]>
Commit | Line | Data |
---|---|---|
9e5e54d1 | 1 | /* |
93dbd103 | 2 | * Arm SSE (Subsystems for Embedded): IoTKit |
9e5e54d1 PM |
3 | * |
4 | * Copyright (c) 2018 Linaro Limited | |
5 | * Written by Peter Maydell | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify | |
8 | * it under the terms of the GNU General Public License version 2 or | |
9 | * (at your option) any later version. | |
10 | */ | |
11 | ||
12 | #include "qemu/osdep.h" | |
13 | #include "qemu/log.h" | |
aab7a378 | 14 | #include "qemu/bitops.h" |
9e5e54d1 PM |
15 | #include "qapi/error.h" |
16 | #include "trace.h" | |
17 | #include "hw/sysbus.h" | |
18 | #include "hw/registerfields.h" | |
6eee5d24 | 19 | #include "hw/arm/armsse.h" |
9e5e54d1 PM |
20 | #include "hw/arm/arm.h" |
21 | ||
dde0c491 PM |
22 | /* Format of the System Information block SYS_CONFIG register */ |
23 | typedef enum SysConfigFormat { | |
24 | IoTKitFormat, | |
25 | SSE200Format, | |
26 | } SysConfigFormat; | |
27 | ||
4c3690b5 PM |
28 | struct ARMSSEInfo { |
29 | const char *name; | |
f0cab7fe | 30 | int sram_banks; |
91c1e9fc | 31 | int num_cpus; |
dde0c491 | 32 | uint32_t sys_version; |
aab7a378 | 33 | uint32_t cpuwait_rst; |
dde0c491 | 34 | SysConfigFormat sys_config_format; |
f8574705 | 35 | bool has_mhus; |
e0b00f1b | 36 | bool has_ppus; |
2357bca5 | 37 | bool has_cachectrl; |
c1f57257 | 38 | bool has_cpusecctrl; |
ade67dcd | 39 | bool has_cpuid; |
4c3690b5 PM |
40 | }; |
41 | ||
42 | static const ARMSSEInfo armsse_variants[] = { | |
43 | { | |
44 | .name = TYPE_IOTKIT, | |
f0cab7fe | 45 | .sram_banks = 1, |
91c1e9fc | 46 | .num_cpus = 1, |
dde0c491 | 47 | .sys_version = 0x41743, |
aab7a378 | 48 | .cpuwait_rst = 0, |
dde0c491 | 49 | .sys_config_format = IoTKitFormat, |
f8574705 | 50 | .has_mhus = false, |
e0b00f1b | 51 | .has_ppus = false, |
2357bca5 | 52 | .has_cachectrl = false, |
c1f57257 | 53 | .has_cpusecctrl = false, |
ade67dcd | 54 | .has_cpuid = false, |
4c3690b5 | 55 | }, |
0829d24e PM |
56 | { |
57 | .name = TYPE_SSE200, | |
58 | .sram_banks = 4, | |
59 | .num_cpus = 2, | |
60 | .sys_version = 0x22041743, | |
aab7a378 | 61 | .cpuwait_rst = 2, |
0829d24e PM |
62 | .sys_config_format = SSE200Format, |
63 | .has_mhus = true, | |
64 | .has_ppus = true, | |
65 | .has_cachectrl = true, | |
66 | .has_cpusecctrl = true, | |
67 | .has_cpuid = true, | |
68 | }, | |
4c3690b5 PM |
69 | }; |
70 | ||
dde0c491 PM |
71 | static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info) |
72 | { | |
73 | /* Return the SYS_CONFIG value for this SSE */ | |
74 | uint32_t sys_config; | |
75 | ||
76 | switch (info->sys_config_format) { | |
77 | case IoTKitFormat: | |
78 | sys_config = 0; | |
79 | sys_config = deposit32(sys_config, 0, 4, info->sram_banks); | |
80 | sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12); | |
81 | break; | |
82 | case SSE200Format: | |
83 | sys_config = 0; | |
84 | sys_config = deposit32(sys_config, 0, 4, info->sram_banks); | |
85 | sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width); | |
86 | sys_config = deposit32(sys_config, 24, 4, 2); | |
87 | if (info->num_cpus > 1) { | |
88 | sys_config = deposit32(sys_config, 10, 1, 1); | |
89 | sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1); | |
90 | sys_config = deposit32(sys_config, 28, 4, 2); | |
91 | } | |
92 | break; | |
93 | default: | |
94 | g_assert_not_reached(); | |
95 | } | |
96 | return sys_config; | |
97 | } | |
98 | ||
d61e4e1f PM |
99 | /* Clock frequency in HZ of the 32KHz "slow clock" */ |
100 | #define S32KCLK (32 * 1000) | |
101 | ||
91c1e9fc PM |
102 | /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */ |
103 | static bool irq_is_common[32] = { | |
104 | [0 ... 5] = true, | |
105 | /* 6, 7: per-CPU MHU interrupts */ | |
106 | [8 ... 12] = true, | |
107 | /* 13: per-CPU icache interrupt */ | |
108 | /* 14: reserved */ | |
109 | [15 ... 20] = true, | |
110 | /* 21: reserved */ | |
111 | [22 ... 26] = true, | |
112 | /* 27: reserved */ | |
113 | /* 28, 29: per-CPU CTI interrupts */ | |
114 | /* 30, 31: reserved */ | |
115 | }; | |
116 | ||
3733f803 PM |
117 | /* |
118 | * Create an alias region in @container of @size bytes starting at @base | |
9e5e54d1 PM |
119 | * which mirrors the memory starting at @orig. |
120 | */ | |
3733f803 PM |
121 | static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container, |
122 | const char *name, hwaddr base, hwaddr size, hwaddr orig) | |
9e5e54d1 | 123 | { |
3733f803 | 124 | memory_region_init_alias(mr, NULL, name, container, orig, size); |
9e5e54d1 | 125 | /* The alias is even lower priority than unimplemented_device regions */ |
3733f803 | 126 | memory_region_add_subregion_overlap(container, base, mr, -1500); |
9e5e54d1 PM |
127 | } |
128 | ||
9e5e54d1 PM |
129 | static void irq_status_forwarder(void *opaque, int n, int level) |
130 | { | |
131 | qemu_irq destirq = opaque; | |
132 | ||
133 | qemu_set_irq(destirq, level); | |
134 | } | |
135 | ||
136 | static void nsccfg_handler(void *opaque, int n, int level) | |
137 | { | |
93dbd103 | 138 | ARMSSE *s = ARMSSE(opaque); |
9e5e54d1 PM |
139 | |
140 | s->nsccfg = level; | |
141 | } | |
142 | ||
13628891 | 143 | static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum) |
9e5e54d1 PM |
144 | { |
145 | /* Each of the 4 AHB and 4 APB PPCs that might be present in a | |
93dbd103 | 146 | * system using the ARMSSE has a collection of control lines which |
9e5e54d1 | 147 | * are provided by the security controller and which we want to |
93dbd103 PM |
148 | * expose as control lines on the ARMSSE device itself, so the |
149 | * code using the ARMSSE can wire them up to the PPCs. | |
9e5e54d1 PM |
150 | */ |
151 | SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum]; | |
13628891 | 152 | DeviceState *armssedev = DEVICE(s); |
9e5e54d1 PM |
153 | DeviceState *dev_secctl = DEVICE(&s->secctl); |
154 | DeviceState *dev_splitter = DEVICE(splitter); | |
155 | char *name; | |
156 | ||
157 | name = g_strdup_printf("%s_nonsec", ppcname); | |
13628891 | 158 | qdev_pass_gpios(dev_secctl, armssedev, name); |
9e5e54d1 PM |
159 | g_free(name); |
160 | name = g_strdup_printf("%s_ap", ppcname); | |
13628891 | 161 | qdev_pass_gpios(dev_secctl, armssedev, name); |
9e5e54d1 PM |
162 | g_free(name); |
163 | name = g_strdup_printf("%s_irq_enable", ppcname); | |
13628891 | 164 | qdev_pass_gpios(dev_secctl, armssedev, name); |
9e5e54d1 PM |
165 | g_free(name); |
166 | name = g_strdup_printf("%s_irq_clear", ppcname); | |
13628891 | 167 | qdev_pass_gpios(dev_secctl, armssedev, name); |
9e5e54d1 PM |
168 | g_free(name); |
169 | ||
170 | /* irq_status is a little more tricky, because we need to | |
171 | * split it so we can send it both to the security controller | |
172 | * and to our OR gate for the NVIC interrupt line. | |
