]> Git Repo - qemu.git/blame - block/qcow2-refcount.c
block/qcow2: Metadata preallocation for truncate
[qemu.git] / block / qcow2-refcount.c
CommitLineData
f7d0fe02
KW
1/*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
80c71a24 25#include "qemu/osdep.h"
da34e65c 26#include "qapi/error.h"
f7d0fe02 27#include "qemu-common.h"
737e150e 28#include "block/block_int.h"
f7d0fe02 29#include "block/qcow2.h"
a40f1c2a 30#include "qemu/range.h"
58369e22 31#include "qemu/bswap.h"
f7d0fe02 32
bb572aef 33static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
92dcb59f 34static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
0e06528e 35 int64_t offset, int64_t length, uint64_t addend,
2aabe7c7 36 bool decrease, enum qcow2_discard_type type);
f7d0fe02 37
59c0cb78
HR
38static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
39static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
40static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
41static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
7453c96b 42static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
59c0cb78
HR
43static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
44static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
7453c96b 45
59c0cb78
HR
46static void set_refcount_ro0(void *refcount_array, uint64_t index,
47 uint64_t value);
48static void set_refcount_ro1(void *refcount_array, uint64_t index,
49 uint64_t value);
50static void set_refcount_ro2(void *refcount_array, uint64_t index,
51 uint64_t value);
52static void set_refcount_ro3(void *refcount_array, uint64_t index,
53 uint64_t value);
7453c96b
HR
54static void set_refcount_ro4(void *refcount_array, uint64_t index,
55 uint64_t value);
59c0cb78
HR
56static void set_refcount_ro5(void *refcount_array, uint64_t index,
57 uint64_t value);
58static void set_refcount_ro6(void *refcount_array, uint64_t index,
59 uint64_t value);
60
61
62static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
63 &get_refcount_ro0,
64 &get_refcount_ro1,
65 &get_refcount_ro2,
66 &get_refcount_ro3,
67 &get_refcount_ro4,
68 &get_refcount_ro5,
69 &get_refcount_ro6
70};
71
72static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
73 &set_refcount_ro0,
74 &set_refcount_ro1,
75 &set_refcount_ro2,
76 &set_refcount_ro3,
77 &set_refcount_ro4,
78 &set_refcount_ro5,
79 &set_refcount_ro6
80};
7453c96b 81
3b88e52b 82
f7d0fe02
KW
83/*********************************************************/
84/* refcount handling */
85
7061a078
AG
86static void update_max_refcount_table_index(BDRVQcow2State *s)
87{
88 unsigned i = s->refcount_table_size - 1;
89 while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
90 i--;
91 }
92 /* Set s->max_refcount_table_index to the index of the last used entry */
93 s->max_refcount_table_index = i;
94}
95
ed6ccf0f 96int qcow2_refcount_init(BlockDriverState *bs)
f7d0fe02 97{
ff99129a 98 BDRVQcow2State *s = bs->opaque;
5dab2fad
KW
99 unsigned int refcount_table_size2, i;
100 int ret;
f7d0fe02 101
59c0cb78
HR
102 assert(s->refcount_order >= 0 && s->refcount_order <= 6);
103
104 s->get_refcount = get_refcount_funcs[s->refcount_order];
105 s->set_refcount = set_refcount_funcs[s->refcount_order];
7453c96b 106
5dab2fad 107 assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
f7d0fe02 108 refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
de82815d
KW
109 s->refcount_table = g_try_malloc(refcount_table_size2);
110
f7d0fe02 111 if (s->refcount_table_size > 0) {
de82815d 112 if (s->refcount_table == NULL) {
8fcffa98 113 ret = -ENOMEM;
de82815d
KW
114 goto fail;
115 }
66f82cee 116 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
cf2ab8fc 117 ret = bdrv_pread(bs->file, s->refcount_table_offset,
f7d0fe02 118 s->refcount_table, refcount_table_size2);
8fcffa98 119 if (ret < 0) {
f7d0fe02 120 goto fail;
8fcffa98 121 }
f7d0fe02
KW
122 for(i = 0; i < s->refcount_table_size; i++)
123 be64_to_cpus(&s->refcount_table[i]);
7061a078 124 update_max_refcount_table_index(s);
f7d0fe02
KW
125 }
126 return 0;
127 fail:
8fcffa98 128 return ret;
f7d0fe02
KW
129}
130
ed6ccf0f 131void qcow2_refcount_close(BlockDriverState *bs)
f7d0fe02 132{
ff99129a 133 BDRVQcow2State *s = bs->opaque;
7267c094 134 g_free(s->refcount_table);
f7d0fe02
KW
135}
136
137
59c0cb78
HR
138static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
139{
140 return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
141}
142
143static void set_refcount_ro0(void *refcount_array, uint64_t index,
144 uint64_t value)
145{
146 assert(!(value >> 1));
147 ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
148 ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
149}
150
151static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
152{
153 return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
154 & 0x3;
155}
156
157static void set_refcount_ro1(void *refcount_array, uint64_t index,
158 uint64_t value)
159{
160 assert(!(value >> 2));
161 ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
