]>
Commit | Line | Data |
---|---|---|
3e308f20 DB |
1 | /* |
2 | * QEMU Crypto block device encryption LUKS format | |
3 | * | |
4 | * Copyright (c) 2015-2016 Red Hat, Inc. | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | * | |
19 | */ | |
20 | ||
21 | #include "qemu/osdep.h" | |
da34e65c | 22 | #include "qapi/error.h" |
3e308f20 DB |
23 | |
24 | #include "crypto/block-luks.h" | |
25 | ||
26 | #include "crypto/hash.h" | |
27 | #include "crypto/afsplit.h" | |
28 | #include "crypto/pbkdf.h" | |
29 | #include "crypto/secret.h" | |
30 | #include "crypto/random.h" | |
31 | ||
32 | #ifdef CONFIG_UUID | |
33 | #include <uuid/uuid.h> | |
34 | #endif | |
35 | ||
36 | #include "qemu/coroutine.h" | |
37 | ||
38 | /* | |
39 | * Reference for the LUKS format implemented here is | |
40 | * | |
41 | * docs/on-disk-format.pdf | |
42 | * | |
43 | * in 'cryptsetup' package source code | |
44 | * | |
45 | * This file implements the 1.2.1 specification, dated | |
46 | * Oct 16, 2011. | |
47 | */ | |
48 | ||
49 | typedef struct QCryptoBlockLUKS QCryptoBlockLUKS; | |
50 | typedef struct QCryptoBlockLUKSHeader QCryptoBlockLUKSHeader; | |
51 | typedef struct QCryptoBlockLUKSKeySlot QCryptoBlockLUKSKeySlot; | |
52 | ||
53 | ||
54 | /* The following constants are all defined by the LUKS spec */ | |
55 | #define QCRYPTO_BLOCK_LUKS_VERSION 1 | |
56 | ||
57 | #define QCRYPTO_BLOCK_LUKS_MAGIC_LEN 6 | |
58 | #define QCRYPTO_BLOCK_LUKS_CIPHER_NAME_LEN 32 | |
59 | #define QCRYPTO_BLOCK_LUKS_CIPHER_MODE_LEN 32 | |
60 | #define QCRYPTO_BLOCK_LUKS_HASH_SPEC_LEN 32 | |
61 | #define QCRYPTO_BLOCK_LUKS_DIGEST_LEN 20 | |
62 | #define QCRYPTO_BLOCK_LUKS_SALT_LEN 32 | |
63 | #define QCRYPTO_BLOCK_LUKS_UUID_LEN 40 | |
64 | #define QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS 8 | |
65 | #define QCRYPTO_BLOCK_LUKS_STRIPES 4000 | |
66 | #define QCRYPTO_BLOCK_LUKS_MIN_SLOT_KEY_ITERS 1000 | |
67 | #define QCRYPTO_BLOCK_LUKS_MIN_MASTER_KEY_ITERS 1000 | |
68 | #define QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET 4096 | |
69 | ||
70 | #define QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED 0x0000DEAD | |
71 | #define QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED 0x00AC71F3 | |
72 | ||
73 | #define QCRYPTO_BLOCK_LUKS_SECTOR_SIZE 512LL | |
74 | ||
75 | static const char qcrypto_block_luks_magic[QCRYPTO_BLOCK_LUKS_MAGIC_LEN] = { | |
76 | 'L', 'U', 'K', 'S', 0xBA, 0xBE | |
77 | }; | |
78 | ||
79 | typedef struct QCryptoBlockLUKSNameMap QCryptoBlockLUKSNameMap; | |
80 | struct QCryptoBlockLUKSNameMap { | |
81 | const char *name; | |
82 | int id; | |
83 | }; | |
84 | ||
85 | typedef struct QCryptoBlockLUKSCipherSizeMap QCryptoBlockLUKSCipherSizeMap; | |
86 | struct QCryptoBlockLUKSCipherSizeMap { | |
87 | uint32_t key_bytes; | |
88 | int id; | |
89 | }; | |
90 | typedef struct QCryptoBlockLUKSCipherNameMap QCryptoBlockLUKSCipherNameMap; | |
91 | struct QCryptoBlockLUKSCipherNameMap { | |
92 | const char *name; | |
93 | const QCryptoBlockLUKSCipherSizeMap *sizes; | |
94 | }; | |
95 | ||
96 | ||
97 | static const QCryptoBlockLUKSCipherSizeMap | |
98 | qcrypto_block_luks_cipher_size_map_aes[] = { | |
99 | { 16, QCRYPTO_CIPHER_ALG_AES_128 }, | |
100 | { 24, QCRYPTO_CIPHER_ALG_AES_192 }, | |
101 | { 32, QCRYPTO_CIPHER_ALG_AES_256 }, | |
102 | { 0, 0 }, | |
103 | }; | |
104 | ||
105 | static const QCryptoBlockLUKSCipherSizeMap | |
106 | qcrypto_block_luks_cipher_size_map_cast5[] = { | |
107 | { 16, QCRYPTO_CIPHER_ALG_CAST5_128 }, | |
108 | { 0, 0 }, | |
109 | }; | |
110 | ||
111 | static const QCryptoBlockLUKSCipherSizeMap | |
112 | qcrypto_block_luks_cipher_size_map_serpent[] = { | |
113 | { 16, QCRYPTO_CIPHER_ALG_SERPENT_128 }, | |
114 | { 24, QCRYPTO_CIPHER_ALG_SERPENT_192 }, | |
115 | { 32, QCRYPTO_CIPHER_ALG_SERPENT_256 }, | |
116 | { 0, 0 }, | |
117 | }; | |
118 | ||
119 | static const QCryptoBlockLUKSCipherSizeMap | |
120 | qcrypto_block_luks_cipher_size_map_twofish[] = { | |
121 | { 16, QCRYPTO_CIPHER_ALG_TWOFISH_128 }, | |
122 | { 24, QCRYPTO_CIPHER_ALG_TWOFISH_192 }, | |
123 | { 32, QCRYPTO_CIPHER_ALG_TWOFISH_256 }, | |
124 | { 0, 0 }, | |
125 | }; | |
126 | ||
127 | static const QCryptoBlockLUKSCipherNameMap | |
128 | qcrypto_block_luks_cipher_name_map[] = { | |
129 | { "aes", qcrypto_block_luks_cipher_size_map_aes }, | |
130 | { "cast5", qcrypto_block_luks_cipher_size_map_cast5 }, | |
131 | { "serpent", qcrypto_block_luks_cipher_size_map_serpent }, | |
132 | { "twofish", qcrypto_block_luks_cipher_size_map_twofish }, | |
133 | }; | |
134 | ||
135 | ||
136 | /* | |
137 | * This struct is written to disk in big-endian format, | |
138 | * but operated upon in native-endian format. | |
139 | */ | |
140 | struct QCryptoBlockLUKSKeySlot { | |
141 | /* state of keyslot, enabled/disable */ | |
142 | uint32_t active; | |
143 | /* iterations for PBKDF2 */ | |
144 | uint32_t iterations; | |
145 | /* salt for PBKDF2 */ | |
146 | uint8_t salt[QCRYPTO_BLOCK_LUKS_SALT_LEN]; | |
147 | /* start sector of key material */ | |
148 | uint32_t key_offset; | |
149 | /* number of anti-forensic stripes */ | |
150 | uint32_t stripes; | |
151 | } QEMU_PACKED; | |
152 | ||
153 | QEMU_BUILD_BUG_ON(sizeof(struct QCryptoBlockLUKSKeySlot) != 48); | |
154 | ||
155 | ||
156 | /* | |
157 | * This struct is written to disk in big-endian format, | |
158 | * but operated upon in native-endian format. | |
159 | */ | |
160 | struct QCryptoBlockLUKSHeader { | |
161 | /* 'L', 'U', 'K', 'S', '0xBA', '0xBE' */ | |
162 | char magic[QCRYPTO_BLOCK_LUKS_MAGIC_LEN]; | |
163 | ||
164 | /* LUKS version, currently 1 */ | |
165 | uint16_t version; | |
166 | ||
167 | /* cipher name specification (aes, etc) */ | |
168 | char cipher_name[QCRYPTO_BLOCK_LUKS_CIPHER_NAME_LEN]; | |
169 | ||