173 | * Connect up the splitter's outputs, and create a GPIO input | |
174 | * which will pass the line state to the input splitter. | |
175 | */ | |
176 | name = g_strdup_printf("%s_irq_status", ppcname); | |
177 | qdev_connect_gpio_out(dev_splitter, 0, | |
178 | qdev_get_gpio_in_named(dev_secctl, | |
179 | name, 0)); | |
180 | qdev_connect_gpio_out(dev_splitter, 1, | |
181 | qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum)); | |
182 | s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0); | |
13628891 | 183 | qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder, |
9e5e54d1 PM |
184 | s->irq_status_in[ppcnum], name, 1); |
185 | g_free(name); | |
186 | } | |
187 | ||
13628891 | 188 | static void armsse_forward_sec_resp_cfg(ARMSSE *s) |
9e5e54d1 PM |
189 | { |
190 | /* Forward the 3rd output from the splitter device as a | |
13628891 | 191 | * named GPIO output of the armsse object. |
9e5e54d1 PM |
192 | */ |
193 | DeviceState *dev = DEVICE(s); | |
194 | DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter); | |
195 | ||
196 | qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1); | |
197 | s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder, | |
198 | s->sec_resp_cfg, 1); | |
199 | qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in); | |
200 | } | |
201 | ||
13628891 | 202 | static void armsse_init(Object *obj) |
9e5e54d1 | 203 | { |
93dbd103 | 204 | ARMSSE *s = ARMSSE(obj); |
f0cab7fe PM |
205 | ARMSSEClass *asc = ARMSSE_GET_CLASS(obj); |
206 | const ARMSSEInfo *info = asc->info; | |
9e5e54d1 PM |
207 | int i; |
208 | ||
f0cab7fe | 209 | assert(info->sram_banks <= MAX_SRAM_BANKS); |
91c1e9fc | 210 | assert(info->num_cpus <= SSE_MAX_CPUS); |
f0cab7fe | 211 | |
13628891 | 212 | memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX); |
9e5e54d1 | 213 | |
91c1e9fc | 214 | for (i = 0; i < info->num_cpus; i++) { |
7cd3a2e0 PM |
215 | /* |
216 | * We put each CPU in its own cluster as they are logically | |
217 | * distinct and may be configured differently. | |
218 | */ | |
219 | char *name; | |
220 | ||
221 | name = g_strdup_printf("cluster%d", i); | |
222 | object_initialize_child(obj, name, &s->cluster[i], | |
223 | sizeof(s->cluster[i]), TYPE_CPU_CLUSTER, | |
224 | &error_abort, NULL); | |
225 | qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i); | |
226 | g_free(name); | |
227 | ||
228 | name = g_strdup_printf("armv7m%d", i); | |
229 | sysbus_init_child_obj(OBJECT(&s->cluster[i]), name, | |
230 | &s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M); | |
91c1e9fc PM |
231 | qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type", |
232 | ARM_CPU_TYPE_NAME("cortex-m33")); | |
233 | g_free(name); | |
d847ca51 PM |
234 | name = g_strdup_printf("arm-sse-cpu-container%d", i); |
235 | memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX); | |
236 | g_free(name); | |
237 | if (i > 0) { | |
238 | name = g_strdup_printf("arm-sse-container-alias%d", i); | |
239 | memory_region_init_alias(&s->container_alias[i - 1], obj, | |
240 | name, &s->container, 0, UINT64_MAX); | |
241 | g_free(name); | |
242 | } | |
91c1e9fc | 243 | } |
9e5e54d1 | 244 | |
955cbc6b TH |
245 | sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl), |
246 | TYPE_IOTKIT_SECCTL); | |
247 | sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0), | |
248 | TYPE_TZ_PPC); | |
249 | sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1), | |
250 | TYPE_TZ_PPC); | |
f0cab7fe PM |
251 | for (i = 0; i < info->sram_banks; i++) { |
252 | char *name = g_strdup_printf("mpc%d", i); | |
253 | sysbus_init_child_obj(obj, name, &s->mpc[i], | |
254 | sizeof(s->mpc[i]), TYPE_TZ_MPC); | |
255 | g_free(name); | |
256 | } | |
955cbc6b TH |
257 | object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate, |
258 | sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ, | |
259 | &error_abort, NULL); | |
260 | ||
f0cab7fe | 261 | for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { |
bb75e16d PM |
262 | char *name = g_strdup_printf("mpc-irq-splitter-%d", i); |
263 | SplitIRQ *splitter = &s->mpc_irq_splitter[i]; | |
264 | ||
955cbc6b TH |
265 | object_initialize_child(obj, name, splitter, sizeof(*splitter), |
266 | TYPE_SPLIT_IRQ, &error_abort, NULL); | |
bb75e16d PM |
267 | g_free(name); |
268 | } | |
955cbc6b TH |
269 | sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0), |
270 | TYPE_CMSDK_APB_TIMER); | |
271 | sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1), | |
272 | TYPE_CMSDK_APB_TIMER); | |
e2d203ba PM |
273 | sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer), |
274 | TYPE_CMSDK_APB_TIMER); | |
955cbc6b | 275 | sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer), |
017d069d | 276 | TYPE_CMSDK_APB_DUALTIMER); |
d61e4e1f PM |
277 | sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog, |
278 | sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG); | |
279 | sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog, | |
280 | sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG); | |
281 | sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog, | |
282 | sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG); | |
13628891 | 283 | sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl, |
06e65af3 | 284 | sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL); |
13628891 | 285 | sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo, |
06e65af3 | 286 | sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO); |
f8574705 PM |
287 | if (info->has_mhus) { |
288 | sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]), | |
68d6b36f | 289 | TYPE_ARMSSE_MHU); |
f8574705 | 290 | sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]), |
68d6b36f | 291 | TYPE_ARMSSE_MHU); |
f8574705 | 292 | } |
e0b00f1b PM |
293 | if (info->has_ppus) { |
294 | for (i = 0; i < info->num_cpus; i++) { | |
295 | char *name = g_strdup_printf("CPU%dCORE_PPU", i); | |
296 | int ppuidx = CPU0CORE_PPU + i; | |
297 | ||
298 | sysbus_init_child_obj(obj, name, &s->ppu[ppuidx], | |
299 | sizeof(s->ppu[ppuidx]), | |
300 | TYPE_UNIMPLEMENTED_DEVICE); | |
301 | g_free(name); | |
302 | } | |
303 | sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU], | |
304 | sizeof(s->ppu[DBG_PPU]), | |
305 | TYPE_UNIMPLEMENTED_DEVICE); | |
306 | for (i = 0; i < info->sram_banks; i++) { | |
307 | char *name = g_strdup_printf("RAM%d_PPU", i); | |
308 | int ppuidx = RAM0_PPU + i; | |
309 | ||
310 | sysbus_init_child_obj(obj, name, &s->ppu[ppuidx], | |
311 | sizeof(s->ppu[ppuidx]), | |
312 | TYPE_UNIMPLEMENTED_DEVICE); | |
313 | g_free(name); | |
314 | } | |
315 | } | |
2357bca5 PM |
316 | if (info->has_cachectrl) { |
317 | for (i = 0; i < info->num_cpus; i++) { | |
318 | char *name = g_strdup_printf("cachectrl%d", i); | |
319 | ||
320 | sysbus_init_child_obj(obj, name, &s->cachectrl[i], | |