162 ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
163}
164
165static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
166{
167 return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
168 & 0xf;
169}
170
171static void set_refcount_ro2(void *refcount_array, uint64_t index,
172 uint64_t value)
173{
174 assert(!(value >> 4));
175 ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
176 ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
177}
178
179static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
180{
181 return ((const uint8_t *)refcount_array)[index];
182}
183
184static void set_refcount_ro3(void *refcount_array, uint64_t index,
185 uint64_t value)
186{
187 assert(!(value >> 8));
188 ((uint8_t *)refcount_array)[index] = value;
189}
190
7453c96b
HR
191static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
192{
193 return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
194}
195
196static void set_refcount_ro4(void *refcount_array, uint64_t index,
197 uint64_t value)
198{
199 assert(!(value >> 16));
200 ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
201}
202
59c0cb78
HR
203static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
204{
205 return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
206}
207
208static void set_refcount_ro5(void *refcount_array, uint64_t index,
209 uint64_t value)
210{
211 assert(!(value >> 32));
212 ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
213}
214
215static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
216{
217 return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
218}
219
220static void set_refcount_ro6(void *refcount_array, uint64_t index,
221 uint64_t value)
222{
223 ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
224}
225
7453c96b 226
f7d0fe02 227static int load_refcount_block(BlockDriverState *bs,
29c1a730
KW
228 int64_t refcount_block_offset,
229 void **refcount_block)
f7d0fe02 230{
ff99129a 231 BDRVQcow2State *s = bs->opaque;
3b88e52b 232
66f82cee 233 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
9be38598
EH
234 return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
235 refcount_block);
f7d0fe02
KW
236}
237
018faafd 238/*
7324c10f
HR
239 * Retrieves the refcount of the cluster given by its index and stores it in
240 * *refcount. Returns 0 on success and -errno on failure.
018faafd 241 */
7324c10f 242int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
0e06528e 243 uint64_t *refcount)
f7d0fe02 244{
ff99129a 245 BDRVQcow2State *s = bs->opaque;
db8a31d1 246 uint64_t refcount_table_index, block_index;
f7d0fe02 247 int64_t refcount_block_offset;
018faafd 248 int ret;
7453c96b 249 void *refcount_block;
f7d0fe02 250
17bd5f47 251 refcount_table_index = cluster_index >> s->refcount_block_bits;
7324c10f
HR
252 if (refcount_table_index >= s->refcount_table_size) {
253 *refcount = 0;
f7d0fe02 254 return 0;
7324c10f 255 }
26d49c46
HR
256 refcount_block_offset =
257 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
7324c10f
HR
258 if (!refcount_block_offset) {
259 *refcount = 0;
f7d0fe02 260 return 0;
7324c10f 261 }
29c1a730 262
a97c67ee
HR
263 if (offset_into_cluster(s, refcount_block_offset)) {
264 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
265 " unaligned (reftable index: %#" PRIx64 ")",
266 refcount_block_offset, refcount_table_index);
267 return -EIO;
268 }
269
29c1a730 270 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
7453c96b 271 &refcount_block);
29c1a730
KW
272 if (ret < 0) {
273 return ret;
f7d0fe02 274 }
29c1a730 275
17bd5f47 276 block_index = cluster_index & (s->refcount_block_size - 1);
7453c96b 277 *refcount = s->get_refcount(refcount_block, block_index);
29c1a730 278
a3f1afb4 279 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
29c1a730 280
7324c10f 281 return 0;
f7d0fe02
KW
282}
283
05121aed
KW
284/*
285 * Rounds the refcount table size up to avoid growing the table for each single
286 * refcount block that is allocated.
287 */
ff99129a 288static unsigned int next_refcount_table_size(BDRVQcow2State *s,
05121aed
KW
289 unsigned int min_size)
290{
291 unsigned int min_clusters = (min_size >> (s->cluster_bits - 3)) + 1;
292 unsigned int refcount_table_clusters =
293 MAX(1, s->refcount_table_size >> (s->cluster_bits - 3));
294
295 while (min_clusters > refcount_table_clusters) {
296 refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2;
297 }
298
299 return refcount_table_clusters << (s->cluster_bits - 3);
300}
301
92dcb59f
KW
302
303/* Checks if two offsets are described by the same refcount block */
ff99129a 304static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
92dcb59f
KW
305 uint64_t offset_b)
306{
17bd5f47
HR
307 uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
308 uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
92dcb59f
KW
309
310 return (block_a == block_b);
311}
312
313/*
314 * Loads a refcount block. If it doesn't exist yet, it is allocated first
315 * (including growing the refcount table if needed).