170 | /* cipher mode specification (cbc-plain, xts-essiv:sha256, etc) */ | |
171 | char cipher_mode[QCRYPTO_BLOCK_LUKS_CIPHER_MODE_LEN]; | |
172 | ||
173 | /* hash specification (sha256, etc) */ | |
174 | char hash_spec[QCRYPTO_BLOCK_LUKS_HASH_SPEC_LEN]; | |
175 | ||
176 | /* start offset of the volume data (in 512 byte sectors) */ | |
177 | uint32_t payload_offset; | |
178 | ||
179 | /* Number of key bytes */ | |
180 | uint32_t key_bytes; | |
181 | ||
182 | /* master key checksum after PBKDF2 */ | |
183 | uint8_t master_key_digest[QCRYPTO_BLOCK_LUKS_DIGEST_LEN]; | |
184 | ||
185 | /* salt for master key PBKDF2 */ | |
186 | uint8_t master_key_salt[QCRYPTO_BLOCK_LUKS_SALT_LEN]; | |
187 | ||
188 | /* iterations for master key PBKDF2 */ | |
189 | uint32_t master_key_iterations; | |
190 | ||
191 | /* UUID of the partition in standard ASCII representation */ | |
192 | uint8_t uuid[QCRYPTO_BLOCK_LUKS_UUID_LEN]; | |
193 | ||
194 | /* key slots */ | |
195 | QCryptoBlockLUKSKeySlot key_slots[QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS]; | |
196 | } QEMU_PACKED; | |
197 | ||
198 | QEMU_BUILD_BUG_ON(sizeof(struct QCryptoBlockLUKSHeader) != 592); | |
199 | ||
200 | ||
201 | struct QCryptoBlockLUKS { | |
202 | QCryptoBlockLUKSHeader header; | |
203 | }; | |
204 | ||
205 | ||
206 | static int qcrypto_block_luks_cipher_name_lookup(const char *name, | |
207 | QCryptoCipherMode mode, | |
208 | uint32_t key_bytes, | |
209 | Error **errp) | |
210 | { | |
211 | const QCryptoBlockLUKSCipherNameMap *map = | |
212 | qcrypto_block_luks_cipher_name_map; | |
213 | size_t maplen = G_N_ELEMENTS(qcrypto_block_luks_cipher_name_map); | |
214 | size_t i, j; | |
215 | ||
216 | if (mode == QCRYPTO_CIPHER_MODE_XTS) { | |
217 | key_bytes /= 2; | |
218 | } | |
219 | ||
220 | for (i = 0; i < maplen; i++) { | |
221 | if (!g_str_equal(map[i].name, name)) { | |
222 | continue; | |
223 | } | |
224 | for (j = 0; j < map[i].sizes[j].key_bytes; j++) { | |
225 | if (map[i].sizes[j].key_bytes == key_bytes) { | |
226 | return map[i].sizes[j].id; | |
227 | } | |
228 | } | |
229 | } | |
230 | ||
231 | error_setg(errp, "Algorithm %s with key size %d bytes not supported", | |
232 | name, key_bytes); | |
233 | return 0; | |
234 | } | |
235 | ||
236 | static const char * | |
237 | qcrypto_block_luks_cipher_alg_lookup(QCryptoCipherAlgorithm alg, | |
238 | Error **errp) | |
239 | { | |
240 | const QCryptoBlockLUKSCipherNameMap *map = | |
241 | qcrypto_block_luks_cipher_name_map; | |
242 | size_t maplen = G_N_ELEMENTS(qcrypto_block_luks_cipher_name_map); | |
243 | size_t i, j; | |
244 | for (i = 0; i < maplen; i++) { | |
245 | for (j = 0; j < map[i].sizes[j].key_bytes; j++) { | |
246 | if (map[i].sizes[j].id == alg) { | |
247 | return map[i].name; | |
248 | } | |
249 | } | |
250 | } | |
251 | ||
252 | error_setg(errp, "Algorithm '%s' not supported", | |
253 | QCryptoCipherAlgorithm_lookup[alg]); | |
254 | return NULL; | |
255 | } | |
256 | ||
257 | /* XXX replace with qapi_enum_parse() in future, when we can | |
258 | * make that function emit a more friendly error message */ | |
259 | static int qcrypto_block_luks_name_lookup(const char *name, | |
260 | const char *const *map, | |
261 | size_t maplen, | |
262 | const char *type, | |
263 | Error **errp) | |
264 | { | |
265 | size_t i; | |
266 | for (i = 0; i < maplen; i++) { | |
267 | if (g_str_equal(map[i], name)) { | |
268 | return i; | |
269 | } | |
270 | } | |
271 | ||
272 | error_setg(errp, "%s %s not supported", type, name); | |
273 | return 0; | |
274 | } | |
275 | ||
276 | #define qcrypto_block_luks_cipher_mode_lookup(name, errp) \ | |
277 | qcrypto_block_luks_name_lookup(name, \ | |
278 | QCryptoCipherMode_lookup, \ | |
279 | QCRYPTO_CIPHER_MODE__MAX, \ | |
280 | "Cipher mode", \ | |
281 | errp) | |
282 | ||
283 | #define qcrypto_block_luks_hash_name_lookup(name, errp) \ | |
284 | qcrypto_block_luks_name_lookup(name, \ | |
285 | QCryptoHashAlgorithm_lookup, \ | |
286 | QCRYPTO_HASH_ALG__MAX, \ | |
287 | "Hash algorithm", \ | |
288 | errp) | |
289 | ||
290 | #define qcrypto_block_luks_ivgen_name_lookup(name, errp) \ | |
291 | qcrypto_block_luks_name_lookup(name, \ | |
292 | QCryptoIVGenAlgorithm_lookup, \ | |
293 | QCRYPTO_IVGEN_ALG__MAX, \ | |
294 | "IV generator", \ | |
295 | errp) | |
296 | ||
297 | ||
298 | static bool | |
299 | qcrypto_block_luks_has_format(const uint8_t *buf, | |
300 | size_t buf_size) | |
301 | { | |
302 | const QCryptoBlockLUKSHeader *luks_header = (const void *)buf; | |
303 | ||
304 | if (buf_size >= offsetof(QCryptoBlockLUKSHeader, cipher_name) && | |
305 | memcmp(luks_header->magic, qcrypto_block_luks_magic, | |
306 | QCRYPTO_BLOCK_LUKS_MAGIC_LEN) == 0 && | |
307 | be16_to_cpu(luks_header->version) == QCRYPTO_BLOCK_LUKS_VERSION) { | |
308 | return true; | |
309 | } else { | |
310 | return false; | |
311 | } | |
312 | } | |
313 | ||
314 | ||
315 | /** | |
316 | * Deal with a quirk of dm-crypt usage of ESSIV. | |
317 | * | |
318 | * When calculating ESSIV IVs, the cipher length used by ESSIV | |
319 | * may be different from the cipher length used for the block | |
320 | * encryption, becauses dm-crypt uses the hash digest length | |
321 | * as the key size. ie, if you have AES 128 as the block cipher | |
322 | * and SHA 256 as ESSIV hash, then ESSIV will use AES 256 as | |
323 | * the cipher since that gets a key length matching the digest | |
324 | * size, not AES 128 with truncated digest as might be imagined | |
325 | */ | |
326 | static QCryptoCipherAlgorithm | |
327 | qcrypto_block_luks_essiv_cipher(QCryptoCipherAlgorithm cipher, | |
328 | QCryptoHashAlgorithm hash, | |
329 | Error **errp) | |
330 | { | |
331 | size_t digestlen = qcrypto_hash_digest_len(hash); | |
332 | size_t keylen = qcrypto_cipher_get_key_len(cipher); | |
333 | if (digestlen == keylen) { | |
