]>
Commit | Line | Data |
---|---|---|
e52af513 SP |
1 | /* |
2 | * ARM GICv3 emulation: Distributor | |
3 | * | |
4 | * Copyright (c) 2015 Huawei. | |
5 | * Copyright (c) 2016 Linaro Limited. | |
6 | * Written by Shlomo Pongratz, Peter Maydell | |
7 | * | |
8 | * This code is licensed under the GPL, version 2 or (at your option) | |
9 | * any later version. | |
10 | */ | |
11 | ||
12 | #include "qemu/osdep.h" | |
b1e3493b | 13 | #include "qemu/log.h" |
e52af513 SP |
14 | #include "trace.h" |
15 | #include "gicv3_internal.h" | |
16 | ||
17 | /* The GICD_NSACR registers contain a two bit field for each interrupt which | |
18 | * allows the guest to give NonSecure code access to registers controlling | |
19 | * Secure interrupts: | |
20 | * 0b00: no access (NS accesses to bits for Secure interrupts will RAZ/WI) | |
21 | * 0b01: NS r/w accesses permitted to ISPENDR, SETSPI_NSR, SGIR | |
22 | * 0b10: as 0b01, and also r/w to ICPENDR, r/o to ISACTIVER/ICACTIVER, | |
23 | * and w/o to CLRSPI_NSR | |
24 | * 0b11: as 0b10, and also r/w to IROUTER and ITARGETSR | |
25 | * | |
26 | * Given a (multiple-of-32) interrupt number, these mask functions return | |
27 | * a mask word where each bit is 1 if the NSACR settings permit access | |
28 | * to the interrupt. The mask returned can then be ORed with the GICD_GROUP | |
29 | * word for this set of interrupts to give an overall mask. | |
30 | */ | |
31 | ||
32 | typedef uint32_t maskfn(GICv3State *s, int irq); | |
33 | ||
34 | static uint32_t mask_nsacr_ge1(GICv3State *s, int irq) | |
35 | { | |
36 | /* Return a mask where each bit is set if the NSACR field is >= 1 */ | |
37 | uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1]; | |
38 | ||
39 | raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16]; | |
40 | raw_nsacr = (raw_nsacr >> 1) | raw_nsacr; | |
41 | return half_unshuffle64(raw_nsacr); | |
42 | } | |
43 | ||
44 | static uint32_t mask_nsacr_ge2(GICv3State *s, int irq) | |
45 | { | |
46 | /* Return a mask where each bit is set if the NSACR field is >= 2 */ | |
47 | uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1]; | |
48 | ||
49 | raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16]; | |
50 | raw_nsacr = raw_nsacr >> 1; | |
51 | return half_unshuffle64(raw_nsacr); | |
52 | } | |
53 | ||
54 | /* We don't need a mask_nsacr_ge3() because IROUTER<n> isn't a bitmap register, | |
55 | * but it would be implemented using: | |
56 | * raw_nsacr = (raw_nsacr >> 1) & raw_nsacr; | |
57 | */ | |
58 | ||
59 | static uint32_t mask_group_and_nsacr(GICv3State *s, MemTxAttrs attrs, | |
60 | maskfn *maskfn, int irq) | |
61 | { | |
62 | /* Return a 32-bit mask which should be applied for this set of 32 | |
63 | * interrupts; each bit is 1 if access is permitted by the | |
64 | * combination of attrs.secure, GICD_GROUPR and GICD_NSACR. | |
65 | */ | |
66 | uint32_t mask; | |
67 | ||
68 | if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { | |
69 | /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI | |
70 | * unless the NSACR bits permit access. | |
71 | */ | |
72 | mask = *gic_bmp_ptr32(s->group, irq); | |
73 | if (maskfn) { | |
74 | mask |= maskfn(s, irq); | |
75 | } | |
76 | return mask; | |
77 | } | |
78 | return 0xFFFFFFFFU; | |
79 | } | |
80 | ||
81 | static int gicd_ns_access(GICv3State *s, int irq) | |
82 | { | |
83 | /* Return the 2 bit NS_access<x> field from GICD_NSACR<n> for the | |
84 | * specified interrupt. | |
85 | */ | |
86 | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | |
87 | return 0; | |
88 | } | |
89 | return extract32(s->gicd_nsacr[irq / 16], (irq % 16) * 2, 2); | |
90 | } | |
91 | ||
92 | static void gicd_write_set_bitmap_reg(GICv3State *s, MemTxAttrs attrs, | |
93 | uint32_t *bmp, | |
94 | maskfn *maskfn, | |
95 | int offset, uint32_t val) | |
96 | { | |
97 | /* Helper routine to implement writing to a "set-bitmap" register | |
98 | * (GICD_ISENABLER, GICD_ISPENDR, etc). | |
99 | * Semantics implemented here: | |
100 | * RAZ/WI for SGIs, PPIs, unimplemented IRQs | |
101 | * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI. | |
102 | * Writing 1 means "set bit in bitmap"; writing 0 is ignored. | |
