]>
Commit | Line | Data |
---|---|---|
26861c7c MH |
1 | /* |
2 | * ARM implementation of KVM hooks, 64 bit specific code | |
3 | * | |
4 | * Copyright Mian-M. Hamayun 2013, Virtual Open Systems | |
e4482ab7 | 5 | * Copyright Alex Bennée 2014, Linaro |
26861c7c MH |
6 | * |
7 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
8 | * See the COPYING file in the top-level directory. | |
9 | * | |
10 | */ | |
11 | ||
74c21bd0 | 12 | #include "qemu/osdep.h" |
26861c7c | 13 | #include <sys/ioctl.h> |
e4482ab7 | 14 | #include <sys/ptrace.h> |
26861c7c | 15 | |
e4482ab7 | 16 | #include <linux/elf.h> |
26861c7c MH |
17 | #include <linux/kvm.h> |
18 | ||
19 | #include "qemu-common.h" | |
33c11879 | 20 | #include "cpu.h" |
26861c7c | 21 | #include "qemu/timer.h" |
2ecb2027 | 22 | #include "qemu/error-report.h" |
e4482ab7 AB |
23 | #include "qemu/host-utils.h" |
24 | #include "exec/gdbstub.h" | |
26861c7c MH |
25 | #include "sysemu/sysemu.h" |
26 | #include "sysemu/kvm.h" | |
27 | #include "kvm_arm.h" | |
9208b961 | 28 | #include "internals.h" |
26861c7c MH |
29 | #include "hw/arm/arm.h" |
30 | ||
29eb3d9a AB |
31 | static bool have_guest_debug; |
32 | ||
e4482ab7 AB |
33 | /* |
34 | * Although the ARM implementation of hardware assisted debugging | |
35 | * allows for different breakpoints per-core, the current GDB | |
36 | * interface treats them as a global pool of registers (which seems to | |
37 | * be the case for x86, ppc and s390). As a result we store one copy | |
38 | * of registers which is used for all active cores. | |
39 | * | |
40 | * Write access is serialised by virtue of the GDB protocol which | |
41 | * updates things. Read access (i.e. when the values are copied to the | |
42 | * vCPU) is also gated by GDB's run control. | |
43 | * | |
44 | * This is not unreasonable as most of the time debugging kernels you | |
45 | * never know which core will eventually execute your function. | |
46 | */ | |
47 | ||
48 | typedef struct { | |
49 | uint64_t bcr; | |
50 | uint64_t bvr; | |
51 | } HWBreakpoint; | |
52 | ||
53 | /* The watchpoint registers can cover more area than the requested | |
54 | * watchpoint so we need to store the additional information | |
55 | * somewhere. We also need to supply a CPUWatchpoint to the GDB stub | |
56 | * when the watchpoint is hit. | |
57 | */ | |
58 | typedef struct { | |
59 | uint64_t wcr; | |
60 | uint64_t wvr; | |
61 | CPUWatchpoint details; | |
62 | } HWWatchpoint; | |
63 | ||
64 | /* Maximum and current break/watch point counts */ | |
65 | int max_hw_bps, max_hw_wps; | |
66 | GArray *hw_breakpoints, *hw_watchpoints; | |
67 | ||
68 | #define cur_hw_wps (hw_watchpoints->len) | |
69 | #define cur_hw_bps (hw_breakpoints->len) | |
70 | #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i)) | |
71 | #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i)) | |
72 | ||
29eb3d9a | 73 | /** |
e4482ab7 | 74 | * kvm_arm_init_debug() - check for guest debug capabilities |
29eb3d9a AB |
75 | * @cs: CPUState |
76 | * | |
e4482ab7 AB |
77 | * kvm_check_extension returns the number of debug registers we have |
78 | * or 0 if we have none. | |
29eb3d9a AB |
79 | * |
80 | */ | |
81 | static void kvm_arm_init_debug(CPUState *cs) | |
82 | { | |
83 | have_guest_debug = kvm_check_extension(cs->kvm_state, | |
84 | KVM_CAP_SET_GUEST_DEBUG); | |
e4482ab7 AB |
85 | |
86 | max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS); | |
87 | hw_watchpoints = g_array_sized_new(true, true, | |
88 | sizeof(HWWatchpoint), max_hw_wps); | |
89 | ||
90 | max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS); | |
91 | hw_breakpoints = g_array_sized_new(true, true, | |
92 | sizeof(HWBreakpoint), max_hw_bps); | |
29eb3d9a AB |
93 | return; |
94 | } | |
95 | ||
e4482ab7 AB |
96 | /** |
97 | * insert_hw_breakpoint() | |
98 | * @addr: address of breakpoint | |
99 | * | |
100 | * See ARM ARM D2.9.1 for details but here we are only going to create | |
101 | * simple un-linked breakpoints (i.e. we don't chain breakpoints | |
102 | * together to match address and context or vmid). The hardware is | |
103 | * capable of fancier matching but that will require exposing that | |
104 | * fanciness to GDB's interface | |
105 | * | |
864df205 | 106 | * DBGBCR<n>_EL1, Debug Breakpoint Control Registers |
e4482ab7 AB |
107 | * |
108 | * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0 | |
109 | * +------+------+-------+-----+----+------+-----+------+-----+---+ | |
