]> Git Repo - qemu.git/blame - disas/alpha.c
works with less than base ISA qemu-system-riscv32 -M virt -bios none -kernel output...
[qemu.git] / disas / alpha.c
CommitLineData
a993ba85
FB
1/* alpha-dis.c -- Disassemble Alpha AXP instructions
2 Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <[email protected]>,
4 patterned after the PPC opcode handling written by Ian Lance Taylor.
5
6This file is part of GDB, GAS, and the GNU binutils.
7
8GDB, GAS, and the GNU binutils are free software; you can redistribute
9them and/or modify them under the terms of the GNU General Public
10License as published by the Free Software Foundation; either version
112, or (at your option) any later version.
12
13GDB, GAS, and the GNU binutils are distributed in the hope that they
14will be useful, but WITHOUT ANY WARRANTY; without even the implied
15warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
16the GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
8167ee88
BS
19along with this file; see the file COPYING. If not, see
20<http://www.gnu.org/licenses/>. */
a993ba85 21
e2e5e114 22#include "qemu/osdep.h"
3979fca4 23#include "disas/dis-asm.h"
a993ba85 24
6e2d864e
SW
25/* MAX is redefined below, so remove any previous definition. */
26#undef MAX
27
a993ba85
FB
28/* The opcode table is an array of struct alpha_opcode. */
29
30struct alpha_opcode
31{
32 /* The opcode name. */
33 const char *name;
34
35 /* The opcode itself. Those bits which will be filled in with
36 operands are zeroes. */
37 unsigned opcode;
38
39 /* The opcode mask. This is used by the disassembler. This is a
40 mask containing ones indicating those bits which must match the
41 opcode field, and zeroes indicating those bits which need not
42 match (and are presumably filled in by operands). */
43 unsigned mask;
44
45 /* One bit flags for the opcode. These are primarily used to
46 indicate specific processors and environments support the
47 instructions. The defined values are listed below. */
48 unsigned flags;
49
50 /* An array of operand codes. Each code is an index into the
51 operand table. They appear in the order which the operands must
52 appear in assembly code, and are terminated by a zero. */
53 unsigned char operands[4];
54};
55
56/* The table itself is sorted by major opcode number, and is otherwise
57 in the order in which the disassembler should consider
58 instructions. */
59extern const struct alpha_opcode alpha_opcodes[];
60extern const unsigned alpha_num_opcodes;
61
62/* Values defined for the flags field of a struct alpha_opcode. */
63
64/* CPU Availability */
65#define AXP_OPCODE_BASE 0x0001 /* Base architecture -- all cpus. */
66#define AXP_OPCODE_EV4 0x0002 /* EV4 specific PALcode insns. */
67#define AXP_OPCODE_EV5 0x0004 /* EV5 specific PALcode insns. */
68#define AXP_OPCODE_EV6 0x0008 /* EV6 specific PALcode insns. */
69#define AXP_OPCODE_BWX 0x0100 /* Byte/word extension (amask bit 0). */
70#define AXP_OPCODE_CIX 0x0200 /* "Count" extension (amask bit 1). */
71#define AXP_OPCODE_MAX 0x0400 /* Multimedia extension (amask bit 8). */
72
73#define AXP_OPCODE_NOPAL (~(AXP_OPCODE_EV4|AXP_OPCODE_EV5|AXP_OPCODE_EV6))
74
75/* A macro to extract the major opcode from an instruction. */
76#define AXP_OP(i) (((i) >> 26) & 0x3F)
77
78/* The total number of major opcodes. */
79#define AXP_NOPS 0x40
80
81\f
82/* The operands table is an array of struct alpha_operand. */
83
84struct alpha_operand
85{
86 /* The number of bits in the operand. */
87 unsigned int bits : 5;
88
89 /* How far the operand is left shifted in the instruction. */
90 unsigned int shift : 5;
91
92 /* The default relocation type for this operand. */
93 signed int default_reloc : 16;
94
95 /* One bit syntax flags. */
96 unsigned int flags : 16;
97
98 /* Insertion function. This is used by the assembler. To insert an
99 operand value into an instruction, check this field.
100
101 If it is NULL, execute
102 i |= (op & ((1 << o->bits) - 1)) << o->shift;
103 (i is the instruction which we are filling in, o is a pointer to
104 this structure, and op is the opcode value; this assumes twos
105 complement arithmetic).
106
107 If this field is not NULL, then simply call it with the
108 instruction and the operand value. It will return the new value
109 of the instruction. If the ERRMSG argument is not NULL, then if
110 the operand value is illegal, *ERRMSG will be set to a warning
111 string (the operand will be inserted in any case). If the
112 operand value is legal, *ERRMSG will be unchanged (most operands
113 can accept any value). */
9262f384
JQ
114 unsigned (*insert) (unsigned instruction, int op,
115 const char **errmsg);
a993ba85
FB
116
117 /* Extraction function. This is used by the disassembler. To
118 extract this operand type from an instruction, check this field.
119
120 If it is NULL, compute
121 op = ((i) >> o->shift) & ((1 << o->bits) - 1);
122 if ((o->flags & AXP_OPERAND_SIGNED) != 0
123 && (op & (1 << (o->bits - 1))) != 0)
124 op -= 1 << o->bits;
125 (i is the instruction, o is a pointer to this structure, and op
126 is the result; this assumes twos complement arithmetic).
127
128 If this field is not NULL, then simply call it with the
129 instruction value. It will return the value of the operand. If
130 the INVALID argument is not NULL, *INVALID will be set to
131 non-zero if this operand type can not actually be extracted from
132 this operand (i.e., the instruction does not match). If the
133 operand is valid, *INVALID will not be changed. */
9262f384 134 int (*extract) (unsigned instruction, int *invalid);
a993ba85
FB
135};
136
137/* Elements in the table are retrieved by indexing with values from
138 the operands field of the alpha_opcodes table. */
139
140extern const struct alpha_operand alpha_operands[];
141extern const unsigned alpha_num_operands;
142
143/* Values defined for the flags field of a struct alpha_operand. */
144
145/* Mask for selecting the type for typecheck purposes */
146#define AXP_OPERAND_TYPECHECK_MASK \
147 (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA | AXP_OPERAND_IR | \
148 AXP_OPERAND_FPR | AXP_OPERAND_RELATIVE | AXP_OPERAND_SIGNED | \
149 AXP_OPERAND_UNSIGNED)
150
151/* This operand does not actually exist in the assembler input. This
152 is used to support extended mnemonics, for which two operands fields
153 are identical. The assembler should call the insert function with
154 any op value. The disassembler should call the extract function,
155 ignore the return value, and check the value placed in the invalid
156 argument. */
157#define AXP_OPERAND_FAKE 01
158
159/* The operand should be wrapped in parentheses rather than separated
160 from the previous by a comma. This is used for the load and store
161 instructions which want their operands to look like "Ra,disp(Rb)". */
162#define AXP_OPERAND_PARENS 02
163
d89c682f 164/* Used in combination with PARENS, this suppresses the suppression of
a993ba85
FB
165 the comma. This is used for "jmp Ra,(Rb),hint". */
166#define AXP_OPERAND_COMMA 04
167
168/* This operand names an integer register. */
169#define AXP_OPERAND_IR 010
170
171/* This operand names a floating point register. */
172#define AXP_OPERAND_FPR 020
173
174/* This operand is a relative branch displacement. The disassembler
175 prints these symbolically if possible. */
176#define AXP_OPERAND_RELATIVE 040
177
178/* This operand takes signed values. */
179#define AXP_OPERAND_SIGNED 0100
180
181/* This operand takes unsigned values. This exists primarily so that
182 a flags value of 0 can be treated as end-of-arguments. */
183#define AXP_OPERAND_UNSIGNED 0200
184
d89c682f 185/* Suppress overflow detection on this field. This is used for hints. */
a993ba85
FB
186#define AXP_OPERAND_NOOVERFLOW 0400
187
188/* Mask for optional argument default value. */
189#define AXP_OPERAND_OPTIONAL_MASK 07000
190
191/* This operand defaults to zero. This is used for jump hints. */
192#define AXP_OPERAND_DEFAULT_ZERO 01000
193
194/* This operand should default to the first (real) operand and is used
195 in conjunction with AXP_OPERAND_OPTIONAL. This allows
196 "and $0,3,$0" to be written as "and $0,3", etc. I don't like
197 it, but it's what DEC does. */
198#define AXP_OPERAND_DEFAULT_FIRST 02000
199
200/* Similarly, this operand should default to the second (real) operand.
201 This allows "negl $0" instead of "negl $0,$0". */
202#define AXP_OPERAND_DEFAULT_SECOND 04000
203
204\f
205/* Register common names */
206
207#define AXP_REG_V0 0
208#define AXP_REG_T0 1
209#define AXP_REG_T1 2
210#define AXP_REG_T2 3
211#define AXP_REG_T3 4
212#define AXP_REG_T4 5
213#define AXP_REG_T5 6
214#define AXP_REG_T6 7
215#define AXP_REG_T7 8
216#define AXP_REG_S0 9
217#define AXP_REG_S1 10
218#define AXP_REG_S2 11
219#define AXP_REG_S3 12
220#define AXP_REG_S4 13
221#define AXP_REG_S5 14
222#define AXP_REG_FP 15
223#define AXP_REG_A0 16
224#define AXP_REG_A1 17
225#define AXP_REG_A2 18
226#define AXP_REG_A3 19
227#define AXP_REG_A4 20
228#define AXP_REG_A5 21
229#define AXP_REG_T8 22
230#define AXP_REG_T9 23
231#define AXP_REG_T10 24
232#define AXP_REG_T11 25
233#define AXP_REG_RA 26
234#define AXP_REG_PV 27
235#define AXP_REG_T12 27
236#define AXP_REG_AT 28
237#define AXP_REG_GP 29
238#define AXP_REG_SP 30
239#define AXP_REG_ZERO 31
240
a993ba85
FB
241enum bfd_reloc_code_real {
242 BFD_RELOC_23_PCREL_S2,
243 BFD_RELOC_ALPHA_HINT
244};
245
a993ba85
FB
246/* This file holds the Alpha AXP opcode table. The opcode table includes
247 almost all of the extended instruction mnemonics. This permits the
248 disassembler to use them, and simplifies the assembler logic, at the
249 cost of increasing the table size. The table is strictly constant
250 data, so the compiler should be able to put it in the text segment.
251
252 This file also holds the operand table. All knowledge about inserting
253 and extracting operands from instructions is kept in this file.
254
255 The information for the base instruction set was compiled from the
256 _Alpha Architecture Handbook_, Digital Order Number EC-QD2KB-TE,
257 version 2.
258
259 The information for the post-ev5 architecture extensions BWX, CIX and
260 MAX came from version 3 of this same document, which is also available
261 on-line at http://ftp.digital.com/pub/Digital/info/semiconductor
262 /literature/alphahb2.pdf
263
264 The information for the EV4 PALcode instructions was compiled from
265 _DECchip 21064 and DECchip 21064A Alpha AXP Microprocessors Hardware
266 Reference Manual_, Digital Order Number EC-Q9ZUA-TE, preliminary
267 revision dated June 1994.