103 | * offset should be the offset in bytes of the register from the start | |
104 | * of its group. | |
105 | */ | |
106 | int irq = offset * 8; | |
107 | ||
108 | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | |
109 | return; | |
110 | } | |
111 | val &= mask_group_and_nsacr(s, attrs, maskfn, irq); | |
112 | *gic_bmp_ptr32(bmp, irq) |= val; | |
113 | gicv3_update(s, irq, 32); | |
114 | } | |
115 | ||
116 | static void gicd_write_clear_bitmap_reg(GICv3State *s, MemTxAttrs attrs, | |
117 | uint32_t *bmp, | |
118 | maskfn *maskfn, | |
119 | int offset, uint32_t val) | |
120 | { | |
121 | /* Helper routine to implement writing to a "clear-bitmap" register | |
122 | * (GICD_ICENABLER, GICD_ICPENDR, etc). | |
123 | * Semantics implemented here: | |
124 | * RAZ/WI for SGIs, PPIs, unimplemented IRQs | |
125 | * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI. | |
126 | * Writing 1 means "clear bit in bitmap"; writing 0 is ignored. | |
127 | * offset should be the offset in bytes of the register from the start | |
128 | * of its group. | |
129 | */ | |
130 | int irq = offset * 8; | |
131 | ||
132 | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | |
133 | return; | |
134 | } | |
135 | val &= mask_group_and_nsacr(s, attrs, maskfn, irq); | |
136 | *gic_bmp_ptr32(bmp, irq) &= ~val; | |
137 | gicv3_update(s, irq, 32); | |
138 | } | |
139 | ||
140 | static uint32_t gicd_read_bitmap_reg(GICv3State *s, MemTxAttrs attrs, | |
141 | uint32_t *bmp, | |
142 | maskfn *maskfn, | |
143 | int offset) | |
144 | { | |
145 | /* Helper routine to implement reading a "set/clear-bitmap" register | |
146 | * (GICD_ICENABLER, GICD_ISENABLER, GICD_ICPENDR, etc). | |
147 | * Semantics implemented here: | |
148 | * RAZ/WI for SGIs, PPIs, unimplemented IRQs | |
149 | * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI. | |
150 | * offset should be the offset in bytes of the register from the start | |
151 | * of its group. | |
152 | */ | |
153 | int irq = offset * 8; | |
154 | uint32_t val; | |
155 | ||
156 | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | |
157 | return 0; | |
158 | } | |
159 | val = *gic_bmp_ptr32(bmp, irq); | |
160 | if (bmp == s->pending) { | |
161 | /* The PENDING register is a special case -- for level triggered | |
162 | * interrupts, the PENDING state is the logical OR of the state of | |
163 | * the PENDING latch with the input line level. | |
164 | */ | |
165 | uint32_t edge = *gic_bmp_ptr32(s->edge_trigger, irq); | |
166 | uint32_t level = *gic_bmp_ptr32(s->level, irq); | |
167 | val |= (~edge & level); | |
168 | } | |
169 | val &= mask_group_and_nsacr(s, attrs, maskfn, irq); | |
170 | return val; | |
171 | } | |
172 | ||
173 | static uint8_t gicd_read_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq) | |
174 | { | |
175 | /* Read the value of GICD_IPRIORITYR<n> for the specified interrupt, | |
176 | * honouring security state (these are RAZ/WI for Group 0 or Secure | |
177 | * Group 1 interrupts). | |
178 | */ | |
179 | uint32_t prio; | |
180 | ||
181 | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | |
182 | return 0; | |
183 | } | |
184 | ||
185 | prio = s->gicd_ipriority[irq]; | |
186 | ||
187 | if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { | |
188 | if (!gicv3_gicd_group_test(s, irq)) { | |
189 | /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ | |
190 | return 0; | |
191 | } | |
192 | /* NS view of the interrupt priority */ | |
193 | prio = (prio << 1) & 0xff; | |
194 | } | |
195 | return prio; | |
196 | } | |
197 | ||
198 | static void gicd_write_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq, | |
199 | uint8_t value) | |
200 | { | |
201 | /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt, | |
202 | * honouring security state (these are RAZ/WI for Group 0 or Secure | |
203 | * Group 1 interrupts). | |
204 | */ | |
205 | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | |
206 | return; | |
207 | } | |
208 | ||
209 | if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { | |
210 | if (!gicv3_gicd_group_test(s, irq)) { | |
211 | /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ | |
212 | return; | |
213 | } | |
214 | /* NS view of the interrupt priority */ | |