316 *
29c1a730 317 * Returns 0 on success or -errno in error case
92dcb59f 318 */
29c1a730 319static int alloc_refcount_block(BlockDriverState *bs,
7453c96b 320 int64_t cluster_index, void **refcount_block)
f7d0fe02 321{
ff99129a 322 BDRVQcow2State *s = bs->opaque;
92dcb59f
KW
323 unsigned int refcount_table_index;
324 int ret;
325
66f82cee 326 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
8252278a 327
92dcb59f 328 /* Find the refcount block for the given cluster */
17bd5f47 329 refcount_table_index = cluster_index >> s->refcount_block_bits;
92dcb59f
KW
330
331 if (refcount_table_index < s->refcount_table_size) {
332
333 uint64_t refcount_block_offset =
76dc9e0c 334 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
92dcb59f
KW
335
336 /* If it's already there, we're done */
337 if (refcount_block_offset) {
a97c67ee
HR
338 if (offset_into_cluster(s, refcount_block_offset)) {
339 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
340 PRIx64 " unaligned (reftable index: "
341 "%#x)", refcount_block_offset,
342 refcount_table_index);
343 return -EIO;
344 }
345
29c1a730 346 return load_refcount_block(bs, refcount_block_offset,
7453c96b 347 refcount_block);
92dcb59f
KW
348 }
349 }
350
351 /*
352 * If we came here, we need to allocate something. Something is at least
353 * a cluster for the new refcount block. It may also include a new refcount
354 * table if the old refcount table is too small.
355 *
356 * Note that allocating clusters here needs some special care:
357 *
358 * - We can't use the normal qcow2_alloc_clusters(), it would try to
359 * increase the refcount and very likely we would end up with an endless
360 * recursion. Instead we must place the refcount blocks in a way that
361 * they can describe them themselves.
362 *
363 * - We need to consider that at this point we are inside update_refcounts
b106ad91
KW
364 * and potentially doing an initial refcount increase. This means that
365 * some clusters have already been allocated by the caller, but their
366 * refcount isn't accurate yet. If we allocate clusters for metadata, we
367 * need to return -EAGAIN to signal the caller that it needs to restart
368 * the search for free clusters.
92dcb59f
KW
369 *
370 * - alloc_clusters_noref and qcow2_free_clusters may load a different
371 * refcount block into the cache
372 */
373
29c1a730
KW
374 *refcount_block = NULL;
375
376 /* We write to the refcount table, so we might depend on L2 tables */
9991923b
SH
377 ret = qcow2_cache_flush(bs, s->l2_table_cache);
378 if (ret < 0) {
379 return ret;
380 }
92dcb59f
KW
381
382 /* Allocate the refcount block itself and mark it as used */
2eaa8f63
KW
383 int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
384 if (new_block < 0) {
385 return new_block;
386 }
f7d0fe02 387
f7d0fe02 388#ifdef DEBUG_ALLOC2
92dcb59f
KW
389 fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
390 " at %" PRIx64 "\n",
391 refcount_table_index, cluster_index << s->cluster_bits, new_block);
f7d0fe02 392#endif
92dcb59f
KW
393
394 if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
25408c09 395 /* Zero the new refcount block before updating it */
29c1a730 396 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
7453c96b 397 refcount_block);
29c1a730
KW
398 if (ret < 0) {
399 goto fail_block;
400 }
401
402 memset(*refcount_block, 0, s->cluster_size);
25408c09 403
92dcb59f
KW
404 /* The block describes itself, need to update the cache */
405 int block_index = (new_block >> s->cluster_bits) &
17bd5f47 406 (s->refcount_block_size - 1);
7453c96b 407 s->set_refcount(*refcount_block, block_index, 1);
92dcb59f
KW
408 } else {
409 /* Described somewhere else. This can recurse at most twice before we
410 * arrive at a block that describes itself. */
2aabe7c7 411 ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
6cfcb9b8 412 QCOW2_DISCARD_NEVER);
92dcb59f
KW
413 if (ret < 0) {
414 goto fail_block;
415 }
25408c09 416
9991923b
SH
417 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
418 if (ret < 0) {
419 goto fail_block;
420 }
1c4c2814 421
25408c09
KW
422 /* Initialize the new refcount block only after updating its refcount,
423 * update_refcount uses the refcount cache itself */
29c1a730 424 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
7453c96b 425 refcount_block);
29c1a730
KW
426 if (ret < 0) {
427 goto fail_block;
428 }
429
430 memset(*refcount_block, 0, s->cluster_size);
92dcb59f
KW
431 }
432
433 /* Now the new refcount block needs to be written to disk */
66f82cee 434 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
72e80b89 435 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block);
29c1a730 436 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
92dcb59f
KW
437 if (ret < 0) {
438 goto fail_block;
439 }
440
441 /* If the refcount table is big enough, just hook the block up there */
442 if (refcount_table_index < s->refcount_table_size) {
443 uint64_t data64 = cpu_to_be64(new_block);
66f82cee 444 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
d9ca2ea2 445 ret = bdrv_pwrite_sync(bs->file,
92dcb59f
KW
446 s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
447 &data64, sizeof(data64));
448 if (ret < 0) {
449 goto fail_block;
450 }
451
452 s->refcount_table[refcount_table_index] = new_block;
7061a078
AG
453 /* If there's a hole in s->refcount_table then it can happen
454 * that refcount_table_index < s->max_refcount_table_index */
455 s->max_refcount_table_index =
456 MAX(s->max_refcount_table_index, refcount_table_index);
b106ad91
KW
457
458 /* The new refcount block may be where the caller intended to put its
459 * data, so let it restart the search. */
460 return -EAGAIN;
29c1a730
KW
461 }
462
a3f1afb4 463 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
92dcb59f
KW
464
465 /*
466 * If we come here, we need to grow the refcount table. Again, a new
467 * refcount table needs some space and we can't simply allocate to avoid
468 * endless recursion.