110 | * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E | | |
111 | * +------+------+-------+-----+----+------+-----+------+-----+---+ | |
112 | * | |
113 | * BT: Breakpoint type (0 = unlinked address match) | |
114 | * LBN: Linked BP number (0 = unused) | |
115 | * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12) | |
116 | * BAS: Byte Address Select (RES1 for AArch64) | |
117 | * E: Enable bit | |
864df205 AB |
118 | * |
119 | * DBGBVR<n>_EL1, Debug Breakpoint Value Registers | |
120 | * | |
121 | * 63 53 52 49 48 2 1 0 | |
122 | * +------+-----------+----------+-----+ | |
123 | * | RESS | VA[52:49] | VA[48:2] | 0 0 | | |
124 | * +------+-----------+----------+-----+ | |
125 | * | |
126 | * Depending on the addressing mode bits the top bits of the register | |
127 | * are a sign extension of the highest applicable VA bit. Some | |
128 | * versions of GDB don't do it correctly so we ensure they are correct | |
129 | * here so future PC comparisons will work properly. | |
e4482ab7 | 130 | */ |
864df205 | 131 | |
e4482ab7 AB |
132 | static int insert_hw_breakpoint(target_ulong addr) |
133 | { | |
134 | HWBreakpoint brk = { | |
135 | .bcr = 0x1, /* BCR E=1, enable */ | |
864df205 | 136 | .bvr = sextract64(addr, 0, 53) |
e4482ab7 AB |
137 | }; |
138 | ||
139 | if (cur_hw_bps >= max_hw_bps) { | |
140 | return -ENOBUFS; | |
141 | } | |
142 | ||
143 | brk.bcr = deposit32(brk.bcr, 1, 2, 0x3); /* PMC = 11 */ | |
144 | brk.bcr = deposit32(brk.bcr, 5, 4, 0xf); /* BAS = RES1 */ | |
145 | ||
146 | g_array_append_val(hw_breakpoints, brk); | |
147 | ||
148 | return 0; | |
149 | } | |
150 | ||
151 | /** | |
152 | * delete_hw_breakpoint() | |
153 | * @pc: address of breakpoint | |
154 | * | |
155 | * Delete a breakpoint and shuffle any above down | |
156 | */ | |
157 | ||
158 | static int delete_hw_breakpoint(target_ulong pc) | |
159 | { | |
160 | int i; | |
161 | for (i = 0; i < hw_breakpoints->len; i++) { | |
162 | HWBreakpoint *brk = get_hw_bp(i); | |
163 | if (brk->bvr == pc) { | |
164 | g_array_remove_index(hw_breakpoints, i); | |
165 | return 0; | |
166 | } | |
167 | } | |
168 | return -ENOENT; | |
169 | } | |
170 | ||
171 | /** | |
172 | * insert_hw_watchpoint() | |
173 | * @addr: address of watch point | |
174 | * @len: size of area | |
175 | * @type: type of watch point | |
176 | * | |
177 | * See ARM ARM D2.10. As with the breakpoints we can do some advanced | |
178 | * stuff if we want to. The watch points can be linked with the break | |
179 | * points above to make them context aware. However for simplicity | |
180 | * currently we only deal with simple read/write watch points. | |
181 | * | |
182 | * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers | |
183 | * | |
184 | * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0 | |
185 | * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+ | |
186 | * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E | | |
187 | * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+ | |
188 | * | |
189 | * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes)) | |
190 | * WT: 0 - unlinked, 1 - linked (not currently used) | |
191 | * LBN: Linked BP number (not currently used) | |
192 | * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11) | |
193 | * BAS: Byte Address Select | |
194 | * LSC: Load/Store control (01: load, 10: store, 11: both) | |
195 | * E: Enable | |
196 | * | |
197 | * The bottom 2 bits of the value register are masked. Therefore to | |
198 | * break on any sizes smaller than an unaligned word you need to set | |
199 | * MASK=0, BAS=bit per byte in question. For larger regions (^2) you | |
200 | * need to ensure you mask the address as required and set BAS=0xff | |
201 | */ | |
202 | ||
203 | static int insert_hw_watchpoint(target_ulong addr, | |
204 | target_ulong len, int type) | |
205 | { | |
206 | HWWatchpoint wp = { | |
207 | .wcr = 1, /* E=1, enable */ | |
208 | .wvr = addr & (~0x7ULL), | |
209 | .details = { .vaddr = addr, .len = len } | |
210 | }; | |
211 | ||
212 | if (cur_hw_wps >= max_hw_wps) { | |
213 | return -ENOBUFS; | |
214 | } | |
215 | ||
216 | /* | |
217 | * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state, | |
218 | * valid whether EL3 is implemented or not | |
219 | */ | |
220 | wp.wcr = deposit32(wp.wcr, 1, 2, 3); | |
221 | ||
222 | switch (type) { | |
223 | case GDB_WATCHPOINT_READ: | |
224 | wp.wcr = deposit32(wp.wcr, 3, 2, 1); | |
225 | wp.details.flags = BP_MEM_READ; | |
226 | break; | |
