fd, coffset, SEEK_SET); |
ea2384d3 FB |
441 | ret = read(s->fd, s->cluster_data, csize); |
442 | if (ret != csize) | |
443 | return -1; | |
444 | if (decompress_buffer(s->cluster_cache, s->cluster_size, | |
445 | s->cluster_data, csize) < 0) { | |
446 | return -1; | |
447 | } | |
448 | s->cluster_cache_offset = coffset; | |
449 | } | |
450 | return 0; | |
451 | } | |
452 | ||
453 | static int qcow_read(BlockDriverState *bs, int64_t sector_num, | |
454 | uint8_t *buf, int nb_sectors) | |
455 | { | |
456 | BDRVQcowState *s = bs->opaque; | |
457 | int ret, index_in_cluster, n; | |
458 | uint64_t cluster_offset; | |
459 | ||
460 | while (nb_sectors > 0) { | |
461 | cluster_offset = get_cluster_offset(bs, sector_num << 9, 0, 0, 0, 0); | |
462 | index_in_cluster = sector_num & (s->cluster_sectors - 1); | |
463 | n = s->cluster_sectors - index_in_cluster; | |
464 | if (n > nb_sectors) | |
465 | n = nb_sectors; | |
466 | if (!cluster_offset) { | |
467 | memset(buf, 0, 512 * n); | |
468 | } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) { | |
469 | if (decompress_cluster(s, cluster_offset) < 0) | |
470 | return -1; | |
471 | memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n); | |
472 | } else { | |
d5249393 | 473 | lseek(s->fd, cluster_offset + index_in_cluster * 512, SEEK_SET); |
ea2384d3 FB |
474 | ret = read(s->fd, buf, n * 512); |
475 | if (ret != n * 512) | |
476 | return -1; | |
477 | if (s->crypt_method) { | |
478 | encrypt_sectors(s, sector_num, buf, buf, n, 0, | |
479 | &s->aes_decrypt_key); | |
480 | } | |
481 | } | |
482 | nb_sectors -= n; | |
483 | sector_num += n; | |
484 | buf += n * 512; | |
485 | } | |
486 | return 0; | |
487 | } | |
488 | ||
489 | static int qcow_write(BlockDriverState *bs, int64_t sector_num, | |
490 | const uint8_t *buf, int nb_sectors) | |
491 | { | |
492 | BDRVQcowState *s = bs->opaque; | |
493 | int ret, index_in_cluster, n; | |
494 | uint64_t cluster_offset; | |
495 | ||
496 | while (nb_sectors > 0) { | |
497 | index_in_cluster = sector_num & (s->cluster_sectors - 1); | |
498 | n = s->cluster_sectors - index_in_cluster; | |
499 | if (n > nb_sectors) | |
500 | n = nb_sectors; | |
501 | cluster_offset = get_cluster_offset(bs, sector_num << 9, 1, 0, | |
502 | index_in_cluster, | |
503 | index_in_cluster + n); | |
504 | if (!cluster_offset) | |
505 | return -1; | |
d5249393 | 506 | lseek(s->fd, cluster_offset + index_in_cluster * 512, SEEK_SET); |
ea2384d3 FB |
507 | if (s->crypt_method) { |
508 | encrypt_sectors(s, sector_num, s->cluster_data, buf, n, 1, | |
509 | &s->aes_encrypt_key); | |
510 | ret = write(s->fd, s->cluster_data, n * 512); | |
511 | } else { | |
512 | ret = write(s->fd, buf, n * 512); | |
513 | } | |
514 | if (ret != n * 512) | |
515 | return -1; | |
516 | nb_sectors -= n; | |
517 | sector_num += n; | |
518 | buf += n * 512; | |
519 | } | |
520 | s->cluster_cache_offset = -1; /* disable compressed cache */ | |
521 | return 0; | |
522 | } | |
523 | ||
e2731add | 524 | static void qcow_close(BlockDriverState *bs) |
ea2384d3 FB |
525 | { |
526 | BDRVQcowState *s = bs->opaque; | |
527 | qemu_free(s->l1_table); | |
528 | qemu_free(s->l2_cache); | |
529 | qemu_free(s->cluster_cache); | |
530 | qemu_free(s->cluster_data); | |
531 | close(s->fd); | |
532 | } | |
533 | ||
534 | static int qcow_create(const char *filename, int64_t total_size, | |
535 | const char *backing_file, int flags) | |
536 | { | |
537 | int fd, header_size, backing_filename_len, l1_size, i, shift; | |
538 | QCowHeader header; | |
539 | char backing_filename[1024]; | |
540 | uint64_t tmp; | |
541 | struct stat st; | |
542 | ||
543 | fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY | O_LARGEFILE, | |
544 | 0644); | |
545 | if (fd < 0) | |
546 | return -1; | |
547 | memset(&header, 0, sizeof(header)); | |
548 | header.magic = cpu_to_be32(QCOW_MAGIC); | |
549 | header.version = cpu_to_be32(QCOW_VERSION); | |
550 | header.size = cpu_to_be64(total_size * 512); | |
551 | header_size = sizeof(header); | |
552 | backing_filename_len = 0; | |
553 | if (backing_file) { | |
