]> Git Repo - qemu.git/blame - hw/intc/armv7m_nvic.c
s390x/flic: make floating interrupts on TCG actually floating
[qemu.git] / hw / intc / armv7m_nvic.c
CommitLineData
9ee6e8bb
PB
1/*
2 * ARM Nested Vectored Interrupt Controller
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
8e31bf38 7 * This code is licensed under the GPL.
9ee6e8bb
PB
8 *
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
11 */
12
8ef94f0b 13#include "qemu/osdep.h"
da34e65c 14#include "qapi/error.h"
4771d756 15#include "qemu-common.h"
33c11879 16#include "cpu.h"
83c9f4ca 17#include "hw/sysbus.h"
1de7afc9 18#include "qemu/timer.h"
bd2be150 19#include "hw/arm/arm.h"
d2db1de6 20#include "hw/intc/armv7m_nvic.h"
da6d674e 21#include "target/arm/cpu.h"
29c483a5 22#include "exec/exec-all.h"
03dd024f 23#include "qemu/log.h"
da6d674e
MD
24#include "trace.h"
25
26/* IRQ number counting:
27 *
28 * the num-irq property counts the number of external IRQ lines
29 *
30 * NVICState::num_irq counts the total number of exceptions
31 * (external IRQs, the 15 internal exceptions including reset,
32 * and one for the unused exception number 0).
33 *
34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35 *
36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37 *
38 * Iterating through all exceptions should typically be done with
39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40 *
41 * The external qemu_irq lines are the NVIC's external IRQ lines,
42 * so line 0 is exception 16.
43 *
44 * In the terminology of the architecture manual, "interrupts" are
45 * a subcategory of exception referring to the external interrupts
46 * (which are exception numbers NVIC_FIRST_IRQ and upward).
47 * For historical reasons QEMU tends to use "interrupt" and
48 * "exception" more or less interchangeably.
49 */
17906a16 50#define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
da6d674e
MD
51#define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52
53/* Effective running priority of the CPU when no exception is active
54 * (higher than the highest possible priority value)
55 */
56#define NVIC_NOEXC_PRIO 0x100
ff96c64a
PM
57/* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58#define NVIC_NS_PRIO_LIMIT 0x80
da6d674e 59
2a29ddee
PM
60static const uint8_t nvic_id[] = {
61 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62};
63
da6d674e
MD
64static int nvic_pending_prio(NVICState *s)
65{
5255fcf8 66 /* return the group priority of the current pending interrupt,
da6d674e
MD
67 * or NVIC_NOEXC_PRIO if no interrupt is pending
68 */
5255fcf8 69 return s->vectpending_prio;
da6d674e
MD
70}
71
72/* Return the value of the ISCR RETTOBASE bit:
73 * 1 if there is exactly one active exception
74 * 0 if there is more than one active exception
75 * UNKNOWN if there are no active exceptions (we choose 1,
76 * which matches the choice Cortex-M3 is documented as making).
77 *
78 * NB: some versions of the documentation talk about this
79 * counting "active exceptions other than the one shown by IPSR";
80 * this is only different in the obscure corner case where guest
81 * code has manually deactivated an exception and is about
82 * to fail an exception-return integrity check. The definition
83 * above is the one from the v8M ARM ARM and is also in line
84 * with the behaviour documented for the Cortex-M3.
85 */
86static bool nvic_rettobase(NVICState *s)
87{
88 int irq, nhand = 0;
028b0da4 89 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
da6d674e
MD
90
91 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
028b0da4
PM
92 if (s->vectors[irq].active ||
93 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94 s->sec_vectors[irq].active)) {
da6d674e
MD
95 nhand++;
96 if (nhand == 2) {
97 return 0;
98 }
99 }
100 }
101
102 return 1;
103}
104
105/* Return the value of the ISCR ISRPENDING bit:
106 * 1 if an external interrupt is pending
107 * 0 if no external interrupt is pending
108 */
109static bool nvic_isrpending(NVICState *s)
110{
111 int irq;
112
113 /* We can shortcut if the highest priority pending interrupt
114 * happens to be external or if there is nothing pending.
115 */
116 if (s->vectpending > NVIC_FIRST_IRQ) {
117 return true;
118 }
119 if (s->vectpending == 0) {
120 return false;
121 }
122
123 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124 if (s->vectors[irq].pending) {
125 return true;
126 }
127 }
128 return false;
129}
130
ff96c64a
PM
131static bool exc_is_banked(int exc)
132{
133 /* Return true if this is one of the limited set of exceptions which
134 * are banked (and thus have state in sec_vectors[])
135 */
136 return exc == ARMV7M_EXCP_HARD ||
137 exc == ARMV7M_EXCP_MEM ||
138 exc == ARMV7M_EXCP_USAGE ||
139 exc == ARMV7M_EXCP_SVC ||
140 exc == ARMV7M_EXCP_PENDSV ||
141 exc == ARMV7M_EXCP_SYSTICK;
142}
143
da6d674e
MD
144/* Return a mask word which clears the subpriority bits from
145 * a priority value for an M-profile exception, leaving only
146 * the group priority.
147 */
ff96c64a 148static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
da6d674e 149{
ff96c64a
PM
150 return ~0U << (s->prigroup[secure] + 1);
151}
152
153static bool exc_targets_secure(NVICState *s, int exc)
154{
155 /* Return true if this non-banked exception targets Secure state. */
156 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157 return false;
158 }
159
160 if (exc >= NVIC_FIRST_IRQ) {
161 return !s->itns[exc];
162 }
163
164 /* Function shouldn't be called for banked exceptions. */
165 assert(!exc_is_banked(exc));
166
167 switch (exc) {
168 case ARMV7M_EXCP_NMI:
169 case ARMV7M_EXCP_BUS:
170 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171 case ARMV7M_EXCP_SECURE:
172 return true;
173 case ARMV7M_EXCP_DEBUG:
174 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175 return false;
176 default:
177 /* reset, and reserved (unused) low exception numbers.
178 * We'll get called by code that loops through all the exception
179 * numbers, but it doesn't matter what we return here as these
180 * non-existent exceptions will never be pended or active.
181 */
182 return true;
183 }
184}
185
186static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187{
188 /* Return the group priority for this exception, given its raw
189 * (group-and-subgroup) priority value and whether it is targeting
190 * secure state or not.
191 */
192 if (rawprio < 0) {
193 return rawprio;
194 }
195 rawprio &= nvic_gprio_mask(s, targets_secure);
196 /* AIRCR.PRIS causes us to squash all NS priorities into the
197 * lower half of the total range
198 */
199 if (!targets_secure &&
200 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202 }
203 return rawprio;
204}
205
206/* Recompute vectpending and exception_prio for a CPU which implements
207 * the Security extension
208 */
209static void nvic_recompute_state_secure(NVICState *s)
210{
211 int i, bank;
212 int pend_prio = NVIC_NOEXC_PRIO;
213 int active_prio = NVIC_NOEXC_PRIO;
214 int pend_irq = 0;
215 bool pending_is_s_banked = false;
216
217 /* R_CQRV: precedence is by:
218 * - lowest group priority; if both the same then
219 * - lowest subpriority; if both the same then
220 * - lowest exception number; if both the same (ie banked) then
221 * - secure exception takes precedence
222 * Compare pseudocode RawExecutionPriority.
223 * Annoyingly, now we have two prigroup values (for S and NS)
224 * we can't do the loop comparison on raw priority values.
225 */
226 for (i = 1; i < s->num_irq; i++) {
227 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228 VecInfo *vec;
229 int prio;
230 bool targets_secure;
231
232 if (bank == M_REG_S) {
233 if (!exc_is_banked(i)) {
234 continue;
235 }
236 vec = &s->sec_vectors[i];
237 targets_secure = true;
238 } else {
239 vec = &s->vectors[i];
240 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
241 }
242
243 prio = exc_group_prio(s, vec->prio, targets_secure);
244 if (vec->enabled && vec->pending && prio < pend_prio) {
245 pend_prio = prio;
246 pend_irq = i;
247 pending_is_s_banked = (bank == M_REG_S);
248 }
249 if (vec->active && prio < active_prio) {
250 active_prio = prio;
251 }
252 }
253 }
254
255 s->vectpending_is_s_banked = pending_is_s_banked;
256 s->vectpending = pend_irq;
257 s->vectpending_prio = pend_prio;
258 s->exception_prio = active_prio;
259
260 trace_nvic_recompute_state_secure(s->vectpending,
261 s->vectpending_is_s_banked,
262 s->vectpending_prio,
263 s->exception_prio);
da6d674e
MD
264}
265
266/* Recompute vectpending and exception_prio */
267static void nvic_recompute_state(NVICState *s)
268{
269 int i;
270 int pend_prio = NVIC_NOEXC_PRIO;
271 int active_prio = NVIC_NOEXC_PRIO;
272 int pend_irq = 0;
273
ff96c64a
PM
274 /* In theory we could write one function that handled both
275 * the "security extension present" and "not present"; however
276 * the security related changes significantly complicate the
277 * recomputation just by themselves and mixing both cases together
278 * would be even worse, so we retain a separate non-secure-only
279 * version for CPUs which don't implement the security extension.