469 *
470 * Therefore let's grab new refcount blocks at the end of the image, which
471 * will describe themselves and the new refcount table. This way we can
472 * reference them only in the new table and do the switch to the new
473 * refcount table at once without producing an inconsistent state in
474 * between.
475 */
66f82cee 476 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
8252278a 477
14a58a4e
HR
478 /* Calculate the number of refcount blocks needed so far; this will be the
479 * basis for calculating the index of the first cluster used for the
480 * self-describing refcount structures which we are about to create.
481 *
482 * Because we reached this point, there cannot be any refcount entries for
483 * cluster_index or higher indices yet. However, because new_block has been
484 * allocated to describe that cluster (and it will assume this role later
485 * on), we cannot use that index; also, new_block may actually have a higher
486 * cluster index than cluster_index, so it needs to be taken into account
487 * here (and 1 needs to be added to its value because that cluster is used).
488 */
489 uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
490 (new_block >> s->cluster_bits) + 1),
491 s->refcount_block_size);
92dcb59f 492
2b5d5953
KW
493 if (blocks_used > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
494 return -EFBIG;
495 }
496
92dcb59f
KW
497 /* And now we need at least one block more for the new metadata */
498 uint64_t table_size = next_refcount_table_size(s, blocks_used + 1);
499 uint64_t last_table_size;
500 uint64_t blocks_clusters;
501 do {
a3548077
KW
502 uint64_t table_clusters =
503 size_to_clusters(s, table_size * sizeof(uint64_t));
92dcb59f 504 blocks_clusters = 1 +
d737b78c 505 DIV_ROUND_UP(table_clusters, s->refcount_block_size);
92dcb59f
KW
506 uint64_t meta_clusters = table_clusters + blocks_clusters;
507
508 last_table_size = table_size;
509 table_size = next_refcount_table_size(s, blocks_used +
d737b78c 510 DIV_ROUND_UP(meta_clusters, s->refcount_block_size));
92dcb59f
KW
511
512 } while (last_table_size != table_size);
513
514#ifdef DEBUG_ALLOC2
515 fprintf(stderr, "qcow2: Grow refcount table %" PRId32 " => %" PRId64 "\n",
516 s->refcount_table_size, table_size);
517#endif
518
519 /* Create the new refcount table and blocks */
17bd5f47 520 uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
92dcb59f
KW
521 s->cluster_size;
522 uint64_t table_offset = meta_offset + blocks_clusters * s->cluster_size;
5839e53b 523 uint64_t *new_table = g_try_new0(uint64_t, table_size);
7453c96b 524 void *new_blocks = g_try_malloc0(blocks_clusters * s->cluster_size);
de82815d
KW
525
526 assert(table_size > 0 && blocks_clusters > 0);
527 if (new_table == NULL || new_blocks == NULL) {
528 ret = -ENOMEM;
529 goto fail_table;
530 }
92dcb59f 531
92dcb59f 532 /* Fill the new refcount table */
f7d0fe02 533 memcpy(new_table, s->refcount_table,
92dcb59f
KW
534 s->refcount_table_size * sizeof(uint64_t));
535 new_table[refcount_table_index] = new_block;
536
537 int i;
538 for (i = 0; i < blocks_clusters; i++) {
539 new_table[blocks_used + i] = meta_offset + (i * s->cluster_size);
540 }
541
542 /* Fill the refcount blocks */
543 uint64_t table_clusters = size_to_clusters(s, table_size * sizeof(uint64_t));
544 int block = 0;
545 for (i = 0; i < table_clusters + blocks_clusters; i++) {
7453c96b 546 s->set_refcount(new_blocks, block++, 1);
92dcb59f
KW
547 }
548
549 /* Write refcount blocks to disk */
66f82cee 550 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
d9ca2ea2 551 ret = bdrv_pwrite_sync(bs->file, meta_offset, new_blocks,
92dcb59f 552 blocks_clusters * s->cluster_size);
7267c094 553 g_free(new_blocks);
39ba3bf6 554 new_blocks = NULL;
92dcb59f
KW
555 if (ret < 0) {
556 goto fail_table;
557 }
558
559 /* Write refcount table to disk */
560 for(i = 0; i < table_size; i++) {
561 cpu_to_be64s(&new_table[i]);
562 }
563
66f82cee 564 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