334 | return cipher; | |
335 | } | |
336 | ||
337 | switch (cipher) { | |
338 | case QCRYPTO_CIPHER_ALG_AES_128: | |
339 | case QCRYPTO_CIPHER_ALG_AES_192: | |
340 | case QCRYPTO_CIPHER_ALG_AES_256: | |
341 | if (digestlen == qcrypto_cipher_get_key_len( | |
342 | QCRYPTO_CIPHER_ALG_AES_128)) { | |
343 | return QCRYPTO_CIPHER_ALG_AES_128; | |
344 | } else if (digestlen == qcrypto_cipher_get_key_len( | |
345 | QCRYPTO_CIPHER_ALG_AES_192)) { | |
346 | return QCRYPTO_CIPHER_ALG_AES_192; | |
347 | } else if (digestlen == qcrypto_cipher_get_key_len( | |
348 | QCRYPTO_CIPHER_ALG_AES_256)) { | |
349 | return QCRYPTO_CIPHER_ALG_AES_256; | |
350 | } else { | |
351 | error_setg(errp, "No AES cipher with key size %zu available", | |
352 | digestlen); | |
353 | return 0; | |
354 | } | |
355 | break; | |
356 | case QCRYPTO_CIPHER_ALG_SERPENT_128: | |
357 | case QCRYPTO_CIPHER_ALG_SERPENT_192: | |
358 | case QCRYPTO_CIPHER_ALG_SERPENT_256: | |
359 | if (digestlen == qcrypto_cipher_get_key_len( | |
360 | QCRYPTO_CIPHER_ALG_SERPENT_128)) { | |
361 | return QCRYPTO_CIPHER_ALG_SERPENT_128; | |
362 | } else if (digestlen == qcrypto_cipher_get_key_len( | |
363 | QCRYPTO_CIPHER_ALG_SERPENT_192)) { | |
364 | return QCRYPTO_CIPHER_ALG_SERPENT_192; | |
365 | } else if (digestlen == qcrypto_cipher_get_key_len( | |
366 | QCRYPTO_CIPHER_ALG_SERPENT_256)) { | |
367 | return QCRYPTO_CIPHER_ALG_SERPENT_256; | |
368 | } else { | |
369 | error_setg(errp, "No Serpent cipher with key size %zu available", | |
370 | digestlen); | |
371 | return 0; | |
372 | } | |
373 | break; | |
374 | case QCRYPTO_CIPHER_ALG_TWOFISH_128: | |
375 | case QCRYPTO_CIPHER_ALG_TWOFISH_192: | |
376 | case QCRYPTO_CIPHER_ALG_TWOFISH_256: | |
377 | if (digestlen == qcrypto_cipher_get_key_len( | |
378 | QCRYPTO_CIPHER_ALG_TWOFISH_128)) { | |
379 | return QCRYPTO_CIPHER_ALG_TWOFISH_128; | |
380 | } else if (digestlen == qcrypto_cipher_get_key_len( | |
381 | QCRYPTO_CIPHER_ALG_TWOFISH_192)) { | |
382 | return QCRYPTO_CIPHER_ALG_TWOFISH_192; | |
383 | } else if (digestlen == qcrypto_cipher_get_key_len( | |
384 | QCRYPTO_CIPHER_ALG_TWOFISH_256)) { | |
385 | return QCRYPTO_CIPHER_ALG_TWOFISH_256; | |
386 | } else { | |
387 | error_setg(errp, "No Twofish cipher with key size %zu available", | |
388 | digestlen); | |
389 | return 0; | |
390 | } | |
391 | break; | |
392 | default: | |
393 | error_setg(errp, "Cipher %s not supported with essiv", | |
394 | QCryptoCipherAlgorithm_lookup[cipher]); | |
395 | return 0; | |
396 | } | |
397 | } | |
398 | ||
399 | /* | |
400 | * Given a key slot, and user password, this will attempt to unlock | |
401 | * the master encryption key from the key slot. | |
402 | * | |
403 | * Returns: | |
404 | * 0 if the key slot is disabled, or key could not be decrypted | |
405 | * with the provided password | |
406 | * 1 if the key slot is enabled, and key decrypted successfully | |
407 | * with the provided password | |
408 | * -1 if a fatal error occurred loading the key | |
409 | */ | |
410 | static int | |
411 | qcrypto_block_luks_load_key(QCryptoBlock *block, | |
412 | QCryptoBlockLUKSKeySlot *slot, | |
413 | const char *password, | |
414 | QCryptoCipherAlgorithm cipheralg, | |
415 | QCryptoCipherMode ciphermode, | |
416 | QCryptoHashAlgorithm hash, | |
417 | QCryptoIVGenAlgorithm ivalg, | |
418 | QCryptoCipherAlgorithm ivcipheralg, | |
419 | QCryptoHashAlgorithm ivhash, | |
420 | uint8_t *masterkey, | |
421 | size_t masterkeylen, | |
422 | QCryptoBlockReadFunc readfunc, | |
423 | void *opaque, | |
424 | Error **errp) | |
425 | { | |
426 | QCryptoBlockLUKS *luks = block->opaque; | |
427 | uint8_t *splitkey; | |
428 | size_t splitkeylen; | |
429 | uint8_t *possiblekey; | |
430 | int ret = -1; | |
431 | ssize_t rv; | |
432 | QCryptoCipher *cipher = NULL; | |
433 | uint8_t keydigest[QCRYPTO_BLOCK_LUKS_DIGEST_LEN]; | |
434 | QCryptoIVGen *ivgen = NULL; | |
435 | size_t niv; | |
436 | ||
437 | if (slot->active != QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED) { | |
438 | return 0; | |
439 | } | |
440 | ||
441 | splitkeylen = masterkeylen * slot->stripes; | |
442 | splitkey = g_new0(uint8_t, splitkeylen); | |
443 | possiblekey = g_new0(uint8_t, masterkeylen); | |
444 | ||
445 | /* | |
446 | * The user password is used to generate a (possible) | |
447 | * decryption key. This may or may not successfully | |
448 | * decrypt the master key - we just blindly assume | |
449 | * the key is correct and validate the results of | |
450 | * decryption later. | |
451 | */ | |
452 | if (qcrypto_pbkdf2(hash, | |
453 | (const uint8_t *)password, strlen(password), | |
454 | slot->salt, QCRYPTO_BLOCK_LUKS_SALT_LEN, | |
455 | slot->iterations, | |
456 | possiblekey, masterkeylen, | |
457 | errp) < 0) { | |
458 | goto cleanup; | |
459 | } | |
460 | ||
461 | /* | |
462 | * We need to read the master key material from the | |
463 | * LUKS key material header. What we're reading is | |
464 | * not the raw master key, but rather the data after | |
465 | * it has been passed through AFSplit and the result | |
466 | * then encrypted. | |
467 | */ | |
468 | rv = readfunc(block, | |
469 | slot->key_offset * QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, | |
470 | splitkey, splitkeylen, | |
471 | errp, | |
472 | opaque); | |
473 | if (rv < 0) { | |
474 | goto cleanup; | |
475 | } | |
476 | ||
477 | ||
478 | /* Setup the cipher/ivgen that we'll use to try to decrypt | |
479 | * the split master key material */ | |
480 | cipher = qcrypto_cipher_new(cipheralg, ciphermode, | |
481 | possiblekey, masterkeylen, | |
482 | errp); | |
483 | if (!cipher) { | |
484 | goto cleanup; | |
485 | } | |
486 | ||
487 | niv = qcrypto_cipher_get_iv_len(cipheralg, | |
488 | ciphermode); | |
489 | ivgen = qcrypto_ivgen_new(ivalg, | |