227 | case GDB_WATCHPOINT_WRITE: | |
228 | wp.wcr = deposit32(wp.wcr, 3, 2, 2); | |
229 | wp.details.flags = BP_MEM_WRITE; | |
230 | break; | |
231 | case GDB_WATCHPOINT_ACCESS: | |
232 | wp.wcr = deposit32(wp.wcr, 3, 2, 3); | |
233 | wp.details.flags = BP_MEM_ACCESS; | |
234 | break; | |
235 | default: | |
236 | g_assert_not_reached(); | |
237 | break; | |
238 | } | |
239 | if (len <= 8) { | |
240 | /* we align the address and set the bits in BAS */ | |
241 | int off = addr & 0x7; | |
242 | int bas = (1 << len) - 1; | |
243 | ||
244 | wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas); | |
245 | } else { | |
246 | /* For ranges above 8 bytes we need to be a power of 2 */ | |
247 | if (is_power_of_2(len)) { | |
248 | int bits = ctz64(len); | |
249 | ||
250 | wp.wvr &= ~((1 << bits) - 1); | |
251 | wp.wcr = deposit32(wp.wcr, 24, 4, bits); | |
252 | wp.wcr = deposit32(wp.wcr, 5, 8, 0xff); | |
253 | } else { | |
254 | return -ENOBUFS; | |
255 | } | |
256 | } | |
257 | ||
258 | g_array_append_val(hw_watchpoints, wp); | |
259 | return 0; | |
260 | } | |
261 | ||
262 | ||
263 | static bool check_watchpoint_in_range(int i, target_ulong addr) | |
264 | { | |
265 | HWWatchpoint *wp = get_hw_wp(i); | |
266 | uint64_t addr_top, addr_bottom = wp->wvr; | |
267 | int bas = extract32(wp->wcr, 5, 8); | |
268 | int mask = extract32(wp->wcr, 24, 4); | |
269 | ||
270 | if (mask) { | |
271 | addr_top = addr_bottom + (1 << mask); | |
272 | } else { | |
273 | /* BAS must be contiguous but can offset against the base | |
274 | * address in DBGWVR */ | |
275 | addr_bottom = addr_bottom + ctz32(bas); | |
276 | addr_top = addr_bottom + clo32(bas); | |
277 | } | |
278 | ||
279 | if (addr >= addr_bottom && addr <= addr_top) { | |
280 | return true; | |
281 | } | |
282 | ||
283 | return false; | |
284 | } | |
285 | ||
286 | /** | |
287 | * delete_hw_watchpoint() | |
288 | * @addr: address of breakpoint | |
289 | * | |
290 | * Delete a breakpoint and shuffle any above down | |
291 | */ | |
292 | ||
293 | static int delete_hw_watchpoint(target_ulong addr, | |
294 | target_ulong len, int type) | |
295 | { | |
296 | int i; | |
297 | for (i = 0; i < cur_hw_wps; i++) { | |
298 | if (check_watchpoint_in_range(i, addr)) { | |
299 | g_array_remove_index(hw_watchpoints, i); | |
300 | return 0; | |
301 | } | |
302 | } | |
303 | return -ENOENT; | |
304 | } | |
305 | ||
306 | ||
307 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | |
308 | target_ulong len, int type) | |
309 | { | |
310 | switch (type) { | |
311 | case GDB_BREAKPOINT_HW: | |
312 | return insert_hw_breakpoint(addr); | |
313 | break; | |
314 | case GDB_WATCHPOINT_READ: | |
315 | case GDB_WATCHPOINT_WRITE: | |
316 | case GDB_WATCHPOINT_ACCESS: | |
317 | return insert_hw_watchpoint(addr, len, type); | |
318 | default: | |
319 | return -ENOSYS; | |
320 | } | |
321 | } | |
322 | ||
323 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | |
324 | target_ulong len, int type) | |
325 | { | |
326 | switch (type) { | |
327 | case GDB_BREAKPOINT_HW: | |
328 | return delete_hw_breakpoint(addr); | |
329 | break; | |
330 | case GDB_WATCHPOINT_READ: | |
331 | case GDB_WATCHPOINT_WRITE: | |
332 | case GDB_WATCHPOINT_ACCESS: | |
333 | return delete_hw_watchpoint(addr, len, type); | |
334 | default: | |
335 | return -ENOSYS; | |
336 | } | |
337 | } | |
338 | ||
339 | ||
340 | void kvm_arch_remove_all_hw_breakpoints(void) | |
341 | { | |
342 | if (cur_hw_wps > 0) { | |
343 | g_array_remove_range(hw_watchpoints, 0, cur_hw_wps); | |
344 | } | |
345 | if (cur_hw_bps > 0) { | |
346 | g_array_remove_range(hw_breakpoints, 0, cur_hw_bps); | |
347 | } | |
348 | } | |
349 | ||
350 | void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr) | |
351 | { | |
352 | int i; | |
353 | memset(ptr, 0, sizeof(struct kvm_guest_debug_arch)); | |
354 | ||
355 | for (i = 0; i < max_hw_wps; i++) { | |
356 | HWWatchpoint *wp = get_hw_wp(i); | |
357 | ptr->dbg_wcr[i] = wp->wcr; | |
358 | ptr->dbg_wvr[i] = wp->wvr; | |
359 | } | |
360 | for (i = 0; i < max_hw_bps; i++) { | |
361 | HWBreakpoint *bp = get_hw_bp(i); | |
362 | ptr->dbg_bcr[i] = bp->bcr; | |
363 | ptr->dbg_bvr[i] = bp->bvr; | |
364 | } | |
365 | } | |
366 | ||
367 | bool kvm_arm_hw_debug_active(CPUState *cs) | |
368 | { | |
369 | return ((cur_hw_wps > 0) || (cur_hw_bps > 0)); | |
370 | } | |
371 | ||
372 | static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc) | |
373 | { | |
374 | int i; | |
375 | ||
376 | for (i = 0; i < cur_hw_bps; i++) { | |