321 | sizeof(s->cachectrl[i]), | |
322 | TYPE_UNIMPLEMENTED_DEVICE); | |
323 | g_free(name); | |
324 | } | |
325 | } | |
c1f57257 PM |
326 | if (info->has_cpusecctrl) { |
327 | for (i = 0; i < info->num_cpus; i++) { | |
328 | char *name = g_strdup_printf("cpusecctrl%d", i); | |
329 | ||
330 | sysbus_init_child_obj(obj, name, &s->cpusecctrl[i], | |
331 | sizeof(s->cpusecctrl[i]), | |
332 | TYPE_UNIMPLEMENTED_DEVICE); | |
333 | g_free(name); | |
334 | } | |
335 | } | |
ade67dcd PM |
336 | if (info->has_cpuid) { |
337 | for (i = 0; i < info->num_cpus; i++) { | |
338 | char *name = g_strdup_printf("cpuid%d", i); | |
339 | ||
340 | sysbus_init_child_obj(obj, name, &s->cpuid[i], | |
341 | sizeof(s->cpuid[i]), | |
342 | TYPE_ARMSSE_CPUID); | |
343 | g_free(name); | |
344 | } | |
345 | } | |
d61e4e1f PM |
346 | object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, |
347 | sizeof(s->nmi_orgate), TYPE_OR_IRQ, | |
348 | &error_abort, NULL); | |
955cbc6b TH |
349 | object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate, |
350 | sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ, | |
351 | &error_abort, NULL); | |
352 | object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter, | |
353 | sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ, | |
354 | &error_abort, NULL); | |
9e5e54d1 PM |
355 | for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { |
356 | char *name = g_strdup_printf("ppc-irq-splitter-%d", i); | |
357 | SplitIRQ *splitter = &s->ppc_irq_splitter[i]; | |
358 | ||
955cbc6b TH |
359 | object_initialize_child(obj, name, splitter, sizeof(*splitter), |
360 | TYPE_SPLIT_IRQ, &error_abort, NULL); | |
361 | g_free(name); | |
9e5e54d1 | 362 | } |
91c1e9fc PM |
363 | if (info->num_cpus > 1) { |
364 | for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { | |
365 | if (irq_is_common[i]) { | |
366 | char *name = g_strdup_printf("cpu-irq-splitter%d", i); | |
367 | SplitIRQ *splitter = &s->cpu_irq_splitter[i]; | |
368 | ||
369 | object_initialize_child(obj, name, splitter, sizeof(*splitter), | |
370 | TYPE_SPLIT_IRQ, &error_abort, NULL); | |
371 | g_free(name); | |
372 | } | |
373 | } | |
374 | } | |
9e5e54d1 PM |
375 | } |
376 | ||
13628891 | 377 | static void armsse_exp_irq(void *opaque, int n, int level) |
9e5e54d1 | 378 | { |
91c1e9fc | 379 | qemu_irq *irqarray = opaque; |
9e5e54d1 | 380 | |
91c1e9fc | 381 | qemu_set_irq(irqarray[n], level); |
9e5e54d1 PM |
382 | } |
383 | ||
13628891 | 384 | static void armsse_mpcexp_status(void *opaque, int n, int level) |
bb75e16d | 385 | { |
93dbd103 | 386 | ARMSSE *s = ARMSSE(opaque); |
bb75e16d PM |
387 | qemu_set_irq(s->mpcexp_status_in[n], level); |
388 | } | |
389 | ||
91c1e9fc PM |
390 | static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno) |
391 | { | |
392 | /* | |
393 | * Return a qemu_irq which can be used to signal IRQ n to | |
394 | * all CPUs in the SSE. | |
395 | */ | |
396 | ARMSSEClass *asc = ARMSSE_GET_CLASS(s); | |
397 | const ARMSSEInfo *info = asc->info; | |
398 | ||
399 | assert(irq_is_common[irqno]); | |
400 | ||
401 | if (info->num_cpus == 1) { | |
402 | /* Only one CPU -- just connect directly to it */ | |
403 | return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno); | |
404 | } else { | |
405 | /* Connect to the splitter which feeds all CPUs */ | |
406 | return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0); | |
407 | } | |
408 | } | |
409 | ||
e0b00f1b PM |
410 | static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr) |
411 | { | |
412 | /* Map a PPU unimplemented device stub */ | |
413 | DeviceState *dev = DEVICE(&s->ppu[ppuidx]); | |
414 | ||
415 | qdev_prop_set_string(dev, "name", name); | |
416 | qdev_prop_set_uint64(dev, "size", 0x1000); | |
417 | qdev_init_nofail(dev); | |
418 | sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr); | |
419 | } | |
420 | ||
13628891 | 421 | static void armsse_realize(DeviceState *dev, Error **errp) |
9e5e54d1 | 422 | { |
93dbd103 | 423 | ARMSSE *s = ARMSSE(dev); |
f0cab7fe PM |
424 | ARMSSEClass *asc = ARMSSE_GET_CLASS(dev); |
425 | const ARMSSEInfo *info = asc->info; | |
9e5e54d1 PM |
426 | int i; |
427 | MemoryRegion *mr; | |
428 | Error *err = NULL; | |
429 | SysBusDevice *sbd_apb_ppc0; | |
430 | SysBusDevice *sbd_secctl; | |
431 | DeviceState *dev_apb_ppc0; | |
432 | DeviceState *dev_apb_ppc1; | |
433 | DeviceState *dev_secctl; | |
434 | DeviceState *dev_splitter; | |
4b635cf7 | 435 | uint32_t addr_width_max; |
9e5e54d1 PM |
436 | |
437 | if (!s->board_memory) { | |
438 | error_setg(errp, "memory property was not set"); | |
439 | return; | |
440 | } | |
441 | ||
442 | if (!s->mainclk_frq) { | |
443 | error_setg(errp, "MAINCLK property was not set"); | |
444 | return; | |
445 | } | |
446 | ||
4b635cf7 PM |
447 | /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */ |
448 | assert(is_power_of_2(info->sram_banks)); | |
449 | addr_width_max = 24 - ctz32(info->sram_banks); | |
450 | if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) { | |
451 | error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d", | |
452 | addr_width_max); | |
453 | return; | |
454 | } | |
455 | ||
9e5e54d1 PM |
456 | /* Handling of which devices should be available only to secure |
457 | * code is usually done differently for M profile than for A profile. | |
458 | * Instead of putting some devices only into the secure address space, | |
459 | * devices exist in both address spaces but with hard-wired security | |
460 | * permissions that will cause the CPU to fault for non-secure accesses. | |
461 | * | |
93dbd103 | 462 | * The ARMSSE has an IDAU (Implementation Defined Access Unit), |
9e5e54d1 | 463 | * which specifies hard-wired security permissions for different |
93dbd103 | 464 | * areas of the physical address space. For the ARMSSE IDAU, the |
9e5e54d1 PM |
465 | * top 4 bits of the physical address are the IDAU region ID, and |
466 | * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS | |
467 | * region, otherwise it is an S region. | |
468 | * | |
469 | * The various devices and RAMs are generally all mapped twice, | |
470 | * once into a region that the IDAU defines as secure and once | |
471 | * into a non-secure region. They sit behind either a Memory | |
472 | * Protection Controller (for RAM) or a Peripheral Protection | |
473 | * Controller (for devices), which allow a more fine grained | |
474 | * configuration of whether non-secure accesses are permitted. | |
475 | * | |
476 | * (The other place that guest software can configure security | |
477 | * permissions is in the architected SAU (Security Attribution | |
478 | * Unit), which is entirely inside the CPU. The IDAU can upgrade | |
479 | * the security attributes for a region to more restrictive than | |