490 | ivcipheralg, | |
491 | ivhash, | |
492 | possiblekey, masterkeylen, | |
493 | errp); | |
494 | if (!ivgen) { | |
495 | goto cleanup; | |
496 | } | |
497 | ||
498 | ||
499 | /* | |
500 | * The master key needs to be decrypted in the same | |
501 | * way that the block device payload will be decrypted | |
502 | * later. In particular we'll be using the IV generator | |
503 | * to reset the encryption cipher every time the master | |
504 | * key crosses a sector boundary. | |
505 | */ | |
506 | if (qcrypto_block_decrypt_helper(cipher, | |
507 | niv, | |
508 | ivgen, | |
509 | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, | |
510 | 0, | |
511 | splitkey, | |
512 | splitkeylen, | |
513 | errp) < 0) { | |
514 | goto cleanup; | |
515 | } | |
516 | ||
517 | /* | |
518 | * Now we've decrypted the split master key, join | |
519 | * it back together to get the actual master key. | |
520 | */ | |
521 | if (qcrypto_afsplit_decode(hash, | |
522 | masterkeylen, | |
523 | slot->stripes, | |
524 | splitkey, | |
525 | masterkey, | |
526 | errp) < 0) { | |
527 | goto cleanup; | |
528 | } | |
529 | ||
530 | ||
531 | /* | |
532 | * We still don't know that the masterkey we got is valid, | |
533 | * because we just blindly assumed the user's password | |
534 | * was correct. This is where we now verify it. We are | |
535 | * creating a hash of the master key using PBKDF and | |
536 | * then comparing that to the hash stored in the key slot | |
537 | * header | |
538 | */ | |
539 | if (qcrypto_pbkdf2(hash, | |
540 | masterkey, masterkeylen, | |
541 | luks->header.master_key_salt, | |
542 | QCRYPTO_BLOCK_LUKS_SALT_LEN, | |
543 | luks->header.master_key_iterations, | |
544 | keydigest, G_N_ELEMENTS(keydigest), | |
545 | errp) < 0) { | |
546 | goto cleanup; | |
547 | } | |
548 | ||
549 | if (memcmp(keydigest, luks->header.master_key_digest, | |
550 | QCRYPTO_BLOCK_LUKS_DIGEST_LEN) == 0) { | |
551 | /* Success, we got the right master key */ | |
552 | ret = 1; | |
553 | goto cleanup; | |
554 | } | |
555 | ||
556 | /* Fail, user's password was not valid for this key slot, | |
557 | * tell caller to try another slot */ | |
558 | ret = 0; | |
559 | ||
560 | cleanup: | |
561 | qcrypto_ivgen_free(ivgen); | |
562 | qcrypto_cipher_free(cipher); | |
563 | g_free(splitkey); | |
564 | g_free(possiblekey); | |
565 | return ret; | |
566 | } | |
567 | ||
568 | ||
569 | /* | |
570 | * Given a user password, this will iterate over all key | |
571 | * slots and try to unlock each active key slot using the | |
572 | * password until it successfully obtains a master key. | |
573 | * | |
574 | * Returns 0 if a key was loaded, -1 if no keys could be loaded | |
575 | */ | |
576 | static int | |
577 | qcrypto_block_luks_find_key(QCryptoBlock *block, | |
578 | const char *password, | |
579 | QCryptoCipherAlgorithm cipheralg, | |
580 | QCryptoCipherMode ciphermode, | |
581 | QCryptoHashAlgorithm hash, | |
582 | QCryptoIVGenAlgorithm ivalg, | |
583 | QCryptoCipherAlgorithm ivcipheralg, | |
584 | QCryptoHashAlgorithm ivhash, | |
585 | uint8_t **masterkey, | |
586 | size_t *masterkeylen, | |
587 | QCryptoBlockReadFunc readfunc, | |
588 | void *opaque, | |
589 | Error **errp) | |
590 | { | |
591 | QCryptoBlockLUKS *luks = block->opaque; | |
592 | size_t i; | |
593 | int rv; | |
594 | ||
595 | *masterkey = g_new0(uint8_t, luks->header.key_bytes); | |
596 | *masterkeylen = luks->header.key_bytes; | |
597 | ||
598 | for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { | |
599 | rv = qcrypto_block_luks_load_key(block, | |
600 | &luks->header.key_slots[i], | |
601 | password, | |
602 | cipheralg, | |
603 | ciphermode, | |
604 | hash, | |
605 | ivalg, | |
606 | ivcipheralg, | |
607 | ivhash, | |
608 | *masterkey, | |
609 | *masterkeylen, | |
610 | readfunc, | |
611 | opaque, | |
612 | errp); | |
613 | if (rv < 0) { | |
614 | goto error; | |
615 | } | |
616 | if (rv == 1) { | |
617 | return 0; | |
618 | } | |
619 | } | |
620 | ||
621 | error_setg(errp, "Invalid password, cannot unlock any keyslot"); | |
622 | ||
623 | error: | |
624 | g_free(*masterkey); | |
625 | *masterkey = NULL; | |
626 | *masterkeylen = 0; | |
627 | return -1; | |
628 | } | |
629 | ||
630 | ||
631 | static int | |
632 | qcrypto_block_luks_open(QCryptoBlock *block, | |
633 | QCryptoBlockOpenOptions *options, | |
634 | QCryptoBlockReadFunc readfunc, | |
635 | void *opaque, | |
636 | unsigned int flags, | |
637 | Error **errp) | |
638 | { | |
639 | QCryptoBlockLUKS *luks; | |
640 | Error *local_err = NULL; | |
641 | int ret = 0; | |
642 | size_t i; | |
643 | ssize_t rv; | |
644 | uint8_t *masterkey = NULL; | |
645 | size_t masterkeylen; | |
646 | char *ivgen_name, *ivhash_name; | |
647 | QCryptoCipherMode ciphermode; | |
648 | QCryptoCipherAlgorithm cipheralg; | |
649 | QCryptoIVGenAlgorithm ivalg; | |
650 | QCryptoCipherAlgorithm ivcipheralg; | |
651 | QCryptoHashAlgorithm hash; | |
652 | QCryptoHashAlgorithm ivhash; | |
653 | char *password = NULL; | |
654 | ||
655 | if (!(flags & QCRYPTO_BLOCK_OPEN_NO_IO)) { | |
656 | if (!options->u.luks.key_secret) { | |
657 | error_setg(errp, "Parameter 'key-secret' is required for cipher"); | |
658 | return -1; | |
659 | } | |
660 | password = qcrypto_secret_lookup_as_utf8( | |
661 | options->u.luks.key_secret, errp); | |
662 | if (!password) { | |
663 | return -1; | |
664 | } | |
665 | } | |
666 | ||
667 | luks = g_new0(QCryptoBlockLUKS, 1); | |
668 | block->opaque = luks; | |
669 | ||
670 | /* Read the entire LUKS header, minus the key material from | |
671 | * the underlying device */ | |
672 | rv = readfunc(block, 0, | |
673 | (uint8_t *)&luks->header, | |
674 | sizeof(luks->header), | |
675 | errp, | |
676 | opaque); | |
677 | if (rv < 0) { | |
678 | ret = rv; | |