d9ca2ea2 565 ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
92dcb59f
KW
566 table_size * sizeof(uint64_t));
567 if (ret < 0) {
568 goto fail_table;
569 }
570
571 for(i = 0; i < table_size; i++) {
87267753 572 be64_to_cpus(&new_table[i]);
92dcb59f 573 }
f7d0fe02 574
92dcb59f 575 /* Hook up the new refcount table in the qcow2 header */
95334230
JS
576 struct QEMU_PACKED {
577 uint64_t d64;
578 uint32_t d32;
579 } data;
f1f7a1dd
PM
580 data.d64 = cpu_to_be64(table_offset);
581 data.d32 = cpu_to_be32(table_clusters);
66f82cee 582 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
d9ca2ea2 583 ret = bdrv_pwrite_sync(bs->file,
9a4f4c31 584 offsetof(QCowHeader, refcount_table_offset),
95334230 585 &data, sizeof(data));
92dcb59f
KW
586 if (ret < 0) {
587 goto fail_table;
f2b7c8b3
KW
588 }
589
92dcb59f
KW
590 /* And switch it in memory */
591 uint64_t old_table_offset = s->refcount_table_offset;
592 uint64_t old_table_size = s->refcount_table_size;
593
7267c094 594 g_free(s->refcount_table);
f7d0fe02 595 s->refcount_table = new_table;
92dcb59f 596 s->refcount_table_size = table_size;
f7d0fe02 597 s->refcount_table_offset = table_offset;
7061a078 598 update_max_refcount_table_index(s);
f7d0fe02 599
b106ad91 600 /* Free old table. */
6cfcb9b8
KW
601 qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
602 QCOW2_DISCARD_OTHER);
f7d0fe02 603
7453c96b 604 ret = load_refcount_block(bs, new_block, refcount_block);
92dcb59f 605 if (ret < 0) {
29c1a730 606 return ret;
f7d0fe02
KW
607 }
608
b106ad91
KW
609 /* If we were trying to do the initial refcount update for some cluster
610 * allocation, we might have used the same clusters to store newly
611 * allocated metadata. Make the caller search some new space. */
612 return -EAGAIN;
f7d0fe02 613
92dcb59f 614fail_table:
de82815d 615 g_free(new_blocks);
7267c094 616 g_free(new_table);
92dcb59f 617fail_block:
29c1a730 618 if (*refcount_block != NULL) {
7453c96b 619 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
3b88e52b 620 }
29c1a730 621 return ret;
9923e05e
KW
622}
623
0b919fae
KW
624void qcow2_process_discards(BlockDriverState *bs, int ret)
625{
ff99129a 626 BDRVQcow2State *s = bs->opaque;
0b919fae
KW
627 Qcow2DiscardRegion *d, *next;
628
629 QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
630 QTAILQ_REMOVE(&s->discards, d, next);
631
632 /* Discard is optional, ignore the return value */
633 if (ret >= 0) {
0c51a893 634 bdrv_pdiscard(bs->file->bs, d->offset, d->bytes);
0b919fae
KW
635 }
636
637 g_free(d);
638 }
639}
640
641static void update_refcount_discard(BlockDriverState *bs,
642 uint64_t offset, uint64_t length)
643{
ff99129a 644 BDRVQcow2State *s = bs->opaque;
0b919fae
KW
645 Qcow2DiscardRegion *d, *p, *next;
646
647 QTAILQ_FOREACH(d, &s->discards, next) {
648 uint64_t new_start = MIN(offset, d->offset);
649 uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
650
651 if (new_end - new_start <= length + d->bytes) {
652 /* There can't be any overlap, areas ending up here have no
653 * references any more and therefore shouldn't get freed another
654 * time. */
655 assert(d->bytes + length == new_end - new_start);
656 d->offset = new_start;
657 d->bytes = new_end - new_start;
658 goto found;
659 }
660 }
661
662 d = g_malloc(sizeof(*d));
663 *d = (Qcow2DiscardRegion) {
664 .bs = bs,
665 .offset = offset,
666 .bytes = length,
667 };
668 QTAILQ_INSERT_TAIL(&s->discards, d, next);
669
670found:
671 /* Merge discard requests if they are adjacent now */
672 QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
673 if (p == d
674 || p->offset > d->offset + d->bytes
675 || d->offset > p->offset + p->bytes)
676 {
677 continue;
678 }
679
680 /* Still no overlap possible */
681 assert(p->offset == d->offset + d->bytes
682 || d->offset == p->offset + p->bytes);
683
684 QTAILQ_REMOVE(&s->discards, p, next);
685 d->offset = MIN(d->offset, p->offset);
686 d->bytes += p->bytes;
d8bb71b6 687 g_free(p);
0b919fae
KW
688 }
689}
690
f7d0fe02 691/* XXX: cache several refcount block clusters ? */
2aabe7c7