268
269 The information for the EV5 PALcode instructions was compiled from
270 _Alpha 21164 Microprocessor Hardware Reference Manual_, Digital
271 Order Number EC-QAEQB-TE, preliminary revision dated April 1995. */
272\f
273/* Local insertion and extraction functions */
274
9262f384
JQ
275static unsigned insert_rba (unsigned, int, const char **);
276static unsigned insert_rca (unsigned, int, const char **);
277static unsigned insert_za (unsigned, int, const char **);
278static unsigned insert_zb (unsigned, int, const char **);
279static unsigned insert_zc (unsigned, int, const char **);
280static unsigned insert_bdisp (unsigned, int, const char **);
281static unsigned insert_jhint (unsigned, int, const char **);
282static unsigned insert_ev6hwjhint (unsigned, int, const char **);
283
284static int extract_rba (unsigned, int *);
285static int extract_rca (unsigned, int *);
286static int extract_za (unsigned, int *);
287static int extract_zb (unsigned, int *);
288static int extract_zc (unsigned, int *);
289static int extract_bdisp (unsigned, int *);
290static int extract_jhint (unsigned, int *);
291static int extract_ev6hwjhint (unsigned, int *);
a993ba85
FB
292
293\f
294/* The operands table */
295
296const struct alpha_operand alpha_operands[] =
297{
298 /* The fields are bits, shift, insert, extract, flags */
299 /* The zero index is used to indicate end-of-list */
300#define UNUSED 0
301 { 0, 0, 0, 0, 0, 0 },
302
303 /* The plain integer register fields */
304#define RA (UNUSED + 1)
305 { 5, 21, 0, AXP_OPERAND_IR, 0, 0 },
306#define RB (RA + 1)
307 { 5, 16, 0, AXP_OPERAND_IR, 0, 0 },
308#define RC (RB + 1)
309 { 5, 0, 0, AXP_OPERAND_IR, 0, 0 },
310
311 /* The plain fp register fields */
312#define FA (RC + 1)
313 { 5, 21, 0, AXP_OPERAND_FPR, 0, 0 },
314#define FB (FA + 1)
315 { 5, 16, 0, AXP_OPERAND_FPR, 0, 0 },
316#define FC (FB + 1)
317 { 5, 0, 0, AXP_OPERAND_FPR, 0, 0 },
318
319 /* The integer registers when they are ZERO */
320#define ZA (FC + 1)
321 { 5, 21, 0, AXP_OPERAND_FAKE, insert_za, extract_za },
322#define ZB (ZA + 1)
323 { 5, 16, 0, AXP_OPERAND_FAKE, insert_zb, extract_zb },
324#define ZC (ZB + 1)
325 { 5, 0, 0, AXP_OPERAND_FAKE, insert_zc, extract_zc },
326
327 /* The RB field when it needs parentheses */
328#define PRB (ZC + 1)
329 { 5, 16, 0, AXP_OPERAND_IR|AXP_OPERAND_PARENS, 0, 0 },
330
331 /* The RB field when it needs parentheses _and_ a preceding comma */
332#define CPRB (PRB + 1)
333 { 5, 16, 0,
334 AXP_OPERAND_IR|AXP_OPERAND_PARENS|AXP_OPERAND_COMMA, 0, 0 },
335
336 /* The RB field when it must be the same as the RA field */
337#define RBA (CPRB + 1)
338 { 5, 16, 0, AXP_OPERAND_FAKE, insert_rba, extract_rba },
339
340 /* The RC field when it must be the same as the RB field */
341#define RCA (RBA + 1)
342 { 5, 0, 0, AXP_OPERAND_FAKE, insert_rca, extract_rca },
343
344 /* The RC field when it can *default* to RA */
345#define DRC1 (RCA + 1)
346 { 5, 0, 0,
347 AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
348
349 /* The RC field when it can *default* to RB */
350#define DRC2 (DRC1 + 1)
351 { 5, 0, 0,
352 AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
353
354 /* The FC field when it can *default* to RA */
355#define DFC1 (DRC2 + 1)
356 { 5, 0, 0,
357 AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
358
359 /* The FC field when it can *default* to RB */
360#define DFC2 (DFC1 + 1)
361 { 5, 0, 0,
362 AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
363
364 /* The unsigned 8-bit literal of Operate format insns */
365#define LIT (DFC2 + 1)
366 { 8, 13, -LIT, AXP_OPERAND_UNSIGNED, 0, 0 },
367
368 /* The signed 16-bit displacement of Memory format insns. From here
369 we can't tell what relocation should be used, so don't use a default. */
370#define MDISP (LIT + 1)
371 { 16, 0, -MDISP, AXP_OPERAND_SIGNED, 0, 0 },
372
373 /* The signed "23-bit" aligned displacement of Branch format insns */
374#define BDISP (MDISP + 1)
5fafdf24 375 { 21, 0, BFD_RELOC_23_PCREL_S2,
a993ba85
FB
376 AXP_OPERAND_RELATIVE, insert_bdisp, extract_bdisp },
377
378 /* The 26-bit PALcode function */
379#define PALFN (BDISP + 1)
380 { 26, 0, -PALFN, AXP_OPERAND_UNSIGNED, 0, 0 },
381
382 /* The optional signed "16-bit" aligned displacement of the JMP/JSR hint */
383#define JMPHINT (PALFN + 1)
384 { 14, 0, BFD_RELOC_ALPHA_HINT,
385 AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
386 insert_jhint, extract_jhint },
387
388 /* The optional hint to RET/JSR_COROUTINE */
389#define RETHINT (JMPHINT + 1)
390 { 14, 0, -RETHINT,
391 AXP_OPERAND_UNSIGNED|AXP_OPERAND_DEFAULT_ZERO, 0, 0 },
392
393 /* The 12-bit displacement for the ev[46] hw_{ld,st} (pal1b/pal1f) insns */
394#define EV4HWDISP (RETHINT + 1)
395#define EV6HWDISP (EV4HWDISP)
396 { 12, 0, -EV4HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
397
398 /* The 5-bit index for the ev4 hw_m[ft]pr (pal19/pal1d) insns */
399#define EV4HWINDEX (EV4HWDISP + 1)
400 { 5, 0, -EV4HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
401
402 /* The 8-bit index for the oddly unqualified hw_m[tf]pr insns
403 that occur in DEC PALcode. */
404#define EV4EXTHWINDEX (EV4HWINDEX + 1)
405 { 8, 0, -EV4EXTHWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
406
407 /* The 10-bit displacement for the ev5 hw_{ld,st} (pal1b/pal1f) insns */
408#define EV5HWDISP (EV4EXTHWINDEX + 1)
409 { 10, 0, -EV5HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
410
411 /* The 16-bit index for the ev5 hw_m[ft]pr (pal19/pal1d) insns */
412#define EV5HWINDEX (EV5HWDISP + 1)
413 { 16, 0, -EV5HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
414
415 /* The 16-bit combined index/scoreboard mask for the ev6
416 hw_m[ft]pr (pal19/pal1d) insns */
417#define EV6HWINDEX (EV5HWINDEX + 1)
418 { 16, 0, -EV6HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
419
420 /* The 13-bit branch hint for the ev6 hw_jmp/jsr (pal1e) insn */
421#define EV6HWJMPHINT (EV6HWINDEX+ 1)
422 { 8, 0, -EV6HWJMPHINT,
423 AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
424 insert_ev6hwjhint, extract_ev6hwjhint }
425};
426
427const unsigned alpha_num_operands = sizeof(alpha_operands)/sizeof(*alpha_operands);
428
429/* The RB field when it is the same as the RA field in the same insn.
430 This operand is marked fake. The insertion function just copies
431 the RA field into the RB field, and the extraction function just
432 checks that the fields are the same. */
433
434/*ARGSUSED*/
435static unsigned
668a38fc 436insert_rba(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
a993ba85
FB
437{
438 return insn | (((insn >> 21) & 0x1f) << 16);
439}
440
441static int
668a38fc 442extract_rba(unsigned insn, int *invalid)
a993ba85
FB
443{
444 if (invalid != (int *) NULL
445 && ((insn >> 21) & 0x1f) != ((insn >> 16) & 0x1f))
446 *invalid = 1;
447 return 0;
448}
449
450
451/* The same for the RC field */
452
453/*ARGSUSED*/
454static unsigned
668a38fc 455insert_rca(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
a993ba85
FB
456{
457 return insn | ((insn >> 21) & 0x1f);
458}
459
460static int
668a38fc 461extract_rca(unsigned insn, int *invalid)
a993ba85
FB
462{
463 if (invalid != (int *) NULL
464 && ((insn >> 21) & 0x1f) != (insn & 0x1f))
465 *invalid = 1;
466 return 0;
467}
468
469
470/* Fake arguments in which the registers must be set to ZERO */
471
472/*ARGSUSED*/
473static unsigned
668a38fc 474insert_za(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
a993ba85
FB
475{
476 return insn | (31 << 21);
477}
478
479static int
668a38fc 480extract_za(unsigned insn, int *invalid)
a993ba85
FB
481{
482 if (invalid != (int *) NULL && ((insn >> 21) & 0x1f) != 31)
483 *invalid = 1;
484 return 0;
485}
486
487/*ARGSUSED*/
488static unsigned
668a38fc 489insert_zb(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
a993ba85
FB
490{
491 return insn | (31 << 16);
492}
493
494static int
668a38fc 495extract_zb(unsigned insn, int *invalid)
a993ba85
FB
496{
497 if (invalid != (int *) NULL && ((insn >> 16) & 0x1f) != 31)
498 *invalid = 1;
499 return 0;
500}
501
502/*ARGSUSED*/
503static unsigned
668a38fc 504insert_zc(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
a993ba85
FB
505{
506 return insn | 31;
507}
508
509static int
668a38fc 510extract_zc(unsigned insn, int *invalid)
a993ba85
FB
511{
512 if (invalid != (int *) NULL && (insn & 0x1f) != 31)
513 *invalid = 1;
514 return 0;
515}
516
517
518/* The displacement field of a Branch format insn. */
519
520static unsigned
668a38fc 521insert_bdisp(unsigned insn, int value, const char **errmsg)
a993ba85
FB
522{
523 if (errmsg != (const char **)NULL && (value & 3))
ca66f1a1 524 *errmsg = "branch operand unaligned";
a993ba85
FB
525 return insn | ((value / 4) & 0x1FFFFF);
526}
527
528/*ARGSUSED*/
529static int
668a38fc 530extract_bdisp(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
a993ba85
FB
531{
532 return 4 * (((insn & 0x1FFFFF) ^ 0x100000) - 0x100000);
533}
534
535
536/* The hint field of a JMP/JSR insn. */
537
538static unsigned
668a38fc 539insert_jhint(unsigned insn, int value, const char **errmsg)
a993ba85
FB
540{
541 if (errmsg != (const char **)NULL && (value & 3))
ca66f1a1 542 *errmsg = "jump hint unaligned";
a993ba85
FB
543 return insn | ((value / 4) & 0x3FFF);
544}
545
546/*ARGSUSED*/
547static int
668a38fc 548extract_jhint(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
a993ba85
FB
549{
550 return 4 * (((insn & 0x3FFF) ^ 0x2000) - 0x2000);
551}
552
553/* The hint field of an EV6 HW_JMP/JSR insn. */
554
555static unsigned
668a38fc 556insert_ev6hwjhint(unsigned insn, int value, const char **errmsg)
a993ba85
FB
557{
558 if (errmsg != (const char **)NULL && (value & 3))
ca66f1a1 559 *errmsg = "jump hint unaligned";
a993ba85
FB
560 return insn | ((value / 4) & 0x1FFF);
561}
562
563/*ARGSUSED*/
564static int
668a38fc 565extract_ev6hwjhint(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
a993ba85
FB
566{
567 return 4 * (((insn & 0x1FFF) ^ 0x1000) - 0x1000);
568}
569
570\f
571/* Macros used to form opcodes */
572
573/* The main opcode */
574#define OP(x) (((x) & 0x3F) << 26)
575#define OP_MASK 0xFC000000
576
577/* Branch format instructions */
578#define BRA_(oo) OP(oo)
579#define BRA_MASK OP_MASK
580#define BRA(oo) BRA_(oo), BRA_MASK
581
582/* Floating point format instructions */
583#define FP_(oo,fff) (OP(oo) | (((fff) & 0x7FF) << 5))
584#define FP_MASK (OP_MASK | 0xFFE0)
585#define FP(oo,fff) FP_(oo,fff), FP_MASK
586
587/* Memory format instructions */
588#define MEM_(oo) OP(oo)
589#define MEM_MASK OP_MASK
590#define MEM(oo) MEM_(oo), MEM_MASK
591
592/* Memory/Func Code format instructions */
593#define MFC_(oo,ffff) (OP(oo) | ((ffff) & 0xFFFF))
594#define MFC_MASK (OP_MASK | 0xFFFF)
595#define MFC(oo,ffff) MFC_(oo,ffff), MFC_MASK
596
597/* Memory/Branch format instructions */
598#define MBR_(oo,h) (OP(oo) | (((h) & 3) << 14))
599#define MBR_MASK (OP_MASK | 0xC000)
600#define MBR(oo,h) MBR_(oo,h), MBR_MASK
601
602/* Operate format instructions. The OPRL variant specifies a
603 literal second argument. */
604#define OPR_(oo,ff) (OP(oo) | (((ff) & 0x7F) << 5))
605#define OPRL_(oo,ff) (OPR_((oo),(ff)) | 0x1000)
606#define OPR_MASK (OP_MASK | 0x1FE0)
607#define OPR(oo,ff) OPR_(oo,ff), OPR_MASK
608#define OPRL(oo,ff) OPRL_(oo,ff), OPR_MASK
609
610/* Generic PALcode format instructions */
611#define PCD_(oo) OP(oo)
612#define PCD_MASK OP_MASK
613#define PCD(oo) PCD_(oo), PCD_MASK
614
615/* Specific PALcode instructions */
616#define SPCD_(oo,ffff) (OP(oo) | ((ffff) & 0x3FFFFFF))
617#define SPCD_MASK 0xFFFFFFFF
618#define SPCD(oo,ffff) SPCD_(oo,ffff), SPCD_MASK
619
620/* Hardware memory (hw_{ld,st}) instructions */
621#define EV4HWMEM_(oo,f) (OP(oo) | (((f) & 0xF) << 12))
622#define EV4HWMEM_MASK (OP_MASK | 0xF000)
623#define EV4HWMEM(oo,f) EV4HWMEM_(oo,f), EV4HWMEM_MASK
624
625#define EV5HWMEM_(oo,f) (OP(oo) | (((f) & 0x3F) << 10))
626#define EV5HWMEM_MASK (OP_MASK | 0xF800)
627#define EV5HWMEM(oo,f) EV5HWMEM_(oo,f), EV5HWMEM_MASK
628
629#define EV6HWMEM_(oo,f) (OP(oo) | (((f) & 0xF) << 12))
630#define EV6HWMEM_MASK (OP_MASK | 0xF000)
631#define EV6HWMEM(oo,f) EV6HWMEM_(oo,f), EV6HWMEM_MASK
632
633#define EV6HWMBR_(oo,h) (OP(oo) | (((h) & 7) << 13))
634#define EV6HWMBR_MASK (OP_MASK | 0xE000)
635#define EV6HWMBR(oo,h) EV6HWMBR_(oo,h), EV6HWMBR_MASK
636
637/* Abbreviations for instruction subsets. */
638#define BASE AXP_OPCODE_BASE
639#define EV4 AXP_OPCODE_EV4
640#define EV5 AXP_OPCODE_EV5
641#define EV6 AXP_OPCODE_EV6
642#define BWX AXP_OPCODE_BWX
643#define CIX AXP_OPCODE_CIX
644#define MAX AXP_OPCODE_MAX
645
646/* Common combinations of arguments */
647#define ARG_NONE { 0 }
648#define ARG_BRA { RA, BDISP }
649#define ARG_FBRA { FA, BDISP }
650#define ARG_FP { FA, FB, DFC1 }
651#define ARG_FPZ1 { ZA, FB, DFC1 }
652#define ARG_MEM { RA, MDISP, PRB }
653#define ARG_FMEM { FA, MDISP, PRB }
654#define ARG_OPR { RA, RB, DRC1 }
655#define ARG_OPRL { RA, LIT, DRC1 }
656#define ARG_OPRZ1 { ZA, RB, DRC1 }
657#define ARG_OPRLZ1 { ZA, LIT, RC }
658#define ARG_PCD { PALFN }
659#define ARG_EV4HWMEM { RA, EV4HWDISP, PRB }
660#define ARG_EV4HWMPR { RA, RBA, EV4HWINDEX }
661#define ARG_EV5HWMEM { RA, EV5HWDISP, PRB }
662#define ARG_EV6HWMEM { RA, EV6HWDISP, PRB }
663\f
664/* The opcode table.
