]>
Commit | Line | Data |
---|---|---|
b197ebd4 PM |
1 | /* |
2 | * ARM implementation of KVM hooks, 32 bit specific code. | |
3 | * | |
4 | * Copyright Christoffer Dall 2009-2010 | |
5 | * | |
6 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
7 | * See the COPYING file in the top-level directory. | |
8 | * | |
9 | */ | |
10 | ||
11 | #include <stdio.h> | |
12 | #include <sys/types.h> | |
13 | #include <sys/ioctl.h> | |
14 | #include <sys/mman.h> | |
15 | ||
16 | #include <linux/kvm.h> | |
17 | ||
18 | #include "qemu-common.h" | |
19 | #include "qemu/timer.h" | |
20 | #include "sysemu/sysemu.h" | |
21 | #include "sysemu/kvm.h" | |
22 | #include "kvm_arm.h" | |
23 | #include "cpu.h" | |
ccd38087 | 24 | #include "internals.h" |
b197ebd4 PM |
25 | #include "hw/arm/arm.h" |
26 | ||
27 | static inline void set_feature(uint64_t *features, int feature) | |
28 | { | |
29 | *features |= 1ULL << feature; | |
30 | } | |
31 | ||
32 | bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc) | |
33 | { | |
34 | /* Identify the feature bits corresponding to the host CPU, and | |
35 | * fill out the ARMHostCPUClass fields accordingly. To do this | |
36 | * we have to create a scratch VM, create a single CPU inside it, | |
37 | * and then query that CPU for the relevant ID registers. | |
38 | */ | |
39 | int i, ret, fdarray[3]; | |
40 | uint32_t midr, id_pfr0, id_isar0, mvfr1; | |
41 | uint64_t features = 0; | |
42 | /* Old kernels may not know about the PREFERRED_TARGET ioctl: however | |
43 | * we know these will only support creating one kind of guest CPU, | |
44 | * which is its preferred CPU type. | |
45 | */ | |
46 | static const uint32_t cpus_to_try[] = { | |
47 | QEMU_KVM_ARM_TARGET_CORTEX_A15, | |
48 | QEMU_KVM_ARM_TARGET_NONE | |
49 | }; | |
50 | struct kvm_vcpu_init init; | |
51 | struct kvm_one_reg idregs[] = { | |
52 | { | |
53 | .id = KVM_REG_ARM | KVM_REG_SIZE_U32 | |
51a79b03 | 54 | | ENCODE_CP_REG(15, 0, 0, 0, 0, 0, 0), |
b197ebd4 PM |
55 | .addr = (uintptr_t)&midr, |
56 | }, | |
57 | { | |
58 | .id = KVM_REG_ARM | KVM_REG_SIZE_U32 | |
51a79b03 | 59 | | ENCODE_CP_REG(15, 0, 0, 0, 1, 0, 0), |
b197ebd4 PM |
60 | .addr = (uintptr_t)&id_pfr0, |
61 | }, | |
62 | { | |
63 | .id = KVM_REG_ARM | KVM_REG_SIZE_U32 | |
51a79b03 | 64 | | ENCODE_CP_REG(15, 0, 0, 0, 2, 0, 0), |
b197ebd4 PM |
65 | .addr = (uintptr_t)&id_isar0, |
66 | }, | |
67 | { | |
68 | .id = KVM_REG_ARM | KVM_REG_SIZE_U32 | |
69 | | KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1, | |
70 | .addr = (uintptr_t)&mvfr1, | |
71 | }, | |
72 | }; | |
73 | ||
74 | if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) { | |
75 | return false; | |
76 | } | |
77 | ||
78 | ahcc->target = init.target; | |
79 | ||
80 | /* This is not strictly blessed by the device tree binding docs yet, | |
81 | * but in practice the kernel does not care about this string so | |
82 | * there is no point maintaining an KVM_ARM_TARGET_* -> string table. | |
83 | */ | |
84 | ahcc->dtb_compatible = "arm,arm-v7"; | |
85 | ||
86 | for (i = 0; i < ARRAY_SIZE(idregs); i++) { | |
87 | ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &idregs[i]); | |
88 | if (ret) { | |
89 | break; | |
90 | } | |
91 | } | |
92 | ||
93 | kvm_arm_destroy_scratch_host_vcpu(fdarray); | |
94 | ||
95 | if (ret) { | |
96 | return false; | |
97 | } | |
98 | ||
99 | /* Now we've retrieved all the register information we can | |
100 | * set the feature bits based on the ID register fields. | |
101 | * We can assume any KVM supporting CPU is at least a v7 | |