HR
692/* @addend is the absolute value of the addend; if @decrease is set, @addend
693 * will be subtracted from the current refcount, otherwise it will be added */
db3a964f 694static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
2aabe7c7
HR
695 int64_t offset,
696 int64_t length,
0e06528e 697 uint64_t addend,
2aabe7c7
HR
698 bool decrease,
699 enum qcow2_discard_type type)
f7d0fe02 700{
ff99129a 701 BDRVQcow2State *s = bs->opaque;
f7d0fe02 702 int64_t start, last, cluster_offset;
7453c96b 703 void *refcount_block = NULL;
29c1a730 704 int64_t old_table_index = -1;
09508d13 705 int ret;
f7d0fe02
KW
706
707#ifdef DEBUG_ALLOC2
2aabe7c7 708 fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
0e06528e 709 " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
2aabe7c7 710 addend);
f7d0fe02 711#endif
7322afe7 712 if (length < 0) {
f7d0fe02 713 return -EINVAL;
7322afe7
KW
714 } else if (length == 0) {
715 return 0;
716 }
717
2aabe7c7 718 if (decrease) {
29c1a730
KW
719 qcow2_cache_set_dependency(bs, s->refcount_block_cache,
720 s->l2_table_cache);
721 }
722
ac95acdb
HT
723 start = start_of_cluster(s, offset);
724 last = start_of_cluster(s, offset + length - 1);
f7d0fe02
KW
725 for(cluster_offset = start; cluster_offset <= last;
726 cluster_offset += s->cluster_size)
727 {
2aabe7c7 728 int block_index;
0e06528e 729 uint64_t refcount;
f7d0fe02 730 int64_t cluster_index = cluster_offset >> s->cluster_bits;
17bd5f47 731 int64_t table_index = cluster_index >> s->refcount_block_bits;
f7d0fe02 732
29c1a730
KW
733 /* Load the refcount block and allocate it if needed */
734 if (table_index != old_table_index) {
735 if (refcount_block) {
a3f1afb4 736 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
29c1a730 737 }
29c1a730 738 ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
ed0df867 739 if (ret < 0) {
29c1a730 740 goto fail;
f7d0fe02 741 }
f7d0fe02 742 }
29c1a730 743 old_table_index = table_index;
f7d0fe02 744
72e80b89
AG
745 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
746 refcount_block);
f7d0fe02
KW
747
748 /* we can update the count and save it */
17bd5f47 749 block_index = cluster_index & (s->refcount_block_size - 1);
f7d0fe02 750
7453c96b 751 refcount = s->get_refcount(refcount_block, block_index);
0e06528e
HR
752 if (decrease ? (refcount - addend > refcount)
753 : (refcount + addend < refcount ||
754 refcount + addend > s->refcount_max))
2aabe7c7 755 {
09508d13
KW
756 ret = -EINVAL;
757 goto fail;
758 }
2aabe7c7
HR
759 if (decrease) {
760 refcount -= addend;
761 } else {
762 refcount += addend;
763 }
f7d0fe02
KW
764 if (refcount == 0 && cluster_index < s->free_cluster_index) {
765 s->free_cluster_index = cluster_index;
766 }
7453c96b 767 s->set_refcount(refcount_block, block_index, refcount);
0b919fae 768
67af674e 769 if (refcount == 0 && s->discard_passthrough[type]) {
0b919fae 770 update_refcount_discard(bs, cluster_offset, s->cluster_size);
67af674e 771 }
f7d0fe02
KW
772 }
773
09508d13
KW
774 ret = 0;
775fail:
0b919fae
KW
776 if (!s->cache_discards) {
777 qcow2_process_discards(bs, ret);
778 }
779
f7d0fe02 780 /* Write last changed block to disk */
29c1a730 781 if (refcount_block) {
a3f1afb4 782 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
f7d0fe02
KW
783 }
784
09508d13
KW
785 /*
786 * Try do undo any updates if an error is returned (This may succeed in
787 * some cases like ENOSPC for allocating a new refcount block)
788 */
789 if (ret < 0) {
790 int dummy;
2aabe7c7
HR
791 dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
792 !decrease, QCOW2_DISCARD_NEVER);
83e3f76c 793 (void)dummy;
09508d13
KW
794 }
795
796 return ret;
f7d0fe02
KW
797}
798
018faafd 799/*
44751917 800 * Increases or decreases the refcount of a given cluster.
018faafd 801 *
2aabe7c7
HR
802 * @addend is the absolute value of the addend; if @decrease is set, @addend
803 * will be subtracted from the current refcount, otherwise it will be added.
804 *
c6e9d8ae 805 * On success 0 is returned; on failure -errno is returned.