679 | goto fail; | |
680 | } | |
681 | ||
682 | /* The header is always stored in big-endian format, so | |
683 | * convert everything to native */ | |
684 | be16_to_cpus(&luks->header.version); | |
685 | be32_to_cpus(&luks->header.payload_offset); | |
686 | be32_to_cpus(&luks->header.key_bytes); | |
687 | be32_to_cpus(&luks->header.master_key_iterations); | |
688 | ||
689 | for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { | |
690 | be32_to_cpus(&luks->header.key_slots[i].active); | |
691 | be32_to_cpus(&luks->header.key_slots[i].iterations); | |
692 | be32_to_cpus(&luks->header.key_slots[i].key_offset); | |
693 | be32_to_cpus(&luks->header.key_slots[i].stripes); | |
694 | } | |
695 | ||
696 | if (memcmp(luks->header.magic, qcrypto_block_luks_magic, | |
697 | QCRYPTO_BLOCK_LUKS_MAGIC_LEN) != 0) { | |
698 | error_setg(errp, "Volume is not in LUKS format"); | |
699 | ret = -EINVAL; | |
700 | goto fail; | |
701 | } | |
702 | if (luks->header.version != QCRYPTO_BLOCK_LUKS_VERSION) { | |
703 | error_setg(errp, "LUKS version %" PRIu32 " is not supported", | |
704 | luks->header.version); | |
705 | ret = -ENOTSUP; | |
706 | goto fail; | |
707 | } | |
708 | ||
709 | /* | |
710 | * The cipher_mode header contains a string that we have | |
711 | * to further parse, of the format | |
712 | * | |
713 | * <cipher-mode>-<iv-generator>[:<iv-hash>] | |
714 | * | |
715 | * eg cbc-essiv:sha256, cbc-plain64 | |
716 | */ | |
717 | ivgen_name = strchr(luks->header.cipher_mode, '-'); | |
718 | if (!ivgen_name) { | |
719 | ret = -EINVAL; | |
720 | error_setg(errp, "Unexpected cipher mode string format %s", | |
721 | luks->header.cipher_mode); | |
722 | goto fail; | |
723 | } | |
724 | *ivgen_name = '\0'; | |
725 | ivgen_name++; | |
726 | ||
727 | ivhash_name = strchr(ivgen_name, ':'); | |
728 | if (!ivhash_name) { | |
729 | ivhash = 0; | |
730 | } else { | |
731 | *ivhash_name = '\0'; | |
732 | ivhash_name++; | |
733 | ||
734 | ivhash = qcrypto_block_luks_hash_name_lookup(ivhash_name, | |
735 | &local_err); | |
736 | if (local_err) { | |
737 | ret = -ENOTSUP; | |
738 | error_propagate(errp, local_err); | |
739 | goto fail; | |
740 | } | |
741 | } | |
742 | ||
743 | ciphermode = qcrypto_block_luks_cipher_mode_lookup(luks->header.cipher_mode, | |
744 | &local_err); | |
745 | if (local_err) { | |
746 | ret = -ENOTSUP; | |
747 | error_propagate(errp, local_err); | |
748 | goto fail; | |
749 | } | |
750 | ||
751 | cipheralg = qcrypto_block_luks_cipher_name_lookup(luks->header.cipher_name, | |
752 | ciphermode, | |
753 | luks->header.key_bytes, | |
754 | &local_err); | |
755 | if (local_err) { | |
756 | ret = -ENOTSUP; | |
757 | error_propagate(errp, local_err); | |
758 | goto fail; | |
759 | } | |
760 | ||
761 | hash = qcrypto_block_luks_hash_name_lookup(luks->header.hash_spec, | |
762 | &local_err); | |
763 | if (local_err) { | |
764 | ret = -ENOTSUP; | |
765 | error_propagate(errp, local_err); | |
766 | goto fail; | |
767 | } | |
768 | ||
769 | ivalg = qcrypto_block_luks_ivgen_name_lookup(ivgen_name, | |
770 | &local_err); | |
771 | if (local_err) { | |
772 | ret = -ENOTSUP; | |
773 | error_propagate(errp, local_err); | |
774 | goto fail; | |
775 | } | |
776 | ||
777 | if (ivalg == QCRYPTO_IVGEN_ALG_ESSIV) { | |
778 | ivcipheralg = qcrypto_block_luks_essiv_cipher(cipheralg, | |
779 | ivhash, | |
780 | &local_err); | |
781 | if (local_err) { | |
782 | ret = -ENOTSUP; | |
783 | error_propagate(errp, local_err); | |
784 | goto fail; | |
785 | } | |
786 | } else { | |
787 | ivcipheralg = cipheralg; | |
788 | } | |
789 | ||
790 | if (!(flags & QCRYPTO_BLOCK_OPEN_NO_IO)) { | |
791 | /* Try to find which key slot our password is valid for | |
792 | * and unlock the master key from that slot. | |
793 | */ | |
794 | if (qcrypto_block_luks_find_key(block, | |
795 | password, | |
796 | cipheralg, ciphermode, | |
797 | hash, | |
798 | ivalg, | |
799 | ivcipheralg, | |
800 | ivhash, | |
801 | &masterkey, &masterkeylen, | |
802 | readfunc, opaque, | |
803 | errp) < 0) { | |
804 | ret = -EACCES; | |
805 | goto fail; | |
806 | } | |
807 | ||
808 | /* We have a valid master key now, so can setup the | |
809 | * block device payload decryption objects | |
810 | */ | |
811 | block->kdfhash = hash; | |
812 | block->niv = qcrypto_cipher_get_iv_len(cipheralg, | |
813 | ciphermode); | |
814 | block->ivgen = qcrypto_ivgen_new(ivalg, | |
815 | ivcipheralg, | |
816 | ivhash, | |
817 | masterkey, masterkeylen, | |
818 | errp); | |
819 | if (!block->ivgen) { | |
820 | ret = -ENOTSUP; | |
821 | goto fail; | |
822 | } | |
823 | ||
824 | block->cipher = qcrypto_cipher_new(cipheralg, | |
825 | ciphermode, | |
826 | masterkey, masterkeylen, | |
827 | errp); | |
828 | if (!block->cipher) { | |
829 | ret = -ENOTSUP; | |
830 | goto fail; | |
831 | } | |
832 | } | |
833 | ||
834 | block->payload_offset = luks->header.payload_offset * | |
835 | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE; | |
836 | ||
837 | g_free(masterkey); | |
838 | g_free(password); | |
839 | ||
840 | return 0; | |
841 | ||
842 | fail: | |
843 | g_free(masterkey); | |
844 | qcrypto_cipher_free(block->cipher); | |
845 | qcrypto_ivgen_free(block->ivgen); | |
846 | g_free(luks); | |
847 | g_free(password); | |
848 | return ret; | |
849 | } | |
850 | ||
851 | ||
852 | static int | |
853 | qcrypto_block_luks_uuid_gen(uint8_t *uuidstr, Error **errp) | |
854 | { | |
855 | #ifdef CONFIG_UUID | |
856 | uuid_t uuid; | |
857 | uuid_generate(uuid); | |
858 | uuid_unparse(uuid, (char *)uuidstr); | |
859 | return 0; | |
860 | #else | |
861 | error_setg(errp, "Unable to generate uuids on this platform"); | |
862 | return -1; | |
863 | #endif | |
864 | } | |
865 | ||
866 | static int | |
867 | qcrypto_block_luks_create(QCryptoBlock *block, | |