554 | realpath(backing_file, backing_filename); | |
555 | if (stat(backing_filename, &st) != 0) { | |
556 | return -1; | |
557 | } | |
558 | header.mtime = cpu_to_be32(st.st_mtime); | |
559 | header.backing_file_offset = cpu_to_be64(header_size); | |
560 | backing_filename_len = strlen(backing_filename); | |
561 | header.backing_file_size = cpu_to_be32(backing_filename_len); | |
562 | header_size += backing_filename_len; | |
563 | header.cluster_bits = 9; /* 512 byte cluster to avoid copying | |
564 | unmodifyed sectors */ | |
565 | header.l2_bits = 12; /* 32 KB L2 tables */ | |
566 | } else { | |
567 | header.cluster_bits = 12; /* 4 KB clusters */ | |
568 | header.l2_bits = 9; /* 4 KB L2 tables */ | |
569 | } | |
570 | header_size = (header_size + 7) & ~7; | |
571 | shift = header.cluster_bits + header.l2_bits; | |
572 | l1_size = ((total_size * 512) + (1LL << shift) - 1) >> shift; | |
573 | ||
574 | header.l1_table_offset = cpu_to_be64(header_size); | |
575 | if (flags) { | |
576 | header.crypt_method = cpu_to_be32(QCOW_CRYPT_AES); | |
577 | } else { | |
578 | header.crypt_method = cpu_to_be32(QCOW_CRYPT_NONE); | |
579 | } | |
580 | ||
581 | /* write all the data */ | |
582 | write(fd, &header, sizeof(header)); | |
583 | if (backing_file) { | |
584 | write(fd, backing_filename, backing_filename_len); | |
585 | } | |
586 | lseek(fd, header_size, SEEK_SET); | |
587 | tmp = 0; | |
588 | for(i = 0;i < l1_size; i++) { | |
589 | write(fd, &tmp, sizeof(tmp)); | |
590 | } | |
591 | close(fd); | |
592 | return 0; | |
593 | } | |
594 | ||
595 | int qcow_get_cluster_size(BlockDriverState *bs) | |
596 | { | |
597 | BDRVQcowState *s = bs->opaque; | |
598 | if (bs->drv != &bdrv_qcow) | |
599 | return -1; | |
600 | return s->cluster_size; | |
601 | } | |
602 | ||
603 | /* XXX: put compressed sectors first, then all the cluster aligned | |
604 | tables to avoid losing bytes in alignment */ | |
605 | int qcow_compress_cluster(BlockDriverState *bs, int64_t sector_num, | |
606 | const uint8_t *buf) | |
607 | { | |
608 | BDRVQcowState *s = bs->opaque; | |
609 | z_stream strm; | |
610 | int ret, out_len; | |
611 | uint8_t *out_buf; | |
612 | uint64_t cluster_offset; | |
613 | ||
614 | if (bs->drv != &bdrv_qcow) | |
615 | return -1; | |
616 | ||
617 | out_buf = qemu_malloc(s->cluster_size + (s->cluster_size / 1000) + 128); | |
618 | if (!out_buf) | |
619 | return -1; | |
620 | ||
621 | /* best compression, small window, no zlib header */ | |
622 | memset(&strm, 0, sizeof(strm)); | |
623 | ret = deflateInit2(&strm, Z_DEFAULT_COMPRESSION, | |
624 | Z_DEFLATED, -12, | |
625 | 9, Z_DEFAULT_STRATEGY); | |
626 | if (ret != 0) { | |
627 | qemu_free(out_buf); | |
628 | return -1; | |
629 | } | |
630 | ||
631 | strm.avail_in = s->cluster_size; | |
632 | strm.next_in = (uint8_t *)buf; | |
633 | strm.avail_out = s->cluster_size; | |
634 | strm.next_out = out_buf; | |
635 | ||
636 | ret = deflate(&strm, Z_FINISH); | |
637 | if (ret != Z_STREAM_END && ret != Z_OK) { | |
638 | qemu_free(out_buf); | |
639 | deflateEnd(&strm); | |
640 | return -1; | |
641 | } | |
642 | out_len = strm.next_out - out_buf; | |
643 | ||
644 | deflateEnd(&strm); | |
645 | ||
646 | if (ret != Z_STREAM_END || out_len >= s->cluster_size) { | |
647 | /* could not compress: write normal cluster */ | |
648 | qcow_write(bs, sector_num, buf, s->cluster_sectors); | |
649 | } else { | |
650 | cluster_offset = get_cluster_offset(bs, sector_num << 9, 2, | |
651 | out_len, 0, 0); | |
652 | cluster_offset &= s->cluster_offset_mask; | |
d5249393 | 653 | lseek(s->fd, cluster_offset, SEEK_SET); |
ea2384d3 FB |
654 | if (write(s->fd, out_buf, out_len) != out_len) { |
655 | qemu_free(out_buf); | |
656 | return -1; | |
657 | } | |
658 | } | |
659 | ||
660 | qemu_free(out_buf); | |
661 | return 0; | |
662 | } | |
663 | ||
664 | BlockDriver bdrv_qcow = { | |
665 | "qcow", | |
666 | sizeof(BDRVQcowState), | |
667 | qcow_probe, | |
668 | qcow_open, | |
669 | qcow_read, | |
670 | qcow_write, | |
671 | qcow_close, | |
672 | qcow_create, | |
673 | qcow_is_allocated, | |
674 | qcow_set_key, | |
675 | }; | |
676 | ||
677 |