480 | * the SAU specifies, but cannot downgrade them.) | |
481 | * | |
482 | * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff | |
483 | * 0x20000000..0x2007ffff 32KB FPGA block RAM | |
484 | * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff | |
485 | * 0x40000000..0x4000ffff base peripheral region 1 | |
93dbd103 | 486 | * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE) |
9e5e54d1 PM |
487 | * 0x40020000..0x4002ffff system control element peripherals |
488 | * 0x40080000..0x400fffff base peripheral region 2 | |
489 | * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff | |
490 | */ | |
491 | ||
d847ca51 | 492 | memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2); |
9e5e54d1 | 493 | |
91c1e9fc PM |
494 | for (i = 0; i < info->num_cpus; i++) { |
495 | DeviceState *cpudev = DEVICE(&s->armv7m[i]); | |
496 | Object *cpuobj = OBJECT(&s->armv7m[i]); | |
497 | int j; | |
498 | char *gpioname; | |
499 | ||
500 | qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32); | |
501 | /* | |
aab7a378 PM |
502 | * In real hardware the initial Secure VTOR is set from the INITSVTOR* |
503 | * registers in the IoT Kit System Control Register block. In QEMU | |
504 | * we set the initial value here, and also the reset value of the | |
505 | * sysctl register, from this object's QOM init-svtor property. | |
506 | * If the guest changes the INITSVTOR* registers at runtime then the | |
507 | * code in iotkit-sysctl.c will update the CPU init-svtor property | |
508 | * (which will then take effect on the next CPU warm-reset). | |
509 | * | |
510 | * Note that typically a board using the SSE-200 will have a system | |
511 | * control processor whose boot firmware initializes the INITSVTOR* | |
512 | * registers before powering up the CPUs. QEMU doesn't emulate | |
91c1e9fc | 513 | * the control processor, so instead we behave in the way that the |
aab7a378 PM |
514 | * firmware does: the initial value should be set by the board code |
515 | * (using the init-svtor property on the ARMSSE object) to match | |
516 | * whatever its firmware does. | |
91c1e9fc | 517 | */ |
32187419 | 518 | qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor); |
91c1e9fc | 519 | /* |
aab7a378 PM |
520 | * CPUs start powered down if the corresponding bit in the CPUWAIT |
521 | * register is 1. In real hardware the CPUWAIT register reset value is | |
522 | * a configurable property of the SSE-200 (via the CPUWAIT0_RST and | |
523 | * CPUWAIT1_RST parameters), but since all the boards we care about | |
524 | * start CPU0 and leave CPU1 powered off, we hard-code that in | |
525 | * info->cpuwait_rst for now. We can add QOM properties for this | |
91c1e9fc PM |
526 | * later if necessary. |
527 | */ | |
aab7a378 | 528 | if (extract32(info->cpuwait_rst, i, 1)) { |
91c1e9fc PM |
529 | object_property_set_bool(cpuobj, true, "start-powered-off", &err); |
530 | if (err) { | |
531 | error_propagate(errp, err); | |
532 | return; | |
533 | } | |
534 | } | |
d847ca51 PM |
535 | |
536 | if (i > 0) { | |
537 | memory_region_add_subregion_overlap(&s->cpu_container[i], 0, | |
538 | &s->container_alias[i - 1], -1); | |
539 | } else { | |
540 | memory_region_add_subregion_overlap(&s->cpu_container[i], 0, | |
541 | &s->container, -1); | |
542 | } | |
543 | object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]), | |
544 | "memory", &err); | |
91c1e9fc PM |
545 | if (err) { |
546 | error_propagate(errp, err); | |
547 | return; | |
548 | } | |
549 | object_property_set_link(cpuobj, OBJECT(s), "idau", &err); | |
550 | if (err) { | |
551 | error_propagate(errp, err); | |
552 | return; | |
553 | } | |
554 | object_property_set_bool(cpuobj, true, "realized", &err); | |
555 | if (err) { | |
556 | error_propagate(errp, err); | |
557 | return; | |
558 | } | |
7cd3a2e0 PM |
559 | /* |
560 | * The cluster must be realized after the armv7m container, as | |
561 | * the container's CPU object is only created on realize, and the | |
562 | * CPU must exist and have been parented into the cluster before | |
563 | * the cluster is realized. | |
564 | */ | |
565 | object_property_set_bool(OBJECT(&s->cluster[i]), | |
566 | true, "realized", &err); | |
567 | if (err) { | |
568 | error_propagate(errp, err); | |
569 | return; | |
570 | } | |
91c1e9fc PM |
571 | |
572 | /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */ | |
573 | s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq); | |
574 | for (j = 0; j < s->exp_numirq; j++) { | |
5007c904 | 575 | s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32); |
91c1e9fc PM |
576 | } |
577 | if (i == 0) { | |
578 | gpioname = g_strdup("EXP_IRQ"); | |
579 | } else { | |
580 | gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i); | |
581 | } | |
582 | qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq, | |
583 | s->exp_irqs[i], | |
584 | gpioname, s->exp_numirq); | |
585 | g_free(gpioname); | |
9e5e54d1 PM |
586 | } |
587 | ||
91c1e9fc PM |
588 | /* Wire up the splitters that connect common IRQs to all CPUs */ |
589 | if (info->num_cpus > 1) { | |
590 | for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { | |
591 | if (irq_is_common[i]) { | |
592 | Object *splitter = OBJECT(&s->cpu_irq_splitter[i]); | |
593 | DeviceState *devs = DEVICE(splitter); | |
594 | int cpunum; | |
595 | ||
596 | object_property_set_int(splitter, info->num_cpus, | |
597 | "num-lines", &err); | |
598 | if (err) { | |
599 | error_propagate(errp, err); | |
600 | return; | |
601 | } | |
602 | object_property_set_bool(splitter, true, "realized", &err); | |
603 | if (err) { | |
604 | error_propagate(errp, err); | |
605 | return; | |
606 | } | |
607 | for (cpunum = 0; cpunum < info->num_cpus; cpunum++) { | |
608 | DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]); | |
609 | ||
610 | qdev_connect_gpio_out(devs, cpunum, | |
611 | qdev_get_gpio_in(cpudev, i)); | |
612 | } | |
613 | } | |
614 | } | |
9e5e54d1 | 615 | } |
9e5e54d1 PM |
616 | |
617 | /* Set up the big aliases first */ | |
3733f803 PM |
618 | make_alias(s, &s->alias1, &s->container, "alias 1", |
619 | 0x10000000, 0x10000000, 0x00000000); | |
620 | make_alias(s, &s->alias2, &s->container, | |
621 | "alias 2", 0x30000000, 0x10000000, 0x20000000); | |
9e5e54d1 PM |
622 | /* The 0x50000000..0x5fffffff region is not a pure alias: it has |
623 | * a few extra devices that only appear there (generally the | |
624 | * control interfaces for the protection controllers). | |
625 | * We implement this by mapping those devices over the top of this | |
3733f803 PM |
626 | * alias MR at a higher priority. Some of the devices in this range |
627 | * are per-CPU, so we must put this alias in the per-cpu containers. | |
9e5e54d1 | 628 | */ |
3733f803 PM |
629 | for (i = 0; i < info->num_cpus; i++) { |