280 */
281 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282 nvic_recompute_state_secure(s);
283 return;
284 }
285
da6d674e
MD
286 for (i = 1; i < s->num_irq; i++) {
287 VecInfo *vec = &s->vectors[i];
288
289 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290 pend_prio = vec->prio;
291 pend_irq = i;
292 }
293 if (vec->active && vec->prio < active_prio) {
294 active_prio = vec->prio;
295 }
296 }
297
22a9c26a 298 if (active_prio > 0) {
ff96c64a 299 active_prio &= nvic_gprio_mask(s, false);
22a9c26a
PM
300 }
301
5255fcf8 302 if (pend_prio > 0) {
ff96c64a 303 pend_prio &= nvic_gprio_mask(s, false);
5255fcf8
PM
304 }
305
da6d674e 306 s->vectpending = pend_irq;
5255fcf8 307 s->vectpending_prio = pend_prio;
22a9c26a 308 s->exception_prio = active_prio;
da6d674e 309
5255fcf8
PM
310 trace_nvic_recompute_state(s->vectpending,
311 s->vectpending_prio,
312 s->exception_prio);
da6d674e
MD
313}
314
315/* Return the current execution priority of the CPU
316 * (equivalent to the pseudocode ExecutionPriority function).
317 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
318 */
319static inline int nvic_exec_prio(NVICState *s)
320{
321 CPUARMState *env = &s->cpu->env;
49c80c38 322 int running = NVIC_NOEXC_PRIO;
da6d674e 323
49c80c38
PM
324 if (env->v7m.basepri[M_REG_NS] > 0) {
325 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
326 }
327
328 if (env->v7m.basepri[M_REG_S] > 0) {
329 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330 if (running > basepri) {
331 running = basepri;
332 }
333 }
334
335 if (env->v7m.primask[M_REG_NS]) {
336 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337 if (running > NVIC_NS_PRIO_LIMIT) {
338 running = NVIC_NS_PRIO_LIMIT;
339 }
340 } else {
341 running = 0;
342 }
343 }
344
345 if (env->v7m.primask[M_REG_S]) {
da6d674e 346 running = 0;
da6d674e 347 }
49c80c38
PM
348
349 if (env->v7m.faultmask[M_REG_NS]) {
350 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351 running = -1;
352 } else {
353 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354 if (running > NVIC_NS_PRIO_LIMIT) {
355 running = NVIC_NS_PRIO_LIMIT;
356 }
357 } else {
358 running = 0;
359 }
360 }
361 }
362
363 if (env->v7m.faultmask[M_REG_S]) {
364 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
365 }
366
da6d674e
MD
367 /* consider priority of active handler */
368 return MIN(running, s->exception_prio);
369}
370
5d479199
PM
371bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
372{
373 /* Return true if the requested execution priority is negative
374 * for the specified security state, ie that security state
375 * has an active NMI or HardFault or has set its FAULTMASK.
376 * Note that this is not the same as whether the execution
377 * priority is actually negative (for instance AIRCR.PRIS may
378 * mean we don't allow FAULTMASK_NS to actually make the execution
379 * priority negative). Compare pseudocode IsReqExcPriNeg().
380 */
381 NVICState *s = opaque;
382
383 if (s->cpu->env.v7m.faultmask[secure]) {
384 return true;
385 }
386
387 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388 s->vectors[ARMV7M_EXCP_HARD].active) {
389 return true;
390 }
391
392 if (s->vectors[ARMV7M_EXCP_NMI].active &&
393 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394 return true;
395 }
396
397 return false;
398}
399
7ecdaa4a
PM
400bool armv7m_nvic_can_take_pending_exception(void *opaque)
401{
402 NVICState *s = opaque;
403
404 return nvic_exec_prio(s) > nvic_pending_prio(s);
405}
406
42a6686b
PM
407int armv7m_nvic_raw_execution_priority(void *opaque)
408{
409 NVICState *s = opaque;
410
411 return s->exception_prio;
412}
413
e6a0d350
PM
414/* caller must call nvic_irq_update() after this.
415 * secure indicates the bank to use for banked exceptions (we assert if
416 * we are passed secure=true for a non-banked exception).
417 */
418static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
da6d674e
MD
419{
420 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421 assert(irq < s->num_irq);
422
e6a0d350
PM
423 if (secure) {
424 assert(exc_is_banked(irq));
425 s->sec_vectors[irq].prio = prio;
426 } else {
427 s->vectors[irq].prio = prio;
428 }
429
430 trace_nvic_set_prio(irq, secure, prio);
431}
432
433/* Return the current raw priority register value.
434 * secure indicates the bank to use for banked exceptions (we assert if
435 * we are passed secure=true for a non-banked exception).
436 */
437static int get_prio(NVICState *s, unsigned irq, bool secure)
438{
439 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
440 assert(irq < s->num_irq);
da6d674e 441
e6a0d350
PM
442 if (secure) {
443 assert(exc_is_banked(irq));
444 return s->sec_vectors[irq].prio;
445 } else {
446 return s->vectors[irq].prio;
447 }
da6d674e
MD
448}
449
450/* Recompute state and assert irq line accordingly.
451 * Must be called after changes to:
452 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
453 * prigroup
454 */
455static void nvic_irq_update(NVICState *s)
456{
457 int lvl;
458 int pend_prio;
459
460 nvic_recompute_state(s);
461 pend_prio = nvic_pending_prio(s);
462
463 /* Raise NVIC output if this IRQ would be taken, except that we
464 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
465 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
466 * to those CPU registers don't cause us to recalculate the NVIC
467 * pending info.
468 */
469 lvl = (pend_prio < s->exception_prio);
470 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
471 qemu_set_irq(s->excpout, lvl);
472}
473
2fb50a33
PM
474/**
475 * armv7m_nvic_clear_pending: mark the specified exception as not pending
476 * @opaque: the NVIC
477 * @irq: the exception number to mark as not pending
478 * @secure: false for non-banked exceptions or for the nonsecure
479 * version of a banked exception, true for the secure version of a banked
480 * exception.
481 *
482 * Marks the specified exception as not pending. Note that we will assert()
483 * if @secure is true and @irq does not specify one of the fixed set
484 * of architecturally banked exceptions.
485 */
486static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
da6d674e
MD
487{
488 NVICState *s = (NVICState *)opaque;
489 VecInfo *vec;
490
491 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
492
2fb50a33
PM
493 if (secure) {
494 assert(exc_is_banked(irq));
495 vec = &s->sec_vectors[irq];
496 } else {
497 vec = &s->vectors[irq];
498 }
499 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
da6d674e
MD
500 if (vec->pending) {
501 vec->pending = 0;
502 nvic_irq_update(s);
503 }
504}
505
2fb50a33 506void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
9ee6e8bb 507{
f797c075 508 NVICState *s = (NVICState *)opaque;
2fb50a33 509 bool banked = exc_is_banked(irq);
da6d674e
MD
510 VecInfo *vec;
511
512 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
2fb50a33 513 assert(!secure || banked);
da6d674e 514
2fb50a33 515 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
a73c98e1 516
2fb50a33 517 trace_nvic_set_pending(irq, secure, vec->enabled, vec->prio);
a73c98e1
MD
518
519 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
520 /* If a synchronous exception is pending then it may be
521 * escalated to HardFault if:
522 * * it is equal or lower priority to current execution
523 * * it is disabled
524 * (ie we need to take it immediately but we can't do so).
525 * Asynchronous exceptions (and interrupts) simply remain pending.
526 *
527 * For QEMU, we don't have any imprecise (asynchronous) faults,
528 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
529 * synchronous.
530 * Debug exceptions are awkward because only Debug exceptions
531 * resulting from the BKPT instruction should be escalated,
532 * but we don't currently implement any Debug exceptions other
533 * than those that result from BKPT, so we treat all debug exceptions
534 * as needing escalation.
535 *
536 * This all means we can identify whether to escalate based only on
537 * the exception number and don't (yet) need the caller to explicitly
538 * tell us whether this exception is synchronous or not.
539 */
540 int running = nvic_exec_prio(s);
541 bool escalate = false;
542
80ac2390 543 if (exc_group_prio(s, vec->prio, secure) >= running) {
a73c98e1
MD
544 trace_nvic_escalate_prio(irq, vec->prio, running);
545 escalate = true;
546 } else if (!vec->enabled) {
547 trace_nvic_escalate_disabled(irq);
548 escalate = true;
549 }
550
551 if (escalate) {
a73c98e1 552
94a34abe 553 /* We need to escalate this exception to a synchronous HardFault.
2fb50a33
PM
554 * If BFHFNMINS is set then we escalate to the banked HF for
555 * the target security state of the original exception; otherwise
556 * we take a Secure HardFault.
557 */
a73c98e1 558 irq = ARMV7M_EXCP_HARD;
2fb50a33
PM
559 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
560 (secure ||
561 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
562 vec = &s->sec_vectors[irq];
563 } else {
564 vec = &s->vectors[irq];
565 }
94a34abe
PM
566 if (running <= vec->prio) {
567 /* We want to escalate to HardFault but we can't take the
568 * synchronous HardFault at this point either. This is a
569 * Lockup condition due to a guest bug. We don't model
570 * Lockup, so report via cpu_abort() instead.