868 | QCryptoBlockCreateOptions *options, | |
869 | QCryptoBlockInitFunc initfunc, | |
870 | QCryptoBlockWriteFunc writefunc, | |
871 | void *opaque, | |
872 | Error **errp) | |
873 | { | |
874 | QCryptoBlockLUKS *luks; | |
875 | QCryptoBlockCreateOptionsLUKS luks_opts; | |
876 | Error *local_err = NULL; | |
877 | uint8_t *masterkey = NULL; | |
878 | uint8_t *slotkey = NULL; | |
879 | uint8_t *splitkey = NULL; | |
880 | size_t splitkeylen = 0; | |
881 | size_t i; | |
882 | QCryptoCipher *cipher = NULL; | |
883 | QCryptoIVGen *ivgen = NULL; | |
884 | char *password; | |
885 | const char *cipher_alg; | |
886 | const char *cipher_mode; | |
887 | const char *ivgen_alg; | |
888 | const char *ivgen_hash_alg = NULL; | |
889 | const char *hash_alg; | |
890 | char *cipher_mode_spec = NULL; | |
891 | QCryptoCipherAlgorithm ivcipheralg = 0; | |
892 | ||
893 | memcpy(&luks_opts, &options->u.luks, sizeof(luks_opts)); | |
894 | if (!luks_opts.has_cipher_alg) { | |
895 | luks_opts.cipher_alg = QCRYPTO_CIPHER_ALG_AES_256; | |
896 | } | |
897 | if (!luks_opts.has_cipher_mode) { | |
898 | luks_opts.cipher_mode = QCRYPTO_CIPHER_MODE_XTS; | |
899 | } | |
900 | if (!luks_opts.has_ivgen_alg) { | |
901 | luks_opts.ivgen_alg = QCRYPTO_IVGEN_ALG_PLAIN64; | |
902 | } | |
903 | if (!luks_opts.has_hash_alg) { | |
904 | luks_opts.hash_alg = QCRYPTO_HASH_ALG_SHA256; | |
905 | } | |
906 | ||
907 | if (!options->u.luks.key_secret) { | |
908 | error_setg(errp, "Parameter 'key-secret' is required for cipher"); | |
909 | return -1; | |
910 | } | |
911 | password = qcrypto_secret_lookup_as_utf8(luks_opts.key_secret, errp); | |
912 | if (!password) { | |
913 | return -1; | |
914 | } | |
915 | ||
916 | luks = g_new0(QCryptoBlockLUKS, 1); | |
917 | block->opaque = luks; | |
918 | ||
919 | memcpy(luks->header.magic, qcrypto_block_luks_magic, | |
920 | QCRYPTO_BLOCK_LUKS_MAGIC_LEN); | |
921 | ||
922 | /* We populate the header in native endianness initially and | |
923 | * then convert everything to big endian just before writing | |
924 | * it out to disk | |
925 | */ | |
926 | luks->header.version = QCRYPTO_BLOCK_LUKS_VERSION; | |
927 | if (qcrypto_block_luks_uuid_gen(luks->header.uuid, | |
928 | errp) < 0) { | |
929 | goto error; | |
930 | } | |
931 | ||
932 | cipher_alg = qcrypto_block_luks_cipher_alg_lookup(luks_opts.cipher_alg, | |
933 | errp); | |
934 | if (!cipher_alg) { | |
935 | goto error; | |
936 | } | |
937 | ||
938 | cipher_mode = QCryptoCipherMode_lookup[luks_opts.cipher_mode]; | |
939 | ivgen_alg = QCryptoIVGenAlgorithm_lookup[luks_opts.ivgen_alg]; | |
940 | if (luks_opts.has_ivgen_hash_alg) { | |
941 | ivgen_hash_alg = QCryptoHashAlgorithm_lookup[luks_opts.ivgen_hash_alg]; | |
942 | cipher_mode_spec = g_strdup_printf("%s-%s:%s", cipher_mode, ivgen_alg, | |
943 | ivgen_hash_alg); | |
944 | } else { | |
945 | cipher_mode_spec = g_strdup_printf("%s-%s", cipher_mode, ivgen_alg); | |
946 | } | |
947 | hash_alg = QCryptoHashAlgorithm_lookup[luks_opts.hash_alg]; | |
948 | ||
949 | ||
950 | if (strlen(cipher_alg) >= QCRYPTO_BLOCK_LUKS_CIPHER_NAME_LEN) { | |
951 | error_setg(errp, "Cipher name '%s' is too long for LUKS header", | |
952 | cipher_alg); | |
953 | goto error; | |
954 | } | |
955 | if (strlen(cipher_mode_spec) >= QCRYPTO_BLOCK_LUKS_CIPHER_MODE_LEN) { | |
956 | error_setg(errp, "Cipher mode '%s' is too long for LUKS header", | |
957 | cipher_mode_spec); | |
958 | goto error; | |
959 | } | |
960 | if (strlen(hash_alg) >= QCRYPTO_BLOCK_LUKS_HASH_SPEC_LEN) { | |
961 | error_setg(errp, "Hash name '%s' is too long for LUKS header", | |
962 | hash_alg); | |
963 | goto error; | |
964 | } | |
965 | ||
966 | if (luks_opts.ivgen_alg == QCRYPTO_IVGEN_ALG_ESSIV) { | |
967 | ivcipheralg = qcrypto_block_luks_essiv_cipher(luks_opts.cipher_alg, | |
968 | luks_opts.ivgen_hash_alg, | |
969 | &local_err); | |
970 | if (local_err) { | |
971 | error_propagate(errp, local_err); | |
972 | goto error; | |
973 | } | |
974 | } else { | |
975 | ivcipheralg = luks_opts.cipher_alg; | |
976 | } | |
977 | ||
978 | strcpy(luks->header.cipher_name, cipher_alg); | |
979 | strcpy(luks->header.cipher_mode, cipher_mode_spec); | |
980 | strcpy(luks->header.hash_spec, hash_alg); | |
981 | ||
982 | luks->header.key_bytes = qcrypto_cipher_get_key_len(luks_opts.cipher_alg); | |
983 | if (luks_opts.cipher_mode == QCRYPTO_CIPHER_MODE_XTS) { | |
984 | luks->header.key_bytes *= 2; | |
985 | } | |
986 | ||
987 | /* Generate the salt used for hashing the master key | |
988 | * with PBKDF later | |
989 | */ | |
990 | if (qcrypto_random_bytes(luks->header.master_key_salt, | |
991 | QCRYPTO_BLOCK_LUKS_SALT_LEN, | |
992 | errp) < 0) { | |
993 | goto error; | |
994 | } | |
995 | ||
996 | /* Generate random master key */ | |
997 | masterkey = g_new0(uint8_t, luks->header.key_bytes); | |
998 | if (qcrypto_random_bytes(masterkey, | |
999 | luks->header.key_bytes, errp) < 0) { | |
1000 | goto error; | |
1001 | } | |
1002 | ||
1003 | ||
1004 | /* Setup the block device payload encryption objects */ | |
1005 | block->cipher = qcrypto_cipher_new(luks_opts.cipher_alg, | |
1006 | luks_opts.cipher_mode, | |
1007 | masterkey, luks->header.key_bytes, | |
1008 | errp); | |
1009 | if (!block->cipher) { | |
1010 | goto error; | |
1011 | } | |
1012 | ||
1013 | block->kdfhash = luks_opts.hash_alg; | |
1014 | block->niv = qcrypto_cipher_get_iv_len(luks_opts.cipher_alg, | |
1015 | luks_opts.cipher_mode); | |
1016 | block->ivgen = qcrypto_ivgen_new(luks_opts.ivgen_alg, | |
1017 | ivcipheralg, | |
1018 | luks_opts.ivgen_hash_alg, | |
1019 | masterkey, luks->header.key_bytes, | |
1020 | errp); | |
1021 | ||
1022 | if (!block->ivgen) { | |
1023 | goto error; | |
1024 | } | |
1025 | ||
1026 | ||
1027 | /* Determine how many iterations we need to hash the master | |