630 | make_alias(s, &s->alias3[i], &s->cpu_container[i], | |
631 | "alias 3", 0x50000000, 0x10000000, 0x40000000); | |
632 | } | |
9e5e54d1 PM |
633 | |
634 | /* Security controller */ | |
635 | object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err); | |
636 | if (err) { | |
637 | error_propagate(errp, err); | |
638 | return; | |
639 | } | |
640 | sbd_secctl = SYS_BUS_DEVICE(&s->secctl); | |
641 | dev_secctl = DEVICE(&s->secctl); | |
642 | sysbus_mmio_map(sbd_secctl, 0, 0x50080000); | |
643 | sysbus_mmio_map(sbd_secctl, 1, 0x40080000); | |
644 | ||
645 | s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1); | |
646 | qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in); | |
647 | ||
648 | /* The sec_resp_cfg output from the security controller must be split into | |
93dbd103 PM |
649 | * multiple lines, one for each of the PPCs within the ARMSSE and one |
650 | * that will be an output from the ARMSSE to the system. | |
9e5e54d1 PM |
651 | */ |
652 | object_property_set_int(OBJECT(&s->sec_resp_splitter), 3, | |
653 | "num-lines", &err); | |
654 | if (err) { | |
655 | error_propagate(errp, err); | |
656 | return; | |
657 | } | |
658 | object_property_set_bool(OBJECT(&s->sec_resp_splitter), true, | |
659 | "realized", &err); | |
660 | if (err) { | |
661 | error_propagate(errp, err); | |
662 | return; | |
663 | } | |
664 | dev_splitter = DEVICE(&s->sec_resp_splitter); | |
665 | qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0, | |
666 | qdev_get_gpio_in(dev_splitter, 0)); | |
667 | ||
f0cab7fe PM |
668 | /* Each SRAM bank lives behind its own Memory Protection Controller */ |
669 | for (i = 0; i < info->sram_banks; i++) { | |
670 | char *ramname = g_strdup_printf("armsse.sram%d", i); | |
671 | SysBusDevice *sbd_mpc; | |
4b635cf7 | 672 | uint32_t sram_bank_size = 1 << s->sram_addr_width; |
f0cab7fe | 673 | |
4b635cf7 PM |
674 | memory_region_init_ram(&s->sram[i], NULL, ramname, |
675 | sram_bank_size, &err); | |
f0cab7fe PM |
676 | g_free(ramname); |
677 | if (err) { | |
678 | error_propagate(errp, err); | |
679 | return; | |
680 | } | |
681 | object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]), | |
682 | "downstream", &err); | |
683 | if (err) { | |
684 | error_propagate(errp, err); | |
685 | return; | |
686 | } | |
687 | object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err); | |
688 | if (err) { | |
689 | error_propagate(errp, err); | |
690 | return; | |
691 | } | |
692 | /* Map the upstream end of the MPC into the right place... */ | |
693 | sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]); | |
4b635cf7 PM |
694 | memory_region_add_subregion(&s->container, |
695 | 0x20000000 + i * sram_bank_size, | |
f0cab7fe PM |
696 | sysbus_mmio_get_region(sbd_mpc, 1)); |
697 | /* ...and its register interface */ | |
698 | memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000, | |
699 | sysbus_mmio_get_region(sbd_mpc, 0)); | |
af60b291 | 700 | } |
af60b291 | 701 | |
bb75e16d PM |
702 | /* We must OR together lines from the MPC splitters to go to the NVIC */ |
703 | object_property_set_int(OBJECT(&s->mpc_irq_orgate), | |
f0cab7fe PM |
704 | IOTS_NUM_EXP_MPC + info->sram_banks, |
705 | "num-lines", &err); | |
bb75e16d PM |
706 | if (err) { |
707 | error_propagate(errp, err); | |
708 | return; | |
709 | } | |
710 | object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true, | |
711 | "realized", &err); | |
712 | if (err) { | |
713 | error_propagate(errp, err); | |
714 | return; | |
715 | } | |
716 | qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0, | |
91c1e9fc | 717 | armsse_get_common_irq_in(s, 9)); |
bb75e16d | 718 | |
9e5e54d1 PM |
719 | /* Devices behind APB PPC0: |
720 | * 0x40000000: timer0 | |
721 | * 0x40001000: timer1 | |
722 | * 0x40002000: dual timer | |
f8574705 PM |
723 | * 0x40003000: MHU0 (SSE-200 only) |
724 | * 0x40004000: MHU1 (SSE-200 only) | |
9e5e54d1 PM |
725 | * We must configure and realize each downstream device and connect |
726 | * it to the appropriate PPC port; then we can realize the PPC and | |
727 | * map its upstream ends to the right place in the container. | |
728 | */ | |
729 | qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq); | |
730 | object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err); | |
731 | if (err) { | |
732 | error_propagate(errp, err); | |
733 | return; | |
734 | } | |
735 | sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0, | |
91c1e9fc | 736 | armsse_get_common_irq_in(s, 3)); |
9e5e54d1 PM |
737 | mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0); |
738 | object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err); | |
739 | if (err) { | |
740 | error_propagate(errp, err); | |
741 | return; | |
742 | } | |
743 | ||
744 | qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq); | |
745 | object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err); | |
746 | if (err) { | |
747 | error_propagate(errp, err); | |
748 | return; | |
749 | } | |
750 | sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0, | |
91c1e9fc | 751 | armsse_get_common_irq_in(s, 4)); |
9e5e54d1 PM |
752 | mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0); |
753 | object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err); | |
754 | if (err) { | |
755 | error_propagate(errp, err); | |
756 | return; | |
757 | } | |
758 | ||
017d069d PM |
759 | |
760 | qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq); | |
9e5e54d1 PM |
761 | object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err); |
762 | if (err) { | |
763 | error_propagate(errp, err); | |
764 | return; | |
765 | } | |
017d069d | 766 | sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0, |
91c1e9fc | 767 | armsse_get_common_irq_in(s, 5)); |
9e5e54d1 PM |
768 | mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0); |
769 | object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err); | |
770 | if (err) { | |
771 | error_propagate(errp, err); | |
772 | return; | |
773 | } | |
774 | ||
f8574705 | 775 | if (info->has_mhus) { |
68d6b36f PM |
776 | /* |
777 | * An SSE-200 with only one CPU should have only one MHU created, | |
778 | * with the region where the second MHU usually is being RAZ/WI. | |
779 | * We don't implement that SSE-200 config; if we want to support | |
780 | * it then this code needs to be enhanced to handle creating the | |
781 | * RAZ/WI region instead of the second MHU. | |
782 | */ | |
783 | assert(info->num_cpus == ARRAY_SIZE(s->mhu)); | |
784 | ||
f8574705 | 785 | for (i = 0; i < ARRAY_SIZE(s->mhu); i++) { |
763e10f7 | 786 | char *port; |
68d6b36f PM |
787 | int cpunum; |
788 | SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]); | |
f8574705 | 789 | |
f8574705 PM |
790 | object_property_set_bool(OBJECT(&s->mhu[i]), true, |
791 | "realized", &err); | |