571 */
572 cpu_abort(&s->cpu->parent_obj,
573 "Lockup: can't escalate %d to HardFault "
574 "(current priority %d)\n", irq, running);
575 }
576
2fb50a33 577 /* HF may be banked but there is only one shared HFSR */
a73c98e1
MD
578 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
579 }
580 }
581
da6d674e
MD
582 if (!vec->pending) {
583 vec->pending = 1;
584 nvic_irq_update(s);
585 }
9ee6e8bb
PB
586}
587
588/* Make pending IRQ active. */
5cb18069 589bool armv7m_nvic_acknowledge_irq(void *opaque)
9ee6e8bb 590{
f797c075 591 NVICState *s = (NVICState *)opaque;
da6d674e
MD
592 CPUARMState *env = &s->cpu->env;
593 const int pending = s->vectpending;
594 const int running = nvic_exec_prio(s);
da6d674e 595 VecInfo *vec;
5cb18069 596 bool targets_secure;
da6d674e
MD
597
598 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
599
5cb18069
PM
600 if (s->vectpending_is_s_banked) {
601 vec = &s->sec_vectors[pending];
602 targets_secure = true;
603 } else {
604 vec = &s->vectors[pending];
605 targets_secure = !exc_is_banked(s->vectpending) &&
606 exc_targets_secure(s, s->vectpending);
607 }
da6d674e
MD
608
609 assert(vec->enabled);
610 assert(vec->pending);
611
5255fcf8 612 assert(s->vectpending_prio < running);
da6d674e 613
5cb18069 614 trace_nvic_acknowledge_irq(pending, s->vectpending_prio, targets_secure);
da6d674e
MD
615
616 vec->active = 1;
617 vec->pending = 0;
618
de2db7ec 619 write_v7m_exception(env, s->vectpending);
da6d674e
MD
620
621 nvic_irq_update(s);
5cb18069
PM
622
623 return targets_secure;
9ee6e8bb
PB
624}
625
5cb18069 626int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
9ee6e8bb 627{
f797c075 628 NVICState *s = (NVICState *)opaque;
da6d674e 629 VecInfo *vec;
aa488fe3 630 int ret;
da6d674e
MD
631
632 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
633
5cb18069
PM
634 if (secure && exc_is_banked(irq)) {
635 vec = &s->sec_vectors[irq];
636 } else {
637 vec = &s->vectors[irq];
638 }
da6d674e 639
5cb18069 640 trace_nvic_complete_irq(irq, secure);
da6d674e 641
aa488fe3
PM
642 if (!vec->active) {
643 /* Tell the caller this was an illegal exception return */
644 return -1;
645 }
646
647 ret = nvic_rettobase(s);
648
da6d674e
MD
649 vec->active = 0;
650 if (vec->level) {
651 /* Re-pend the exception if it's still held high; only
652 * happens for extenal IRQs
653 */
654 assert(irq >= NVIC_FIRST_IRQ);
655 vec->pending = 1;
656 }
657
658 nvic_irq_update(s);
aa488fe3
PM
659
660 return ret;
da6d674e
MD
661}
662
663/* callback when external interrupt line is changed */
664static void set_irq_level(void *opaque, int n, int level)
665{
666 NVICState *s = opaque;
667 VecInfo *vec;
668
669 n += NVIC_FIRST_IRQ;
670
671 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
672
673 trace_nvic_set_irq_level(n, level);
674
675 /* The pending status of an external interrupt is
676 * latched on rising edge and exception handler return.
677 *
678 * Pulsing the IRQ will always run the handler
679 * once, and the handler will re-run until the
680 * level is low when the handler completes.
681 */
682 vec = &s->vectors[n];
683 if (level != vec->level) {
684 vec->level = level;
685 if (level) {
2fb50a33 686 armv7m_nvic_set_pending(s, n, false);
da6d674e
MD
687 }
688 }
9ee6e8bb
PB
689}
690
45db7ba6 691static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
9ee6e8bb 692{
d713ea6c 693 ARMCPU *cpu = s->cpu;
9ee6e8bb 694 uint32_t val;
9ee6e8bb
PB
695
696 switch (offset) {
697 case 4: /* Interrupt Control Type. */
da6d674e 698 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
e1be0a57
PM
699 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
700 {
cf5f7937 701 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
e1be0a57
PM
702 int i;
703
704 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
705 goto bad_offset;
706 }
707 if (!attrs.secure) {
708 return 0;
709 }
710 val = 0;
711 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
712 if (s->itns[startvec + i]) {
713 val |= (1 << i);
714 }
715 }
716 return val;
717 }
9ee6e8bb 718 case 0xd00: /* CPUID Base. */
e3da9921 719 return cpu->midr;
3f1e0eb7 720 case 0xd04: /* Interrupt Control State (ICSR) */
9ee6e8bb 721 /* VECTACTIVE */
b06c262b 722 val = cpu->env.v7m.exception;
9ee6e8bb 723 /* VECTPENDING */
da6d674e
MD
724 val |= (s->vectpending & 0xff) << 12;
725 /* ISRPENDING - set if any external IRQ is pending */
726 if (nvic_isrpending(s)) {
727 val |= (1 << 22);
728 }
729 /* RETTOBASE - set if only one handler is active */
730 if (nvic_rettobase(s)) {
731 val |= (1 << 11);
9ee6e8bb 732 }
3f1e0eb7
PM
733 if (attrs.secure) {
734 /* PENDSTSET */
735 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
736 val |= (1 << 26);
737 }
738 /* PENDSVSET */
739 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
740 val |= (1 << 28);
741 }
742 } else {
743 /* PENDSTSET */
744 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
745 val |= (1 << 26);
746 }
747 /* PENDSVSET */
748 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
749 val |= (1 << 28);
750 }
da6d674e 751 }
9ee6e8bb 752 /* NMIPENDSET */
3f1e0eb7
PM
753 if ((cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
754 s->vectors[ARMV7M_EXCP_NMI].pending) {
9ee6e8bb 755 val |= (1 << 31);
da6d674e 756 }
3f1e0eb7
PM
757 /* ISRPREEMPT: RES0 when halting debug not implemented */
758 /* STTNS: RES0 for the Main Extension */
9ee6e8bb
PB
759 return val;
760 case 0xd08: /* Vector Table Offset. */
45db7ba6 761 return cpu->env.v7m.vecbase[attrs.secure];
3b2e9344
PM
762 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
763 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
764 if (attrs.secure) {
765 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
766 val |= cpu->env.v7m.aircr;
767 } else {
768 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
769 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
770 * security isn't supported then BFHFNMINS is RAO (and
771 * the bit in env.v7m.aircr is always set).
772 */
773 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
774 }
775 }
776 return val;
9ee6e8bb
PB
777 case 0xd10: /* System Control. */
778 /* TODO: Implement SLEEPONEXIT. */
779 return 0;
780 case 0xd14: /* Configuration Control. */
9d40cd8a
PM
781 /* The BFHFNMIGN bit is the only non-banked bit; we
782 * keep it in the non-secure copy of the register.