665
666 The format of the opcode table is:
667
668 NAME OPCODE MASK { OPERANDS }
669
670 NAME is the name of the instruction.
671
672 OPCODE is the instruction opcode.
673
674 MASK is the opcode mask; this is used to tell the disassembler
72e21db7 675 which bits in the actual opcode must match OPCODE.
a993ba85
FB
676
677 OPERANDS is the list of operands.
678
679 The preceding macros merge the text of the OPCODE and MASK fields.
680
681 The disassembler reads the table in order and prints the first
682 instruction which matches, so this table is sorted to put more
683 specific instructions before more general instructions.
684
685 Otherwise, it is sorted by major opcode and minor function code.
686
687 There are three classes of not-really-instructions in this table:
688
689 ALIAS is another name for another instruction. Some of
690 these come from the Architecture Handbook, some
691 come from the original gas opcode tables. In all
692 cases, the functionality of the opcode is unchanged.
693
694 PSEUDO a stylized code form endorsed by Chapter A.4 of the
695 Architecture Handbook.
696
697 EXTRA a stylized code form found in the original gas tables.
698
699 And two annotations:
700
701 EV56 BUT opcodes that are officially introduced as of the ev56,
72e21db7 702 but with defined results on previous implementations.
a993ba85
FB
703
704 EV56 UNA opcodes that were introduced as of the ev56 with
72e21db7 705 presumably undefined results on previous implementations
a993ba85
FB
706 that were not assigned to a particular extension.
707*/
708
709const struct alpha_opcode alpha_opcodes[] = {
710 { "halt", SPCD(0x00,0x0000), BASE, ARG_NONE },
711 { "draina", SPCD(0x00,0x0002), BASE, ARG_NONE },
712 { "bpt", SPCD(0x00,0x0080), BASE, ARG_NONE },
713 { "bugchk", SPCD(0x00,0x0081), BASE, ARG_NONE },
714 { "callsys", SPCD(0x00,0x0083), BASE, ARG_NONE },
715 { "chmk", SPCD(0x00,0x0083), BASE, ARG_NONE },
716 { "imb", SPCD(0x00,0x0086), BASE, ARG_NONE },
717 { "rduniq", SPCD(0x00,0x009e), BASE, ARG_NONE },
718 { "wruniq", SPCD(0x00,0x009f), BASE, ARG_NONE },
719 { "gentrap", SPCD(0x00,0x00aa), BASE, ARG_NONE },
720 { "call_pal", PCD(0x00), BASE, ARG_PCD },
721 { "pal", PCD(0x00), BASE, ARG_PCD }, /* alias */
722
723 { "lda", MEM(0x08), BASE, { RA, MDISP, ZB } }, /* pseudo */
724 { "lda", MEM(0x08), BASE, ARG_MEM },
725 { "ldah", MEM(0x09), BASE, { RA, MDISP, ZB } }, /* pseudo */
726 { "ldah", MEM(0x09), BASE, ARG_MEM },
727 { "ldbu", MEM(0x0A), BWX, ARG_MEM },
728 { "unop", MEM_(0x0B) | (30 << 16),
729 MEM_MASK, BASE, { ZA } }, /* pseudo */
730 { "ldq_u", MEM(0x0B), BASE, ARG_MEM },
731 { "ldwu", MEM(0x0C), BWX, ARG_MEM },
732 { "stw", MEM(0x0D), BWX, ARG_MEM },
733 { "stb", MEM(0x0E), BWX, ARG_MEM },
734 { "stq_u", MEM(0x0F), BASE, ARG_MEM },
735
736 { "sextl", OPR(0x10,0x00), BASE, ARG_OPRZ1 }, /* pseudo */
737 { "sextl", OPRL(0x10,0x00), BASE, ARG_OPRLZ1 }, /* pseudo */
738 { "addl", OPR(0x10,0x00), BASE, ARG_OPR },
739 { "addl", OPRL(0x10,0x00), BASE, ARG_OPRL },
740 { "s4addl", OPR(0x10,0x02), BASE, ARG_OPR },
741 { "s4addl", OPRL(0x10,0x02), BASE, ARG_OPRL },
742 { "negl", OPR(0x10,0x09), BASE, ARG_OPRZ1 }, /* pseudo */
743 { "negl", OPRL(0x10,0x09), BASE, ARG_OPRLZ1 }, /* pseudo */
744 { "subl", OPR(0x10,0x09), BASE, ARG_OPR },
745 { "subl", OPRL(0x10,0x09), BASE, ARG_OPRL },
746 { "s4subl", OPR(0x10,0x0B), BASE, ARG_OPR },
747 { "s4subl", OPRL(0x10,0x0B), BASE, ARG_OPRL },
748 { "cmpbge", OPR(0x10,0x0F), BASE, ARG_OPR },
749 { "cmpbge", OPRL(0x10,0x0F), BASE, ARG_OPRL },
750 { "s8addl", OPR(0x10,0x12), BASE, ARG_OPR },
751 { "s8addl", OPRL(0x10,0x12), BASE, ARG_OPRL },
752 { "s8subl", OPR(0x10,0x1B), BASE, ARG_OPR },
753 { "s8subl", OPRL(0x10,0x1B), BASE, ARG_OPRL },
754 { "cmpult", OPR(0x10,0x1D), BASE, ARG_OPR },
755 { "cmpult", OPRL(0x10,0x1D), BASE, ARG_OPRL },
756 { "addq", OPR(0x10,0x20), BASE, ARG_OPR },
757 { "addq", OPRL(0x10,0x20), BASE, ARG_OPRL },
758 { "s4addq", OPR(0x10,0x22), BASE, ARG_OPR },
759 { "s4addq", OPRL(0x10,0x22), BASE, ARG_OPRL },
760 { "negq", OPR(0x10,0x29), BASE, ARG_OPRZ1 }, /* pseudo */
761 { "negq", OPRL(0x10,0x29), BASE, ARG_OPRLZ1 }, /* pseudo */
762 { "subq", OPR(0x10,0x29), BASE, ARG_OPR },
763 { "subq", OPRL(0x10,0x29), BASE, ARG_OPRL },
764 { "s4subq", OPR(0x10,0x2B), BASE, ARG_OPR },
765 { "s4subq", OPRL(0x10,0x2B), BASE, ARG_OPRL },
766 { "cmpeq", OPR(0x10,0x2D), BASE, ARG_OPR },
767 { "cmpeq", OPRL(0x10,0x2D), BASE, ARG_OPRL },
768 { "s8addq", OPR(0x10,0x32), BASE, ARG_OPR },
769 { "s8addq", OPRL(0x10,0x32), BASE, ARG_OPRL },
770 { "s8subq", OPR(0x10,0x3B), BASE, ARG_OPR },
771 { "s8subq", OPRL(0x10,0x3B), BASE, ARG_OPRL },
772 { "cmpule", OPR(0x10,0x3D), BASE, ARG_OPR },
773 { "cmpule", OPRL(0x10,0x3D), BASE, ARG_OPRL },
774 { "addl/v", OPR(0x10,0x40), BASE, ARG_OPR },
775 { "addl/v", OPRL(0x10,0x40), BASE, ARG_OPRL },
776 { "negl/v", OPR(0x10,0x49), BASE, ARG_OPRZ1 }, /* pseudo */
777 { "negl/v", OPRL(0x10,0x49), BASE, ARG_OPRLZ1 }, /* pseudo */
778 { "subl/v", OPR(0x10,0x49), BASE, ARG_OPR },
779 { "subl/v", OPRL(0x10,0x49), BASE, ARG_OPRL },
780 { "cmplt", OPR(0x10,0x4D), BASE, ARG_OPR },
781 { "cmplt", OPRL(0x10,0x4D), BASE, ARG_OPRL },
782 { "addq/v", OPR(0x10,0x60), BASE, ARG_OPR },
783 { "addq/v", OPRL(0x10,0x60), BASE, ARG_OPRL },
784 { "negq/v", OPR(0x10,0x69), BASE, ARG_OPRZ1 }, /* pseudo */
785 { "negq/v", OPRL(0x10,0x69), BASE, ARG_OPRLZ1 }, /* pseudo */
786 { "subq/v", OPR(0x10,0x69), BASE, ARG_OPR },
787 { "subq/v", OPRL(0x10,0x69), BASE, ARG_OPRL },
788 { "cmple", OPR(0x10,0x6D), BASE, ARG_OPR },
789 { "cmple", OPRL(0x10,0x6D), BASE, ARG_OPRL },
790
791 { "and", OPR(0x11,0x00), BASE, ARG_OPR },
792 { "and", OPRL(0x11,0x00), BASE, ARG_OPRL },
793 { "andnot", OPR(0x11,0x08), BASE, ARG_OPR }, /* alias */
794 { "andnot", OPRL(0x11,0x08), BASE, ARG_OPRL }, /* alias */
795 { "bic", OPR(0x11,0x08), BASE, ARG_OPR },
796 { "bic", OPRL(0x11,0x08), BASE, ARG_OPRL },
797 { "cmovlbs", OPR(0x11,0x14), BASE, ARG_OPR },
798 { "cmovlbs", OPRL(0x11,0x14), BASE, ARG_OPRL },
799 { "cmovlbc", OPR(0x11,0x16), BASE, ARG_OPR },
800 { "cmovlbc", OPRL(0x11,0x16), BASE, ARG_OPRL },
801 { "nop", OPR(0x11,0x20), BASE, { ZA, ZB, ZC } }, /* pseudo */
802 { "clr", OPR(0x11,0x20), BASE, { ZA, ZB, RC } }, /* pseudo */
803 { "mov", OPR(0x11,0x20), BASE, { ZA, RB, RC } }, /* pseudo */
804 { "mov", OPR(0x11,0x20), BASE, { RA, RBA, RC } }, /* pseudo */
805 { "mov", OPRL(0x11,0x20), BASE, { ZA, LIT, RC } }, /* pseudo */
806 { "or", OPR(0x11,0x20), BASE, ARG_OPR }, /* alias */
807 { "or", OPRL(0x11,0x20), BASE, ARG_OPRL }, /* alias */
808 { "bis", OPR(0x11,0x20), BASE, ARG_OPR },
809 { "bis", OPRL(0x11,0x20), BASE, ARG_OPRL },
810 { "cmoveq", OPR(0x11,0x24), BASE, ARG_OPR },
811 { "cmoveq", OPRL(0x11,0x24), BASE, ARG_OPRL },
812 { "cmovne", OPR(0x11,0x26), BASE, ARG_OPR },
813 { "cmovne", OPRL(0x11,0x26), BASE, ARG_OPRL },
814 { "not", OPR(0x11,0x28), BASE, ARG_OPRZ1 }, /* pseudo */
815 { "not", OPRL(0x11,0x28), BASE, ARG_OPRLZ1 }, /* pseudo */
816 { "ornot", OPR(0x11,0x28), BASE, ARG_OPR },
817 { "ornot", OPRL(0x11,0x28), BASE, ARG_OPRL },
818 { "xor", OPR(0x11,0x40), BASE, ARG_OPR },
819 { "xor", OPRL(0x11,0x40), BASE, ARG_OPRL },
820 { "cmovlt", OPR(0x11,0x44), BASE, ARG_OPR },
821 { "cmovlt", OPRL(0x11,0x44), BASE, ARG_OPRL },
822 { "cmovge", OPR(0x11,0x46), BASE, ARG_OPR },
823 { "cmovge", OPRL(0x11,0x46), BASE, ARG_OPRL },
824 { "eqv", OPR(0x11,0x48), BASE, ARG_OPR },
825 { "eqv", OPRL(0x11,0x48), BASE, ARG_OPRL },
826 { "xornot", OPR(0x11,0x48), BASE, ARG_OPR }, /* alias */
827 { "xornot", OPRL(0x11,0x48), BASE, ARG_OPRL }, /* alias */
828 { "amask", OPR(0x11,0x61), BASE, ARG_OPRZ1 }, /* ev56 but */
829 { "amask", OPRL(0x11,0x61), BASE, ARG_OPRLZ1 }, /* ev56 but */
830 { "cmovle", OPR(0x11,0x64), BASE, ARG_OPR },
831 { "cmovle", OPRL(0x11,0x64), BASE, ARG_OPRL },
832 { "cmovgt", OPR(0x11,0x66), BASE, ARG_OPR },
833 { "cmovgt", OPRL(0x11,0x66), BASE, ARG_OPRL },
834 { "implver", OPRL_(0x11,0x6C)|(31<<21)|(1<<13),
72e21db7 835 0xFFFFFFE0, BASE, { RC } }, /* ev56 but */
a993ba85
FB
836
837 { "mskbl", OPR(0x12,0x02), BASE, ARG_OPR },
838 { "mskbl", OPRL(0x12,0x02), BASE, ARG_OPRL },
839 { "extbl", OPR(0x12,0x06), BASE, ARG_OPR },
840 { "extbl", OPRL(0x12,0x06), BASE, ARG_OPRL },
841 { "insbl", OPR(0x12,0x0B), BASE, ARG_OPR },
842 { "insbl", OPRL(0x12,0x0B), BASE, ARG_OPRL },
843 { "mskwl", OPR(0x12,0x12), BASE, ARG_OPR },
844 { "mskwl", OPRL(0x12,0x12), BASE, ARG_OPRL },
845 { "extwl", OPR(0x12,0x16), BASE, ARG_OPR },
846 { "extwl", OPRL(0x12,0x16), BASE, ARG_OPRL },
847 { "inswl", OPR(0x12,0x1B), BASE, ARG_OPR },
848 { "inswl", OPRL(0x12,0x1B), BASE, ARG_OPRL },
849 { "mskll", OPR(0x12,0x22), BASE, ARG_OPR },
850 { "mskll", OPRL(0x12,0x22), BASE, ARG_OPRL },
851 { "extll", OPR(0x12,0x26), BASE, ARG_OPR },
852 { "extll", OPRL(0x12,0x26), BASE, ARG_OPRL },
853 { "insll", OPR(0x12,0x2B), BASE, ARG_OPR },
854 { "insll", OPRL(0x12,0x2B), BASE, ARG_OPRL },
855 { "zap", OPR(0x12,0x30), BASE, ARG_OPR },
856 { "zap", OPRL(0x12,0x30), BASE, ARG_OPRL },
857 { "zapnot", OPR(0x12,0x31), BASE, ARG_OPR },
858 { "zapnot", OPRL(0x12,0x31), BASE, ARG_OPRL },
859 { "mskql", OPR(0x12,0x32), BASE, ARG_OPR },
860 { "mskql", OPRL(0x12,0x32), BASE, ARG_OPRL },
861 { "srl", OPR(0x12,0x34), BASE, ARG_OPR },
862 { "srl", OPRL(0x12,0x34), BASE, ARG_OPRL },
863 { "extql", OPR(0x12,0x36), BASE, ARG_OPR },
864 { "extql", OPRL(0x12,0x36), BASE, ARG_OPRL },
865 { "sll", OPR(0x12,0x39), BASE, ARG_OPR },
866 { "sll", OPRL(0x12,0x39), BASE, ARG_OPRL },
867 { "insql", OPR(0x12,0x3B), BASE, ARG_OPR },
868 { "insql", OPRL(0x12,0x3B), BASE, ARG_OPRL },
869 { "sra", OPR(0x12,0x3C), BASE, ARG_OPR },
870 { "sra", OPRL(0x12,0x3C), BASE, ARG_OPRL },
871 { "mskwh", OPR(0x12,0x52), BASE, ARG_OPR },
872 { "mskwh", OPRL(0x12,0x52), BASE, ARG_OPRL },
873 { "inswh", OPR(0x12,0x57), BASE, ARG_OPR },
874 { "inswh", OPRL(0x12,0x57), BASE, ARG_OPRL },
875 { "extwh", OPR(0x12,0x5A), BASE, ARG_OPR },
876 { "extwh", OPRL(0x12,0x5A), BASE, ARG_OPRL },
877 { "msklh", OPR(0x12,0x62), BASE, ARG_OPR },
878 { "msklh", OPRL(0x12,0x62), BASE, ARG_OPRL },
879 { "inslh", OPR(0x12,0x67), BASE, ARG_OPR },
880 { "inslh", OPRL(0x12,0x67), BASE, ARG_OPRL },
881 { "extlh", OPR(0x12,0x6A), BASE, ARG_OPR },
882 { "extlh", OPRL(0x12,0x6A), BASE, ARG_OPRL },
883 { "mskqh", OPR(0x12,0x72), BASE, ARG_OPR },
884 { "mskqh", OPRL(0x12,0x72), BASE, ARG_OPRL },
885 { "insqh", OPR(0x12,0x77), BASE, ARG_OPR },
886 { "insqh", OPRL(0x12,0x77), BASE, ARG_OPRL },
887 { "extqh", OPR(0x12,0x7A), BASE, ARG_OPR },
888 { "extqh", OPRL(0x12,0x7A), BASE, ARG_OPRL },
889
890 { "mull", OPR(0x13,0x00), BASE, ARG_OPR },
891 { "mull", OPRL(0x13,0x00), BASE, ARG_OPRL },
892 { "mulq", OPR(0x13,0x20), BASE, ARG_OPR },
893 { "mulq", OPRL(0x13,0x20), BASE, ARG_OPRL },
894 { "umulh", OPR(0x13,0x30), BASE, ARG_OPR },
895 { "umulh", OPRL(0x13,0x30), BASE, ARG_OPRL },
896 { "mull/v", OPR(0x13,0x40), BASE, ARG_OPR },
897 { "mull/v", OPRL(0x13,0x40), BASE, ARG_OPRL },
898 { "mulq/v", OPR(0x13,0x60), BASE, ARG_OPR },
899 { "mulq/v", OPRL(0x13,0x60), BASE, ARG_OPRL },