018faafd 806 */
32b6444d
HR
807int qcow2_update_cluster_refcount(BlockDriverState *bs,
808 int64_t cluster_index,
0e06528e 809 uint64_t addend, bool decrease,
32b6444d 810 enum qcow2_discard_type type)
f7d0fe02 811{
ff99129a 812 BDRVQcow2State *s = bs->opaque;
f7d0fe02
KW
813 int ret;
814
6cfcb9b8 815 ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
2aabe7c7 816 decrease, type);
f7d0fe02
KW
817 if (ret < 0) {
818 return ret;
819 }
820
c6e9d8ae 821 return 0;
f7d0fe02
KW
822}
823
824
825
826/*********************************************************/
827/* cluster allocation functions */
828
829
830
831/* return < 0 if error */
bb572aef 832static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
f7d0fe02 833{
ff99129a 834 BDRVQcow2State *s = bs->opaque;
0e06528e 835 uint64_t i, nb_clusters, refcount;
7324c10f 836 int ret;
f7d0fe02 837
ecbda7a2
KW
838 /* We can't allocate clusters if they may still be queued for discard. */
839 if (s->cache_discards) {
840 qcow2_process_discards(bs, 0);
841 }
842
f7d0fe02
KW
843 nb_clusters = size_to_clusters(s, size);
844retry:
845 for(i = 0; i < nb_clusters; i++) {
bb572aef 846 uint64_t next_cluster_index = s->free_cluster_index++;
7324c10f 847 ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
2eaa8f63 848
7324c10f
HR
849 if (ret < 0) {
850 return ret;
2eaa8f63 851 } else if (refcount != 0) {
f7d0fe02 852 goto retry;
2eaa8f63 853 }
f7d0fe02 854 }
91f827dc
HR
855
856 /* Make sure that all offsets in the "allocated" range are representable
857 * in an int64_t */
65f33bc0
HR
858 if (s->free_cluster_index > 0 &&
859 s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
860 {
91f827dc
HR
861 return -EFBIG;
862 }
863
f7d0fe02 864#ifdef DEBUG_ALLOC2
35ee5e39 865 fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
f7d0fe02
KW
866 size,
867 (s->free_cluster_index - nb_clusters) << s->cluster_bits);
868#endif
869 return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
870}
871
bb572aef 872int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
f7d0fe02
KW
873{
874 int64_t offset;
db3a964f 875 int ret;
f7d0fe02 876
66f82cee 877 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
b106ad91
KW
878 do {
879 offset = alloc_clusters_noref(bs, size);
880 if (offset < 0) {
881 return offset;
882 }
883
2aabe7c7 884 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
b106ad91 885 } while (ret == -EAGAIN);
2eaa8f63 886
db3a964f
KW
887 if (ret < 0) {
888 return ret;
889 }
1c4c2814 890
f7d0fe02
KW
891 return offset;
892}
893
b6d36def
HR
894int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
895 int64_t nb_clusters)
256900b1 896{
ff99129a 897 BDRVQcow2State *s = bs->opaque;
0e06528e 898 uint64_t cluster_index, refcount;
33304ec9 899 uint64_t i;
7324c10f 900 int ret;
33304ec9
HT
901
902 assert(nb_clusters >= 0);
903 if (nb_clusters == 0) {
904 return 0;
905 }
256900b1 906
b106ad91
KW
907 do {
908 /* Check how many clusters there are free */
909 cluster_index = offset >> s->cluster_bits;
910 for(i = 0; i < nb_clusters; i++) {
7324c10f
HR
911 ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
912 if (ret < 0) {
913 return ret;
b106ad91
KW
914 } else if (refcount != 0) {
915 break;
916 }
256900b1 917 }
256900b1 918
b106ad91 919 /* And then allocate them */
2aabe7c7 920 ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
b106ad91
KW
921 QCOW2_DISCARD_NEVER);
922 } while (ret == -EAGAIN);
f24423bd 923
256900b1
KW
924 if (ret < 0) {
925 return ret;
926 }
927
928 return i;
929}
930
f7d0fe02
KW
931/* only used to allocate compressed sectors. We try to allocate
932 contiguous sectors. size must be <= cluster_size */
ed6ccf0f 933int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
f7d0fe02 934{
ff99129a 935 BDRVQcow2State *s = bs->opaque;
8c44dfbc
HR
936 int64_t offset;
937 size_t free_in_cluster;
938 int ret;
f7d0fe02 939
66f82cee 940 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
f7d0fe02 941 assert(size > 0 && size <= s->cluster_size);
8c44dfbc
HR
942 assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
943
944 offset = s->free_byte_offset;
945
946 if (offset) {
0e06528e 947 uint64_t refcount;
7324c10f
HR
948 ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
949 if (ret < 0) {
950 return ret;
5d757b56 951 }
8c44dfbc 952
346a53df 953 if (refcount == s->refcount_max) {
8c44dfbc 954 offset = 0;
5d757b56 955 }
8c44dfbc
HR
956 }
957
958 free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
3e5feb62
JM
959 do {
960 if (!offset || free_in_cluster < size) {
961 int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
962 if (new_cluster < 0) {
963 return new_cluster;
964 }
8c44dfbc 965
3e5feb62
JM
966 if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
967 offset = new_cluster;
2ac01520
HR
968 free_in_cluster = s->cluster_size;
969 } else {
970 free_in_cluster += s->cluster_size;
3e5feb62 971 }
f7d0fe02 972 }
29216ed1 973
3e5feb62
JM
974 assert(offset);
975 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
2ac01520
HR
976 if (ret < 0) {
977 offset = 0;
978 }
3e5feb62 979 } while (ret == -EAGAIN);
8c44dfbc
HR
980 if (ret < 0) {
981 return ret;
982 }
983
984 /* The cluster refcount was incremented; refcount blocks must be flushed
985 * before the caller's L2 table updates. */
c1f5bafd 986 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
8c44dfbc
HR
987
988 s->free_byte_offset = offset + size;
989 if (!offset_into_cluster(s, s->free_byte_offset)) {
990 s->free_byte_offset = 0;
991 }
992
f7d0fe02
KW
993 return offset;
994}
995
ed6ccf0f 996void qcow2_free_clusters(BlockDriverState *bs,
6cfcb9b8
KW
997 int64_t offset, int64_t size,
998 enum qcow2_discard_type type)
f7d0fe02 999{
db3a964f
KW
1000 int ret;
1001
66f82cee 1002 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
2aabe7c7 1003 ret = update_refcount(bs, offset, size, 1, true, type);
db3a964f
KW
1004 if (ret < 0) {
1005 fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
003fad6e 1006 /* TODO Remember the clusters to free them later and avoid leaking */
db3a964f 1007 }
f7d0fe02
KW
1008}
1009
45aba42f 1010/*
c7a4c37a
KW
1011 * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1012 * normal cluster, compressed cluster, etc.)