792 | if (err) { | |
793 | error_propagate(errp, err); | |
794 | return; | |
795 | } | |
763e10f7 | 796 | port = g_strdup_printf("port[%d]", i + 3); |
68d6b36f | 797 | mr = sysbus_mmio_get_region(mhu_sbd, 0); |
f8574705 PM |
798 | object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), |
799 | port, &err); | |
763e10f7 | 800 | g_free(port); |
f8574705 PM |
801 | if (err) { |
802 | error_propagate(errp, err); | |
803 | return; | |
804 | } | |
68d6b36f PM |
805 | |
806 | /* | |
807 | * Each MHU has an irq line for each CPU: | |
808 | * MHU 0 irq line 0 -> CPU 0 IRQ 6 | |
809 | * MHU 0 irq line 1 -> CPU 1 IRQ 6 | |
810 | * MHU 1 irq line 0 -> CPU 0 IRQ 7 | |
811 | * MHU 1 irq line 1 -> CPU 1 IRQ 7 | |
812 | */ | |
813 | for (cpunum = 0; cpunum < info->num_cpus; cpunum++) { | |
814 | DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]); | |
815 | ||
816 | sysbus_connect_irq(mhu_sbd, cpunum, | |
817 | qdev_get_gpio_in(cpudev, 6 + i)); | |
818 | } | |
f8574705 PM |
819 | } |
820 | } | |
821 | ||
9e5e54d1 PM |
822 | object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err); |
823 | if (err) { | |
824 | error_propagate(errp, err); | |
825 | return; | |
826 | } | |
827 | ||
828 | sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0); | |
829 | dev_apb_ppc0 = DEVICE(&s->apb_ppc0); | |
830 | ||
831 | mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0); | |
832 | memory_region_add_subregion(&s->container, 0x40000000, mr); | |
833 | mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1); | |
834 | memory_region_add_subregion(&s->container, 0x40001000, mr); | |
835 | mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2); | |
836 | memory_region_add_subregion(&s->container, 0x40002000, mr); | |
f8574705 PM |
837 | if (info->has_mhus) { |
838 | mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3); | |
839 | memory_region_add_subregion(&s->container, 0x40003000, mr); | |
840 | mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4); | |
841 | memory_region_add_subregion(&s->container, 0x40004000, mr); | |
842 | } | |
9e5e54d1 PM |
843 | for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) { |
844 | qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i, | |
845 | qdev_get_gpio_in_named(dev_apb_ppc0, | |
846 | "cfg_nonsec", i)); | |
847 | qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i, | |
848 | qdev_get_gpio_in_named(dev_apb_ppc0, | |
849 | "cfg_ap", i)); | |
850 | } | |
851 | qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0, | |
852 | qdev_get_gpio_in_named(dev_apb_ppc0, | |
853 | "irq_enable", 0)); | |
854 | qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0, | |
855 | qdev_get_gpio_in_named(dev_apb_ppc0, | |
856 | "irq_clear", 0)); | |
857 | qdev_connect_gpio_out(dev_splitter, 0, | |
858 | qdev_get_gpio_in_named(dev_apb_ppc0, | |
859 | "cfg_sec_resp", 0)); | |
860 | ||
861 | /* All the PPC irq lines (from the 2 internal PPCs and the 8 external | |
862 | * ones) are sent individually to the security controller, and also | |
863 | * ORed together to give a single combined PPC interrupt to the NVIC. | |
864 | */ | |
865 | object_property_set_int(OBJECT(&s->ppc_irq_orgate), | |
866 | NUM_PPCS, "num-lines", &err); | |
867 | if (err) { | |
868 | error_propagate(errp, err); | |
869 | return; | |
870 | } | |
871 | object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true, | |
872 | "realized", &err); | |
873 | if (err) { | |
874 | error_propagate(errp, err); | |
875 | return; | |
876 | } | |
877 | qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0, | |
91c1e9fc | 878 | armsse_get_common_irq_in(s, 10)); |
9e5e54d1 | 879 | |
2357bca5 PM |
880 | /* |
881 | * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias): | |
882 | * private per-CPU region (all these devices are SSE-200 only): | |
883 | * 0x50010000: L1 icache control registers | |
884 | * 0x50011000: CPUSECCTRL (CPU local security control registers) | |
885 | * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block | |
886 | */ | |
887 | if (info->has_cachectrl) { | |
888 | for (i = 0; i < info->num_cpus; i++) { | |
889 | char *name = g_strdup_printf("cachectrl%d", i); | |
890 | MemoryRegion *mr; | |
891 | ||
892 | qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name); | |
893 | g_free(name); | |
894 | qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000); | |
895 | object_property_set_bool(OBJECT(&s->cachectrl[i]), true, | |
896 | "realized", &err); | |
897 | if (err) { | |
898 | error_propagate(errp, err); | |
899 | return; | |
900 | } | |
901 | ||
902 | mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0); | |
903 | memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr); | |
904 | } | |
905 | } | |
c1f57257 PM |
906 | if (info->has_cpusecctrl) { |
907 | for (i = 0; i < info->num_cpus; i++) { | |
908 | char *name = g_strdup_printf("CPUSECCTRL%d", i); | |
909 | MemoryRegion *mr; | |
910 | ||
911 | qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name); | |
912 | g_free(name); | |
913 | qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000); | |
914 | object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true, | |
915 | "realized", &err); | |
916 | if (err) { | |
917 | error_propagate(errp, err); | |
918 | return; | |
919 | } | |
920 | ||
921 | mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0); | |
922 | memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr); | |
923 | } | |
924 | } | |
ade67dcd PM |
925 | if (info->has_cpuid) { |
926 | for (i = 0; i < info->num_cpus; i++) { | |
927 | MemoryRegion *mr; | |
928 | ||
929 | qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i); | |
930 | object_property_set_bool(OBJECT(&s->cpuid[i]), true, | |
931 | "realized", &err); | |
932 | if (err) { | |
933 | error_propagate(errp, err); | |
934 | return; | |
935 | } | |
936 | ||
937 | mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0); | |
938 | memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr); | |
939 | } | |
940 | } | |
9e5e54d1 | 941 | |
93dbd103 | 942 | /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */ |
9e5e54d1 PM |
943 | /* Devices behind APB PPC1: |
944 | * 0x4002f000: S32K timer | |
945 | */ | |
e2d203ba | 946 | qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK); |
9e5e54d1 PM |
947 | object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err); |
948 | if (err) { | |
949 | error_propagate(errp, err); | |
950 | return; | |
951 | } | |
e2d203ba | 952 | sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0, |
91c1e9fc | 953 | armsse_get_common_irq_in(s, 2)); |
9e5e54d1 PM |
954 | mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0); |
955 | object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err); | |
956 | if (err) { | |
957 | error_propagate(errp, err); | |
958 | return; | |