215 | value = 0x80 | (value >> 1); | |
216 | } | |
217 | s->gicd_ipriority[irq] = value; | |
218 | } | |
219 | ||
220 | static uint64_t gicd_read_irouter(GICv3State *s, MemTxAttrs attrs, int irq) | |
221 | { | |
222 | /* Read the value of GICD_IROUTER<n> for the specified interrupt, | |
223 | * honouring security state. | |
224 | */ | |
225 | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | |
226 | return 0; | |
227 | } | |
228 | ||
229 | if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { | |
230 | /* RAZ/WI for NS accesses to secure interrupts */ | |
231 | if (!gicv3_gicd_group_test(s, irq)) { | |
232 | if (gicd_ns_access(s, irq) != 3) { | |
233 | return 0; | |
234 | } | |
235 | } | |
236 | } | |
237 | ||
238 | return s->gicd_irouter[irq]; | |
239 | } | |
240 | ||
241 | static void gicd_write_irouter(GICv3State *s, MemTxAttrs attrs, int irq, | |
242 | uint64_t val) | |
243 | { | |
244 | /* Write the value of GICD_IROUTER<n> for the specified interrupt, | |
245 | * honouring security state. | |
246 | */ | |
247 | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | |
248 | return; | |
249 | } | |
250 | ||
251 | if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { | |
252 | /* RAZ/WI for NS accesses to secure interrupts */ | |
253 | if (!gicv3_gicd_group_test(s, irq)) { | |
254 | if (gicd_ns_access(s, irq) != 3) { | |
255 | return; | |
256 | } | |
257 | } | |
258 | } | |
259 | ||
260 | s->gicd_irouter[irq] = val; | |
261 | gicv3_cache_target_cpustate(s, irq); | |
262 | gicv3_update(s, irq, 1); | |
263 | } | |
264 | ||
265 | static MemTxResult gicd_readb(GICv3State *s, hwaddr offset, | |
266 | uint64_t *data, MemTxAttrs attrs) | |
267 | { | |
268 | /* Most GICv3 distributor registers do not support byte accesses. */ | |
269 | switch (offset) { | |
270 | case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf: | |
271 | case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf: | |
272 | case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff: | |
273 | /* This GIC implementation always has affinity routing enabled, | |
274 | * so these registers are all RAZ/WI. | |
275 | */ | |
276 | return MEMTX_OK; | |
277 | case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: | |
278 | *data = gicd_read_ipriorityr(s, attrs, offset - GICD_IPRIORITYR); | |
279 | return MEMTX_OK; | |
280 | default: | |
281 | return MEMTX_ERROR; | |
282 | } | |
283 | } | |
284 | ||
285 | static MemTxResult gicd_writeb(GICv3State *s, hwaddr offset, | |
286 | uint64_t value, MemTxAttrs attrs) | |
287 | { | |
288 | /* Most GICv3 distributor registers do not support byte accesses. */ | |
289 | switch (offset) { | |
290 | case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf: | |
291 | case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf: | |
292 | case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff: | |
293 | /* This GIC implementation always has affinity routing enabled, | |
294 | * so these registers are all RAZ/WI. | |
295 | */ | |
296 | return MEMTX_OK; | |
297 | case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: | |
298 | { | |
299 | int irq = offset - GICD_IPRIORITYR; | |
300 | ||
301 | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | |
302 | return MEMTX_OK; | |
303 | } | |
304 | gicd_write_ipriorityr(s, attrs, irq, value); | |
305 | gicv3_update(s, irq, 1); | |
306 | return MEMTX_OK; | |
307 | } | |
308 | default: | |
309 | return MEMTX_ERROR; | |
310 | } | |
311 | } | |
312 | ||
313 | static MemTxResult gicd_readw(GICv3State *s, hwaddr offset, | |
314 | uint64_t *data, MemTxAttrs attrs) | |
315 | { | |
316 | /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR | |
317 | * support 16 bit accesses, and those registers are all part of the | |
318 | * optional message-based SPI feature which this GIC does not currently | |
319 | * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are | |
320 | * reserved. | |
321 | */ | |
322 | return MEMTX_ERROR; | |
323 | } | |
324 | ||
325 | static MemTxResult gicd_writew(GICv3State *s, hwaddr offset, | |
326 | uint64_t value, MemTxAttrs attrs) | |
327 | { | |
328 | /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR | |
329 | * support 16 bit accesses, and those registers are all part of the | |
330 | * optional message-based SPI feature which this GIC does not currently | |
331 | * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are | |
332 | * reserved. | |
333 | */ | |
334 | return MEMTX_ERROR; | |
335 | } | |
336 | ||
337 | static MemTxResult gicd_readl(GICv3State *s, hwaddr offset, | |
338 | uint64_t *data, MemTxAttrs attrs) | |
339 | { | |
340 | /* Almost all GICv3 distributor registers are 32-bit. | |
341 | * Note that WO registers must return an UNKNOWN value on reads, | |
342 | * not an abort. | |
343 | */ | |
344 | ||
345 | switch (offset) { | |
346 | case GICD_CTLR: | |
347 | if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { | |
348 | /* The NS view of the GICD_CTLR sees only certain bits: | |
349 | * + bit [31] (RWP) is an alias of the Secure bit [31] | |
350 | * + bit [4] (ARE_NS) is an alias of Secure bit [5] | |
351 | * + bit [1] (EnableGrp1A) is an alias of Secure bit [1] if | |
352 | * NS affinity routing is enabled, otherwise RES0 | |
353 | * + bit [0] (EnableGrp1) is an alias of Secure bit [1] if | |
354 | * NS affinity routing is not enabled, otherwise RES0 | |
355 | * Since for QEMU affinity routing is always enabled | |
356 | * for both S and NS this means that bits [4] and [5] are | |
357 | * both always 1, and we can simply make the NS view | |
358 | * be bits 31, 4 and 1 of the S view. | |
359 | */ | |
360 | *data = s->gicd_ctlr & (GICD_CTLR_ARE_S | | |
361 | GICD_CTLR_EN_GRP1NS | | |
362 | GICD_CTLR_RWP); | |
363 | } else { | |
364 | *data = s->gicd_ctlr; | |
365 | } | |
366 | return MEMTX_OK; | |
367 | case GICD_TYPER: | |
368 | { | |
369 | /* For this implementation: | |
370 | * No1N == 1 (1-of-N SPI interrupts not supported) | |
371 | * A3V == 1 (non-zero values of Affinity level 3 supported) | |
372 | * IDbits == 0xf (we support 16-bit interrupt identifiers) | |
373 | * DVIS == 0 (Direct virtual LPI injection not supported) | |
374 | * LPIS == 0 (LPIs not supported) | |
375 | * MBIS == 0 (message-based SPIs not supported) | |
376 | * SecurityExtn == 1 if security extns supported | |
377 | * CPUNumber == 0 since for us ARE is always 1 | |
378 | * ITLinesNumber == (num external irqs / 32) - 1 | |
379 | */ | |
380 | int itlinesnumber = ((s->num_irq - GIC_INTERNAL) / 32) - 1; | |
381 | ||
382 | *data = (1 << 25) | (1 << 24) | (s->security_extn << 10) | | |
383 | (0xf << 19) | itlinesnumber; | |
384 | return MEMTX_OK; | |
385 | } | |
386 | case GICD_IIDR: | |
387 | /* We claim to be an ARM r0p0 with a zero ProductID. | |
388 | * This is the same as an r0p0 GIC-500. | |
389 | */ | |
390 | *data = gicv3_iidr(); | |
391 | return MEMTX_OK; | |
392 | case GICD_STATUSR: | |
393 | /* RAZ/WI for us (this is an optional register and our implementation | |
394 | * does not track RO/WO/reserved violations to report them to the guest) | |
395 | */ | |
396 | *data = 0; | |
397 | return MEMTX_OK; | |
398 | case GICD_IGROUPR ... GICD_IGROUPR + 0x7f: | |
399 | { | |
400 | int irq; | |
401 | ||
402 | if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { | |
403 | *data = 0; | |
404 | return MEMTX_OK; | |
405 | } | |
406 | /* RAZ/WI for SGIs, PPIs, unimplemented irqs */ | |
407 | irq = (offset - GICD_IGROUPR) * 8; | |
408 | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | |
409 | *data = 0; | |
410 | return MEMTX_OK; | |
411 | } | |
412 | *data = *gic_bmp_ptr32(s->group, irq); | |
413 | return MEMTX_OK; | |
414 | } | |
415 | case GICD_ISENABLER ... GICD_ISENABLER + 0x7f: | |
416 | *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL, | |
417 | offset - GICD_ISENABLER); | |
418 | return MEMTX_OK; | |
419 | case GICD_ICENABLER ... GICD_ICENABLER + 0x7f: | |
420 | *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL, | |
421 | offset - GICD_ICENABLER); | |
422 | return MEMTX_OK; | |
423 | case GICD_ISPENDR ... GICD_ISPENDR + 0x7f: | |
424 | *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1, | |
425 | offset - GICD_ISPENDR); | |
426 | return MEMTX_OK; | |
427 | case GICD_ICPENDR ... GICD_ICPENDR + 0x7f: | |
428 | *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2, | |
429 | offset - GICD_ICPENDR); | |