783 */
784 val = cpu->env.v7m.ccr[attrs.secure];
785 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
786 return val;
437d59c1 787 case 0xd24: /* System Handler Control and State (SHCSR) */
9ee6e8bb 788 val = 0;
437d59c1
PM
789 if (attrs.secure) {
790 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
791 val |= (1 << 0);
792 }
793 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
794 val |= (1 << 2);
795 }
796 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
797 val |= (1 << 3);
798 }
799 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
800 val |= (1 << 7);
801 }
802 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
803 val |= (1 << 10);
804 }
805 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
806 val |= (1 << 11);
807 }
808 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
809 val |= (1 << 12);
810 }
811 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
812 val |= (1 << 13);
813 }
814 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
815 val |= (1 << 15);
816 }
817 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
818 val |= (1 << 16);
819 }
820 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
821 val |= (1 << 18);
822 }
823 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
824 val |= (1 << 21);
825 }
826 /* SecureFault is not banked but is always RAZ/WI to NS */
827 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
828 val |= (1 << 4);
829 }
830 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
831 val |= (1 << 19);
832 }
833 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
834 val |= (1 << 20);
835 }
836 } else {
837 if (s->vectors[ARMV7M_EXCP_MEM].active) {
838 val |= (1 << 0);
839 }
840 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
841 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
842 if (s->vectors[ARMV7M_EXCP_HARD].active) {
843 val |= (1 << 2);
844 }
845 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
846 val |= (1 << 21);
847 }
848 }
849 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
850 val |= (1 << 3);
851 }
852 if (s->vectors[ARMV7M_EXCP_SVC].active) {
853 val |= (1 << 7);
854 }
855 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
856 val |= (1 << 10);
857 }
858 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
859 val |= (1 << 11);
860 }
861 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
862 val |= (1 << 12);
863 }
864 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
865 val |= (1 << 13);
866 }
867 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
868 val |= (1 << 15);
869 }
870 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
871 val |= (1 << 16);
872 }
873 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
874 val |= (1 << 18);
875 }
da6d674e 876 }
437d59c1
PM
877 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
878 if (s->vectors[ARMV7M_EXCP_BUS].active) {
879 val |= (1 << 1);
880 }
881 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
882 val |= (1 << 14);
883 }
884 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
885 val |= (1 << 17);
886 }
887 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
888 s->vectors[ARMV7M_EXCP_NMI].active) {
889 /* NMIACT is not present in v7M */
890 val |= (1 << 5);
891 }
da6d674e 892 }
437d59c1
PM
893
894 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
da6d674e
MD
895 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
896 val |= (1 << 8);
897 }
9ee6e8bb 898 return val;
9ee6e8bb 899 case 0xd2c: /* Hard Fault Status. */
e6b33209 900 return cpu->env.v7m.hfsr;
9ee6e8bb 901 case 0xd30: /* Debug Fault Status. */
e6b33209
MD
902 return cpu->env.v7m.dfsr;
903 case 0xd34: /* MMFAR MemManage Fault Address */
c51a5cfc 904 return cpu->env.v7m.mmfar[attrs.secure];
9ee6e8bb 905 case 0xd38: /* Bus Fault Address. */
e6b33209 906 return cpu->env.v7m.bfar;
9ee6e8bb
PB
907 case 0xd3c: /* Aux Fault Status. */
908 /* TODO: Implement fault status registers. */
e6b33209
MD
909 qemu_log_mask(LOG_UNIMP,
910 "Aux Fault status registers unimplemented\n");
e72e3ffc 911 return 0;
9ee6e8bb
PB
912 case 0xd40: /* PFR0. */
913 return 0x00000030;
914 case 0xd44: /* PRF1. */
915 return 0x00000200;
916 case 0xd48: /* DFR0. */
917 return 0x00100000;
918 case 0xd4c: /* AFR0. */
919 return 0x00000000;
920 case 0xd50: /* MMFR0. */
921 return 0x00000030;
922 case 0xd54: /* MMFR1. */
923 return 0x00000000;
924 case 0xd58: /* MMFR2. */
925 return 0x00000000;
926 case 0xd5c: /* MMFR3. */
927 return 0x00000000;
928 case 0xd60: /* ISAR0. */
929 return 0x01141110;
930 case 0xd64: /* ISAR1. */
931 return 0x02111000;
932 case 0xd68: /* ISAR2. */
933 return 0x21112231;
934 case 0xd6c: /* ISAR3. */
935 return 0x01111110;
936 case 0xd70: /* ISAR4. */
937 return 0x01310102;
938 /* TODO: Implement debug registers. */
29c483a5
MD
939 case 0xd90: /* MPU_TYPE */
940 /* Unified MPU; if the MPU is not present this value is zero */
941 return cpu->pmsav7_dregion << 8;
942 break;
943 case 0xd94: /* MPU_CTRL */
ecf5e8ea 944 return cpu->env.v7m.mpu_ctrl[attrs.secure];
29c483a5 945 case 0xd98: /* MPU_RNR */
1bc04a88 946 return cpu->env.pmsav7.rnr[attrs.secure];
29c483a5
MD
947 case 0xd9c: /* MPU_RBAR */
948 case 0xda4: /* MPU_RBAR_A1 */
949 case 0xdac: /* MPU_RBAR_A2 */
950 case 0xdb4: /* MPU_RBAR_A3 */
951 {
1bc04a88 952 int region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5 953
0e1a46bb
PM
954 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
955 /* PMSAv8M handling of the aliases is different from v7M:
956 * aliases A1, A2, A3 override the low two bits of the region
957 * number in MPU_RNR, and there is no 'region' field in the
958 * RBAR register.
959 */
960 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
961 if (aliasno) {
962 region = deposit32(region, 0, 2, aliasno);
963 }
964 if (region >= cpu->pmsav7_dregion) {
965 return 0;
966 }
62c58ee0 967 return cpu->env.pmsav8.rbar[attrs.secure][region];
0e1a46bb
PM
968 }
969
29c483a5
MD
970 if (region >= cpu->pmsav7_dregion) {
971 return 0;
972 }
2b75ef01 973 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
29c483a5 974 }
0e1a46bb
PM
975 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
976 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
977 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
978 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
29c483a5 979 {
1bc04a88 980 int region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5 981
0e1a46bb
PM
982 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
983 /* PMSAv8M handling of the aliases is different from v7M:
984 * aliases A1, A2, A3 override the low two bits of the region
985 * number in MPU_RNR.
986 */
987 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
988 if (aliasno) {
989 region = deposit32(region, 0, 2, aliasno);
990 }
991 if (region >= cpu->pmsav7_dregion) {
992 return 0;
993 }
62c58ee0 994 return cpu->env.pmsav8.rlar[attrs.secure][region];
0e1a46bb
PM
995 }
996
29c483a5
MD
997 if (region >= cpu->pmsav7_dregion) {
998 return 0;
999 }
1000 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1001 (cpu->env.pmsav7.drsr[region] & 0xffff);
1002 }
0e1a46bb
PM
1003 case 0xdc0: /* MPU_MAIR0 */
1004 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1005 goto bad_offset;
1006 }
4125e6fe 1007 return cpu->env.pmsav8.mair0[attrs.secure];
0e1a46bb
PM
1008 case 0xdc4: /* MPU_MAIR1 */
1009 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1010 goto bad_offset;
1011 }
4125e6fe 1012 return cpu->env.pmsav8.mair1[attrs.secure];
9901c576
PM
1013 case 0xdd0: /* SAU_CTRL */
1014 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1015 goto bad_offset;
1016 }
1017 if (!attrs.secure) {
1018 return 0;
1019 }
1020 return cpu->env.sau.ctrl;
1021 case 0xdd4: /* SAU_TYPE */
1022 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1023 goto bad_offset;
1024 }
1025 if (!attrs.secure) {
1026 return 0;
1027 }
1028 return cpu->sau_sregion;
1029 case 0xdd8: /* SAU_RNR */
1030 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1031 goto bad_offset;
1032 }
1033 if (!attrs.secure) {
1034 return 0;
1035 }
1036 return cpu->env.sau.rnr;
1037 case 0xddc: /* SAU_RBAR */
1038 {
1039 int region = cpu->env.sau.rnr;
1040
1041 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1042 goto bad_offset;
1043 }
1044 if (!attrs.secure) {
1045 return 0;
1046 }
1047 if (region >= cpu->sau_sregion) {
1048 return 0;
1049 }
1050 return cpu->env.sau.rbar[region];
1051 }
1052 case 0xde0: /* SAU_RLAR */
1053 {
1054 int region = cpu->env.sau.rnr;
1055
1056 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1057 goto bad_offset;
1058 }
1059 if (!attrs.secure) {
1060 return 0;
1061 }
1062 if (region >= cpu->sau_sregion) {
1063 return 0;
1064 }
1065 return cpu->env.sau.rlar[region];
1066 }
bed079da
PM
1067 case 0xde4: /* SFSR */
1068 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1069 goto bad_offset;
1070 }
1071 if (!attrs.secure) {
1072 return 0;
1073 }
1074 return cpu->env.v7m.sfsr;
1075 case 0xde8: /* SFAR */
1076 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1077 goto bad_offset;
1078 }
1079 if (!attrs.secure) {
1080 return 0;
1081 }
1082 return cpu->env.v7m.sfar;
9ee6e8bb 1083 default:
0e1a46bb 1084 bad_offset:
e72e3ffc
PM
1085 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1086 return 0;
9ee6e8bb
PB
1087 }
1088}
1089
45db7ba6
PM
1090static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1091 MemTxAttrs attrs)
9ee6e8bb 1092{
d713ea6c 1093 ARMCPU *cpu = s->cpu;
ff68dacb 1094
9ee6e8bb 1095 switch (offset) {
e1be0a57
PM
1096 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1097 {
cf5f7937 1098 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
e1be0a57
PM
1099 int i;
1100
1101 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1102 goto bad_offset;
1103 }
1104 if (!attrs.secure) {
1105 break;
1106 }
1107 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1108 s->itns[startvec + i] = (value >> i) & 1;
1109 }
1110 nvic_irq_update(s);
1111 break;
1112 }
3f1e0eb7
PM
1113 case 0xd04: /* Interrupt Control State (ICSR) */
1114 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1115 if (value & (1 << 31)) {
1116 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1117 } else if (value & (1 << 30) &&
1118 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1119 /* PENDNMICLR didn't exist in v7M */
1120 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1121 }
9ee6e8bb
PB
1122 }
1123 if (value & (1 << 28)) {
2fb50a33 1124 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
9ee6e8bb 1125 } else if (value & (1 << 27)) {
2fb50a33 1126 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
9ee6e8bb
PB
1127 }
1128 if (value & (1 << 26)) {
2fb50a33 1129 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
9ee6e8bb 1130 } else if (value & (1 << 25)) {
2fb50a33 1131 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
9ee6e8bb
PB
1132 }
1133 break;
1134 case 0xd08: /* Vector Table Offset. */
45db7ba6 1135 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
9ee6e8bb 1136 break;
3b2e9344
PM
1137 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1138 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1139 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1140 if (attrs.secure ||
1141 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1142 qemu_irq_pulse(s->sysresetreq);
1143 }
e192becd 1144 }
3b2e9344 1145 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
14790f73
MD
1146 qemu_log_mask(LOG_GUEST_ERROR,
1147 "Setting VECTCLRACTIVE when not in DEBUG mode "
1148 "is UNPREDICTABLE\n");
9ee6e8bb 1149 }
3b2e9344
PM
1150 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1151 /* NB: this bit is RES0 in v8M */
14790f73
MD
1152 qemu_log_mask(LOG_GUEST_ERROR,
1153 "Setting VECTRESET when not in DEBUG mode "
1154 "is UNPREDICTABLE\n");
9ee6e8bb 1155 }
3b2e9344
PM
1156 s->prigroup[attrs.secure] = extract32(value,
1157 R_V7M_AIRCR_PRIGROUP_SHIFT,
1158 R_V7M_AIRCR_PRIGROUP_LENGTH);
1159 if (attrs.secure) {
1160 /* These bits are only writable by secure */
1161 cpu->env.v7m.aircr = value &
1162 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1163 R_V7M_AIRCR_BFHFNMINS_MASK |
1164 R_V7M_AIRCR_PRIS_MASK);
7208b426
PM
1165 /* BFHFNMINS changes the priority of Secure HardFault, and
1166 * allows a pending Non-secure HardFault to preempt (which
1167 * we implement by marking it enabled).