102 | * with VFPv3, LPAE and the generic timers; this in turn implies | |
103 | * most of the other feature bits, but a few must be tested. | |
104 | */ | |
105 | set_feature(&features, ARM_FEATURE_V7); | |
106 | set_feature(&features, ARM_FEATURE_VFP3); | |
107 | set_feature(&features, ARM_FEATURE_LPAE); | |
108 | set_feature(&features, ARM_FEATURE_GENERIC_TIMER); | |
109 | ||
110 | switch (extract32(id_isar0, 24, 4)) { | |
111 | case 1: | |
112 | set_feature(&features, ARM_FEATURE_THUMB_DIV); | |
113 | break; | |
114 | case 2: | |
115 | set_feature(&features, ARM_FEATURE_ARM_DIV); | |
116 | set_feature(&features, ARM_FEATURE_THUMB_DIV); | |
117 | break; | |
118 | default: | |
119 | break; | |
120 | } | |
121 | ||
122 | if (extract32(id_pfr0, 12, 4) == 1) { | |
123 | set_feature(&features, ARM_FEATURE_THUMB2EE); | |
124 | } | |
125 | if (extract32(mvfr1, 20, 4) == 1) { | |
126 | set_feature(&features, ARM_FEATURE_VFP_FP16); | |
127 | } | |
128 | if (extract32(mvfr1, 12, 4) == 1) { | |
129 | set_feature(&features, ARM_FEATURE_NEON); | |
130 | } | |
131 | if (extract32(mvfr1, 28, 4) == 1) { | |
132 | /* FMAC support implies VFPv4 */ | |
133 | set_feature(&features, ARM_FEATURE_VFP4); | |
134 | } | |
135 | ||
136 | ahcc->features = features; | |
137 | ||
138 | return true; | |
139 | } | |
140 | ||
38df27c8 | 141 | bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx) |
b197ebd4 PM |
142 | { |
143 | /* Return true if the regidx is a register we should synchronize | |
144 | * via the cpreg_tuples array (ie is not a core reg we sync by | |
145 | * hand in kvm_arch_get/put_registers()) | |
146 | */ | |
147 | switch (regidx & KVM_REG_ARM_COPROC_MASK) { | |
148 | case KVM_REG_ARM_CORE: | |
149 | case KVM_REG_ARM_VFP: | |
150 | return false; | |
151 | default: | |
152 | return true; | |
153 | } | |
154 | } | |
155 | ||
4b7a6bf4 CD |
156 | typedef struct CPRegStateLevel { |
157 | uint64_t regidx; | |
158 | int level; | |
159 | } CPRegStateLevel; | |
160 | ||
161 | /* All coprocessor registers not listed in the following table are assumed to | |
162 | * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less | |
163 | * often, you must add it to this table with a state of either | |
164 | * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE. | |
165 | */ | |
166 | static const CPRegStateLevel non_runtime_cpregs[] = { | |
167 | { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE }, | |
168 | }; | |
169 | ||
170 | int kvm_arm_cpreg_level(uint64_t regidx) | |
171 | { | |
172 | int i; | |
173 | ||
174 | for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) { | |
175 | const CPRegStateLevel *l = &non_runtime_cpregs[i]; | |
176 | if (l->regidx == regidx) { | |
177 | return l->level; | |
178 | } | |
179 | } | |
180 | ||
181 | return KVM_PUT_RUNTIME_STATE; | |
182 | } | |
183 | ||
eb5e1d3c PF |
184 | #define ARM_CPU_ID_MPIDR 0, 0, 0, 5 |
185 | ||
b197ebd4 PM |
186 | int kvm_arch_init_vcpu(CPUState *cs) |
187 | { | |
38df27c8 | 188 | int ret; |
b197ebd4 | 189 | uint64_t v; |
eb5e1d3c | 190 | uint32_t mpidr; |
b197ebd4 | 191 | struct kvm_one_reg r; |
b197ebd4 PM |
192 | ARMCPU *cpu = ARM_CPU(cs); |
193 | ||
194 | if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) { | |
195 | fprintf(stderr, "KVM is not supported for this guest CPU type\n"); | |
196 | return -EINVAL; | |
197 | } | |
198 | ||
228d5e04 PS |
199 | /* Determine init features for this CPU */ |
200 | memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features)); | |
b197ebd4 | 201 | if (cpu->start_powered_off) { |