430 | return MEMTX_OK; | |
431 | case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f: | |
432 | *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2, | |
433 | offset - GICD_ISACTIVER); | |
434 | return MEMTX_OK; | |
435 | case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f: | |
436 | *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2, | |
437 | offset - GICD_ICACTIVER); | |
438 | return MEMTX_OK; | |
439 | case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: | |
440 | { | |
441 | int i, irq = offset - GICD_IPRIORITYR; | |
442 | uint32_t value = 0; | |
443 | ||
444 | for (i = irq + 3; i >= irq; i--, value <<= 8) { | |
445 | value |= gicd_read_ipriorityr(s, attrs, i); | |
446 | } | |
447 | *data = value; | |
448 | return MEMTX_OK; | |
449 | } | |
450 | case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff: | |
451 | /* RAZ/WI since affinity routing is always enabled */ | |
452 | *data = 0; | |
453 | return MEMTX_OK; | |
454 | case GICD_ICFGR ... GICD_ICFGR + 0xff: | |
455 | { | |
456 | /* Here only the even bits are used; odd bits are RES0 */ | |
457 | int irq = (offset - GICD_ICFGR) * 4; | |
458 | uint32_t value = 0; | |
459 | ||
460 | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | |
461 | *data = 0; | |
462 | return MEMTX_OK; | |
463 | } | |
464 | ||
465 | /* Since our edge_trigger bitmap is one bit per irq, we only need | |
466 | * half of the 32-bit word, which we can then spread out | |
467 | * into the odd bits. | |
468 | */ | |
469 | value = *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f); | |
470 | value &= mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f); | |
471 | value = extract32(value, (irq & 0x1f) ? 16 : 0, 16); | |
472 | value = half_shuffle32(value) << 1; | |
473 | *data = value; | |
474 | return MEMTX_OK; | |
475 | } | |
476 | case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff: | |
477 | { | |
478 | int irq; | |
479 | ||
480 | if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { | |
481 | /* RAZ/WI if security disabled, or if | |
482 | * security enabled and this is an NS access | |
483 | */ | |
484 | *data = 0; | |
485 | return MEMTX_OK; | |
486 | } | |
487 | /* RAZ/WI for SGIs, PPIs, unimplemented irqs */ | |
488 | irq = (offset - GICD_IGRPMODR) * 8; | |
489 | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | |
490 | *data = 0; | |
491 | return MEMTX_OK; | |
492 | } | |
493 | *data = *gic_bmp_ptr32(s->grpmod, irq); | |
494 | return MEMTX_OK; | |
495 | } | |
496 | case GICD_NSACR ... GICD_NSACR + 0xff: | |
497 | { | |
498 | /* Two bits per interrupt */ | |
499 | int irq = (offset - GICD_NSACR) * 4; | |
500 | ||
501 | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | |
502 | *data = 0; | |
503 | return MEMTX_OK; | |
504 | } | |
505 | ||
506 | if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { | |
507 | /* RAZ/WI if security disabled, or if | |
508 | * security enabled and this is an NS access | |
509 | */ | |
510 | *data = 0; | |
511 | return MEMTX_OK; | |
512 | } | |
513 | ||
514 | *data = s->gicd_nsacr[irq / 16]; | |
515 | return MEMTX_OK; | |
516 | } | |
517 | case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf: | |
518 | case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf: | |
519 | /* RAZ/WI since affinity routing is always enabled */ | |
520 | *data = 0; | |
521 | return MEMTX_OK; | |
522 | case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: | |
523 | { | |
524 | uint64_t r; | |
525 | int irq = (offset - GICD_IROUTER) / 8; | |
526 | ||
527 | r = gicd_read_irouter(s, attrs, irq); | |
528 | if (offset & 7) { | |
529 | *data = r >> 32; | |
530 | } else { | |
531 | *data = (uint32_t)r; | |
532 | } | |
533 | return MEMTX_OK; | |
534 | } | |
535 | case GICD_IDREGS ... GICD_IDREGS + 0x1f: | |
536 | /* ID registers */ | |
537 | *data = gicv3_idreg(offset - GICD_IDREGS); | |
538 | return MEMTX_OK; | |
539 | case GICD_SGIR: | |
540 | /* WO registers, return unknown value */ | |
541 | qemu_log_mask(LOG_GUEST_ERROR, | |
542 | "%s: invalid guest read from WO register at offset " | |
543 | TARGET_FMT_plx "\n", __func__, offset); | |
544 | *data = 0; | |
545 | return MEMTX_OK; | |