1168 */
331f4bae
PM
1169 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1170 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
7208b426 1171 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
331f4bae
PM
1172 } else {
1173 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
7208b426 1174 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
331f4bae 1175 }
3b2e9344 1176 }
da6d674e 1177 nvic_irq_update(s);
9ee6e8bb
PB
1178 }
1179 break;
1180 case 0xd10: /* System Control. */
9ee6e8bb 1181 /* TODO: Implement control registers. */
e6b33209
MD
1182 qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n");
1183 break;
1184 case 0xd14: /* Configuration Control. */
1185 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1186 value &= (R_V7M_CCR_STKALIGN_MASK |
1187 R_V7M_CCR_BFHFNMIGN_MASK |
1188 R_V7M_CCR_DIV_0_TRP_MASK |
1189 R_V7M_CCR_UNALIGN_TRP_MASK |
1190 R_V7M_CCR_USERSETMPEND_MASK |
1191 R_V7M_CCR_NONBASETHRDENA_MASK);
1192
9d40cd8a
PM
1193 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1194 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1195 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1196 | R_V7M_CCR_STKALIGN_MASK;
1197 }
1198 if (attrs.secure) {
1199 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1200 cpu->env.v7m.ccr[M_REG_NS] =
1201 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1202 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1203 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1204 }
1205
1206 cpu->env.v7m.ccr[attrs.secure] = value;
e72e3ffc 1207 break;
437d59c1
PM
1208 case 0xd24: /* System Handler Control and State (SHCSR) */
1209 if (attrs.secure) {
1210 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1211 /* Secure HardFault active bit cannot be written */
1212 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1213 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1214 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1215 (value & (1 << 10)) != 0;
1216 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1217 (value & (1 << 11)) != 0;
1218 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1219 (value & (1 << 12)) != 0;
1220 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1221 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1222 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1223 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1224 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1225 (value & (1 << 18)) != 0;
04829ce3 1226 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
437d59c1
PM
1227 /* SecureFault not banked, but RAZ/WI to NS */
1228 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1229 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1230 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1231 } else {
1232 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1233 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1234 /* HARDFAULTPENDED is not present in v7M */
1235 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1236 }
1237 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1238 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1239 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1240 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1241 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1242 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1243 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1244 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1245 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1246 }
1247 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1248 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1249 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1250 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1251 }
1252 /* NMIACT can only be written if the write is of a zero, with
1253 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1254 */
1255 if (!attrs.secure && cpu->env.v7m.secure &&
1256 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1257 (value & (1 << 5)) == 0) {
1258 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1259 }
1260 /* HARDFAULTACT can only be written if the write is of a zero
1261 * to the non-secure HardFault state by the CPU in secure state.
1262 * The only case where we can be targeting the non-secure HF state
1263 * when in secure state is if this is a write via the NS alias
1264 * and BFHFNMINS is 1.
1265 */
1266 if (!attrs.secure && cpu->env.v7m.secure &&
1267 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1268 (value & (1 << 2)) == 0) {
1269 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1270 }
1271
1272 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
5db53e35 1273 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
da6d674e 1274 nvic_irq_update(s);
9ee6e8bb 1275 break;
9ee6e8bb 1276 case 0xd2c: /* Hard Fault Status. */
e6b33209
MD
1277 cpu->env.v7m.hfsr &= ~value; /* W1C */
1278 break;
9ee6e8bb 1279 case 0xd30: /* Debug Fault Status. */
e6b33209
MD
1280 cpu->env.v7m.dfsr &= ~value; /* W1C */
1281 break;
9ee6e8bb 1282 case 0xd34: /* Mem Manage Address. */
c51a5cfc 1283 cpu->env.v7m.mmfar[attrs.secure] = value;
e6b33209 1284 return;
9ee6e8bb 1285 case 0xd38: /* Bus Fault Address. */
e6b33209
MD
1286 cpu->env.v7m.bfar = value;
1287 return;
9ee6e8bb 1288 case 0xd3c: /* Aux Fault Status. */
e72e3ffc 1289 qemu_log_mask(LOG_UNIMP,
e6b33209 1290 "NVIC: Aux fault status registers unimplemented\n");
e72e3ffc 1291 break;
29c483a5
MD
1292 case 0xd90: /* MPU_TYPE */
1293 return; /* RO */
1294 case 0xd94: /* MPU_CTRL */
1295 if ((value &
1296 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1297 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1298 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1299 "UNPREDICTABLE\n");
1300 }
ecf5e8ea
PM
1301 cpu->env.v7m.mpu_ctrl[attrs.secure]
1302 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1303 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1304 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
29c483a5
MD
1305 tlb_flush(CPU(cpu));
1306 break;
1307 case 0xd98: /* MPU_RNR */
1308 if (value >= cpu->pmsav7_dregion) {
1309 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1310 PRIu32 "/%" PRIu32 "\n",
1311 value, cpu->pmsav7_dregion);
1312 } else {
1bc04a88 1313 cpu->env.pmsav7.rnr[attrs.secure] = value;
29c483a5
MD
1314 }
1315 break;
1316 case 0xd9c: /* MPU_RBAR */
1317 case 0xda4: /* MPU_RBAR_A1 */
1318 case 0xdac: /* MPU_RBAR_A2 */
1319 case 0xdb4: /* MPU_RBAR_A3 */
1320 {
1321 int region;
1322
0e1a46bb
PM
1323 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1324 /* PMSAv8M handling of the aliases is different from v7M:
1325 * aliases A1, A2, A3 override the low two bits of the region
1326 * number in MPU_RNR, and there is no 'region' field in the
1327 * RBAR register.
1328 */
1329 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1330
1bc04a88 1331 region = cpu->env.pmsav7.rnr[attrs.secure];
0e1a46bb
PM
1332 if (aliasno) {
1333 region = deposit32(region, 0, 2, aliasno);
1334 }
1335 if (region >= cpu->pmsav7_dregion) {
1336 return;
1337 }
62c58ee0 1338 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
0e1a46bb
PM
1339 tlb_flush(CPU(cpu));
1340 return;
1341 }
1342
29c483a5
MD
1343 if (value & (1 << 4)) {
1344 /* VALID bit means use the region number specified in this
1345 * value and also update MPU_RNR.REGION with that value.
1346 */
1347 region = extract32(value, 0, 4);
1348 if (region >= cpu->pmsav7_dregion) {
1349 qemu_log_mask(LOG_GUEST_ERROR,
1350 "MPU region out of range %u/%" PRIu32 "\n",
1351 region, cpu->pmsav7_dregion);
1352 return;
1353 }
1bc04a88 1354 cpu->env.pmsav7.rnr[attrs.secure] = region;
29c483a5 1355 } else {
1bc04a88 1356 region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5
MD
1357 }
1358
1359 if (region >= cpu->pmsav7_dregion) {
1360 return;
1361 }
1362
1363 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1364 tlb_flush(CPU(cpu));
1365 break;
1366 }
0e1a46bb
PM
1367 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1368 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1369 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1370 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
29c483a5 1371 {
1bc04a88 1372 int region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5 1373
0e1a46bb
PM
1374 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1375 /* PMSAv8M handling of the aliases is different from v7M:
1376 * aliases A1, A2, A3 override the low two bits of the region
1377 * number in MPU_RNR.
1378 */
1379 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1380
1bc04a88 1381 region = cpu->env.pmsav7.rnr[attrs.secure];
0e1a46bb
PM
1382 if (aliasno) {
1383 region = deposit32(region, 0, 2, aliasno);
1384 }
1385 if (region >= cpu->pmsav7_dregion) {
1386 return;
1387 }
62c58ee0 1388 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
0e1a46bb
PM
1389 tlb_flush(CPU(cpu));
1390 return;
1391 }
1392
29c483a5
MD
1393 if (region >= cpu->pmsav7_dregion) {
1394 return;
1395 }
1396
1397 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1398 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1399 tlb_flush(CPU(cpu));
1400 break;
1401 }
0e1a46bb
PM
1402 case 0xdc0: /* MPU_MAIR0 */
1403 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1404 goto bad_offset;
1405 }
1406 if (cpu->pmsav7_dregion) {
1407 /* Register is RES0 if no MPU regions are implemented */
4125e6fe 1408 cpu->env.pmsav8.mair0[attrs.secure] = value;
0e1a46bb
PM
1409 }
1410 /* We don't need to do anything else because memory attributes
1411 * only affect cacheability, and we don't implement caching.