377 | HWBreakpoint *bp = get_hw_bp(i); | |
378 | if (bp->bvr == pc) { | |
379 | return true; | |
380 | } | |
381 | } | |
382 | return false; | |
383 | } | |
384 | ||
385 | static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr) | |
386 | { | |
387 | int i; | |
388 | ||
389 | for (i = 0; i < cur_hw_wps; i++) { | |
390 | if (check_watchpoint_in_range(i, addr)) { | |
391 | return &get_hw_wp(i)->details; | |
392 | } | |
393 | } | |
394 | return NULL; | |
395 | } | |
396 | ||
3f07cb2a | 397 | static bool kvm_arm_pmu_set_attr(CPUState *cs, struct kvm_device_attr *attr) |
01fe6b60 SZ |
398 | { |
399 | int err; | |
400 | ||
3f07cb2a AJ |
401 | err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr); |
402 | if (err != 0) { | |
b2bfe9f7 | 403 | error_report("PMU: KVM_HAS_DEVICE_ATTR: %s", strerror(-err)); |
3f07cb2a | 404 | return false; |
01fe6b60 SZ |
405 | } |
406 | ||
3f07cb2a | 407 | err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr); |
b2bfe9f7 AJ |
408 | if (err != 0) { |
409 | error_report("PMU: KVM_SET_DEVICE_ATTR: %s", strerror(-err)); | |
410 | return false; | |
01fe6b60 SZ |
411 | } |
412 | ||
3f07cb2a AJ |
413 | return true; |
414 | } | |
01fe6b60 | 415 | |
b2bfe9f7 | 416 | void kvm_arm_pmu_init(CPUState *cs) |
3f07cb2a AJ |
417 | { |
418 | struct kvm_device_attr attr = { | |
419 | .group = KVM_ARM_VCPU_PMU_V3_CTRL, | |
420 | .attr = KVM_ARM_VCPU_PMU_V3_INIT, | |
421 | }; | |
422 | ||
b2bfe9f7 AJ |
423 | if (!ARM_CPU(cs)->has_pmu) { |
424 | return; | |
425 | } | |
426 | if (!kvm_arm_pmu_set_attr(cs, &attr)) { | |
427 | error_report("failed to init PMU"); | |
428 | abort(); | |
429 | } | |
3f07cb2a AJ |
430 | } |
431 | ||
b2bfe9f7 | 432 | void kvm_arm_pmu_set_irq(CPUState *cs, int irq) |
3f07cb2a AJ |
433 | { |
434 | struct kvm_device_attr attr = { | |
435 | .group = KVM_ARM_VCPU_PMU_V3_CTRL, | |
436 | .addr = (intptr_t)&irq, | |
437 | .attr = KVM_ARM_VCPU_PMU_V3_IRQ, | |
438 | }; | |
01fe6b60 | 439 | |
b2bfe9f7 AJ |
440 | if (!ARM_CPU(cs)->has_pmu) { |
441 | return; | |
442 | } | |
443 | if (!kvm_arm_pmu_set_attr(cs, &attr)) { | |
444 | error_report("failed to set irq for PMU"); | |
445 | abort(); | |
446 | } | |
01fe6b60 | 447 | } |
e4482ab7 | 448 | |
26861c7c MH |
449 | static inline void set_feature(uint64_t *features, int feature) |
450 | { | |
451 | *features |= 1ULL << feature; | |
452 | } | |
453 | ||
929e754d WH |
454 | static inline void unset_feature(uint64_t *features, int feature) |
455 | { | |
456 | *features &= ~(1ULL << feature); | |
457 | } | |
458 | ||
c4487d76 | 459 | bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf) |
26861c7c MH |
460 | { |
461 | /* Identify the feature bits corresponding to the host CPU, and | |
462 | * fill out the ARMHostCPUClass fields accordingly. To do this | |
463 | * we have to create a scratch VM, create a single CPU inside it, | |
464 | * and then query that CPU for the relevant ID registers. | |
465 | * For AArch64 we currently don't care about ID registers at | |
466 | * all; we just want to know the CPU type. | |
467 | */ | |
468 | int fdarray[3]; | |
469 | uint64_t features = 0; | |
470 | /* Old kernels may not know about the PREFERRED_TARGET ioctl: however | |
471 | * we know these will only support creating one kind of guest CPU, | |
472 | * which is its preferred CPU type. Fortunately these old kernels | |
473 | * support only a very limited number of CPUs. | |
474 | */ | |
475 | static const uint32_t cpus_to_try[] = { | |
476 | KVM_ARM_TARGET_AEM_V8, | |
477 | KVM_ARM_TARGET_FOUNDATION_V8, | |
478 | KVM_ARM_TARGET_CORTEX_A57, | |
479 | QEMU_KVM_ARM_TARGET_NONE | |
480 | }; | |
481 | struct kvm_vcpu_init init; | |
482 | ||
483 | if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) { | |
484 | return false; | |
485 | } | |
486 | ||
c4487d76 PM |
487 | ahcf->target = init.target; |
488 | ahcf->dtb_compatible = "arm,arm-v8"; | |
26861c7c MH |
489 | |
490 | kvm_arm_destroy_scratch_host_vcpu(fdarray); | |
491 | ||
492 | /* We can assume any KVM supporting CPU is at least a v8 | |
493 | * with VFPv4+Neon; this in turn implies most of the other | |
494 | * feature bits. | |
495 | */ | |
496 | set_feature(&features, ARM_FEATURE_V8); | |
497 | set_feature(&features, ARM_FEATURE_VFP4); | |
498 | set_feature(&features, ARM_FEATURE_NEON); | |
499 | set_feature(&features, ARM_FEATURE_AARCH64); | |
929e754d | 500 | set_feature(&features, ARM_FEATURE_PMU); |
26861c7c | 501 | |