546 | default: | |
547 | return MEMTX_ERROR; | |
548 | } | |
549 | } | |
550 | ||
551 | static MemTxResult gicd_writel(GICv3State *s, hwaddr offset, | |
552 | uint64_t value, MemTxAttrs attrs) | |
553 | { | |
554 | /* Almost all GICv3 distributor registers are 32-bit. Note that | |
555 | * RO registers must ignore writes, not abort. | |
556 | */ | |
557 | ||
558 | switch (offset) { | |
559 | case GICD_CTLR: | |
560 | { | |
561 | uint32_t mask; | |
562 | /* GICv3 5.3.20 */ | |
563 | if (s->gicd_ctlr & GICD_CTLR_DS) { | |
564 | /* With only one security state, E1NWF is RAZ/WI, DS is RAO/WI, | |
565 | * ARE is RAO/WI (affinity routing always on), and only | |
566 | * bits 0 and 1 (group enables) are writable. | |
567 | */ | |
568 | mask = GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1NS; | |
569 | } else { | |
570 | if (attrs.secure) { | |
571 | /* for secure access: | |
572 | * ARE_NS and ARE_S are RAO/WI (affinity routing always on) | |
573 | * E1NWF is RAZ/WI (we don't support enable-1-of-n-wakeup) | |
574 | * | |
575 | * We can only modify bits[2:0] (the group enables). | |
576 | */ | |
577 | mask = GICD_CTLR_DS | GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1_ALL; | |
578 | } else { | |
579 | /* For non secure access ARE_NS is RAO/WI and EnableGrp1 | |
580 | * is RES0. The only writable bit is [1] (EnableGrp1A), which | |
581 | * is an alias of the Secure bit [1]. | |
582 | */ | |
583 | mask = GICD_CTLR_EN_GRP1NS; | |
584 | } | |
585 | } | |
586 | s->gicd_ctlr = (s->gicd_ctlr & ~mask) | (value & mask); | |
587 | if (value & mask & GICD_CTLR_DS) { | |
588 | /* We just set DS, so the ARE_NS and EnG1S bits are now RES0. | |
589 | * Note that this is a one-way transition because if DS is set | |
590 | * then it's not writeable, so it can only go back to 0 with a | |
591 | * hardware reset. | |
592 | */ | |
593 | s->gicd_ctlr &= ~(GICD_CTLR_EN_GRP1S | GICD_CTLR_ARE_NS); | |
594 | } | |
595 | gicv3_full_update(s); | |
596 | return MEMTX_OK; | |
597 | } | |
598 | case GICD_STATUSR: | |
599 | /* RAZ/WI for our implementation */ | |
600 | return MEMTX_OK; | |
601 | case GICD_IGROUPR ... GICD_IGROUPR + 0x7f: | |
602 | { | |
603 | int irq; | |
604 | ||
605 | if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { | |
606 | return MEMTX_OK; | |
607 | } | |
608 | /* RAZ/WI for SGIs, PPIs, unimplemented irqs */ | |
609 | irq = (offset - GICD_IGROUPR) * 8; | |
610 | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | |
611 | return MEMTX_OK; | |
612 | } | |
613 | *gic_bmp_ptr32(s->group, irq) = value; | |
614 | gicv3_update(s, irq, 32); | |
615 | return MEMTX_OK; | |
616 | } | |
617 | case GICD_ISENABLER ... GICD_ISENABLER + 0x7f: | |
618 | gicd_write_set_bitmap_reg(s, attrs, s->enabled, NULL, | |
619 | offset - GICD_ISENABLER, value); | |
620 | return MEMTX_OK; | |
621 | case GICD_ICENABLER ... GICD_ICENABLER + 0x7f: | |
622 | gicd_write_clear_bitmap_reg(s, attrs, s->enabled, NULL, | |
623 | offset - GICD_ICENABLER, value); | |
624 | return MEMTX_OK; | |
625 | case GICD_ISPENDR ... GICD_ISPENDR + 0x7f: | |
626 | gicd_write_set_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1, | |
627 | offset - GICD_ISPENDR, value); | |
628 | return MEMTX_OK; | |
629 | case GICD_ICPENDR ... GICD_ICPENDR + 0x7f: | |
630 | gicd_write_clear_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2, | |
631 | offset - GICD_ICPENDR, value); | |
632 | return MEMTX_OK; | |
633 | case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f: | |
634 | gicd_write_set_bitmap_reg(s, attrs, s->active, NULL, | |
635 | offset - GICD_ISACTIVER, value); | |
636 | return MEMTX_OK; | |
637 | case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f: | |
638 | gicd_write_clear_bitmap_reg(s, attrs, s->active, NULL, | |
639 | offset - GICD_ICACTIVER, value); | |
640 | return MEMTX_OK; | |
641 | case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: | |
642 | { | |
643 | int i, irq = offset - GICD_IPRIORITYR; | |
644 | ||
645 | if (irq < GIC_INTERNAL || irq + 3 >= s->num_irq) { | |
646 | return MEMTX_OK; | |
647 | } | |
648 | ||
649 | for (i = irq; i < irq + 4; i++, value >>= 8) { | |
650 | gicd_write_ipriorityr(s, attrs, i, value); | |