1412 */
1413 break;
1414 case 0xdc4: /* MPU_MAIR1 */
1415 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1416 goto bad_offset;
1417 }
1418 if (cpu->pmsav7_dregion) {
1419 /* Register is RES0 if no MPU regions are implemented */
4125e6fe 1420 cpu->env.pmsav8.mair1[attrs.secure] = value;
0e1a46bb
PM
1421 }
1422 /* We don't need to do anything else because memory attributes
1423 * only affect cacheability, and we don't implement caching.
1424 */
1425 break;
9901c576
PM
1426 case 0xdd0: /* SAU_CTRL */
1427 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1428 goto bad_offset;
1429 }
1430 if (!attrs.secure) {
1431 return;
1432 }
1433 cpu->env.sau.ctrl = value & 3;
a94bb9cd 1434 break;
9901c576
PM
1435 case 0xdd4: /* SAU_TYPE */
1436 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1437 goto bad_offset;
1438 }
1439 break;
1440 case 0xdd8: /* SAU_RNR */
1441 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1442 goto bad_offset;
1443 }
1444 if (!attrs.secure) {
1445 return;
1446 }
1447 if (value >= cpu->sau_sregion) {
1448 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1449 PRIu32 "/%" PRIu32 "\n",
1450 value, cpu->sau_sregion);
1451 } else {
1452 cpu->env.sau.rnr = value;
1453 }
1454 break;
1455 case 0xddc: /* SAU_RBAR */
1456 {
1457 int region = cpu->env.sau.rnr;
1458
1459 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1460 goto bad_offset;
1461 }
1462 if (!attrs.secure) {
1463 return;
1464 }
1465 if (region >= cpu->sau_sregion) {
1466 return;
1467 }
1468 cpu->env.sau.rbar[region] = value & ~0x1f;
1469 tlb_flush(CPU(cpu));
1470 break;
1471 }
1472 case 0xde0: /* SAU_RLAR */
1473 {
1474 int region = cpu->env.sau.rnr;
1475
1476 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1477 goto bad_offset;
1478 }
1479 if (!attrs.secure) {
1480 return;
1481 }
1482 if (region >= cpu->sau_sregion) {
1483 return;
1484 }
1485 cpu->env.sau.rlar[region] = value & ~0x1c;
1486 tlb_flush(CPU(cpu));
1487 break;
1488 }
bed079da
PM
1489 case 0xde4: /* SFSR */
1490 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1491 goto bad_offset;
1492 }
1493 if (!attrs.secure) {
1494 return;
1495 }
1496 cpu->env.v7m.sfsr &= ~value; /* W1C */
1497 break;
1498 case 0xde8: /* SFAR */
1499 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1500 goto bad_offset;
1501 }
1502 if (!attrs.secure) {
1503 return;
1504 }
1505 cpu->env.v7m.sfsr = value;
1506 break;
2a29ddee 1507 case 0xf00: /* Software Triggered Interrupt Register */
da6d674e 1508 {
da6d674e 1509 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
eb578a23 1510 if (excnum < s->num_irq) {
2fb50a33 1511 armv7m_nvic_set_pending(s, excnum, false);
2a29ddee
PM
1512 }
1513 break;
da6d674e 1514 }
9ee6e8bb 1515 default:
0e1a46bb 1516 bad_offset:
e72e3ffc
PM
1517 qemu_log_mask(LOG_GUEST_ERROR,
1518 "NVIC: Bad write offset 0x%x\n", offset);
9ee6e8bb
PB
1519 }
1520}
1521
9d40cd8a 1522static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
eb578a23
PM
1523{
1524 /* Return true if unprivileged access to this register is permitted. */
1525 switch (offset) {
1526 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
9d40cd8a
PM
1527 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1528 * controls access even though the CPU is in Secure state (I_QDKX).
1529 */
1530 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
eb578a23
PM
1531 default:
1532 /* All other user accesses cause a BusFault unconditionally */
1533 return false;
1534 }
1535}
1536
e6a0d350
PM
1537static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1538{
1539 /* Behaviour for the SHPR register field for this exception:
1540 * return M_REG_NS to use the nonsecure vector (including for
1541 * non-banked exceptions), M_REG_S for the secure version of
1542 * a banked exception, and -1 if this field should RAZ/WI.
1543 */
1544 switch (exc) {
1545 case ARMV7M_EXCP_MEM:
1546 case ARMV7M_EXCP_USAGE:
1547 case ARMV7M_EXCP_SVC:
1548 case ARMV7M_EXCP_PENDSV:
1549 case ARMV7M_EXCP_SYSTICK:
1550 /* Banked exceptions */
1551 return attrs.secure;
1552 case ARMV7M_EXCP_BUS:
1553 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1554 if (!attrs.secure &&
1555 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1556 return -1;
1557 }
1558 return M_REG_NS;
1559 case ARMV7M_EXCP_SECURE:
1560 /* Not banked, RAZ/WI from nonsecure */
1561 if (!attrs.secure) {
1562 return -1;
1563 }
1564 return M_REG_NS;
1565 case ARMV7M_EXCP_DEBUG:
1566 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1567 return M_REG_NS;
1568 case 8 ... 10:
1569 case 13:
1570 /* RES0 */
1571 return -1;
1572 default:
1573 /* Not reachable due to decode of SHPR register addresses */
1574 g_assert_not_reached();
1575 }
1576}
1577
eb578a23
PM
1578static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1579 uint64_t *data, unsigned size,
1580 MemTxAttrs attrs)
2a29ddee 1581{
f797c075 1582 NVICState *s = (NVICState *)opaque;
2a29ddee 1583 uint32_t offset = addr;
da6d674e 1584 unsigned i, startvec, end;
0e8153dd
AB
1585 uint32_t val;
1586
9d40cd8a 1587 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
eb578a23
PM
1588 /* Generate BusFault for unprivileged accesses */
1589 return MEMTX_ERROR;
1590 }
1591
0e8153dd 1592 switch (offset) {
da6d674e
MD
1593 /* reads of set and clear both return the status */
1594 case 0x100 ... 0x13f: /* NVIC Set enable */
1595 offset += 0x80;
1596 /* fall through */
1597 case 0x180 ... 0x1bf: /* NVIC Clear enable */
1598 val = 0;
1599 startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */
1600
1601 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1602 if (s->vectors[startvec + i].enabled &&
1603 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1604 val |= (1 << i);
1605 }
1606 }
1607 break;
1608 case 0x200 ... 0x23f: /* NVIC Set pend */
1609 offset += 0x80;
1610 /* fall through */
1611 case 0x280 ... 0x2bf: /* NVIC Clear pend */
1612 val = 0;
1613 startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */
1614 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1615 if (s->vectors[startvec + i].pending &&
1616 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1617 val |= (1 << i);
1618 }
1619 }
1620 break;
1621 case 0x300 ... 0x33f: /* NVIC Active */
1622 val = 0;
1623 startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */
1624
1625 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1626 if (s->vectors[startvec + i].active &&
1627 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1628 val |= (1 << i);
1629 }
1630 }
1631 break;
1632 case 0x400 ... 0x5ef: /* NVIC Priority */
1633 val = 0;
1634 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1635
1636 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1637 if (attrs.secure || s->itns[startvec + i]) {
1638 val |= s->vectors[startvec + i].prio << (8 * i);
1639 }
da6d674e
MD
1640 }
1641 break;
e6a0d350 1642 case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
0e8153dd
AB
1643 val = 0;
1644 for (i = 0; i < size; i++) {
e6a0d350
PM
1645 unsigned hdlidx = (offset - 0xd14) + i;
1646 int sbank = shpr_bank(s, hdlidx, attrs);
1647
1648 if (sbank < 0) {
1649 continue;
1650 }
1651 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
0e8153dd 1652 }
da6d674e 1653 break;
4b9774ef
PM
1654 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1655 /* The BFSR bits [15:8] are shared between security states
1656 * and we store them in the NS copy
1657 */
1658 val = s->cpu->env.v7m.cfsr[attrs.secure];
1659 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
1660 val = extract32(val, (offset - 0xd28) * 8, size * 8);
1661 break;
0e8153dd 1662 case 0xfe0 ... 0xfff: /* ID. */
2a29ddee 1663 if (offset & 3) {
da6d674e
MD
1664 val = 0;
1665 } else {
1666 val = nvic_id[(offset - 0xfe0) >> 2];
1667 }
1668 break;
1669 default:
1670 if (size == 4) {
45db7ba6 1671 val = nvic_readl(s, offset, attrs);
da6d674e
MD
1672 } else {
1673 qemu_log_mask(LOG_GUEST_ERROR,
1674 "NVIC: Bad read of size %d at offset 0x%x\n",
1675 size, offset);
1676 val = 0;
2a29ddee 1677 }