900
901 { "itofs", FP(0x14,0x004), CIX, { RA, ZB, FC } },
902 { "sqrtf/c", FP(0x14,0x00A), CIX, ARG_FPZ1 },
903 { "sqrts/c", FP(0x14,0x00B), CIX, ARG_FPZ1 },
904 { "itoff", FP(0x14,0x014), CIX, { RA, ZB, FC } },
905 { "itoft", FP(0x14,0x024), CIX, { RA, ZB, FC } },
906 { "sqrtg/c", FP(0x14,0x02A), CIX, ARG_FPZ1 },
907 { "sqrtt/c", FP(0x14,0x02B), CIX, ARG_FPZ1 },
908 { "sqrts/m", FP(0x14,0x04B), CIX, ARG_FPZ1 },
909 { "sqrtt/m", FP(0x14,0x06B), CIX, ARG_FPZ1 },
910 { "sqrtf", FP(0x14,0x08A), CIX, ARG_FPZ1 },
911 { "sqrts", FP(0x14,0x08B), CIX, ARG_FPZ1 },
912 { "sqrtg", FP(0x14,0x0AA), CIX, ARG_FPZ1 },
913 { "sqrtt", FP(0x14,0x0AB), CIX, ARG_FPZ1 },
914 { "sqrts/d", FP(0x14,0x0CB), CIX, ARG_FPZ1 },
915 { "sqrtt/d", FP(0x14,0x0EB), CIX, ARG_FPZ1 },
916 { "sqrtf/uc", FP(0x14,0x10A), CIX, ARG_FPZ1 },
917 { "sqrts/uc", FP(0x14,0x10B), CIX, ARG_FPZ1 },
918 { "sqrtg/uc", FP(0x14,0x12A), CIX, ARG_FPZ1 },
919 { "sqrtt/uc", FP(0x14,0x12B), CIX, ARG_FPZ1 },
920 { "sqrts/um", FP(0x14,0x14B), CIX, ARG_FPZ1 },
921 { "sqrtt/um", FP(0x14,0x16B), CIX, ARG_FPZ1 },
922 { "sqrtf/u", FP(0x14,0x18A), CIX, ARG_FPZ1 },
923 { "sqrts/u", FP(0x14,0x18B), CIX, ARG_FPZ1 },
924 { "sqrtg/u", FP(0x14,0x1AA), CIX, ARG_FPZ1 },
925 { "sqrtt/u", FP(0x14,0x1AB), CIX, ARG_FPZ1 },
926 { "sqrts/ud", FP(0x14,0x1CB), CIX, ARG_FPZ1 },
927 { "sqrtt/ud", FP(0x14,0x1EB), CIX, ARG_FPZ1 },
928 { "sqrtf/sc", FP(0x14,0x40A), CIX, ARG_FPZ1 },
929 { "sqrtg/sc", FP(0x14,0x42A), CIX, ARG_FPZ1 },
930 { "sqrtf/s", FP(0x14,0x48A), CIX, ARG_FPZ1 },
931 { "sqrtg/s", FP(0x14,0x4AA), CIX, ARG_FPZ1 },
932 { "sqrtf/suc", FP(0x14,0x50A), CIX, ARG_FPZ1 },
933 { "sqrts/suc", FP(0x14,0x50B), CIX, ARG_FPZ1 },
934 { "sqrtg/suc", FP(0x14,0x52A), CIX, ARG_FPZ1 },
935 { "sqrtt/suc", FP(0x14,0x52B), CIX, ARG_FPZ1 },
936 { "sqrts/sum", FP(0x14,0x54B), CIX, ARG_FPZ1 },
937 { "sqrtt/sum", FP(0x14,0x56B), CIX, ARG_FPZ1 },
938 { "sqrtf/su", FP(0x14,0x58A), CIX, ARG_FPZ1 },
939 { "sqrts/su", FP(0x14,0x58B), CIX, ARG_FPZ1 },
940 { "sqrtg/su", FP(0x14,0x5AA), CIX, ARG_FPZ1 },
941 { "sqrtt/su", FP(0x14,0x5AB), CIX, ARG_FPZ1 },
942 { "sqrts/sud", FP(0x14,0x5CB), CIX, ARG_FPZ1 },
943 { "sqrtt/sud", FP(0x14,0x5EB), CIX, ARG_FPZ1 },
944 { "sqrts/suic", FP(0x14,0x70B), CIX, ARG_FPZ1 },
945 { "sqrtt/suic", FP(0x14,0x72B), CIX, ARG_FPZ1 },
946 { "sqrts/suim", FP(0x14,0x74B), CIX, ARG_FPZ1 },
947 { "sqrtt/suim", FP(0x14,0x76B), CIX, ARG_FPZ1 },
948 { "sqrts/sui", FP(0x14,0x78B), CIX, ARG_FPZ1 },
949 { "sqrtt/sui", FP(0x14,0x7AB), CIX, ARG_FPZ1 },
950 { "sqrts/suid", FP(0x14,0x7CB), CIX, ARG_FPZ1 },
951 { "sqrtt/suid", FP(0x14,0x7EB), CIX, ARG_FPZ1 },
952
953 { "addf/c", FP(0x15,0x000), BASE, ARG_FP },
954 { "subf/c", FP(0x15,0x001), BASE, ARG_FP },
955 { "mulf/c", FP(0x15,0x002), BASE, ARG_FP },
956 { "divf/c", FP(0x15,0x003), BASE, ARG_FP },
957 { "cvtdg/c", FP(0x15,0x01E), BASE, ARG_FPZ1 },
958 { "addg/c", FP(0x15,0x020), BASE, ARG_FP },
959 { "subg/c", FP(0x15,0x021), BASE, ARG_FP },
960 { "mulg/c", FP(0x15,0x022), BASE, ARG_FP },
961 { "divg/c", FP(0x15,0x023), BASE, ARG_FP },
962 { "cvtgf/c", FP(0x15,0x02C), BASE, ARG_FPZ1 },
963 { "cvtgd/c", FP(0x15,0x02D), BASE, ARG_FPZ1 },
964 { "cvtgq/c", FP(0x15,0x02F), BASE, ARG_FPZ1 },
965 { "cvtqf/c", FP(0x15,0x03C), BASE, ARG_FPZ1 },
966 { "cvtqg/c", FP(0x15,0x03E), BASE, ARG_FPZ1 },
967 { "addf", FP(0x15,0x080), BASE, ARG_FP },
968 { "negf", FP(0x15,0x081), BASE, ARG_FPZ1 }, /* pseudo */
969 { "subf", FP(0x15,0x081), BASE, ARG_FP },
970 { "mulf", FP(0x15,0x082), BASE, ARG_FP },
971 { "divf", FP(0x15,0x083), BASE, ARG_FP },
972 { "cvtdg", FP(0x15,0x09E), BASE, ARG_FPZ1 },
973 { "addg", FP(0x15,0x0A0), BASE, ARG_FP },
974 { "negg", FP(0x15,0x0A1), BASE, ARG_FPZ1 }, /* pseudo */
975 { "subg", FP(0x15,0x0A1), BASE, ARG_FP },
976 { "mulg", FP(0x15,0x0A2), BASE, ARG_FP },
977 { "divg", FP(0x15,0x0A3), BASE, ARG_FP },
978 { "cmpgeq", FP(0x15,0x0A5), BASE, ARG_FP },
979 { "cmpglt", FP(0x15,0x0A6), BASE, ARG_FP },
980 { "cmpgle", FP(0x15,0x0A7), BASE, ARG_FP },
981 { "cvtgf", FP(0x15,0x0AC), BASE, ARG_FPZ1 },
982 { "cvtgd", FP(0x15,0x0AD), BASE, ARG_FPZ1 },
983 { "cvtgq", FP(0x15,0x0AF), BASE, ARG_FPZ1 },
984 { "cvtqf", FP(0x15,0x0BC), BASE, ARG_FPZ1 },
985 { "cvtqg", FP(0x15,0x0BE), BASE, ARG_FPZ1 },
986 { "addf/uc", FP(0x15,0x100), BASE, ARG_FP },
987 { "subf/uc", FP(0x15,0x101), BASE, ARG_FP },
988 { "mulf/uc", FP(0x15,0x102), BASE, ARG_FP },
989 { "divf/uc", FP(0x15,0x103), BASE, ARG_FP },
990 { "cvtdg/uc", FP(0x15,0x11E), BASE, ARG_FPZ1 },
991 { "addg/uc", FP(0x15,0x120), BASE, ARG_FP },
992 { "subg/uc", FP(0x15,0x121), BASE, ARG_FP },
993 { "mulg/uc", FP(0x15,0x122), BASE, ARG_FP },
994 { "divg/uc", FP(0x15,0x123), BASE, ARG_FP },
995 { "cvtgf/uc", FP(0x15,0x12C), BASE, ARG_FPZ1 },
996 { "cvtgd/uc", FP(0x15,0x12D), BASE, ARG_FPZ1 },
997 { "cvtgq/vc", FP(0x15,0x12F), BASE, ARG_FPZ1 },
998 { "addf/u", FP(0x15,0x180), BASE, ARG_FP },
999 { "subf/u", FP(0x15,0x181), BASE, ARG_FP },
1000 { "mulf/u", FP(0x15,0x182), BASE, ARG_FP },
1001 { "divf/u", FP(0x15,0x183), BASE, ARG_FP },
1002 { "cvtdg/u", FP(0x15,0x19E), BASE, ARG_FPZ1 },
1003 { "addg/u", FP(0x15,0x1A0), BASE, ARG_FP },
1004 { "subg/u", FP(0x15,0x1A1), BASE, ARG_FP },
1005 { "mulg/u", FP(0x15,0x1A2), BASE, ARG_FP },
1006 { "divg/u", FP(0x15,0x1A3), BASE, ARG_FP },
1007 { "cvtgf/u", FP(0x15,0x1AC), BASE, ARG_FPZ1 },
1008 { "cvtgd/u", FP(0x15,0x1AD), BASE, ARG_FPZ1 },
1009 { "cvtgq/v", FP(0x15,0x1AF), BASE, ARG_FPZ1 },
1010 { "addf/sc", FP(0x15,0x400), BASE, ARG_FP },
1011 { "subf/sc", FP(0x15,0x401), BASE, ARG_FP },
1012 { "mulf/sc", FP(0x15,0x402), BASE, ARG_FP },
1013 { "divf/sc", FP(0x15,0x403), BASE, ARG_FP },
1014 { "cvtdg/sc", FP(0x15,0x41E), BASE, ARG_FPZ1 },
1015 { "addg/sc", FP(0x15,0x420), BASE, ARG_FP },
1016 { "subg/sc", FP(0x15,0x421), BASE, ARG_FP },
1017 { "mulg/sc", FP(0x15,0x422), BASE, ARG_FP },
1018 { "divg/sc", FP(0x15,0x423), BASE, ARG_FP },
1019 { "cvtgf/sc", FP(0x15,0x42C), BASE, ARG_FPZ1 },
1020 { "cvtgd/sc", FP(0x15,0x42D), BASE, ARG_FPZ1 },
1021 { "cvtgq/sc", FP(0x15,0x42F), BASE, ARG_FPZ1 },
1022 { "addf/s", FP(0x15,0x480), BASE, ARG_FP },
1023 { "negf/s", FP(0x15,0x481), BASE, ARG_FPZ1 }, /* pseudo */
1024 { "subf/s", FP(0x15,0x481), BASE, ARG_FP },
1025 { "mulf/s", FP(0x15,0x482), BASE, ARG_FP },
1026 { "divf/s", FP(0x15,0x483), BASE, ARG_FP },
1027 { "cvtdg/s", FP(0x15,0x49E), BASE, ARG_FPZ1 },
1028 { "addg/s", FP(0x15,0x4A0), BASE, ARG_FP },
1029 { "negg/s", FP(0x15,0x4A1), BASE, ARG_FPZ1 }, /* pseudo */
1030 { "subg/s", FP(0x15,0x4A1), BASE, ARG_FP },
1031 { "mulg/s", FP(0x15,0x4A2), BASE, ARG_FP },
1032 { "divg/s", FP(0x15,0x4A3), BASE, ARG_FP },
1033 { "cmpgeq/s", FP(0x15,0x4A5), BASE, ARG_FP },
1034 { "cmpglt/s", FP(0x15,0x4A6), BASE, ARG_FP },
1035 { "cmpgle/s", FP(0x15,0x4A7), BASE, ARG_FP },
1036 { "cvtgf/s", FP(0x15,0x4AC), BASE, ARG_FPZ1 },
1037 { "cvtgd/s", FP(0x15,0x4AD), BASE, ARG_FPZ1 },
1038 { "cvtgq/s", FP(0x15,0x4AF), BASE, ARG_FPZ1 },
1039 { "addf/suc", FP(0x15,0x500), BASE, ARG_FP },
1040 { "subf/suc", FP(0x15,0x501), BASE, ARG_FP },
1041 { "mulf/suc", FP(0x15,0x502), BASE, ARG_FP },
1042 { "divf/suc", FP(0x15,0x503), BASE, ARG_FP },
1043 { "cvtdg/suc", FP(0x15,0x51E), BASE, ARG_FPZ1 },
1044 { "addg/suc", FP(0x15,0x520), BASE, ARG_FP },
1045 { "subg/suc", FP(0x15,0x521), BASE, ARG_FP },
1046 { "mulg/suc", FP(0x15,0x522), BASE, ARG_FP },
1047 { "divg/suc", FP(0x15,0x523), BASE, ARG_FP },
1048 { "cvtgf/suc", FP(0x15,0x52C), BASE, ARG_FPZ1 },
1049 { "cvtgd/suc", FP(0x15,0x52D), BASE, ARG_FPZ1 },
1050 { "cvtgq/svc", FP(0x15,0x52F), BASE, ARG_FPZ1 },
1051 { "addf/su", FP(0x15,0x580), BASE, ARG_FP },
1052 { "subf/su", FP(0x15,0x581), BASE, ARG_FP },
1053 { "mulf/su", FP(0x15,0x582), BASE, ARG_FP },
1054 { "divf/su", FP(0x15,0x583), BASE, ARG_FP },
1055 { "cvtdg/su", FP(0x15,0x59E), BASE, ARG_FPZ1 },
1056 { "addg/su", FP(0x15,0x5A0), BASE, ARG_FP },
1057 { "subg/su", FP(0x15,0x5A1), BASE, ARG_FP },
1058 { "mulg/su", FP(0x15,0x5A2), BASE, ARG_FP },
1059 { "divg/su", FP(0x15,0x5A3), BASE, ARG_FP },
1060 { "cvtgf/su", FP(0x15,0x5AC), BASE, ARG_FPZ1 },
1061 { "cvtgd/su", FP(0x15,0x5AD), BASE, ARG_FPZ1 },
1062 { "cvtgq/sv", FP(0x15,0x5AF), BASE, ARG_FPZ1 },
1063
1064 { "adds/c", FP(0x16,0x000), BASE, ARG_FP },
1065 { "subs/c", FP(0x16,0x001), BASE, ARG_FP },
1066 { "muls/c", FP(0x16,0x002), BASE, ARG_FP },
1067 { "divs/c", FP(0x16,0x003), BASE, ARG_FP },
1068 { "addt/c", FP(0x16,0x020), BASE, ARG_FP },
1069 { "subt/c", FP(0x16,0x021), BASE, ARG_FP },
1070 { "mult/c", FP(0x16,0x022), BASE, ARG_FP },
1071 { "divt/c", FP(0x16,0x023), BASE, ARG_FP },
1072 { "cvtts/c", FP(0x16,0x02C), BASE, ARG_FPZ1 },
1073 { "cvttq/c", FP(0x16,0x02F), BASE, ARG_FPZ1 },
1074 { "cvtqs/c", FP(0x16,0x03C), BASE, ARG_FPZ1 },
1075 { "cvtqt/c", FP(0x16,0x03E), BASE, ARG_FPZ1 },
1076 { "adds/m", FP(0x16,0x040), BASE, ARG_FP },
1077 { "subs/m", FP(0x16,0x041), BASE, ARG_FP },
1078 { "muls/m", FP(0x16,0x042), BASE, ARG_FP },
1079 { "divs/m", FP(0x16,0x043), BASE, ARG_FP },
1080 { "addt/m", FP(0x16,0x060), BASE, ARG_FP },
1081 { "subt/m", FP(0x16,0x061), BASE, ARG_FP },
1082 { "mult/m", FP(0x16,0x062), BASE, ARG_FP },
1083 { "divt/m", FP(0x16,0x063), BASE, ARG_FP },
1084 { "cvtts/m", FP(0x16,0x06C), BASE, ARG_FPZ1 },
1085 { "cvttq/m", FP(0x16,0x06F), BASE, ARG_FPZ1 },
1086 { "cvtqs/m", FP(0x16,0x07C), BASE, ARG_FPZ1 },
1087 { "cvtqt/m", FP(0x16,0x07E), BASE, ARG_FPZ1 },
1088 { "adds", FP(0x16,0x080), BASE, ARG_FP },
1089 { "negs", FP(0x16,0x081), BASE, ARG_FPZ1 }, /* pseudo */
1090 { "subs", FP(0x16,0x081), BASE, ARG_FP },
1091 { "muls", FP(0x16,0x082), BASE, ARG_FP },
1092 { "divs", FP(0x16,0x083), BASE, ARG_FP },
1093 { "addt", FP(0x16,0x0A0), BASE, ARG_FP },
1094 { "negt", FP(0x16,0x0A1), BASE, ARG_FPZ1 }, /* pseudo */
1095 { "subt", FP(0x16,0x0A1), BASE, ARG_FP },
1096 { "mult", FP(0x16,0x0A2), BASE, ARG_FP },
1097 { "divt", FP(0x16,0x0A3), BASE, ARG_FP },
1098 { "cmptun", FP(0x16,0x0A4), BASE, ARG_FP },
1099 { "cmpteq", FP(0x16,0x0A5), BASE, ARG_FP },
1100 { "cmptlt", FP(0x16,0x0A6), BASE, ARG_FP },
1101 { "cmptle", FP(0x16,0x0A7), BASE, ARG_FP },
1102 { "cvtts", FP(0x16,0x0AC), BASE, ARG_FPZ1 },
1103 { "cvttq", FP(0x16,0x0AF), BASE, ARG_FPZ1 },
1104 { "cvtqs", FP(0x16,0x0BC), BASE, ARG_FPZ1 },
1105 { "cvtqt", FP(0x16,0x0BE), BASE, ARG_FPZ1 },
1106 { "adds/d", FP(0x16,0x0C0), BASE, ARG_FP },
1107 { "subs/d", FP(0x16,0x0C1), BASE, ARG_FP },
1108 { "muls/d", FP(0x16,0x0C2), BASE, ARG_FP },
1109 { "divs/d", FP(0x16,0x0C3), BASE, ARG_FP },
1110 { "addt/d", FP(0x16,0x0E0), BASE, ARG_FP },
1111 { "subt/d", FP(0x16,0x0E1), BASE, ARG_FP },
1112 { "mult/d", FP(0x16,0x0E2), BASE, ARG_FP },
1113 { "divt/d", FP(0x16,0x0E3), BASE, ARG_FP },
1114 { "cvtts/d", FP(0x16,0x0EC), BASE, ARG_FPZ1 },
1115 { "cvttq/d", FP(0x16,0x0EF), BASE, ARG_FPZ1 },
1116 { "cvtqs/d", FP(0x16,0x0FC), BASE, ARG_FPZ1 },
1117 { "cvtqt/d", FP(0x16,0x0FE), BASE, ARG_FPZ1 },
1118 { "adds/uc", FP(0x16,0x100), BASE, ARG_FP },
1119 { "subs/uc", FP(0x16,0x101), BASE, ARG_FP },
1120 { "muls/uc", FP(0x16,0x102), BASE, ARG_FP },
1121 { "divs/uc", FP(0x16,0x103), BASE, ARG_FP },