651 | } | |
652 | gicv3_update(s, irq, 4); | |
653 | return MEMTX_OK; | |
654 | } | |
655 | case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff: | |
656 | /* RAZ/WI since affinity routing is always enabled */ | |
657 | return MEMTX_OK; | |
658 | case GICD_ICFGR ... GICD_ICFGR + 0xff: | |
659 | { | |
660 | /* Here only the odd bits are used; even bits are RES0 */ | |
661 | int irq = (offset - GICD_ICFGR) * 4; | |
662 | uint32_t mask, oldval; | |
663 | ||
664 | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | |
665 | return MEMTX_OK; | |
666 | } | |
667 | ||
668 | /* Since our edge_trigger bitmap is one bit per irq, our input | |
669 | * 32-bits will compress down into 16 bits which we need | |
670 | * to write into the bitmap. | |
671 | */ | |
672 | value = half_unshuffle32(value >> 1); | |
673 | mask = mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f); | |
674 | if (irq & 0x1f) { | |
675 | value <<= 16; | |
676 | mask &= 0xffff0000U; | |
677 | } else { | |
678 | mask &= 0xffff; | |
679 | } | |
680 | oldval = *gic_bmp_ptr32(s->edge_trigger, (irq & ~0x1f)); | |
681 | value = (oldval & ~mask) | (value & mask); | |
682 | *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f) = value; | |
683 | return MEMTX_OK; | |
684 | } | |
685 | case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff: | |
686 | { | |
687 | int irq; | |
688 | ||
689 | if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { | |
690 | /* RAZ/WI if security disabled, or if | |
691 | * security enabled and this is an NS access | |
692 | */ | |
693 | return MEMTX_OK; | |
694 | } | |
695 | /* RAZ/WI for SGIs, PPIs, unimplemented irqs */ | |
696 | irq = (offset - GICD_IGRPMODR) * 8; | |
697 | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | |
698 | return MEMTX_OK; | |
699 | } | |
700 | *gic_bmp_ptr32(s->grpmod, irq) = value; | |
701 | gicv3_update(s, irq, 32); | |
702 | return MEMTX_OK; | |
703 | } | |
704 | case GICD_NSACR ... GICD_NSACR + 0xff: | |
705 | { | |
706 | /* Two bits per interrupt */ | |
707 | int irq = (offset - GICD_NSACR) * 4; | |
708 | ||
709 | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | |
710 | return MEMTX_OK; | |
711 | } | |
712 | ||
713 | if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { | |
714 | /* RAZ/WI if security disabled, or if | |
715 | * security enabled and this is an NS access | |
716 | */ | |
717 | return MEMTX_OK; | |
718 | } | |
719 | ||
720 | s->gicd_nsacr[irq / 16] = value; | |
721 | /* No update required as this only affects access permission checks */ | |
722 | return MEMTX_OK; | |
723 | } | |
724 | case GICD_SGIR: | |
725 | /* RES0 if affinity routing is enabled */ | |
726 | return MEMTX_OK; | |
727 | case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf: | |
728 | case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf: | |
729 | /* RAZ/WI since affinity routing is always enabled */ | |
730 | return MEMTX_OK; | |
731 | case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: | |
732 | { | |
733 | uint64_t r; | |
734 | int irq = (offset - GICD_IROUTER) / 8; | |
735 | ||
736 | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | |
737 | return MEMTX_OK; | |
738 | } | |
739 | ||
740 | /* Write half of the 64-bit register */ | |
741 | r = gicd_read_irouter(s, attrs, irq); | |
742 | r = deposit64(r, (offset & 7) ? 32 : 0, 32, value); | |
743 | gicd_write_irouter(s, attrs, irq, r); | |
744 | return MEMTX_OK; | |
745 | } | |
746 | case GICD_IDREGS ... GICD_IDREGS + 0x1f: | |
747 | case GICD_TYPER: | |
748 | case GICD_IIDR: | |
749 | /* RO registers, ignore the write */ | |
750 | qemu_log_mask(LOG_GUEST_ERROR, | |
751 | "%s: invalid guest write to RO register at offset " | |
752 | TARGET_FMT_plx "\n", __func__, offset); | |
753 | return MEMTX_OK; | |
754 | default: | |
755 | return MEMTX_ERROR; | |
756 | } | |
757 | } | |
758 | ||
759 | static MemTxResult gicd_writell(GICv3State *s, hwaddr offset, | |
760 | uint64_t value, MemTxAttrs attrs) | |
761 | { | |
762 | /* Our only 64-bit registers are GICD_IROUTER<n> */ | |
763 | int irq; | |
764 | ||
765 | switch (offset) { | |
766 | case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: | |
767 | irq = (offset - GICD_IROUTER) / 8; | |