2a29ddee 1678 }
da6d674e
MD
1679
1680 trace_nvic_sysreg_read(addr, val, size);
eb578a23
PM
1681 *data = val;
1682 return MEMTX_OK;
2a29ddee
PM
1683}
1684
eb578a23
PM
1685static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1686 uint64_t value, unsigned size,
1687 MemTxAttrs attrs)
2a29ddee 1688{
f797c075 1689 NVICState *s = (NVICState *)opaque;
2a29ddee 1690 uint32_t offset = addr;
da6d674e
MD
1691 unsigned i, startvec, end;
1692 unsigned setval = 0;
1693
1694 trace_nvic_sysreg_write(addr, value, size);
0e8153dd 1695
9d40cd8a 1696 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
eb578a23
PM
1697 /* Generate BusFault for unprivileged accesses */
1698 return MEMTX_ERROR;
1699 }
1700
0e8153dd 1701 switch (offset) {
da6d674e
MD
1702 case 0x100 ... 0x13f: /* NVIC Set enable */
1703 offset += 0x80;
1704 setval = 1;
1705 /* fall through */
1706 case 0x180 ... 0x1bf: /* NVIC Clear enable */
1707 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1708
1709 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1710 if (value & (1 << i) &&
1711 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1712 s->vectors[startvec + i].enabled = setval;
1713 }
1714 }
1715 nvic_irq_update(s);
eb578a23 1716 return MEMTX_OK;
da6d674e
MD
1717 case 0x200 ... 0x23f: /* NVIC Set pend */
1718 /* the special logic in armv7m_nvic_set_pending()
1719 * is not needed since IRQs are never escalated
1720 */
1721 offset += 0x80;
1722 setval = 1;
1723 /* fall through */
1724 case 0x280 ... 0x2bf: /* NVIC Clear pend */
1725 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1726
1727 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1728 if (value & (1 << i) &&
1729 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1730 s->vectors[startvec + i].pending = setval;
1731 }
1732 }
1733 nvic_irq_update(s);
eb578a23 1734 return MEMTX_OK;
da6d674e 1735 case 0x300 ... 0x33f: /* NVIC Active */
eb578a23 1736 return MEMTX_OK; /* R/O */
da6d674e
MD
1737 case 0x400 ... 0x5ef: /* NVIC Priority */
1738 startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1739
1740 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
e1be0a57 1741 if (attrs.secure || s->itns[startvec + i]) {
e6a0d350 1742 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
e1be0a57 1743 }
da6d674e
MD
1744 }
1745 nvic_irq_update(s);
eb578a23 1746 return MEMTX_OK;
e6a0d350 1747 case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
0e8153dd 1748 for (i = 0; i < size; i++) {
da6d674e 1749 unsigned hdlidx = (offset - 0xd14) + i;
e6a0d350
PM
1750 int newprio = extract32(value, i * 8, 8);
1751 int sbank = shpr_bank(s, hdlidx, attrs);
1752
1753 if (sbank < 0) {
1754 continue;
1755 }
1756 set_prio(s, hdlidx, sbank, newprio);
0e8153dd 1757 }
da6d674e 1758 nvic_irq_update(s);
eb578a23 1759 return MEMTX_OK;
4b9774ef
PM
1760 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1761 /* All bits are W1C, so construct 32 bit value with 0s in
1762 * the parts not written by the access size
1763 */
1764 value <<= ((offset - 0xd28) * 8);
1765
1766 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
1767 if (attrs.secure) {
1768 /* The BFSR bits [15:8] are shared between security states
1769 * and we store them in the NS copy.
1770 */
1771 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
1772 }
1773 return MEMTX_OK;
0e8153dd 1774 }
2a29ddee 1775 if (size == 4) {
45db7ba6 1776 nvic_writel(s, offset, value, attrs);
eb578a23 1777 return MEMTX_OK;
2a29ddee 1778 }
e72e3ffc
PM
1779 qemu_log_mask(LOG_GUEST_ERROR,
1780 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
eb578a23
PM
1781 /* This is UNPREDICTABLE; treat as RAZ/WI */
1782 return MEMTX_OK;
2a29ddee
PM
1783}
1784
1785static const MemoryRegionOps nvic_sysreg_ops = {
eb578a23
PM
1786 .read_with_attrs = nvic_sysreg_read,
1787 .write_with_attrs = nvic_sysreg_write,
2a29ddee
PM
1788 .endianness = DEVICE_NATIVE_ENDIAN,
1789};
1790
f104919d
PM
1791static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1792 uint64_t value, unsigned size,
1793 MemTxAttrs attrs)
1794{
62f01848
PM
1795 MemoryRegion *mr = opaque;
1796
f104919d
PM
1797 if (attrs.secure) {
1798 /* S accesses to the alias act like NS accesses to the real region */
1799 attrs.secure = 0;
62f01848 1800 return memory_region_dispatch_write(mr, addr, value, size, attrs);
f104919d
PM
1801 } else {
1802 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1803 if (attrs.user) {
1804 return MEMTX_ERROR;
1805 }
1806 return MEMTX_OK;
1807 }
1808}
1809
1810static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
1811 uint64_t *data, unsigned size,
1812 MemTxAttrs attrs)
1813{
62f01848
PM
1814 MemoryRegion *mr = opaque;
1815
f104919d
PM
1816 if (attrs.secure) {
1817 /* S accesses to the alias act like NS accesses to the real region */
1818 attrs.secure = 0;
62f01848 1819 return memory_region_dispatch_read(mr, addr, data, size, attrs);
f104919d
PM
1820 } else {
1821 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1822 if (attrs.user) {
1823 return MEMTX_ERROR;
1824 }
1825 *data = 0;
1826 return MEMTX_OK;
1827 }
1828}
1829
1830static const MemoryRegionOps nvic_sysreg_ns_ops = {
1831 .read_with_attrs = nvic_sysreg_ns_read,
1832 .write_with_attrs = nvic_sysreg_ns_write,
1833 .endianness = DEVICE_NATIVE_ENDIAN,
1834};
1835
27f26bfe
PM
1836static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
1837 uint64_t value, unsigned size,
1838 MemTxAttrs attrs)
1839{
1840 NVICState *s = opaque;
1841 MemoryRegion *mr;
1842
1843 /* Direct the access to the correct systick */
1844 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
1845 return memory_region_dispatch_write(mr, addr, value, size, attrs);
1846}
1847
1848static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
1849 uint64_t *data, unsigned size,
1850 MemTxAttrs attrs)
1851{
1852 NVICState *s = opaque;
1853 MemoryRegion *mr;
1854
1855 /* Direct the access to the correct systick */
1856 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
1857 return memory_region_dispatch_read(mr, addr, data, size, attrs);
1858}
1859
1860static const MemoryRegionOps nvic_systick_ops = {
1861 .read_with_attrs = nvic_systick_read,
1862 .write_with_attrs = nvic_systick_write,
1863 .endianness = DEVICE_NATIVE_ENDIAN,
1864};
1865
da6d674e
MD
1866static int nvic_post_load(void *opaque, int version_id)
1867{
1868 NVICState *s = opaque;
1869 unsigned i;
331f4bae 1870 int resetprio;
da6d674e
MD
1871
1872 /* Check for out of range priority settings */
331f4bae
PM
1873 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
1874
1875 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
da6d674e
MD
1876 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
1877 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
1878 return 1;
1879 }
1880 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
1881 if (s->vectors[i].prio & ~0xff) {
1882 return 1;
1883 }
1884 }
1885
1886 nvic_recompute_state(s);
1887
1888 return 0;
1889}
1890
1891static const VMStateDescription vmstate_VecInfo = {
1892 .name = "armv7m_nvic_info",
1893 .version_id = 1,
1894 .minimum_version_id = 1,
1895 .fields = (VMStateField[]) {
1896 VMSTATE_INT16(prio, VecInfo),
1897 VMSTATE_UINT8(enabled, VecInfo),
1898 VMSTATE_UINT8(pending, VecInfo),
1899 VMSTATE_UINT8(active, VecInfo),
1900 VMSTATE_UINT8(level, VecInfo),
1901 VMSTATE_END_OF_LIST()
1902 }
1903};
1904
17906a16
PM
1905static bool nvic_security_needed(void *opaque)
1906{
1907 NVICState *s = opaque;
1908
1909 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
1910}
1911
1912static int nvic_security_post_load(void *opaque, int version_id)
1913{
1914 NVICState *s = opaque;
1915 int i;
1916
1917 /* Check for out of range priority settings */
331f4bae
PM
1918 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
1919 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
1920 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
1921 * if the CPU state has been migrated yet; a mismatch won't
1922 * cause the emulation to blow up, though.