959 | } | |
960 | ||
961 | object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err); | |
962 | if (err) { | |
963 | error_propagate(errp, err); | |
964 | return; | |
965 | } | |
966 | mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0); | |
967 | memory_region_add_subregion(&s->container, 0x4002f000, mr); | |
968 | ||
969 | dev_apb_ppc1 = DEVICE(&s->apb_ppc1); | |
970 | qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0, | |
971 | qdev_get_gpio_in_named(dev_apb_ppc1, | |
972 | "cfg_nonsec", 0)); | |
973 | qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0, | |
974 | qdev_get_gpio_in_named(dev_apb_ppc1, | |
975 | "cfg_ap", 0)); | |
976 | qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0, | |
977 | qdev_get_gpio_in_named(dev_apb_ppc1, | |
978 | "irq_enable", 0)); | |
979 | qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0, | |
980 | qdev_get_gpio_in_named(dev_apb_ppc1, | |
981 | "irq_clear", 0)); | |
982 | qdev_connect_gpio_out(dev_splitter, 1, | |
983 | qdev_get_gpio_in_named(dev_apb_ppc1, | |
984 | "cfg_sec_resp", 0)); | |
985 | ||
dde0c491 PM |
986 | object_property_set_int(OBJECT(&s->sysinfo), info->sys_version, |
987 | "SYS_VERSION", &err); | |
988 | if (err) { | |
989 | error_propagate(errp, err); | |
990 | return; | |
991 | } | |
992 | object_property_set_int(OBJECT(&s->sysinfo), | |
993 | armsse_sys_config_value(s, info), | |
994 | "SYS_CONFIG", &err); | |
995 | if (err) { | |
996 | error_propagate(errp, err); | |
997 | return; | |
998 | } | |
06e65af3 PM |
999 | object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err); |
1000 | if (err) { | |
1001 | error_propagate(errp, err); | |
1002 | return; | |
1003 | } | |
1004 | /* System information registers */ | |
1005 | sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000); | |
1006 | /* System control registers */ | |
04836414 PM |
1007 | object_property_set_int(OBJECT(&s->sysctl), info->sys_version, |
1008 | "SYS_VERSION", &err); | |
aab7a378 PM |
1009 | object_property_set_int(OBJECT(&s->sysctl), info->cpuwait_rst, |
1010 | "CPUWAIT_RST", &err); | |
1011 | object_property_set_int(OBJECT(&s->sysctl), s->init_svtor, | |
1012 | "INITSVTOR0_RST", &err); | |
1013 | object_property_set_int(OBJECT(&s->sysctl), s->init_svtor, | |
1014 | "INITSVTOR1_RST", &err); | |
06e65af3 PM |
1015 | object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err); |
1016 | if (err) { | |
1017 | error_propagate(errp, err); | |
1018 | return; | |
1019 | } | |
1020 | sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000); | |
d61e4e1f | 1021 | |
e0b00f1b PM |
1022 | if (info->has_ppus) { |
1023 | /* CPUnCORE_PPU for each CPU */ | |
1024 | for (i = 0; i < info->num_cpus; i++) { | |
1025 | char *name = g_strdup_printf("CPU%dCORE_PPU", i); | |
1026 | ||
1027 | map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000); | |
1028 | /* | |
1029 | * We don't support CPU debug so don't create the | |
1030 | * CPU0DEBUG_PPU at 0x50024000 and 0x50026000. | |
1031 | */ | |
1032 | g_free(name); | |
1033 | } | |
1034 | map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000); | |
1035 | ||
1036 | for (i = 0; i < info->sram_banks; i++) { | |
1037 | char *name = g_strdup_printf("RAM%d_PPU", i); | |
1038 | ||
1039 | map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000); | |
1040 | g_free(name); | |
1041 | } | |
1042 | } | |
1043 | ||
d61e4e1f PM |
1044 | /* This OR gate wires together outputs from the secure watchdogs to NMI */ |
1045 | object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err); | |
1046 | if (err) { | |
1047 | error_propagate(errp, err); | |
1048 | return; | |
1049 | } | |
1050 | object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err); | |
1051 | if (err) { | |
1052 | error_propagate(errp, err); | |
1053 | return; | |
1054 | } | |
1055 | qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0, | |
1056 | qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0)); | |
1057 | ||
1058 | qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK); | |
1059 | object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err); | |
1060 | if (err) { | |
1061 | error_propagate(errp, err); | |
1062 | return; | |
1063 | } | |
1064 | sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, | |
1065 | qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0)); | |
1066 | sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000); | |
9e5e54d1 | 1067 | |
93dbd103 | 1068 | /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */ |
9e5e54d1 | 1069 | |
d61e4e1f PM |
1070 | qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq); |
1071 | object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err); | |
1072 | if (err) { | |
1073 | error_propagate(errp, err); | |
1074 | return; | |
1075 | } | |
1076 | sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0, | |
91c1e9fc | 1077 | armsse_get_common_irq_in(s, 1)); |
d61e4e1f PM |
1078 | sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000); |
1079 | ||
1080 | qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq); | |
1081 | object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err); | |
1082 | if (err) { | |
1083 | error_propagate(errp, err); | |
1084 | return; | |
1085 | } | |
1086 | sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0, | |
1087 | qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1)); | |
1088 | sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000); | |
9e5e54d1 | 1089 | |
9e5e54d1 PM |
1090 | for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { |
1091 | Object *splitter = OBJECT(&s->ppc_irq_splitter[i]); | |
1092 | ||
1093 | object_property_set_int(splitter, 2, "num-lines", &err); | |
1094 | if (err) { | |
1095 | error_propagate(errp, err); | |
1096 | return; | |
1097 | } | |
1098 | object_property_set_bool(splitter, true, "realized", &err); | |
1099 | if (err) { | |
1100 | error_propagate(errp, err); | |
1101 | return; | |
1102 | } | |
1103 | } | |
1104 | ||
1105 | for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) { | |
1106 | char *ppcname = g_strdup_printf("ahb_ppcexp%d", i); | |
1107 | ||
13628891 | 1108 | armsse_forward_ppc(s, ppcname, i); |
9e5e54d1 PM |
1109 | g_free(ppcname); |
1110 | } | |
1111 | ||
1112 | for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) { | |
1113 | char *ppcname = g_strdup_printf("apb_ppcexp%d", i); | |
1114 | ||
13628891 | 1115 | armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC); |
9e5e54d1 PM |
1116 | g_free(ppcname); |
1117 | } | |
1118 | ||
1119 | for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) { | |
1120 | /* Wire up IRQ splitter for internal PPCs */ | |
1121 | DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]); | |
1122 | char *gpioname = g_strdup_printf("apb_ppc%d_irq_status", | |