1028 | * key, in order to have 1 second of compute time used | |
1029 | */ | |
1030 | luks->header.master_key_iterations = | |
1031 | qcrypto_pbkdf2_count_iters(luks_opts.hash_alg, | |
1032 | masterkey, luks->header.key_bytes, | |
1033 | luks->header.master_key_salt, | |
1034 | QCRYPTO_BLOCK_LUKS_SALT_LEN, | |
1035 | &local_err); | |
1036 | if (local_err) { | |
1037 | error_propagate(errp, local_err); | |
1038 | goto error; | |
1039 | } | |
1040 | ||
1041 | /* Why /= 8 ? That matches cryptsetup, but there's no | |
1042 | * explanation why they chose /= 8... Probably so that | |
1043 | * if all 8 keyslots are active we only spend 1 second | |
1044 | * in total time to check all keys */ | |
1045 | luks->header.master_key_iterations /= 8; | |
1046 | luks->header.master_key_iterations = MAX( | |
1047 | luks->header.master_key_iterations, | |
1048 | QCRYPTO_BLOCK_LUKS_MIN_MASTER_KEY_ITERS); | |
1049 | ||
1050 | ||
1051 | /* Hash the master key, saving the result in the LUKS | |
1052 | * header. This hash is used when opening the encrypted | |
1053 | * device to verify that the user password unlocked a | |
1054 | * valid master key | |
1055 | */ | |
1056 | if (qcrypto_pbkdf2(luks_opts.hash_alg, | |
1057 | masterkey, luks->header.key_bytes, | |
1058 | luks->header.master_key_salt, | |
1059 | QCRYPTO_BLOCK_LUKS_SALT_LEN, | |
1060 | luks->header.master_key_iterations, | |
1061 | luks->header.master_key_digest, | |
1062 | QCRYPTO_BLOCK_LUKS_DIGEST_LEN, | |
1063 | errp) < 0) { | |
1064 | goto error; | |
1065 | } | |
1066 | ||
1067 | ||
1068 | /* Although LUKS has multiple key slots, we're just going | |
1069 | * to use the first key slot */ | |
1070 | splitkeylen = luks->header.key_bytes * QCRYPTO_BLOCK_LUKS_STRIPES; | |
1071 | for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { | |
1072 | luks->header.key_slots[i].active = i == 0 ? | |
1073 | QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED : | |
1074 | QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED; | |
1075 | luks->header.key_slots[i].stripes = QCRYPTO_BLOCK_LUKS_STRIPES; | |
1076 | ||
1077 | /* This calculation doesn't match that shown in the spec, | |
1078 | * but instead follows the cryptsetup implementation. | |
1079 | */ | |
1080 | luks->header.key_slots[i].key_offset = | |
1081 | (QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET / | |
1082 | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE) + | |
1083 | (ROUND_UP(((splitkeylen + (QCRYPTO_BLOCK_LUKS_SECTOR_SIZE - 1)) / | |
1084 | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE), | |
1085 | (QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET / | |
1086 | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE)) * i); | |
1087 | } | |
1088 | ||
1089 | if (qcrypto_random_bytes(luks->header.key_slots[0].salt, | |
1090 | QCRYPTO_BLOCK_LUKS_SALT_LEN, | |
1091 | errp) < 0) { | |
1092 | goto error; | |
1093 | } | |
1094 | ||
1095 | /* Again we determine how many iterations are required to | |
1096 | * hash the user password while consuming 1 second of compute | |
1097 | * time */ | |
1098 | luks->header.key_slots[0].iterations = | |
1099 | qcrypto_pbkdf2_count_iters(luks_opts.hash_alg, | |
1100 | (uint8_t *)password, strlen(password), | |
1101 | luks->header.key_slots[0].salt, | |
1102 | QCRYPTO_BLOCK_LUKS_SALT_LEN, | |
1103 | &local_err); | |
1104 | if (local_err) { | |
1105 | error_propagate(errp, local_err); | |
1106 | goto error; | |
1107 | } | |
1108 | /* Why /= 2 ? That matches cryptsetup, but there's no | |
1109 | * explanation why they chose /= 2... */ | |
1110 | luks->header.key_slots[0].iterations /= 2; | |
1111 | luks->header.key_slots[0].iterations = MAX( | |
1112 | luks->header.key_slots[0].iterations, | |
1113 | QCRYPTO_BLOCK_LUKS_MIN_SLOT_KEY_ITERS); | |
1114 | ||
1115 | ||
1116 | /* Generate a key that we'll use to encrypt the master | |
1117 | * key, from the user's password | |
1118 | */ | |
1119 | slotkey = g_new0(uint8_t, luks->header.key_bytes); | |
1120 | if (qcrypto_pbkdf2(luks_opts.hash_alg, | |
1121 | (uint8_t *)password, strlen(password), | |
1122 | luks->header.key_slots[0].salt, | |
1123 | QCRYPTO_BLOCK_LUKS_SALT_LEN, | |
1124 | luks->header.key_slots[0].iterations, | |
1125 | slotkey, luks->header.key_bytes, | |
1126 | errp) < 0) { | |
1127 | goto error; | |
1128 | } | |
1129 | ||
1130 | ||
1131 | /* Setup the encryption objects needed to encrypt the | |
1132 | * master key material | |
1133 | */ | |
1134 | cipher = qcrypto_cipher_new(luks_opts.cipher_alg, | |
1135 | luks_opts.cipher_mode, | |
1136 | slotkey, luks->header.key_bytes, | |
1137 | errp); | |
1138 | if (!cipher) { | |
1139 | goto error; | |
1140 | } | |
1141 | ||
1142 | ivgen = qcrypto_ivgen_new(luks_opts.ivgen_alg, | |
1143 | ivcipheralg, | |
1144 | luks_opts.ivgen_hash_alg, | |
1145 | slotkey, luks->header.key_bytes, | |
1146 | errp); | |
1147 | if (!ivgen) { | |
1148 | goto error; | |
1149 | } | |
1150 | ||
1151 | /* Before storing the master key, we need to vastly | |
1152 | * increase its size, as protection against forensic | |
1153 | * disk data recovery */ | |
1154 | splitkey = g_new0(uint8_t, splitkeylen); | |
1155 | ||
1156 | if (qcrypto_afsplit_encode(luks_opts.hash_alg, | |
1157 | luks->header.key_bytes, | |
1158 | luks->header.key_slots[0].stripes, | |
1159 | masterkey, | |
1160 | splitkey, | |
1161 | errp) < 0) { | |
1162 | goto error; | |
1163 | } | |
1164 | ||
1165 | /* Now we encrypt the split master key with the key generated | |
1166 | * from the user's password, before storing it */ | |
1167 | if (qcrypto_block_encrypt_helper(cipher, block->niv, ivgen, | |
1168 | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, | |
1169 | 0, | |
1170 | splitkey, | |
1171 | splitkeylen, | |
1172 | errp) < 0) { | |
1173 | goto error; | |