1923 */
17906a16
PM
1924 return 1;
1925 }
1926 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
1927 if (s->sec_vectors[i].prio & ~0xff) {
1928 return 1;
1929 }
1930 }
1931 return 0;
1932}
1933
1934static const VMStateDescription vmstate_nvic_security = {
1935 .name = "nvic/m-security",
1936 .version_id = 1,
1937 .minimum_version_id = 1,
1938 .needed = nvic_security_needed,
1939 .post_load = &nvic_security_post_load,
1940 .fields = (VMStateField[]) {
1941 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
1942 vmstate_VecInfo, VecInfo),
3b2e9344 1943 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
e1be0a57 1944 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
17906a16
PM
1945 VMSTATE_END_OF_LIST()
1946 }
1947};
1948
0797226c
JQ
1949static const VMStateDescription vmstate_nvic = {
1950 .name = "armv7m_nvic",
ff68dacb
PM
1951 .version_id = 4,
1952 .minimum_version_id = 4,
da6d674e 1953 .post_load = &nvic_post_load,
8f1e884b 1954 .fields = (VMStateField[]) {
da6d674e
MD
1955 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
1956 vmstate_VecInfo, VecInfo),
3b2e9344 1957 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
0797226c 1958 VMSTATE_END_OF_LIST()
17906a16
PM
1959 },
1960 .subsections = (const VMStateDescription*[]) {
1961 &vmstate_nvic_security,
1962 NULL
0797226c
JQ
1963 }
1964};
23e39294 1965
da6d674e
MD
1966static Property props_nvic[] = {
1967 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
1968 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
1969 DEFINE_PROP_END_OF_LIST()
1970};
1971
aecff692
PM
1972static void armv7m_nvic_reset(DeviceState *dev)
1973{
331f4bae 1974 int resetprio;
f797c075 1975 NVICState *s = NVIC(dev);
da6d674e 1976
8ff26a33
PM
1977 memset(s->vectors, 0, sizeof(s->vectors));
1978 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
1979 s->prigroup[M_REG_NS] = 0;
1980 s->prigroup[M_REG_S] = 0;
1981
da6d674e 1982 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
da6d674e
MD
1983 /* MEM, BUS, and USAGE are enabled through
1984 * the System Handler Control register
b3387ede 1985 */
da6d674e
MD
1986 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
1987 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
1988 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
1989 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
1990
331f4bae
PM
1991 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
1992 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
da6d674e
MD
1993 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
1994 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
1995
17906a16
PM
1996 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
1997 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
1998 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
1999 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2000 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2001
2002 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2003 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
7208b426
PM
2004 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2005 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2006 } else {
2007 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
17906a16
PM
2008 }
2009
da6d674e
MD
2010 /* Strictly speaking the reset handler should be enabled.
2011 * However, we don't simulate soft resets through the NVIC,
2012 * and the reset vector should never be pended.
2013 * So we leave it disabled to catch logic errors.
2014 */
2015
2016 s->exception_prio = NVIC_NOEXC_PRIO;
2017 s->vectpending = 0;
e93bc2ac 2018 s->vectpending_is_s_banked = false;
5255fcf8 2019 s->vectpending_prio = NVIC_NOEXC_PRIO;
e1be0a57
PM
2020
2021 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2022 memset(s->itns, 0, sizeof(s->itns));
2023 } else {
2024 /* This state is constant and not guest accessible in a non-security
2025 * NVIC; we set the bits to true to avoid having to do a feature
2026 * bit check in the NVIC enable/pend/etc register accessors.
2027 */
2028 int i;
2029
2030 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2031 s->itns[i] = true;
2032 }
2033 }
ff68dacb 2034}
da6d674e 2035
ff68dacb
PM
2036static void nvic_systick_trigger(void *opaque, int n, int level)
2037{
2038 NVICState *s = opaque;
2039
2040 if (level) {
2041 /* SysTick just asked us to pend its exception.
2042 * (This is different from an external interrupt line's
2043 * behaviour.)
27f26bfe
PM
2044 * n == 0 : NonSecure systick
2045 * n == 1 : Secure systick
ff68dacb 2046 */
27f26bfe 2047 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
ff68dacb 2048 }
aecff692
PM
2049}
2050
53111180 2051static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
9ee6e8bb 2052{
f797c075 2053 NVICState *s = NVIC(dev);
ff68dacb 2054 Error *err = NULL;
f104919d 2055 int regionlen;
9ee6e8bb 2056
d713ea6c
MD
2057 s->cpu = ARM_CPU(qemu_get_cpu(0));
2058 assert(s->cpu);
da6d674e
MD
2059
2060 if (s->num_irq > NVIC_MAX_IRQ) {
2061 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
53111180
PM
2062 return;
2063 }
da6d674e
MD
2064
2065 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2066
2067 /* include space for internal exception vectors */
2068 s->num_irq += NVIC_FIRST_IRQ;
2069
27f26bfe
PM
2070 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2071 "realized", &err);
ff68dacb
PM
2072 if (err != NULL) {
2073 error_propagate(errp, err);
2074 return;
2075 }
27f26bfe
PM
2076 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2077 qdev_get_gpio_in_named(dev, "systick-trigger",
2078 M_REG_NS));
2079
2080 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2081 /* We couldn't init the secure systick device in instance_init
2082 * as we didn't know then if the CPU had the security extensions;
2083 * so we have to do it here.
2084 */
2085 object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2086 TYPE_SYSTICK);
2087 qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2088
2089 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2090 "realized", &err);
2091 if (err != NULL) {
2092 error_propagate(errp, err);
2093 return;
2094 }
2095 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2096 qdev_get_gpio_in_named(dev, "systick-trigger",
2097 M_REG_S));
2098 }
ff68dacb 2099
da6d674e
MD
2100 /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2101 * and looks like this:
2102 * 0x004 - ICTR
ff68dacb 2103 * 0x010 - 0xff - systick
da6d674e
MD
2104 * 0x100..0x7ec - NVIC
2105 * 0x7f0..0xcff - Reserved
2106 * 0xd00..0xd3c - SCS registers
2107 * 0xd40..0xeff - Reserved or Not implemented
2108 * 0xf00 - STIR
f104919d
PM
2109 *
2110 * Some registers within this space are banked between security states.
2111 * In v8M there is a second range 0xe002e000..0xe002efff which is the
2112 * NonSecure alias SCS; secure accesses to this behave like NS accesses
2113 * to the main SCS range, and non-secure accesses (including when
2114 * the security extension is not implemented) are RAZ/WI.
2115 * Note that both the main SCS range and the alias range are defined
2116 * to be exempt from memory attribution (R_BLJT) and so the memory
2117 * transaction attribute always matches the current CPU security
2118 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2119 * wrappers we change attrs.secure to indicate the NS access; so
2120 * generally code determining which banked register to use should
2121 * use attrs.secure; code determining actual behaviour of the system
2122 * should use env->v7m.secure.
2a29ddee 2123 */
f104919d
PM
2124 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2125 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2a29ddee
PM
2126 /* The system register region goes at the bottom of the priority
2127 * stack as it covers the whole page.
2128 */
1437c94b 2129 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2a29ddee
PM
2130 "nvic_sysregs", 0x1000);
2131 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
27f26bfe
PM
2132
2133 memory_region_init_io(&s->systickmem, OBJECT(s),
2134 &nvic_systick_ops, s,
2135 "nvic_systick", 0xe0);
2136
ff68dacb 2137 memory_region_add_subregion_overlap(&s->container, 0x10,
27f26bfe 2138 &s->systickmem, 1);
da6d674e 2139
f104919d
PM
2140 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2141 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
62f01848 2142 &nvic_sysreg_ns_ops, &s->sysregmem,
f104919d
PM
2143 "nvic_sysregs_ns", 0x1000);
2144 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
27f26bfe
PM
2145 memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2146 &nvic_sysreg_ns_ops, &s->systickmem,
2147 "nvic_systick_ns", 0xe0);
2148 memory_region_add_subregion_overlap(&s->container, 0x20010,
2149 &s->systick_ns_mem, 1);
f104919d
PM
2150 }
2151
98957a94 2152 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
9ee6e8bb 2153}
fe7e8758 2154
55e00a19
PM
2155static void armv7m_nvic_instance_init(Object *obj)
2156{
2157 /* We have a different default value for the num-irq property
2158 * than our superclass. This function runs after qdev init
2159 * has set the defaults from the Property array and before
2160 * any user-specified property setting, so just modify the
fae15286 2161 * value in the GICState struct.
55e00a19 2162 */
e192becd 2163 DeviceState *dev = DEVICE(obj);
f797c075 2164 NVICState *nvic = NVIC(obj);
da6d674e
MD
2165 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2166
27f26bfe
PM
2167 object_initialize(&nvic->systick[M_REG_NS],
2168 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2169 qdev_set_parent_bus(DEVICE(&nvic->systick[M_REG_NS]), sysbus_get_default());
2170 /* We can't initialize the secure systick here, as we don't know
2171 * yet if we need it.
2172 */
ff68dacb 2173
da6d674e 2174 sysbus_init_irq(sbd, &nvic->excpout);
e192becd 2175 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
27f26bfe
PM
2176 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2177 M_REG_NUM_BANKS);
55e00a19 2178}
39bffca2 2179
999e12bb
AL
2180static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2181{
39bffca2 2182 DeviceClass *dc = DEVICE_CLASS(klass);
999e12bb 2183
39bffca2 2184 dc->vmsd = &vmstate_nvic;
da6d674e 2185 dc->props = props_nvic;
aecff692 2186 dc->reset = armv7m_nvic_reset;
53111180 2187 dc->realize = armv7m_nvic_realize;
999e12bb
AL
2188}
2189
8c43a6f0 2190static const TypeInfo armv7m_nvic_info = {
1e8cae4d 2191 .name = TYPE_NVIC,
da6d674e 2192 .parent = TYPE_SYS_BUS_DEVICE,
55e00a19 2193 .instance_init = armv7m_nvic_instance_init,
f797c075 2194 .instance_size = sizeof(NVICState),
39bffca2 2195 .class_init = armv7m_nvic_class_init,
da6d674e 2196 .class_size = sizeof(SysBusDeviceClass),
a32134aa
ML
2197};
2198
83f7d43a 2199static void armv7m_nvic_register_types(void)
fe7e8758 2200{
39bffca2 2201 type_register_static(&armv7m_nvic_info);
fe7e8758
PB
2202}
2203
83f7d43a 2204type_init(armv7m_nvic_register_types)
This page took 1.067214 seconds and 4 git commands to generate.