1122 { "addt/uc", FP(0x16,0x120), BASE, ARG_FP },
1123 { "subt/uc", FP(0x16,0x121), BASE, ARG_FP },
1124 { "mult/uc", FP(0x16,0x122), BASE, ARG_FP },
1125 { "divt/uc", FP(0x16,0x123), BASE, ARG_FP },
1126 { "cvtts/uc", FP(0x16,0x12C), BASE, ARG_FPZ1 },
1127 { "cvttq/vc", FP(0x16,0x12F), BASE, ARG_FPZ1 },
1128 { "adds/um", FP(0x16,0x140), BASE, ARG_FP },
1129 { "subs/um", FP(0x16,0x141), BASE, ARG_FP },
1130 { "muls/um", FP(0x16,0x142), BASE, ARG_FP },
1131 { "divs/um", FP(0x16,0x143), BASE, ARG_FP },
1132 { "addt/um", FP(0x16,0x160), BASE, ARG_FP },
1133 { "subt/um", FP(0x16,0x161), BASE, ARG_FP },
1134 { "mult/um", FP(0x16,0x162), BASE, ARG_FP },
1135 { "divt/um", FP(0x16,0x163), BASE, ARG_FP },
1136 { "cvtts/um", FP(0x16,0x16C), BASE, ARG_FPZ1 },
1137 { "cvttq/vm", FP(0x16,0x16F), BASE, ARG_FPZ1 },
1138 { "adds/u", FP(0x16,0x180), BASE, ARG_FP },
1139 { "subs/u", FP(0x16,0x181), BASE, ARG_FP },
1140 { "muls/u", FP(0x16,0x182), BASE, ARG_FP },
1141 { "divs/u", FP(0x16,0x183), BASE, ARG_FP },
1142 { "addt/u", FP(0x16,0x1A0), BASE, ARG_FP },
1143 { "subt/u", FP(0x16,0x1A1), BASE, ARG_FP },
1144 { "mult/u", FP(0x16,0x1A2), BASE, ARG_FP },
1145 { "divt/u", FP(0x16,0x1A3), BASE, ARG_FP },
1146 { "cvtts/u", FP(0x16,0x1AC), BASE, ARG_FPZ1 },
1147 { "cvttq/v", FP(0x16,0x1AF), BASE, ARG_FPZ1 },
1148 { "adds/ud", FP(0x16,0x1C0), BASE, ARG_FP },
1149 { "subs/ud", FP(0x16,0x1C1), BASE, ARG_FP },
1150 { "muls/ud", FP(0x16,0x1C2), BASE, ARG_FP },
1151 { "divs/ud", FP(0x16,0x1C3), BASE, ARG_FP },
1152 { "addt/ud", FP(0x16,0x1E0), BASE, ARG_FP },
1153 { "subt/ud", FP(0x16,0x1E1), BASE, ARG_FP },
1154 { "mult/ud", FP(0x16,0x1E2), BASE, ARG_FP },
1155 { "divt/ud", FP(0x16,0x1E3), BASE, ARG_FP },
1156 { "cvtts/ud", FP(0x16,0x1EC), BASE, ARG_FPZ1 },
1157 { "cvttq/vd", FP(0x16,0x1EF), BASE, ARG_FPZ1 },
1158 { "cvtst", FP(0x16,0x2AC), BASE, ARG_FPZ1 },
1159 { "adds/suc", FP(0x16,0x500), BASE, ARG_FP },
1160 { "subs/suc", FP(0x16,0x501), BASE, ARG_FP },
1161 { "muls/suc", FP(0x16,0x502), BASE, ARG_FP },
1162 { "divs/suc", FP(0x16,0x503), BASE, ARG_FP },
1163 { "addt/suc", FP(0x16,0x520), BASE, ARG_FP },
1164 { "subt/suc", FP(0x16,0x521), BASE, ARG_FP },
1165 { "mult/suc", FP(0x16,0x522), BASE, ARG_FP },
1166 { "divt/suc", FP(0x16,0x523), BASE, ARG_FP },
1167 { "cvtts/suc", FP(0x16,0x52C), BASE, ARG_FPZ1 },
1168 { "cvttq/svc", FP(0x16,0x52F), BASE, ARG_FPZ1 },
1169 { "adds/sum", FP(0x16,0x540), BASE, ARG_FP },
1170 { "subs/sum", FP(0x16,0x541), BASE, ARG_FP },
1171 { "muls/sum", FP(0x16,0x542), BASE, ARG_FP },
1172 { "divs/sum", FP(0x16,0x543), BASE, ARG_FP },
1173 { "addt/sum", FP(0x16,0x560), BASE, ARG_FP },
1174 { "subt/sum", FP(0x16,0x561), BASE, ARG_FP },
1175 { "mult/sum", FP(0x16,0x562), BASE, ARG_FP },
1176 { "divt/sum", FP(0x16,0x563), BASE, ARG_FP },
1177 { "cvtts/sum", FP(0x16,0x56C), BASE, ARG_FPZ1 },
1178 { "cvttq/svm", FP(0x16,0x56F), BASE, ARG_FPZ1 },
1179 { "adds/su", FP(0x16,0x580), BASE, ARG_FP },
1180 { "negs/su", FP(0x16,0x581), BASE, ARG_FPZ1 }, /* pseudo */
1181 { "subs/su", FP(0x16,0x581), BASE, ARG_FP },
1182 { "muls/su", FP(0x16,0x582), BASE, ARG_FP },
1183 { "divs/su", FP(0x16,0x583), BASE, ARG_FP },
1184 { "addt/su", FP(0x16,0x5A0), BASE, ARG_FP },
1185 { "negt/su", FP(0x16,0x5A1), BASE, ARG_FPZ1 }, /* pseudo */
1186 { "subt/su", FP(0x16,0x5A1), BASE, ARG_FP },
1187 { "mult/su", FP(0x16,0x5A2), BASE, ARG_FP },
1188 { "divt/su", FP(0x16,0x5A3), BASE, ARG_FP },
1189 { "cmptun/su", FP(0x16,0x5A4), BASE, ARG_FP },
1190 { "cmpteq/su", FP(0x16,0x5A5), BASE, ARG_FP },
1191 { "cmptlt/su", FP(0x16,0x5A6), BASE, ARG_FP },
1192 { "cmptle/su", FP(0x16,0x5A7), BASE, ARG_FP },
1193 { "cvtts/su", FP(0x16,0x5AC), BASE, ARG_FPZ1 },
1194 { "cvttq/sv", FP(0x16,0x5AF), BASE, ARG_FPZ1 },
1195 { "adds/sud", FP(0x16,0x5C0), BASE, ARG_FP },
1196 { "subs/sud", FP(0x16,0x5C1), BASE, ARG_FP },
1197 { "muls/sud", FP(0x16,0x5C2), BASE, ARG_FP },
1198 { "divs/sud", FP(0x16,0x5C3), BASE, ARG_FP },
1199 { "addt/sud", FP(0x16,0x5E0), BASE, ARG_FP },
1200 { "subt/sud", FP(0x16,0x5E1), BASE, ARG_FP },
1201 { "mult/sud", FP(0x16,0x5E2), BASE, ARG_FP },
1202 { "divt/sud", FP(0x16,0x5E3), BASE, ARG_FP },
1203 { "cvtts/sud", FP(0x16,0x5EC), BASE, ARG_FPZ1 },
1204 { "cvttq/svd", FP(0x16,0x5EF), BASE, ARG_FPZ1 },
1205 { "cvtst/s", FP(0x16,0x6AC), BASE, ARG_FPZ1 },
1206 { "adds/suic", FP(0x16,0x700), BASE, ARG_FP },
1207 { "subs/suic", FP(0x16,0x701), BASE, ARG_FP },
1208 { "muls/suic", FP(0x16,0x702), BASE, ARG_FP },
1209 { "divs/suic", FP(0x16,0x703), BASE, ARG_FP },
1210 { "addt/suic", FP(0x16,0x720), BASE, ARG_FP },
1211 { "subt/suic", FP(0x16,0x721), BASE, ARG_FP },
1212 { "mult/suic", FP(0x16,0x722), BASE, ARG_FP },
1213 { "divt/suic", FP(0x16,0x723), BASE, ARG_FP },
1214 { "cvtts/suic", FP(0x16,0x72C), BASE, ARG_FPZ1 },
1215 { "cvttq/svic", FP(0x16,0x72F), BASE, ARG_FPZ1 },
1216 { "cvtqs/suic", FP(0x16,0x73C), BASE, ARG_FPZ1 },
1217 { "cvtqt/suic", FP(0x16,0x73E), BASE, ARG_FPZ1 },
1218 { "adds/suim", FP(0x16,0x740), BASE, ARG_FP },
1219 { "subs/suim", FP(0x16,0x741), BASE, ARG_FP },
1220 { "muls/suim", FP(0x16,0x742), BASE, ARG_FP },
1221 { "divs/suim", FP(0x16,0x743), BASE, ARG_FP },
1222 { "addt/suim", FP(0x16,0x760), BASE, ARG_FP },
1223 { "subt/suim", FP(0x16,0x761), BASE, ARG_FP },
1224 { "mult/suim", FP(0x16,0x762), BASE, ARG_FP },
1225 { "divt/suim", FP(0x16,0x763), BASE, ARG_FP },
1226 { "cvtts/suim", FP(0x16,0x76C), BASE, ARG_FPZ1 },
1227 { "cvttq/svim", FP(0x16,0x76F), BASE, ARG_FPZ1 },
1228 { "cvtqs/suim", FP(0x16,0x77C), BASE, ARG_FPZ1 },
1229 { "cvtqt/suim", FP(0x16,0x77E), BASE, ARG_FPZ1 },
1230 { "adds/sui", FP(0x16,0x780), BASE, ARG_FP },
1231 { "negs/sui", FP(0x16,0x781), BASE, ARG_FPZ1 }, /* pseudo */
1232 { "subs/sui", FP(0x16,0x781), BASE, ARG_FP },
1233 { "muls/sui", FP(0x16,0x782), BASE, ARG_FP },
1234 { "divs/sui", FP(0x16,0x783), BASE, ARG_FP },
1235 { "addt/sui", FP(0x16,0x7A0), BASE, ARG_FP },
1236 { "negt/sui", FP(0x16,0x7A1), BASE, ARG_FPZ1 }, /* pseudo */
1237 { "subt/sui", FP(0x16,0x7A1), BASE, ARG_FP },
1238 { "mult/sui", FP(0x16,0x7A2), BASE, ARG_FP },
1239 { "divt/sui", FP(0x16,0x7A3), BASE, ARG_FP },
1240 { "cvtts/sui", FP(0x16,0x7AC), BASE, ARG_FPZ1 },
1241 { "cvttq/svi", FP(0x16,0x7AF), BASE, ARG_FPZ1 },
1242 { "cvtqs/sui", FP(0x16,0x7BC), BASE, ARG_FPZ1 },
1243 { "cvtqt/sui", FP(0x16,0x7BE), BASE, ARG_FPZ1 },
1244 { "adds/suid", FP(0x16,0x7C0), BASE, ARG_FP },
1245 { "subs/suid", FP(0x16,0x7C1), BASE, ARG_FP },
1246 { "muls/suid", FP(0x16,0x7C2), BASE, ARG_FP },
1247 { "divs/suid", FP(0x16,0x7C3), BASE, ARG_FP },
1248 { "addt/suid", FP(0x16,0x7E0), BASE, ARG_FP },
1249 { "subt/suid", FP(0x16,0x7E1), BASE, ARG_FP },
1250 { "mult/suid", FP(0x16,0x7E2), BASE, ARG_FP },
1251 { "divt/suid", FP(0x16,0x7E3), BASE, ARG_FP },
1252 { "cvtts/suid", FP(0x16,0x7EC), BASE, ARG_FPZ1 },
1253 { "cvttq/svid", FP(0x16,0x7EF), BASE, ARG_FPZ1 },
1254 { "cvtqs/suid", FP(0x16,0x7FC), BASE, ARG_FPZ1 },
1255 { "cvtqt/suid", FP(0x16,0x7FE), BASE, ARG_FPZ1 },
1256
1257 { "cvtlq", FP(0x17,0x010), BASE, ARG_FPZ1 },
1258 { "fnop", FP(0x17,0x020), BASE, { ZA, ZB, ZC } }, /* pseudo */
1259 { "fclr", FP(0x17,0x020), BASE, { ZA, ZB, FC } }, /* pseudo */
1260 { "fabs", FP(0x17,0x020), BASE, ARG_FPZ1 }, /* pseudo */
1261 { "fmov", FP(0x17,0x020), BASE, { FA, RBA, FC } }, /* pseudo */
1262 { "cpys", FP(0x17,0x020), BASE, ARG_FP },
1263 { "fneg", FP(0x17,0x021), BASE, { FA, RBA, FC } }, /* pseudo */
1264 { "cpysn", FP(0x17,0x021), BASE, ARG_FP },
1265 { "cpyse", FP(0x17,0x022), BASE, ARG_FP },
1266 { "mt_fpcr", FP(0x17,0x024), BASE, { FA, RBA, RCA } },
1267 { "mf_fpcr", FP(0x17,0x025), BASE, { FA, RBA, RCA } },
1268 { "fcmoveq", FP(0x17,0x02A), BASE, ARG_FP },
1269 { "fcmovne", FP(0x17,0x02B), BASE, ARG_FP },
1270 { "fcmovlt", FP(0x17,0x02C), BASE, ARG_FP },
1271 { "fcmovge", FP(0x17,0x02D), BASE, ARG_FP },
1272 { "fcmovle", FP(0x17,0x02E), BASE, ARG_FP },
1273 { "fcmovgt", FP(0x17,0x02F), BASE, ARG_FP },
1274 { "cvtql", FP(0x17,0x030), BASE, ARG_FPZ1 },
1275 { "cvtql/v", FP(0x17,0x130), BASE, ARG_FPZ1 },
1276 { "cvtql/sv", FP(0x17,0x530), BASE, ARG_FPZ1 },
1277
1278 { "trapb", MFC(0x18,0x0000), BASE, ARG_NONE },
1279 { "draint", MFC(0x18,0x0000), BASE, ARG_NONE }, /* alias */
1280 { "excb", MFC(0x18,0x0400), BASE, ARG_NONE },
1281 { "mb", MFC(0x18,0x4000), BASE, ARG_NONE },
1282 { "wmb", MFC(0x18,0x4400), BASE, ARG_NONE },
1283 { "fetch", MFC(0x18,0x8000), BASE, { ZA, PRB } },
1284 { "fetch_m", MFC(0x18,0xA000), BASE, { ZA, PRB } },
1285 { "rpcc", MFC(0x18,0xC000), BASE, { RA } },
1286 { "rc", MFC(0x18,0xE000), BASE, { RA } },
1287 { "ecb", MFC(0x18,0xE800), BASE, { ZA, PRB } }, /* ev56 una */
1288 { "rs", MFC(0x18,0xF000), BASE, { RA } },
1289 { "wh64", MFC(0x18,0xF800), BASE, { ZA, PRB } }, /* ev56 una */
1290 { "wh64en", MFC(0x18,0xFC00), BASE, { ZA, PRB } }, /* ev7 una */
1291
1292 { "hw_mfpr", OPR(0x19,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1293 { "hw_mfpr", OP(0x19), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1294 { "hw_mfpr", OP(0x19), OP_MASK, EV6, { RA, ZB, EV6HWINDEX } },
1295 { "hw_mfpr/i", OPR(0x19,0x01), EV4, ARG_EV4HWMPR },
1296 { "hw_mfpr/a", OPR(0x19,0x02), EV4, ARG_EV4HWMPR },
1297 { "hw_mfpr/ai", OPR(0x19,0x03), EV4, ARG_EV4HWMPR },
1298 { "hw_mfpr/p", OPR(0x19,0x04), EV4, ARG_EV4HWMPR },
1299 { "hw_mfpr/pi", OPR(0x19,0x05), EV4, ARG_EV4HWMPR },
1300 { "hw_mfpr/pa", OPR(0x19,0x06), EV4, ARG_EV4HWMPR },
1301 { "hw_mfpr/pai", OPR(0x19,0x07), EV4, ARG_EV4HWMPR },
1302 { "pal19", PCD(0x19), BASE, ARG_PCD },
1303
1304 { "jmp", MBR_(0x1A,0), MBR_MASK | 0x3FFF, /* pseudo */
1305 BASE, { ZA, CPRB } },
1306 { "jmp", MBR(0x1A,0), BASE, { RA, CPRB, JMPHINT } },
1307 { "jsr", MBR(0x1A,1), BASE, { RA, CPRB, JMPHINT } },
1308 { "ret", MBR_(0x1A,2) | (31 << 21) | (26 << 16) | 1,/* pseudo */
1309 0xFFFFFFFF, BASE, { 0 } },
1310 { "ret", MBR(0x1A,2), BASE, { RA, CPRB, RETHINT } },
1311 { "jcr", MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } }, /* alias */
1312 { "jsr_coroutine", MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } },
1313
1314 { "hw_ldl", EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1315 { "hw_ldl", EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1316 { "hw_ldl", EV6HWMEM(0x1B,0x8), EV6, ARG_EV6HWMEM },
1317 { "hw_ldl/a", EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1318 { "hw_ldl/a", EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1319 { "hw_ldl/a", EV6HWMEM(0x1B,0xC), EV6, ARG_EV6HWMEM },
1320 { "hw_ldl/al", EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1321 { "hw_ldl/ar", EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1322 { "hw_ldl/av", EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1323 { "hw_ldl/avl", EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1324 { "hw_ldl/aw", EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1325 { "hw_ldl/awl", EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1326 { "hw_ldl/awv", EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1327 { "hw_ldl/awvl", EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1328 { "hw_ldl/l", EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1329 { "hw_ldl/p", EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1330 { "hw_ldl/p", EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1331 { "hw_ldl/p", EV6HWMEM(0x1B,0x0), EV6, ARG_EV6HWMEM },