1123 | i - NUM_EXTERNAL_PPCS); | |
1124 | TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1; | |
1125 | ||
1126 | qdev_connect_gpio_out(devs, 0, | |
1127 | qdev_get_gpio_in_named(dev_secctl, gpioname, 0)); | |
1128 | qdev_connect_gpio_out(devs, 1, | |
1129 | qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i)); | |
1130 | qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0, | |
1131 | qdev_get_gpio_in(devs, 0)); | |
7a35383a | 1132 | g_free(gpioname); |
9e5e54d1 PM |
1133 | } |
1134 | ||
bb75e16d | 1135 | /* Wire up the splitters for the MPC IRQs */ |
f0cab7fe | 1136 | for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { |
bb75e16d PM |
1137 | SplitIRQ *splitter = &s->mpc_irq_splitter[i]; |
1138 | DeviceState *dev_splitter = DEVICE(splitter); | |
1139 | ||
1140 | object_property_set_int(OBJECT(splitter), 2, "num-lines", &err); | |
1141 | if (err) { | |
1142 | error_propagate(errp, err); | |
1143 | return; | |
1144 | } | |
1145 | object_property_set_bool(OBJECT(splitter), true, "realized", &err); | |
1146 | if (err) { | |
1147 | error_propagate(errp, err); | |
1148 | return; | |
1149 | } | |
1150 | ||
1151 | if (i < IOTS_NUM_EXP_MPC) { | |
1152 | /* Splitter input is from GPIO input line */ | |
1153 | s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0); | |
1154 | qdev_connect_gpio_out(dev_splitter, 0, | |
1155 | qdev_get_gpio_in_named(dev_secctl, | |
1156 | "mpcexp_status", i)); | |
1157 | } else { | |
1158 | /* Splitter input is from our own MPC */ | |
f0cab7fe PM |
1159 | qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]), |
1160 | "irq", 0, | |
bb75e16d PM |
1161 | qdev_get_gpio_in(dev_splitter, 0)); |
1162 | qdev_connect_gpio_out(dev_splitter, 0, | |
1163 | qdev_get_gpio_in_named(dev_secctl, | |
1164 | "mpc_status", 0)); | |
1165 | } | |
1166 | ||
1167 | qdev_connect_gpio_out(dev_splitter, 1, | |
1168 | qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i)); | |
1169 | } | |
1170 | /* Create GPIO inputs which will pass the line state for our | |
1171 | * mpcexp_irq inputs to the correct splitter devices. | |
1172 | */ | |
13628891 | 1173 | qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status", |
bb75e16d PM |
1174 | IOTS_NUM_EXP_MPC); |
1175 | ||
13628891 | 1176 | armsse_forward_sec_resp_cfg(s); |
9e5e54d1 | 1177 | |
132b475a PM |
1178 | /* Forward the MSC related signals */ |
1179 | qdev_pass_gpios(dev_secctl, dev, "mscexp_status"); | |
1180 | qdev_pass_gpios(dev_secctl, dev, "mscexp_clear"); | |
1181 | qdev_pass_gpios(dev_secctl, dev, "mscexp_ns"); | |
1182 | qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0, | |
91c1e9fc | 1183 | armsse_get_common_irq_in(s, 11)); |
132b475a PM |
1184 | |
1185 | /* | |
1186 | * Expose our container region to the board model; this corresponds | |
1187 | * to the AHB Slave Expansion ports which allow bus master devices | |
1188 | * (eg DMA controllers) in the board model to make transactions into | |
93dbd103 | 1189 | * devices in the ARMSSE. |
132b475a PM |
1190 | */ |
1191 | sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container); | |
1192 | ||
9e5e54d1 PM |
1193 | system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq; |
1194 | } | |
1195 | ||
13628891 | 1196 | static void armsse_idau_check(IDAUInterface *ii, uint32_t address, |
9e5e54d1 PM |
1197 | int *iregion, bool *exempt, bool *ns, bool *nsc) |
1198 | { | |
93dbd103 PM |
1199 | /* |
1200 | * For ARMSSE systems the IDAU responses are simple logical functions | |
9e5e54d1 PM |
1201 | * of the address bits. The NSC attribute is guest-adjustable via the |
1202 | * NSCCFG register in the security controller. | |
1203 | */ | |
93dbd103 | 1204 | ARMSSE *s = ARMSSE(ii); |
9e5e54d1 PM |
1205 | int region = extract32(address, 28, 4); |
1206 | ||
1207 | *ns = !(region & 1); | |
1208 | *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2)); | |
1209 | /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */ | |
1210 | *exempt = (address & 0xeff00000) == 0xe0000000; | |
1211 | *iregion = region; | |
1212 | } | |
1213 | ||
13628891 | 1214 | static const VMStateDescription armsse_vmstate = { |
9e5e54d1 PM |
1215 | .name = "iotkit", |
1216 | .version_id = 1, | |
1217 | .minimum_version_id = 1, | |
1218 | .fields = (VMStateField[]) { | |
93dbd103 | 1219 | VMSTATE_UINT32(nsccfg, ARMSSE), |
9e5e54d1 PM |
1220 | VMSTATE_END_OF_LIST() |
1221 | } | |
1222 | }; | |
1223 | ||
13628891 | 1224 | static Property armsse_properties[] = { |
93dbd103 | 1225 | DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, |
9e5e54d1 | 1226 | MemoryRegion *), |
93dbd103 PM |
1227 | DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), |
1228 | DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0), | |
4b635cf7 | 1229 | DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15), |
32187419 | 1230 | DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000), |
9e5e54d1 PM |
1231 | DEFINE_PROP_END_OF_LIST() |
1232 | }; | |
1233 | ||
13628891 | 1234 | static void armsse_reset(DeviceState *dev) |
9e5e54d1 | 1235 | { |
93dbd103 | 1236 | ARMSSE *s = ARMSSE(dev); |
9e5e54d1 PM |
1237 | |
1238 | s->nsccfg = 0; | |
1239 | } | |
1240 | ||
13628891 | 1241 | static void armsse_class_init(ObjectClass *klass, void *data) |
9e5e54d1 PM |
1242 | { |
1243 | DeviceClass *dc = DEVICE_CLASS(klass); | |
1244 | IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass); | |
4c3690b5 | 1245 | ARMSSEClass *asc = ARMSSE_CLASS(klass); |
9e5e54d1 | 1246 | |
13628891 PM |
1247 | dc->realize = armsse_realize; |
1248 | dc->vmsd = &armsse_vmstate; | |
1249 | dc->props = armsse_properties; | |
1250 | dc->reset = armsse_reset; | |
1251 | iic->check = armsse_idau_check; | |
4c3690b5 | 1252 | asc->info = data; |
9e5e54d1 PM |
1253 | } |
1254 | ||
4c3690b5 | 1255 | static const TypeInfo armsse_info = { |
93dbd103 | 1256 | .name = TYPE_ARMSSE, |
9e5e54d1 | 1257 | .parent = TYPE_SYS_BUS_DEVICE, |
93dbd103 | 1258 | .instance_size = sizeof(ARMSSE), |
13628891 | 1259 | .instance_init = armsse_init, |
4c3690b5 | 1260 | .abstract = true, |
9e5e54d1 PM |
1261 | .interfaces = (InterfaceInfo[]) { |
1262 | { TYPE_IDAU_INTERFACE }, | |
1263 | { } | |
1264 | } | |
1265 | }; | |
1266 | ||
4c3690b5 | 1267 | static void armsse_register_types(void) |
9e5e54d1 | 1268 | { |
4c3690b5 PM |
1269 | int i; |
1270 | ||
1271 | type_register_static(&armsse_info); | |
1272 | ||
1273 | for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) { | |
1274 | TypeInfo ti = { | |
1275 | .name = armsse_variants[i].name, | |
1276 | .parent = TYPE_ARMSSE, | |
13628891 | 1277 | .class_init = armsse_class_init, |
4c3690b5 PM |
1278 | .class_data = (void *)&armsse_variants[i], |
1279 | }; | |
1280 | type_register(&ti); | |
1281 | } | |
9e5e54d1 PM |
1282 | } |
1283 | ||
4c3690b5 | 1284 | type_init(armsse_register_types); |