228d5e04 | 202 | cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF; |
b197ebd4 | 203 | } |
7cd62e53 | 204 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) { |
dd032e34 | 205 | cpu->psci_version = 2; |
7cd62e53 PS |
206 | cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2; |
207 | } | |
228d5e04 PS |
208 | |
209 | /* Do KVM_ARM_VCPU_INIT ioctl */ | |
210 | ret = kvm_arm_vcpu_init(cs); | |
b197ebd4 PM |
211 | if (ret) { |
212 | return ret; | |
213 | } | |
228d5e04 | 214 | |
b197ebd4 PM |
215 | /* Query the kernel to make sure it supports 32 VFP |
216 | * registers: QEMU's "cortex-a15" CPU is always a | |
217 | * VFP-D32 core. The simplest way to do this is just | |
218 | * to attempt to read register d31. | |
219 | */ | |
220 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31; | |
221 | r.addr = (uintptr_t)(&v); | |
222 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
223 | if (ret == -ENOENT) { | |
224 | return -EINVAL; | |
225 | } | |
226 | ||
eb5e1d3c PF |
227 | /* |
228 | * When KVM is in use, PSCI is emulated in-kernel and not by qemu. | |
229 | * Currently KVM has its own idea about MPIDR assignment, so we | |
230 | * override our defaults with what we get from KVM. | |
231 | */ | |
232 | ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr); | |
233 | if (ret) { | |
234 | return ret; | |
235 | } | |
0f4a9e45 | 236 | cpu->mp_affinity = mpidr & ARM32_AFFINITY_MASK; |
eb5e1d3c | 237 | |
38df27c8 | 238 | return kvm_arm_init_cpreg_list(cpu); |
b197ebd4 PM |
239 | } |
240 | ||
241 | typedef struct Reg { | |
242 | uint64_t id; | |
243 | int offset; | |
244 | } Reg; | |
245 | ||
246 | #define COREREG(KERNELNAME, QEMUFIELD) \ | |
247 | { \ | |
248 | KVM_REG_ARM | KVM_REG_SIZE_U32 | \ | |
249 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \ | |
250 | offsetof(CPUARMState, QEMUFIELD) \ | |
251 | } | |
252 | ||
253 | #define VFPSYSREG(R) \ | |
254 | { \ | |
255 | KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \ | |
256 | KVM_REG_ARM_VFP_##R, \ | |
257 | offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \ | |
258 | } | |
259 | ||
a65f1de9 PM |
260 | /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */ |
261 | #define COREREG64(KERNELNAME, QEMUFIELD) \ | |
262 | { \ | |
263 | KVM_REG_ARM | KVM_REG_SIZE_U32 | \ | |
264 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \ | |
265 | offsetoflow32(CPUARMState, QEMUFIELD) \ | |
266 | } | |
267 | ||
b197ebd4 PM |
268 | static const Reg regs[] = { |
269 | /* R0_usr .. R14_usr */ | |
270 | COREREG(usr_regs.uregs[0], regs[0]), | |
271 | COREREG(usr_regs.uregs[1], regs[1]), | |
272 | COREREG(usr_regs.uregs[2], regs[2]), | |
273 | COREREG(usr_regs.uregs[3], regs[3]), | |
274 | COREREG(usr_regs.uregs[4], regs[4]), | |
275 | COREREG(usr_regs.uregs[5], regs[5]), | |
276 | COREREG(usr_regs.uregs[6], regs[6]), | |
277 | COREREG(usr_regs.uregs[7], regs[7]), | |
278 | COREREG(usr_regs.uregs[8], usr_regs[0]), | |
279 | COREREG(usr_regs.uregs[9], usr_regs[1]), | |
280 | COREREG(usr_regs.uregs[10], usr_regs[2]), | |
281 | COREREG(usr_regs.uregs[11], usr_regs[3]), | |
282 | COREREG(usr_regs.uregs[12], usr_regs[4]), | |
283 | COREREG(usr_regs.uregs[13], banked_r13[0]), | |
284 | COREREG(usr_regs.uregs[14], banked_r14[0]), | |
285 | /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */ | |
286 | COREREG(svc_regs[0], banked_r13[1]), | |
287 | COREREG(svc_regs[1], banked_r14[1]), | |
a65f1de9 | 288 | COREREG64(svc_regs[2], banked_spsr[1]), |
b197ebd4 PM |
289 | COREREG(abt_regs[0], banked_r13[2]), |
290 | COREREG(abt_regs[1], banked_r14[2]), | |