1332 { "hw_ldl/pa", EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1333 { "hw_ldl/pa", EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1334 { "hw_ldl/pal", EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1335 { "hw_ldl/par", EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1336 { "hw_ldl/pav", EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1337 { "hw_ldl/pavl", EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1338 { "hw_ldl/paw", EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1339 { "hw_ldl/pawl", EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1340 { "hw_ldl/pawv", EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1341 { "hw_ldl/pawvl", EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1342 { "hw_ldl/pl", EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1343 { "hw_ldl/pr", EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1344 { "hw_ldl/pv", EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1345 { "hw_ldl/pvl", EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1346 { "hw_ldl/pw", EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1347 { "hw_ldl/pwl", EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1348 { "hw_ldl/pwv", EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1349 { "hw_ldl/pwvl", EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1350 { "hw_ldl/r", EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1351 { "hw_ldl/v", EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1352 { "hw_ldl/v", EV6HWMEM(0x1B,0x4), EV6, ARG_EV6HWMEM },
1353 { "hw_ldl/vl", EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1354 { "hw_ldl/w", EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1355 { "hw_ldl/w", EV6HWMEM(0x1B,0xA), EV6, ARG_EV6HWMEM },
1356 { "hw_ldl/wa", EV6HWMEM(0x1B,0xE), EV6, ARG_EV6HWMEM },
1357 { "hw_ldl/wl", EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1358 { "hw_ldl/wv", EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1359 { "hw_ldl/wvl", EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1360 { "hw_ldl_l", EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1361 { "hw_ldl_l/a", EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1362 { "hw_ldl_l/av", EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1363 { "hw_ldl_l/aw", EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1364 { "hw_ldl_l/awv", EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1365 { "hw_ldl_l/p", EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1366 { "hw_ldl_l/p", EV6HWMEM(0x1B,0x2), EV6, ARG_EV6HWMEM },
1367 { "hw_ldl_l/pa", EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1368 { "hw_ldl_l/pav", EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1369 { "hw_ldl_l/paw", EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1370 { "hw_ldl_l/pawv", EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1371 { "hw_ldl_l/pv", EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1372 { "hw_ldl_l/pw", EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1373 { "hw_ldl_l/pwv", EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1374 { "hw_ldl_l/v", EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1375 { "hw_ldl_l/w", EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1376 { "hw_ldl_l/wv", EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1377 { "hw_ldq", EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1378 { "hw_ldq", EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1379 { "hw_ldq", EV6HWMEM(0x1B,0x9), EV6, ARG_EV6HWMEM },
1380 { "hw_ldq/a", EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1381 { "hw_ldq/a", EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1382 { "hw_ldq/a", EV6HWMEM(0x1B,0xD), EV6, ARG_EV6HWMEM },
1383 { "hw_ldq/al", EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1384 { "hw_ldq/ar", EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1385 { "hw_ldq/av", EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1386 { "hw_ldq/avl", EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1387 { "hw_ldq/aw", EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1388 { "hw_ldq/awl", EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1389 { "hw_ldq/awv", EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1390 { "hw_ldq/awvl", EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1391 { "hw_ldq/l", EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1392 { "hw_ldq/p", EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1393 { "hw_ldq/p", EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1394 { "hw_ldq/p", EV6HWMEM(0x1B,0x1), EV6, ARG_EV6HWMEM },
1395 { "hw_ldq/pa", EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1396 { "hw_ldq/pa", EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1397 { "hw_ldq/pal", EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1398 { "hw_ldq/par", EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1399 { "hw_ldq/pav", EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1400 { "hw_ldq/pavl", EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1401 { "hw_ldq/paw", EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1402 { "hw_ldq/pawl", EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1403 { "hw_ldq/pawv", EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1404 { "hw_ldq/pawvl", EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1405 { "hw_ldq/pl", EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1406 { "hw_ldq/pr", EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1407 { "hw_ldq/pv", EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1408 { "hw_ldq/pvl", EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1409 { "hw_ldq/pw", EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1410 { "hw_ldq/pwl", EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1411 { "hw_ldq/pwv", EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1412 { "hw_ldq/pwvl", EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1413 { "hw_ldq/r", EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1414 { "hw_ldq/v", EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1415 { "hw_ldq/v", EV6HWMEM(0x1B,0x5), EV6, ARG_EV6HWMEM },
1416 { "hw_ldq/vl", EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1417 { "hw_ldq/w", EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1418 { "hw_ldq/w", EV6HWMEM(0x1B,0xB), EV6, ARG_EV6HWMEM },
1419 { "hw_ldq/wa", EV6HWMEM(0x1B,0xF), EV6, ARG_EV6HWMEM },
1420 { "hw_ldq/wl", EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1421 { "hw_ldq/wv", EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1422 { "hw_ldq/wvl", EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1423 { "hw_ldq_l", EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1424 { "hw_ldq_l/a", EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1425 { "hw_ldq_l/av", EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1426 { "hw_ldq_l/aw", EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1427 { "hw_ldq_l/awv", EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1428 { "hw_ldq_l/p", EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1429 { "hw_ldq_l/p", EV6HWMEM(0x1B,0x3), EV6, ARG_EV6HWMEM },
1430 { "hw_ldq_l/pa", EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1431 { "hw_ldq_l/pav", EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1432 { "hw_ldq_l/paw", EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1433 { "hw_ldq_l/pawv", EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1434 { "hw_ldq_l/pv", EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1435 { "hw_ldq_l/pw", EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1436 { "hw_ldq_l/pwv", EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1437 { "hw_ldq_l/v", EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1438 { "hw_ldq_l/w", EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1439 { "hw_ldq_l/wv", EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1440 { "hw_ld", EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1441 { "hw_ld", EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1442 { "hw_ld/a", EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1443 { "hw_ld/a", EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1444 { "hw_ld/al", EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1445 { "hw_ld/aq", EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1446 { "hw_ld/aq", EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1447 { "hw_ld/aql", EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1448 { "hw_ld/aqv", EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1449 { "hw_ld/aqvl", EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1450 { "hw_ld/ar", EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1451 { "hw_ld/arq", EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1452 { "hw_ld/av", EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1453 { "hw_ld/avl", EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1454 { "hw_ld/aw", EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1455 { "hw_ld/awl", EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1456 { "hw_ld/awq", EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1457 { "hw_ld/awql", EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1458 { "hw_ld/awqv", EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1459 { "hw_ld/awqvl", EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1460 { "hw_ld/awv", EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1461 { "hw_ld/awvl", EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1462 { "hw_ld/l", EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1463 { "hw_ld/p", EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1464 { "hw_ld/p", EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1465 { "hw_ld/pa", EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1466 { "hw_ld/pa", EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1467 { "hw_ld/pal", EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1468 { "hw_ld/paq", EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1469 { "hw_ld/paq", EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1470 { "hw_ld/paql", EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1471 { "hw_ld/paqv", EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1472 { "hw_ld/paqvl", EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1473 { "hw_ld/par", EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1474 { "hw_ld/parq", EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1475 { "hw_ld/pav", EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1476 { "hw_ld/pavl", EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1477 { "hw_ld/paw", EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1478 { "hw_ld/pawl", EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1479 { "hw_ld/pawq", EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1480 { "hw_ld/pawql", EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1481 { "hw_ld/pawqv", EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1482 { "hw_ld/pawqvl", EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1483 { "hw_ld/pawv", EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1484 { "hw_ld/pawvl", EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1485 { "hw_ld/pl", EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1486 { "hw_ld/pq", EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1487 { "hw_ld/pq", EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1488 { "hw_ld/pql", EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1489 { "hw_ld/pqv", EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1490 { "hw_ld/pqvl", EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1491 { "hw_ld/pr", EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1492 { "hw_ld/prq", EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1493 { "hw_ld/pv", EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1494 { "hw_ld/pvl", EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1495 { "hw_ld/pw", EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1496 { "hw_ld/pwl", EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1497 { "hw_ld/pwq", EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1498 { "hw_ld/pwql", EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1499 { "hw_ld/pwqv", EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1500 { "hw_ld/pwqvl", EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1501 { "hw_ld/pwv", EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1502 { "hw_ld/pwvl", EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1503 { "hw_ld/q", EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1504 { "hw_ld/q", EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1505 { "hw_ld/ql", EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1506 { "hw_ld/qv", EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1507 { "hw_ld/qvl", EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1508 { "hw_ld/r", EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1509 { "hw_ld/rq", EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1510 { "hw_ld/v", EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1511 { "hw_ld/vl", EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1512 { "hw_ld/w", EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1513 { "hw_ld/wl", EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1514 { "hw_ld/wq", EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1515 { "hw_ld/wql", EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1516 { "hw_ld/wqv", EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1517 { "hw_ld/wqvl", EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1518 { "hw_ld/wv", EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1519 { "hw_ld/wvl", EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1520 { "pal1b", PCD(0x1B), BASE, ARG_PCD },
1521
1522 { "sextb", OPR(0x1C, 0x00), BWX, ARG_OPRZ1 },
1523 { "sextw", OPR(0x1C, 0x01), BWX, ARG_OPRZ1 },
1524 { "ctpop", OPR(0x1C, 0x30), CIX, ARG_OPRZ1 },
1525 { "perr", OPR(0x1C, 0x31), MAX, ARG_OPR },
1526 { "ctlz", OPR(0x1C, 0x32), CIX, ARG_OPRZ1 },
1527 { "cttz", OPR(0x1C, 0x33), CIX, ARG_OPRZ1 },
1528 { "unpkbw", OPR(0x1C, 0x34), MAX, ARG_OPRZ1 },
1529 { "unpkbl", OPR(0x1C, 0x35), MAX, ARG_OPRZ1 },
1530 { "pkwb", OPR(0x1C, 0x36), MAX, ARG_OPRZ1 },
1531 { "pklb", OPR(0x1C, 0x37), MAX, ARG_OPRZ1 },
1532 { "minsb8", OPR(0x1C, 0x38), MAX, ARG_OPR },
1533 { "minsb8", OPRL(0x1C, 0x38), MAX, ARG_OPRL },
1534 { "minsw4", OPR(0x1C, 0x39), MAX, ARG_OPR },
1535 { "minsw4", OPRL(0x1C, 0x39), MAX, ARG_OPRL },
1536 { "minub8", OPR(0x1C, 0x3A), MAX, ARG_OPR },
1537 { "minub8", OPRL(0x1C, 0x3A), MAX, ARG_OPRL },
1538 { "minuw4", OPR(0x1C, 0x3B), MAX, ARG_OPR },
1539 { "minuw4", OPRL(0x1C, 0x3B), MAX, ARG_OPRL },
1540 { "maxub8", OPR(0x1C, 0x3C), MAX, ARG_OPR },
1541 { "maxub8", OPRL(0x1C, 0x3C), MAX, ARG_OPRL },
1542 { "maxuw4", OPR(0x1C, 0x3D), MAX, ARG_OPR },
1543 { "maxuw4", OPRL(0x1C, 0x3D), MAX, ARG_OPRL },
1544 { "maxsb8", OPR(0x1C, 0x3E), MAX, ARG_OPR },
1545 { "maxsb8", OPRL(0x1C, 0x3E), MAX, ARG_OPRL },
1546 { "maxsw4", OPR(0x1C, 0x3F), MAX, ARG_OPR },
1547 { "maxsw4", OPRL(0x1C, 0x3F), MAX, ARG_OPRL },
1548 { "ftoit", FP(0x1C, 0x70), CIX, { FA, ZB, RC } },
1549 { "ftois", FP(0x1C, 0x78), CIX, { FA, ZB, RC } },
1550
1551 { "hw_mtpr", OPR(0x1D,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1552 { "hw_mtpr", OP(0x1D), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1553 { "hw_mtpr", OP(0x1D), OP_MASK, EV6, { ZA, RB, EV6HWINDEX } },
1554 { "hw_mtpr/i", OPR(0x1D,0x01), EV4, ARG_EV4HWMPR },
1555 { "hw_mtpr/a", OPR(0x1D,0x02), EV4, ARG_EV4HWMPR },
1556 { "hw_mtpr/ai", OPR(0x1D,0x03), EV4, ARG_EV4HWMPR },
1557 { "hw_mtpr/p", OPR(0x1D,0x04), EV4, ARG_EV4HWMPR },
1558 { "hw_mtpr/pi", OPR(0x1D,0x05), EV4, ARG_EV4HWMPR },
1559 { "hw_mtpr/pa", OPR(0x1D,0x06), EV4, ARG_EV4HWMPR },
1560 { "hw_mtpr/pai", OPR(0x1D,0x07), EV4, ARG_EV4HWMPR },
1561 { "pal1d", PCD(0x1D), BASE, ARG_PCD },
1562
1563 { "hw_rei", SPCD(0x1E,0x3FF8000), EV4|EV5, ARG_NONE },
1564 { "hw_rei_stall", SPCD(0x1E,0x3FFC000), EV5, ARG_NONE },
1565 { "hw_jmp", EV6HWMBR(0x1E,0x0), EV6, { ZA, PRB, EV6HWJMPHINT } },
1566 { "hw_jsr", EV6HWMBR(0x1E,0x2), EV6, { ZA, PRB, EV6HWJMPHINT } },
1567 { "hw_ret", EV6HWMBR(0x1E,0x4), EV6, { ZA, PRB } },
1568 { "hw_jcr", EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } },
1569 { "hw_coroutine", EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } }, /* alias */
1570 { "hw_jmp/stall", EV6HWMBR(0x1E,0x1), EV6, { ZA, PRB, EV6HWJMPHINT } },
1571 { "hw_jsr/stall", EV6HWMBR(0x1E,0x3), EV6, { ZA, PRB, EV6HWJMPHINT } },
1572 { "hw_ret/stall", EV6HWMBR(0x1E,0x5), EV6, { ZA, PRB } },
1573 { "hw_jcr/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } },
1574 { "hw_coroutine/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } }, /* alias */
1575 { "pal1e", PCD(0x1E), BASE, ARG_PCD },
1576
1577 { "hw_stl", EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1578 { "hw_stl", EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1579 { "hw_stl", EV6HWMEM(0x1F,0x4), EV6, ARG_EV6HWMEM }, /* ??? 8 */
1580 { "hw_stl/a", EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1581 { "hw_stl/a", EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1582 { "hw_stl/a", EV6HWMEM(0x1F,0xC), EV6, ARG_EV6HWMEM },
1583 { "hw_stl/ac", EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1584 { "hw_stl/ar", EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1585 { "hw_stl/av", EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1586 { "hw_stl/avc", EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1587 { "hw_stl/c", EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1588 { "hw_stl/p", EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1589 { "hw_stl/p", EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1590 { "hw_stl/p", EV6HWMEM(0x1F,0x0), EV6, ARG_EV6HWMEM },
1591 { "hw_stl/pa", EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1592 { "hw_stl/pa", EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1593 { "hw_stl/pac", EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1594 { "hw_stl/pav", EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1595 { "hw_stl/pavc", EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1596 { "hw_stl/pc", EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1597 { "hw_stl/pr", EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1598 { "hw_stl/pv", EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1599 { "hw_stl/pvc", EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1600 { "hw_stl/r", EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1601 { "hw_stl/v", EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1602 { "hw_stl/vc", EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1603 { "hw_stl_c", EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1604 { "hw_stl_c/a", EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1605 { "hw_stl_c/av", EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1606 { "hw_stl_c/p", EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1607 { "hw_stl_c/p", EV6HWMEM(0x1F,0x2), EV6, ARG_EV6HWMEM },
1608 { "hw_stl_c/pa", EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1609 { "hw_stl_c/pav", EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1610 { "hw_stl_c/pv", EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1611 { "hw_stl_c/v", EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1612 { "hw_stq", EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1613 { "hw_stq", EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1614 { "hw_stq", EV6HWMEM(0x1F,0x5), EV6, ARG_EV6HWMEM }, /* ??? 9 */
1615 { "hw_stq/a", EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1616 { "hw_stq/a", EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1617 { "hw_stq/a", EV6HWMEM(0x1F,0xD), EV6, ARG_EV6HWMEM },
1618 { "hw_stq/ac", EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1619 { "hw_stq/ar", EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1620 { "hw_stq/av", EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1621 { "hw_stq/avc", EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1622 { "hw_stq/c", EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1623 { "hw_stq/p", EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1624 { "hw_stq/p", EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1625 { "hw_stq/p", EV6HWMEM(0x1F,0x1), EV6, ARG_EV6HWMEM },
1626 { "hw_stq/pa", EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1627 { "hw_stq/pa", EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1628 { "hw_stq/pac", EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1629 { "hw_stq/par", EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1630 { "hw_stq/par", EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1631 { "hw_stq/pav", EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1632 { "hw_stq/pavc", EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1633 { "hw_stq/pc", EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1634 { "hw_stq/pr", EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1635 { "hw_stq/pv", EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1636 { "hw_stq/pvc", EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1637 { "hw_stq/r", EV4HWMEM(0x1F,0x3), EV4, ARG_EV4HWMEM },
1638 { "hw_stq/v", EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1639 { "hw_stq/vc", EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1640 { "hw_stq_c", EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1641 { "hw_stq_c/a", EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1642 { "hw_stq_c/av", EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1643 { "hw_stq_c/p", EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1644 { "hw_stq_c/p", EV6HWMEM(0x1F,0x3), EV6, ARG_EV6HWMEM },