c4487d76 | 502 | ahcf->features = features; |
26861c7c MH |
503 | |
504 | return true; | |
505 | } | |
506 | ||
eb5e1d3c PF |
507 | #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5 |
508 | ||
26861c7c MH |
509 | int kvm_arch_init_vcpu(CPUState *cs) |
510 | { | |
26861c7c | 511 | int ret; |
eb5e1d3c | 512 | uint64_t mpidr; |
228d5e04 | 513 | ARMCPU *cpu = ARM_CPU(cs); |
929e754d | 514 | CPUARMState *env = &cpu->env; |
26861c7c MH |
515 | |
516 | if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE || | |
56073970 | 517 | !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) { |
26861c7c MH |
518 | fprintf(stderr, "KVM is not supported for this guest CPU type\n"); |
519 | return -EINVAL; | |
520 | } | |
521 | ||
228d5e04 PS |
522 | /* Determine init features for this CPU */ |
523 | memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features)); | |
26861c7c | 524 | if (cpu->start_powered_off) { |
228d5e04 PS |
525 | cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF; |
526 | } | |
7cd62e53 | 527 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) { |
dd032e34 | 528 | cpu->psci_version = 2; |
7cd62e53 PS |
529 | cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2; |
530 | } | |
56073970 GB |
531 | if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
532 | cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT; | |
533 | } | |
b1659527 | 534 | if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) { |
929e754d WH |
535 | cpu->has_pmu = false; |
536 | } | |
537 | if (cpu->has_pmu) { | |
5c0a3819 | 538 | cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3; |
929e754d WH |
539 | } else { |
540 | unset_feature(&env->features, ARM_FEATURE_PMU); | |
5c0a3819 | 541 | } |
228d5e04 PS |
542 | |
543 | /* Do KVM_ARM_VCPU_INIT ioctl */ | |
544 | ret = kvm_arm_vcpu_init(cs); | |
545 | if (ret) { | |
546 | return ret; | |
26861c7c | 547 | } |
26861c7c | 548 | |
eb5e1d3c PF |
549 | /* |
550 | * When KVM is in use, PSCI is emulated in-kernel and not by qemu. | |
551 | * Currently KVM has its own idea about MPIDR assignment, so we | |
552 | * override our defaults with what we get from KVM. | |
553 | */ | |
554 | ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr); | |
555 | if (ret) { | |
556 | return ret; | |
557 | } | |
0f4a9e45 | 558 | cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK; |
eb5e1d3c | 559 | |
29eb3d9a AB |
560 | kvm_arm_init_debug(cs); |
561 | ||
202ccb6b DG |
562 | /* Check whether user space can specify guest syndrome value */ |
563 | kvm_arm_init_serror_injection(cs); | |
564 | ||
38df27c8 AB |
565 | return kvm_arm_init_cpreg_list(cpu); |
566 | } | |
26861c7c | 567 | |
38df27c8 AB |
568 | bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx) |
569 | { | |
570 | /* Return true if the regidx is a register we should synchronize | |
571 | * via the cpreg_tuples array (ie is not a core reg we sync by | |
572 | * hand in kvm_arch_get/put_registers()) | |
573 | */ | |
574 | switch (regidx & KVM_REG_ARM_COPROC_MASK) { | |
575 | case KVM_REG_ARM_CORE: | |
576 | return false; | |
577 | default: | |
578 | return true; | |
579 | } | |
26861c7c MH |
580 | } |
581 | ||
4b7a6bf4 CD |
582 | typedef struct CPRegStateLevel { |
583 | uint64_t regidx; | |
584 | int level; | |
585 | } CPRegStateLevel; | |
586 | ||
587 | /* All system registers not listed in the following table are assumed to be | |
588 | * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less | |
589 | * often, you must add it to this table with a state of either | |
590 | * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE. | |
591 | */ | |
592 | static const CPRegStateLevel non_runtime_cpregs[] = { | |
593 | { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE }, | |
594 | }; | |
595 | ||
596 | int kvm_arm_cpreg_level(uint64_t regidx) | |
597 | { | |
598 | int i; | |
599 | ||
600 | for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) { | |
601 | const CPRegStateLevel *l = &non_runtime_cpregs[i]; | |
602 | if (l->regidx == regidx) { | |
603 | return l->level; | |
604 | } | |
605 | } | |
606 | ||
607 | return KVM_PUT_RUNTIME_STATE; | |
608 | } | |
609 | ||
26861c7c MH |
610 | #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \ |
611 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) | |
612 | ||
0e4b5869 AB |
613 | #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \ |
614 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) | |
615 | ||
616 | #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \ | |
617 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) | |
618 | ||
26861c7c MH |
619 | int kvm_arch_put_registers(CPUState *cs, int level) |
620 | { | |
621 | struct kvm_one_reg reg; | |
0e4b5869 | 622 | uint32_t fpr; |
26861c7c MH |
623 | uint64_t val; |
624 | int i; | |
625 | int ret; | |
25b9fb10 | 626 | unsigned int el; |
26861c7c MH |
627 | |
628 | ARMCPU *cpu = ARM_CPU(cs); | |
629 | CPUARMState *env = &cpu->env; | |
630 | ||
56073970 GB |
631 | /* If we are in AArch32 mode then we need to copy the AArch32 regs to the |
632 | * AArch64 registers before pushing them out to 64-bit KVM. | |
633 | */ | |
634 | if (!is_a64(env)) { | |
635 | aarch64_sync_32_to_64(env); | |
636 | } | |
637 | ||
26861c7c MH |
638 | for (i = 0; i < 31; i++) { |
639 | reg.id = AARCH64_CORE_REG(regs.regs[i]); | |
640 | reg.addr = (uintptr_t) &env->xregs[i]; | |
641 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
642 | if (ret) { | |
643 | return ret; | |
644 | } | |
645 | } | |
646 | ||
f502cfc2 PM |
647 | /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the |
648 | * QEMU side we keep the current SP in xregs[31] as well. | |
649 | */ | |
9208b961 | 650 | aarch64_save_sp(env, 1); |
f502cfc2 | 651 | |
26861c7c | 652 | reg.id = AARCH64_CORE_REG(regs.sp); |
f502cfc2 PM |
653 | reg.addr = (uintptr_t) &env->sp_el[0]; |
654 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
655 | if (ret) { | |
656 | return ret; | |
657 | } | |
658 | ||
659 | reg.id = AARCH64_CORE_REG(sp_el1); | |
660 | reg.addr = (uintptr_t) &env->sp_el[1]; | |
26861c7c MH |
661 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
662 | if (ret) { | |
663 | return ret; | |
664 | } | |
665 | ||
666 | /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */ | |
56073970 GB |
667 | if (is_a64(env)) { |
668 | val = pstate_read(env); | |
669 | } else { | |
670 | val = cpsr_read(env); | |
671 | } | |
26861c7c MH |
672 | reg.id = AARCH64_CORE_REG(regs.pstate); |
673 | reg.addr = (uintptr_t) &val; | |
674 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
675 | if (ret) { | |
676 | return ret; | |
677 | } | |
678 | ||
679 | reg.id = AARCH64_CORE_REG(regs.pc); | |
680 | reg.addr = (uintptr_t) &env->pc; | |
681 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
682 | if (ret) { | |
683 | return ret; | |
684 | } | |
685 | ||
a0618a19 | 686 | reg.id = AARCH64_CORE_REG(elr_el1); |
6947f059 | 687 | reg.addr = (uintptr_t) &env->elr_el[1]; |
a0618a19 PM |
688 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
689 | if (ret) { | |
690 | return ret; | |
691 | } | |
692 | ||
25b9fb10 AB |
693 | /* Saved Program State Registers |
694 | * | |
695 | * Before we restore from the banked_spsr[] array we need to | |
696 | * ensure that any modifications to env->spsr are correctly | |
697 | * reflected in the banks. | |
698 | */ | |
699 | el = arm_current_el(env); | |
700 | if (el > 0 && !is_a64(env)) { | |
701 | i = bank_number(env->uncached_cpsr & CPSR_M); | |
702 | env->banked_spsr[i] = env->spsr; | |
703 | } | |
704 | ||
705 | /* KVM 0-4 map to QEMU banks 1-5 */ | |
a65f1de9 PM |
706 | for (i = 0; i < KVM_NR_SPSR; i++) { |
707 | reg.id = AARCH64_CORE_REG(spsr[i]); | |
25b9fb10 | 708 | reg.addr = (uintptr_t) &env->banked_spsr[i + 1]; |
a65f1de9 PM |
709 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
710 | if (ret) { | |
711 | return ret; | |
712 | } | |
713 | } | |
714 | ||
9a2b5256 | 715 | /* Advanced SIMD and FP registers. */ |
0e4b5869 | 716 | for (i = 0; i < 32; i++) { |
9a2b5256 | 717 | uint64_t *q = aa64_vfp_qreg(env, i); |
0e4b5869 | 718 | #ifdef HOST_WORDS_BIGENDIAN |
9a2b5256 RH |
719 | uint64_t fp_val[2] = { q[1], q[0] }; |
720 | reg.addr = (uintptr_t)fp_val; | |
0e4b5869 | 721 | #else |
9a2b5256 | 722 | reg.addr = (uintptr_t)q; |
0e4b5869 AB |
723 | #endif |
724 | reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]); | |
0e4b5869 AB |
725 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
726 | if (ret) { | |
727 | return ret; | |
728 | } | |
729 | } | |
730 | ||
731 | reg.addr = (uintptr_t)(&fpr); | |
732 | fpr = vfp_get_fpsr(env); | |
733 | reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr); | |
734 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
735 | if (ret) { | |
736 | return ret; | |
737 | } | |
738 | ||
739 | fpr = vfp_get_fpcr(env); | |
740 | reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr); | |
741 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
742 | if (ret) { | |