a65f1de9 | 291 | COREREG64(abt_regs[2], banked_spsr[2]), |
b197ebd4 PM |
292 | COREREG(und_regs[0], banked_r13[3]), |
293 | COREREG(und_regs[1], banked_r14[3]), | |
a65f1de9 | 294 | COREREG64(und_regs[2], banked_spsr[3]), |
b197ebd4 PM |
295 | COREREG(irq_regs[0], banked_r13[4]), |
296 | COREREG(irq_regs[1], banked_r14[4]), | |
a65f1de9 | 297 | COREREG64(irq_regs[2], banked_spsr[4]), |
b197ebd4 PM |
298 | /* R8_fiq .. R14_fiq and SPSR_fiq */ |
299 | COREREG(fiq_regs[0], fiq_regs[0]), | |
300 | COREREG(fiq_regs[1], fiq_regs[1]), | |
301 | COREREG(fiq_regs[2], fiq_regs[2]), | |
302 | COREREG(fiq_regs[3], fiq_regs[3]), | |
303 | COREREG(fiq_regs[4], fiq_regs[4]), | |
304 | COREREG(fiq_regs[5], banked_r13[5]), | |
305 | COREREG(fiq_regs[6], banked_r14[5]), | |
a65f1de9 | 306 | COREREG64(fiq_regs[7], banked_spsr[5]), |
b197ebd4 PM |
307 | /* R15 */ |
308 | COREREG(usr_regs.uregs[15], regs[15]), | |
309 | /* VFP system registers */ | |
310 | VFPSYSREG(FPSID), | |
311 | VFPSYSREG(MVFR1), | |
312 | VFPSYSREG(MVFR0), | |
313 | VFPSYSREG(FPEXC), | |
314 | VFPSYSREG(FPINST), | |
315 | VFPSYSREG(FPINST2), | |
316 | }; | |
317 | ||
318 | int kvm_arch_put_registers(CPUState *cs, int level) | |
319 | { | |
320 | ARMCPU *cpu = ARM_CPU(cs); | |
321 | CPUARMState *env = &cpu->env; | |
322 | struct kvm_one_reg r; | |
323 | int mode, bn; | |
324 | int ret, i; | |
325 | uint32_t cpsr, fpscr; | |
326 | ||
327 | /* Make sure the banked regs are properly set */ | |
328 | mode = env->uncached_cpsr & CPSR_M; | |
329 | bn = bank_number(mode); | |
330 | if (mode == ARM_CPU_MODE_FIQ) { | |
331 | memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
332 | } else { | |
333 | memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | |
334 | } | |
335 | env->banked_r13[bn] = env->regs[13]; | |
336 | env->banked_r14[bn] = env->regs[14]; | |
337 | env->banked_spsr[bn] = env->spsr; | |
338 | ||
339 | /* Now we can safely copy stuff down to the kernel */ | |
340 | for (i = 0; i < ARRAY_SIZE(regs); i++) { | |
341 | r.id = regs[i].id; | |
342 | r.addr = (uintptr_t)(env) + regs[i].offset; | |
343 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
344 | if (ret) { | |
345 | return ret; | |
346 | } | |
347 | } | |
348 | ||
349 | /* Special cases which aren't a single CPUARMState field */ | |
350 | cpsr = cpsr_read(env); | |
351 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | | |
352 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr); | |
353 | r.addr = (uintptr_t)(&cpsr); | |
354 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
355 | if (ret) { | |
356 | return ret; | |
357 | } | |
358 | ||
359 | /* VFP registers */ | |
360 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP; | |
361 | for (i = 0; i < 32; i++) { | |
362 | r.addr = (uintptr_t)(&env->vfp.regs[i]); | |
363 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
364 | if (ret) { | |
365 | return ret; | |
366 | } | |
367 | r.id++; | |
368 | } | |
369 | ||
370 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | | |
371 | KVM_REG_ARM_VFP_FPSCR; | |
372 | fpscr = vfp_get_fpscr(env); | |
373 | r.addr = (uintptr_t)&fpscr; | |
374 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
375 | if (ret) { | |
376 | return ret; | |
377 | } | |
378 | ||
379 | /* Note that we do not call write_cpustate_to_list() | |
380 | * here, so we are only writing the tuple list back to | |
381 | * KVM. This is safe because nothing can change the | |
382 | * CPUARMState cp15 fields (in particular gdb accesses cannot) | |
383 | * and so there are no changes to sync. In fact syncing would | |