1645 { "hw_stq_c/pa", EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1646 { "hw_stq_c/pav", EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1647 { "hw_stq_c/pv", EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1648 { "hw_stq_c/v", EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1649 { "hw_st", EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1650 { "hw_st", EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1651 { "hw_st/a", EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1652 { "hw_st/a", EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1653 { "hw_st/ac", EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1654 { "hw_st/aq", EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1655 { "hw_st/aq", EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1656 { "hw_st/aqc", EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1657 { "hw_st/aqv", EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1658 { "hw_st/aqvc", EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1659 { "hw_st/ar", EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1660 { "hw_st/arq", EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1661 { "hw_st/av", EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1662 { "hw_st/avc", EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1663 { "hw_st/c", EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1664 { "hw_st/p", EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1665 { "hw_st/p", EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1666 { "hw_st/pa", EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1667 { "hw_st/pa", EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1668 { "hw_st/pac", EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1669 { "hw_st/paq", EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1670 { "hw_st/paq", EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1671 { "hw_st/paqc", EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1672 { "hw_st/paqv", EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1673 { "hw_st/paqvc", EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1674 { "hw_st/par", EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1675 { "hw_st/parq", EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1676 { "hw_st/pav", EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1677 { "hw_st/pavc", EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1678 { "hw_st/pc", EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1679 { "hw_st/pq", EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1680 { "hw_st/pq", EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1681 { "hw_st/pqc", EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1682 { "hw_st/pqv", EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1683 { "hw_st/pqvc", EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1684 { "hw_st/pr", EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1685 { "hw_st/prq", EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1686 { "hw_st/pv", EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1687 { "hw_st/pvc", EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1688 { "hw_st/q", EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1689 { "hw_st/q", EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1690 { "hw_st/qc", EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1691 { "hw_st/qv", EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1692 { "hw_st/qvc", EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1693 { "hw_st/r", EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1694 { "hw_st/v", EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1695 { "hw_st/vc", EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1696 { "pal1f", PCD(0x1F), BASE, ARG_PCD },
1697
1698 { "ldf", MEM(0x20), BASE, ARG_FMEM },
1699 { "ldg", MEM(0x21), BASE, ARG_FMEM },
1700 { "lds", MEM(0x22), BASE, ARG_FMEM },
1701 { "ldt", MEM(0x23), BASE, ARG_FMEM },
1702 { "stf", MEM(0x24), BASE, ARG_FMEM },
1703 { "stg", MEM(0x25), BASE, ARG_FMEM },
1704 { "sts", MEM(0x26), BASE, ARG_FMEM },
1705 { "stt", MEM(0x27), BASE, ARG_FMEM },
1706
1707 { "ldl", MEM(0x28), BASE, ARG_MEM },
1708 { "ldq", MEM(0x29), BASE, ARG_MEM },
1709 { "ldl_l", MEM(0x2A), BASE, ARG_MEM },
1710 { "ldq_l", MEM(0x2B), BASE, ARG_MEM },
1711 { "stl", MEM(0x2C), BASE, ARG_MEM },
1712 { "stq", MEM(0x2D), BASE, ARG_MEM },
1713 { "stl_c", MEM(0x2E), BASE, ARG_MEM },
1714 { "stq_c", MEM(0x2F), BASE, ARG_MEM },
1715
1716 { "br", BRA(0x30), BASE, { ZA, BDISP } }, /* pseudo */
1717 { "br", BRA(0x30), BASE, ARG_BRA },
1718 { "fbeq", BRA(0x31), BASE, ARG_FBRA },
1719 { "fblt", BRA(0x32), BASE, ARG_FBRA },
1720 { "fble", BRA(0x33), BASE, ARG_FBRA },
1721 { "bsr", BRA(0x34), BASE, ARG_BRA },
1722 { "fbne", BRA(0x35), BASE, ARG_FBRA },
1723 { "fbge", BRA(0x36), BASE, ARG_FBRA },
1724 { "fbgt", BRA(0x37), BASE, ARG_FBRA },
1725 { "blbc", BRA(0x38), BASE, ARG_BRA },
1726 { "beq", BRA(0x39), BASE, ARG_BRA },
1727 { "blt", BRA(0x3A), BASE, ARG_BRA },
1728 { "ble", BRA(0x3B), BASE, ARG_BRA },
1729 { "blbs", BRA(0x3C), BASE, ARG_BRA },
1730 { "bne", BRA(0x3D), BASE, ARG_BRA },
1731 { "bge", BRA(0x3E), BASE, ARG_BRA },
1732 { "bgt", BRA(0x3F), BASE, ARG_BRA },
1733};
1734
1735const unsigned alpha_num_opcodes = sizeof(alpha_opcodes)/sizeof(*alpha_opcodes);
1736
1737/* OSF register names. */
1738
1739static const char * const osf_regnames[64] = {
1740 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
1741 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
1742 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
1743 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
1744 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
1745 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
1746 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
1747 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"
1748};
1749
1750/* VMS register names. */
1751
1752static const char * const vms_regnames[64] = {
1753 "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7",
1754 "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
1755 "R16", "R17", "R18", "R19", "R20", "R21", "R22", "R23",
1756 "R24", "AI", "RA", "PV", "AT", "FP", "SP", "RZ",
1757 "F0", "F1", "F2", "F3", "F4", "F5", "F6", "F7",
1758 "F8", "F9", "F10", "F11", "F12", "F13", "F14", "F15",
1759 "F16", "F17", "F18", "F19", "F20", "F21", "F22", "F23",
1760 "F24", "F25", "F26", "F27", "F28", "F29", "F30", "FZ"
1761};
1762
1763/* Disassemble Alpha instructions. */
1764
1765int
668a38fc 1766print_insn_alpha (bfd_vma memaddr, struct disassemble_info *info)
a993ba85
FB
1767{
1768 static const struct alpha_opcode *opcode_index[AXP_NOPS+1];
1769 const char * const * regnames;
1770 const struct alpha_opcode *opcode, *opcode_end;
1771 const unsigned char *opindex;
1772 unsigned insn, op, isa_mask;
1773 int need_comma;
1774
1775 /* Initialize the majorop table the first time through */
1776 if (!opcode_index[0])
1777 {
1778 opcode = alpha_opcodes;
1779 opcode_end = opcode + alpha_num_opcodes;
1780
1781 for (op = 0; op < AXP_NOPS; ++op)
1782 {
1783 opcode_index[op] = opcode;
1784 while (opcode < opcode_end && op == AXP_OP (opcode->opcode))
1785 ++opcode;
1786 }
1787 opcode_index[op] = opcode;
1788 }
1789
1790 if (info->flavour == bfd_target_evax_flavour)
1791 regnames = vms_regnames;
1792 else
1793 regnames = osf_regnames;
1794
1795 isa_mask = AXP_OPCODE_NOPAL;
1796 switch (info->mach)
1797 {
1798 case bfd_mach_alpha_ev4:
1799 isa_mask |= AXP_OPCODE_EV4;
1800 break;
1801 case bfd_mach_alpha_ev5:
1802 isa_mask |= AXP_OPCODE_EV5;
1803 break;
1804 case bfd_mach_alpha_ev6:
1805 isa_mask |= AXP_OPCODE_EV6;
1806 break;
1807 }
1808
1809 /* Read the insn into a host word */
1810 {
1811 bfd_byte buffer[4];
1812 int status = (*info->read_memory_func) (memaddr, buffer, 4, info);
1813 if (status != 0)
1814 {
1815 (*info->memory_error_func) (status, memaddr, info);
1816 return -1;
1817 }
1818 insn = bfd_getl32 (buffer);
1819 }
1820
1821 /* Get the major opcode of the instruction. */
1822 op = AXP_OP (insn);
1823
1824 /* Find the first match in the opcode table. */
1825 opcode_end = opcode_index[op + 1];
1826 for (opcode = opcode_index[op]; opcode < opcode_end; ++opcode)
1827 {
1828 if ((insn ^ opcode->opcode) & opcode->mask)
1829 continue;
1830
1831 if (!(opcode->flags & isa_mask))
1832 continue;
1833
1834 /* Make two passes over the operands. First see if any of them
1835 have extraction functions, and, if they do, make sure the
1836 instruction is valid. */
1837 {
1838 int invalid = 0;
1839 for (opindex = opcode->operands; *opindex != 0; opindex++)
1840 {
1841 const struct alpha_operand *operand = alpha_operands + *opindex;
1842 if (operand->extract)
1843 (*operand->extract) (insn, &invalid);
1844 }
1845 if (invalid)
1846 continue;
1847 }
1848
1849 /* The instruction is valid. */
1850 goto found;
1851 }
1852
1853 /* No instruction found */
1854 (*info->fprintf_func) (info->stream, ".long %#08x", insn);
1855
1856 return 4;
1857
1858found:
1859 (*info->fprintf_func) (info->stream, "%s", opcode->name);
1860 if (opcode->operands[0] != 0)
1861 (*info->fprintf_func) (info->stream, "\t");
1862
1863 /* Now extract and print the operands. */
1864 need_comma = 0;
1865 for (opindex = opcode->operands; *opindex != 0; opindex++)
1866 {
1867 const struct alpha_operand *operand = alpha_operands + *opindex;
1868 int value;
1869
1870 /* Operands that are marked FAKE are simply ignored. We
1871 already made sure that the extract function considered
1872 the instruction to be valid. */
1873 if ((operand->flags & AXP_OPERAND_FAKE) != 0)
1874 continue;
1875
1876 /* Extract the value from the instruction. */
1877 if (operand->extract)
1878 value = (*operand->extract) (insn, (int *) NULL);
1879 else
1880 {
1881 value = (insn >> operand->shift) & ((1 << operand->bits) - 1);
1882 if (operand->flags & AXP_OPERAND_SIGNED)
1883 {
1884 int signbit = 1 << (operand->bits - 1);
1885 value = (value ^ signbit) - signbit;
1886 }
1887 }
1888
1889 if (need_comma &&
1890 ((operand->flags & (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA))
1891 != AXP_OPERAND_PARENS))
1892 {
1893 (*info->fprintf_func) (info->stream, ",");
1894 }
1895 if (operand->flags & AXP_OPERAND_PARENS)
1896 (*info->fprintf_func) (info->stream, "(");
1897
1898 /* Print the operand as directed by the flags. */
1899 if (operand->flags & AXP_OPERAND_IR)
1900 (*info->fprintf_func) (info->stream, "%s", regnames[value]);
1901 else if (operand->flags & AXP_OPERAND_FPR)
1902 (*info->fprintf_func) (info->stream, "%s", regnames[value + 32]);
1903 else if (operand->flags & AXP_OPERAND_RELATIVE)
1904 (*info->print_address_func) (memaddr + 4 + value, info);
1905 else if (operand->flags & AXP_OPERAND_SIGNED)
1906 (*info->fprintf_func) (info->stream, "%d", value);
1907 else
1908 (*info->fprintf_func) (info->stream, "%#x", value);
1909
1910 if (operand->flags & AXP_OPERAND_PARENS)
1911 (*info->fprintf_func) (info->stream, ")");
1912 need_comma = 1;
1913 }
1914
1915 return 4;
1916}
This page took 0.966324 seconds and 4 git commands to generate.