768 | gicd_write_irouter(s, attrs, irq, value); | |
769 | return MEMTX_OK; | |
770 | default: | |
771 | return MEMTX_ERROR; | |
772 | } | |
773 | } | |
774 | ||
775 | static MemTxResult gicd_readll(GICv3State *s, hwaddr offset, | |
776 | uint64_t *data, MemTxAttrs attrs) | |
777 | { | |
778 | /* Our only 64-bit registers are GICD_IROUTER<n> */ | |
779 | int irq; | |
780 | ||
781 | switch (offset) { | |
782 | case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: | |
783 | irq = (offset - GICD_IROUTER) / 8; | |
784 | *data = gicd_read_irouter(s, attrs, irq); | |
785 | return MEMTX_OK; | |
786 | default: | |
787 | return MEMTX_ERROR; | |
788 | } | |
789 | } | |
790 | ||
791 | MemTxResult gicv3_dist_read(void *opaque, hwaddr offset, uint64_t *data, | |
792 | unsigned size, MemTxAttrs attrs) | |
793 | { | |
794 | GICv3State *s = (GICv3State *)opaque; | |
795 | MemTxResult r; | |
796 | ||
797 | switch (size) { | |
798 | case 1: | |
799 | r = gicd_readb(s, offset, data, attrs); | |
800 | break; | |
801 | case 2: | |
802 | r = gicd_readw(s, offset, data, attrs); | |
803 | break; | |
804 | case 4: | |
805 | r = gicd_readl(s, offset, data, attrs); | |
806 | break; | |
807 | case 8: | |
808 | r = gicd_readll(s, offset, data, attrs); | |
809 | break; | |
810 | default: | |
811 | r = MEMTX_ERROR; | |
812 | break; | |
813 | } | |
814 | ||
815 | if (r == MEMTX_ERROR) { | |
816 | qemu_log_mask(LOG_GUEST_ERROR, | |
817 | "%s: invalid guest read at offset " TARGET_FMT_plx | |
818 | "size %u\n", __func__, offset, size); | |
819 | trace_gicv3_dist_badread(offset, size, attrs.secure); | |
f1945632 PM |
820 | /* The spec requires that reserved registers are RAZ/WI; |
821 | * so use MEMTX_ERROR returns from leaf functions as a way to | |
822 | * trigger the guest-error logging but don't return it to | |
823 | * the caller, or we'll cause a spurious guest data abort. | |
824 | */ | |
825 | r = MEMTX_OK; | |
826 | *data = 0; | |
e52af513 SP |
827 | } else { |
828 | trace_gicv3_dist_read(offset, *data, size, attrs.secure); | |
829 | } | |
830 | return r; | |
831 | } | |
832 | ||
833 | MemTxResult gicv3_dist_write(void *opaque, hwaddr offset, uint64_t data, | |
834 | unsigned size, MemTxAttrs attrs) | |
835 | { | |
836 | GICv3State *s = (GICv3State *)opaque; | |
837 | MemTxResult r; | |
838 | ||
839 | switch (size) { | |
840 | case 1: | |
841 | r = gicd_writeb(s, offset, data, attrs); | |
842 | break; | |
843 | case 2: | |
844 | r = gicd_writew(s, offset, data, attrs); | |
845 | break; | |
846 | case 4: | |
847 | r = gicd_writel(s, offset, data, attrs); | |
848 | break; | |
849 | case 8: | |
850 | r = gicd_writell(s, offset, data, attrs); | |
851 | break; | |
852 | default: | |
853 | r = MEMTX_ERROR; | |
854 | break; | |
855 | } | |
856 | ||
857 | if (r == MEMTX_ERROR) { | |
858 | qemu_log_mask(LOG_GUEST_ERROR, | |
859 | "%s: invalid guest write at offset " TARGET_FMT_plx | |
860 | "size %u\n", __func__, offset, size); | |
861 | trace_gicv3_dist_badwrite(offset, data, size, attrs.secure); | |
f1945632 PM |
862 | /* The spec requires that reserved registers are RAZ/WI; |
863 | * so use MEMTX_ERROR returns from leaf functions as a way to | |
864 | * trigger the guest-error logging but don't return it to | |
865 | * the caller, or we'll cause a spurious guest data abort. | |
866 | */ | |
867 | r = MEMTX_OK; | |
e52af513 SP |
868 | } else { |
869 | trace_gicv3_dist_write(offset, data, size, attrs.secure); | |
870 | } | |
871 | return r; | |
872 | } | |
c84428b3 PM |
873 | |
874 | void gicv3_dist_set_irq(GICv3State *s, int irq, int level) | |
875 | { | |
876 | /* Update distributor state for a change in an external SPI input line */ | |
877 | if (level == gicv3_gicd_level_test(s, irq)) { | |
878 | return; | |
879 | } | |
880 | ||
881 | trace_gicv3_dist_set_irq(irq, level); | |
882 | ||
883 | gicv3_gicd_level_replace(s, irq, level); | |
884 | ||
885 | if (level) { | |
886 | /* 0->1 edges latch the pending bit for edge-triggered interrupts */ | |
887 | if (gicv3_gicd_edge_trigger_test(s, irq)) { | |
888 | gicv3_gicd_pending_set(s, irq); | |
889 | } | |
890 | } | |
891 | ||
892 | gicv3_update(s, irq, 1); | |
893 | } |