743 | return ret; | |
744 | } | |
745 | ||
202ccb6b DG |
746 | ret = kvm_put_vcpu_events(cpu); |
747 | if (ret) { | |
748 | return ret; | |
749 | } | |
750 | ||
4b7a6bf4 | 751 | if (!write_list_to_kvmstate(cpu, level)) { |
568bab1f PS |
752 | return EINVAL; |
753 | } | |
754 | ||
1a1753f7 AB |
755 | kvm_arm_sync_mpstate_to_kvm(cpu); |
756 | ||
26861c7c MH |
757 | return ret; |
758 | } | |
759 | ||
760 | int kvm_arch_get_registers(CPUState *cs) | |
761 | { | |
762 | struct kvm_one_reg reg; | |
763 | uint64_t val; | |
0e4b5869 | 764 | uint32_t fpr; |
25b9fb10 | 765 | unsigned int el; |
26861c7c MH |
766 | int i; |
767 | int ret; | |
768 | ||
769 | ARMCPU *cpu = ARM_CPU(cs); | |
770 | CPUARMState *env = &cpu->env; | |
771 | ||
772 | for (i = 0; i < 31; i++) { | |
773 | reg.id = AARCH64_CORE_REG(regs.regs[i]); | |
774 | reg.addr = (uintptr_t) &env->xregs[i]; | |
775 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
776 | if (ret) { | |
777 | return ret; | |
778 | } | |
779 | } | |
780 | ||
781 | reg.id = AARCH64_CORE_REG(regs.sp); | |
f502cfc2 PM |
782 | reg.addr = (uintptr_t) &env->sp_el[0]; |
783 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
784 | if (ret) { | |
785 | return ret; | |
786 | } | |
787 | ||
788 | reg.id = AARCH64_CORE_REG(sp_el1); | |
789 | reg.addr = (uintptr_t) &env->sp_el[1]; | |
26861c7c MH |
790 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
791 | if (ret) { | |
792 | return ret; | |
793 | } | |
794 | ||
795 | reg.id = AARCH64_CORE_REG(regs.pstate); | |
796 | reg.addr = (uintptr_t) &val; | |
797 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
798 | if (ret) { | |
799 | return ret; | |
800 | } | |
56073970 GB |
801 | |
802 | env->aarch64 = ((val & PSTATE_nRW) == 0); | |
803 | if (is_a64(env)) { | |
804 | pstate_write(env, val); | |
805 | } else { | |
50866ba5 | 806 | cpsr_write(env, val, 0xffffffff, CPSRWriteRaw); |
56073970 | 807 | } |
26861c7c | 808 | |
f502cfc2 PM |
809 | /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the |
810 | * QEMU side we keep the current SP in xregs[31] as well. | |
811 | */ | |
9208b961 | 812 | aarch64_restore_sp(env, 1); |
f502cfc2 | 813 | |
26861c7c MH |
814 | reg.id = AARCH64_CORE_REG(regs.pc); |
815 | reg.addr = (uintptr_t) &env->pc; | |
816 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
817 | if (ret) { | |
818 | return ret; | |
819 | } | |
820 | ||
56073970 GB |
821 | /* If we are in AArch32 mode then we need to sync the AArch32 regs with the |
822 | * incoming AArch64 regs received from 64-bit KVM. | |
823 | * We must perform this after all of the registers have been acquired from | |
824 | * the kernel. | |
825 | */ | |
826 | if (!is_a64(env)) { | |
827 | aarch64_sync_64_to_32(env); | |
828 | } | |
829 | ||
a0618a19 | 830 | reg.id = AARCH64_CORE_REG(elr_el1); |
6947f059 | 831 | reg.addr = (uintptr_t) &env->elr_el[1]; |
a0618a19 PM |
832 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
833 | if (ret) { | |
834 | return ret; | |
835 | } | |
836 | ||
25b9fb10 AB |
837 | /* Fetch the SPSR registers |
838 | * | |
839 | * KVM SPSRs 0-4 map to QEMU banks 1-5 | |
840 | */ | |
a65f1de9 PM |
841 | for (i = 0; i < KVM_NR_SPSR; i++) { |
842 | reg.id = AARCH64_CORE_REG(spsr[i]); | |
25b9fb10 | 843 | reg.addr = (uintptr_t) &env->banked_spsr[i + 1]; |
a65f1de9 PM |
844 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
845 | if (ret) { | |
846 | return ret; | |
847 | } | |
848 | } | |
849 | ||
25b9fb10 AB |
850 | el = arm_current_el(env); |
851 | if (el > 0 && !is_a64(env)) { | |
852 | i = bank_number(env->uncached_cpsr & CPSR_M); | |
853 | env->spsr = env->banked_spsr[i]; | |
854 | } | |
855 | ||
9a2b5256 | 856 | /* Advanced SIMD and FP registers */ |
0e4b5869 | 857 | for (i = 0; i < 32; i++) { |
9a2b5256 | 858 | uint64_t *q = aa64_vfp_qreg(env, i); |
0e4b5869 | 859 | reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]); |
9a2b5256 | 860 | reg.addr = (uintptr_t)q; |
0e4b5869 AB |
861 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
862 | if (ret) { | |
863 | return ret; | |
864 | } else { | |
0e4b5869 | 865 | #ifdef HOST_WORDS_BIGENDIAN |
9a2b5256 RH |
866 | uint64_t t; |
867 | t = q[0], q[0] = q[1], q[1] = t; | |
0e4b5869 AB |
868 | #endif |
869 | } | |
870 | } | |
871 | ||
872 | reg.addr = (uintptr_t)(&fpr); | |
873 | reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr); | |
874 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
875 | if (ret) { | |
876 | return ret; | |