384 | * be wrong at this point: for a constant register where TCG and | |
385 | * KVM disagree about its value, the preceding write_list_to_cpustate() | |
386 | * would not have had any effect on the CPUARMState value (since the | |
387 | * register is read-only), and a write_cpustate_to_list() here would | |
388 | * then try to write the TCG value back into KVM -- this would either | |
389 | * fail or incorrectly change the value the guest sees. | |
390 | * | |
391 | * If we ever want to allow the user to modify cp15 registers via | |
392 | * the gdb stub, we would need to be more clever here (for instance | |
393 | * tracking the set of registers kvm_arch_get_registers() successfully | |
394 | * managed to update the CPUARMState with, and only allowing those | |
395 | * to be written back up into the kernel). | |
396 | */ | |
4b7a6bf4 | 397 | if (!write_list_to_kvmstate(cpu, level)) { |
b197ebd4 PM |
398 | return EINVAL; |
399 | } | |
400 | ||
1a1753f7 AB |
401 | kvm_arm_sync_mpstate_to_kvm(cpu); |
402 | ||
b197ebd4 PM |
403 | return ret; |
404 | } | |
405 | ||
406 | int kvm_arch_get_registers(CPUState *cs) | |
407 | { | |
408 | ARMCPU *cpu = ARM_CPU(cs); | |
409 | CPUARMState *env = &cpu->env; | |
410 | struct kvm_one_reg r; | |
411 | int mode, bn; | |
412 | int ret, i; | |
413 | uint32_t cpsr, fpscr; | |
414 | ||
415 | for (i = 0; i < ARRAY_SIZE(regs); i++) { | |
416 | r.id = regs[i].id; | |
417 | r.addr = (uintptr_t)(env) + regs[i].offset; | |
418 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
419 | if (ret) { | |
420 | return ret; | |
421 | } | |
422 | } | |
423 | ||
424 | /* Special cases which aren't a single CPUARMState field */ | |
425 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | | |
426 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr); | |
427 | r.addr = (uintptr_t)(&cpsr); | |
428 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
429 | if (ret) { | |
430 | return ret; | |
431 | } | |
432 | cpsr_write(env, cpsr, 0xffffffff); | |
433 | ||
434 | /* Make sure the current mode regs are properly set */ | |
435 | mode = env->uncached_cpsr & CPSR_M; | |
436 | bn = bank_number(mode); | |
437 | if (mode == ARM_CPU_MODE_FIQ) { | |
438 | memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); | |
439 | } else { | |
440 | memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); | |
441 | } | |
442 | env->regs[13] = env->banked_r13[bn]; | |
443 | env->regs[14] = env->banked_r14[bn]; | |
444 | env->spsr = env->banked_spsr[bn]; | |
445 | ||
446 | /* VFP registers */ | |
447 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP; | |
448 | for (i = 0; i < 32; i++) { | |
449 | r.addr = (uintptr_t)(&env->vfp.regs[i]); | |
450 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
451 | if (ret) { | |
452 | return ret; | |
453 | } | |
454 | r.id++; | |
455 | } | |
456 | ||
457 | r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | | |
458 | KVM_REG_ARM_VFP_FPSCR; | |
459 | r.addr = (uintptr_t)&fpscr; | |
460 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
461 | if (ret) { | |
462 | return ret; | |
463 | } | |
464 | vfp_set_fpscr(env, fpscr); | |
465 | ||
466 | if (!write_kvmstate_to_list(cpu)) { | |
467 | return EINVAL; | |
468 | } | |
469 | /* Note that it's OK to have registers which aren't in CPUState, | |
470 | * so we can ignore a failure return here. | |
471 | */ | |
472 | write_list_to_cpustate(cpu); | |
473 | ||
1a1753f7 AB |
474 | kvm_arm_sync_mpstate_to_qemu(cpu); |
475 | ||
b197ebd4 PM |
476 | return 0; |
477 | } |