1174 | } | |
1175 | ||
1176 | ||
1177 | /* The total size of the LUKS headers is the partition header + key | |
1178 | * slot headers, rounded up to the nearest sector, combined with | |
1179 | * the size of each master key material region, also rounded up | |
1180 | * to the nearest sector */ | |
1181 | luks->header.payload_offset = | |
1182 | (QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET / | |
1183 | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE) + | |
1184 | (ROUND_UP(((splitkeylen + (QCRYPTO_BLOCK_LUKS_SECTOR_SIZE - 1)) / | |
1185 | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE), | |
1186 | (QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET / | |
1187 | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE)) * | |
1188 | QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS); | |
1189 | ||
1190 | block->payload_offset = luks->header.payload_offset * | |
1191 | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE; | |
1192 | ||
1193 | /* Reserve header space to match payload offset */ | |
1194 | initfunc(block, block->payload_offset, &local_err, opaque); | |
1195 | if (local_err) { | |
1196 | error_propagate(errp, local_err); | |
1197 | goto error; | |
1198 | } | |
1199 | ||
1200 | /* Everything on disk uses Big Endian, so flip header fields | |
1201 | * before writing them */ | |
1202 | cpu_to_be16s(&luks->header.version); | |
1203 | cpu_to_be32s(&luks->header.payload_offset); | |
1204 | cpu_to_be32s(&luks->header.key_bytes); | |
1205 | cpu_to_be32s(&luks->header.master_key_iterations); | |
1206 | ||
1207 | for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { | |
1208 | cpu_to_be32s(&luks->header.key_slots[i].active); | |
1209 | cpu_to_be32s(&luks->header.key_slots[i].iterations); | |
1210 | cpu_to_be32s(&luks->header.key_slots[i].key_offset); | |
1211 | cpu_to_be32s(&luks->header.key_slots[i].stripes); | |
1212 | } | |
1213 | ||
1214 | ||
1215 | /* Write out the partition header and key slot headers */ | |
1216 | writefunc(block, 0, | |
1217 | (const uint8_t *)&luks->header, | |
1218 | sizeof(luks->header), | |
1219 | &local_err, | |
1220 | opaque); | |
1221 | ||
1222 | /* Delay checking local_err until we've byte-swapped */ | |
1223 | ||
1224 | /* Byte swap the header back to native, in case we need | |
1225 | * to read it again later */ | |
1226 | be16_to_cpus(&luks->header.version); | |
1227 | be32_to_cpus(&luks->header.payload_offset); | |
1228 | be32_to_cpus(&luks->header.key_bytes); | |
1229 | be32_to_cpus(&luks->header.master_key_iterations); | |
1230 | ||
1231 | for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { | |
1232 | be32_to_cpus(&luks->header.key_slots[i].active); | |
1233 | be32_to_cpus(&luks->header.key_slots[i].iterations); | |
1234 | be32_to_cpus(&luks->header.key_slots[i].key_offset); | |
1235 | be32_to_cpus(&luks->header.key_slots[i].stripes); | |
1236 | } | |
1237 | ||
1238 | if (local_err) { | |
1239 | error_propagate(errp, local_err); | |
1240 | goto error; | |
1241 | } | |
1242 | ||
1243 | /* Write out the master key material, starting at the | |
1244 | * sector immediately following the partition header. */ | |
1245 | if (writefunc(block, | |
1246 | luks->header.key_slots[0].key_offset * | |
1247 | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, | |
1248 | splitkey, splitkeylen, | |
1249 | errp, | |
1250 | opaque) != splitkeylen) { | |
1251 | goto error; | |
1252 | } | |
1253 | ||
1254 | memset(masterkey, 0, luks->header.key_bytes); | |
1255 | g_free(masterkey); | |
1256 | memset(slotkey, 0, luks->header.key_bytes); | |
1257 | g_free(slotkey); | |
1258 | g_free(splitkey); | |
1259 | g_free(password); | |
1260 | g_free(cipher_mode_spec); | |
1261 | ||
1262 | qcrypto_ivgen_free(ivgen); | |
1263 | qcrypto_cipher_free(cipher); | |
1264 | ||
1265 | return 0; | |
1266 | ||
1267 | error: | |
1268 | if (masterkey) { | |
1269 | memset(masterkey, 0, luks->header.key_bytes); | |
1270 | } | |
1271 | g_free(masterkey); | |
1272 | if (slotkey) { | |
1273 | memset(slotkey, 0, luks->header.key_bytes); | |
1274 | } | |
1275 | g_free(slotkey); | |
1276 | g_free(splitkey); | |
1277 | g_free(password); | |
1278 | g_free(cipher_mode_spec); | |
1279 | ||
1280 | qcrypto_ivgen_free(ivgen); | |
1281 | qcrypto_cipher_free(cipher); | |
1282 | ||
1283 | g_free(luks); | |
1284 | return -1; | |
1285 | } | |
1286 | ||
1287 | ||
1288 | static void qcrypto_block_luks_cleanup(QCryptoBlock *block) | |
1289 | { | |
1290 | g_free(block->opaque); | |
1291 | } | |
1292 | ||
1293 | ||
1294 | static int | |
1295 | qcrypto_block_luks_decrypt(QCryptoBlock *block, | |
1296 | uint64_t startsector, | |
1297 | uint8_t *buf, | |
1298 | size_t len, | |
1299 | Error **errp) | |
1300 | { | |
1301 | return qcrypto_block_decrypt_helper(block->cipher, | |
1302 | block->niv, block->ivgen, | |
1303 | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, | |
1304 | startsector, buf, len, errp); | |
1305 | } | |
1306 | ||
1307 | ||
1308 | static int | |
1309 | qcrypto_block_luks_encrypt(QCryptoBlock *block, | |
1310 | uint64_t startsector, | |
1311 | uint8_t *buf, | |
1312 | size_t len, | |
1313 | Error **errp) | |
1314 | { | |
1315 | return qcrypto_block_encrypt_helper(block->cipher, | |
1316 | block->niv, block->ivgen, | |
1317 | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, | |
1318 | startsector, buf, len, errp); | |
1319 | } | |
1320 | ||
1321 | ||
1322 | const QCryptoBlockDriver qcrypto_block_driver_luks = { | |
1323 | .open = qcrypto_block_luks_open, | |
1324 | .create = qcrypto_block_luks_create, | |
1325 | .cleanup = qcrypto_block_luks_cleanup, | |
1326 | .decrypt = qcrypto_block_luks_decrypt, | |
1327 | .encrypt = qcrypto_block_luks_encrypt, | |
1328 | .has_format = qcrypto_block_luks_has_format, | |
1329 | }; |