877 | } | |
878 | vfp_set_fpsr(env, fpr); | |
879 | ||
880 | reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr); | |
881 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
882 | if (ret) { | |
883 | return ret; | |
884 | } | |
885 | vfp_set_fpcr(env, fpr); | |
886 | ||
202ccb6b DG |
887 | ret = kvm_get_vcpu_events(cpu); |
888 | if (ret) { | |
889 | return ret; | |
890 | } | |
891 | ||
568bab1f PS |
892 | if (!write_kvmstate_to_list(cpu)) { |
893 | return EINVAL; | |
894 | } | |
895 | /* Note that it's OK to have registers which aren't in CPUState, | |
896 | * so we can ignore a failure return here. | |
897 | */ | |
898 | write_list_to_cpustate(cpu); | |
899 | ||
1a1753f7 AB |
900 | kvm_arm_sync_mpstate_to_qemu(cpu); |
901 | ||
26861c7c MH |
902 | /* TODO: other registers */ |
903 | return ret; | |
904 | } | |
2ecb2027 AB |
905 | |
906 | /* C6.6.29 BRK instruction */ | |
907 | static const uint32_t brk_insn = 0xd4200000; | |
908 | ||
909 | int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) | |
910 | { | |
911 | if (have_guest_debug) { | |
912 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) || | |
913 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) { | |
914 | return -EINVAL; | |
915 | } | |
916 | return 0; | |
917 | } else { | |
918 | error_report("guest debug not supported on this kernel"); | |
919 | return -EINVAL; | |
920 | } | |
921 | } | |
922 | ||
923 | int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) | |
924 | { | |
925 | static uint32_t brk; | |
926 | ||
927 | if (have_guest_debug) { | |
928 | if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) || | |
929 | brk != brk_insn || | |
930 | cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) { | |
931 | return -EINVAL; | |
932 | } | |
933 | return 0; | |
934 | } else { | |
935 | error_report("guest debug not supported on this kernel"); | |
936 | return -EINVAL; | |
937 | } | |
938 | } | |
939 | ||
940 | /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register | |
941 | * | |
942 | * To minimise translating between kernel and user-space the kernel | |
943 | * ABI just provides user-space with the full exception syndrome | |
944 | * register value to be decoded in QEMU. | |
945 | */ | |
946 | ||
947 | bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit) | |
948 | { | |
64b91e3f | 949 | int hsr_ec = syn_get_ec(debug_exit->hsr); |
2ecb2027 | 950 | ARMCPU *cpu = ARM_CPU(cs); |
34c45d53 | 951 | CPUClass *cc = CPU_GET_CLASS(cs); |
2ecb2027 AB |
952 | CPUARMState *env = &cpu->env; |
953 | ||
954 | /* Ensure PC is synchronised */ | |
955 | kvm_cpu_synchronize_state(cs); | |
956 | ||
957 | switch (hsr_ec) { | |
26ae5934 AB |
958 | case EC_SOFTWARESTEP: |
959 | if (cs->singlestep_enabled) { | |
960 | return true; | |
961 | } else { | |
34c45d53 AB |
962 | /* |
963 | * The kernel should have suppressed the guest's ability to | |
964 | * single step at this point so something has gone wrong. | |
965 | */ | |
966 | error_report("%s: guest single-step while debugging unsupported" | |
dffc5851 | 967 | " (%"PRIx64", %"PRIx32")", |
34c45d53 AB |
968 | __func__, env->pc, debug_exit->hsr); |
969 | return false; | |
26ae5934 AB |
970 | } |
971 | break; | |
2ecb2027 AB |
972 | case EC_AA64_BKPT: |
973 | if (kvm_find_sw_breakpoint(cs, env->pc)) { | |
974 | return true; | |
975 | } | |
976 | break; | |
e4482ab7 AB |
977 | case EC_BREAKPOINT: |
978 | if (find_hw_breakpoint(cs, env->pc)) { | |
979 | return true; | |
980 | } | |
981 | break; | |
982 | case EC_WATCHPOINT: | |
983 | { | |
984 | CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far); | |
985 | if (wp) { | |
986 | cs->watchpoint_hit = wp; | |
987 | return true; | |
988 | } | |
989 | break; | |
990 | } | |
2ecb2027 | 991 | default: |
dffc5851 | 992 | error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")", |
2ecb2027 AB |
993 | __func__, debug_exit->hsr, env->pc); |
994 | } | |
995 | ||
34c45d53 AB |
996 | /* If we are not handling the debug exception it must belong to |
997 | * the guest. Let's re-use the existing TCG interrupt code to set | |
998 | * everything up properly. | |
999 | */ | |
1000 | cs->exception_index = EXCP_BKPT; | |
1001 | env->exception.syndrome = debug_exit->hsr; | |
1002 | env->exception.vaddress = debug_exit->far; | |
9b16ec43 | 1003 | qemu_mutex_lock_iothread(); |
34c45d53 | 1004 | cc->do_interrupt(cs); |
9b16ec43 | 1005 | qemu_mutex_unlock_iothread(); |
2ecb2027 AB |
1006 | |
1007 | return false; | |
1008 | } |