45aba42f 1013 */
6cfcb9b8
KW
1014void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1015 int nb_clusters, enum qcow2_discard_type type)
45aba42f 1016{
ff99129a 1017 BDRVQcow2State *s = bs->opaque;
45aba42f 1018
c7a4c37a
KW
1019 switch (qcow2_get_cluster_type(l2_entry)) {
1020 case QCOW2_CLUSTER_COMPRESSED:
1021 {
1022 int nb_csectors;
1023 nb_csectors = ((l2_entry >> s->csize_shift) &
1024 s->csize_mask) + 1;
1025 qcow2_free_clusters(bs,
1026 (l2_entry & s->cluster_offset_mask) & ~511,
6cfcb9b8 1027 nb_csectors * 512, type);
c7a4c37a
KW
1028 }
1029 break;
1030 case QCOW2_CLUSTER_NORMAL:
fdfab37d
EB
1031 case QCOW2_CLUSTER_ZERO_ALLOC:
1032 if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1033 qcow2_signal_corruption(bs, false, -1, -1,
1034 "Cannot free unaligned cluster %#llx",
1035 l2_entry & L2E_OFFSET_MASK);
1036 } else {
1037 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1038 nb_clusters << s->cluster_bits, type);
8f730dd2 1039 }
c7a4c37a 1040 break;
fdfab37d 1041 case QCOW2_CLUSTER_ZERO_PLAIN:
c7a4c37a
KW
1042 case QCOW2_CLUSTER_UNALLOCATED:
1043 break;
1044 default:
1045 abort();
45aba42f 1046 }
45aba42f
KW
1047}
1048
f7d0fe02
KW
1049
1050
1051/*********************************************************/
1052/* snapshots and image creation */
1053
1054
1055
f7d0fe02 1056/* update the refcounts of snapshots and the copied flag */
ed6ccf0f
KW
1057int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1058 int64_t l1_table_offset, int l1_size, int addend)
f7d0fe02 1059{
ff99129a 1060 BDRVQcow2State *s = bs->opaque;
b32cbae1 1061 uint64_t *l1_table, *l2_table, l2_offset, entry, l1_size2, refcount;
de82815d 1062 bool l1_allocated = false;
b32cbae1 1063 int64_t old_entry, old_l2_offset;
7324c10f 1064 int i, j, l1_modified = 0, nb_csectors;
29c1a730 1065 int ret;
f7d0fe02 1066
2aabe7c7
HR
1067 assert(addend >= -1 && addend <= 1);
1068
f7d0fe02
KW
1069 l2_table = NULL;
1070 l1_table = NULL;
1071 l1_size2 = l1_size * sizeof(uint64_t);
43a0cac4 1072
0b919fae
KW
1073 s->cache_discards = true;
1074
43a0cac4
KW
1075 /* WARNING: qcow2_snapshot_goto relies on this function not using the
1076 * l1_table_offset when it is the current s->l1_table_offset! Be careful
1077 * when changing this! */
f7d0fe02 1078 if (l1_table_offset != s->l1_table_offset) {
de82815d
KW
1079 l1_table = g_try_malloc0(align_offset(l1_size2, 512));
1080 if (l1_size2 && l1_table == NULL) {
1081 ret = -ENOMEM;
1082 goto fail;
1083 }
1084 l1_allocated = true;
c2bc78b6 1085
cf2ab8fc 1086 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
c2bc78b6 1087 if (ret < 0) {
f7d0fe02 1088 goto fail;
93913dfd
KW
1089 }
1090
b32cbae1 1091 for (i = 0; i < l1_size; i++) {
f7d0fe02 1092 be64_to_cpus(&l1_table[i]);
b32cbae1 1093 }
f7d0fe02
KW
1094 } else {
1095 assert(l1_size == s->l1_size);
1096 l1_table = s->l1_table;
de82815d 1097 l1_allocated = false;
f7d0fe02
KW
1098 }
1099
b32cbae1 1100 for (i = 0; i < l1_size; i++) {
f7d0fe02
KW
1101 l2_offset = l1_table[i];
1102 if (l2_offset) {
1103 old_l2_offset = l2_offset;
8e37f681 1104 l2_offset &= L1E_OFFSET_MASK;
29c1a730 1105
a97c67ee
HR
1106 if (offset_into_cluster(s, l2_offset)) {
1107 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1108 PRIx64 " unaligned (L1 index: %#x)",
1109 l2_offset, i);
1110 ret = -EIO;
1111 goto fail;
1112 }
1113
29c1a730
KW
1114 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1115 (void**) &l2_table);
1116 if (ret < 0) {
f7d0fe02 1117 goto fail;
29c1a730
KW
1118 }
1119
b32cbae1 1120 for (j = 0; j < s->l2_size; j++) {
8b81a7b6 1121 uint64_t cluster_index;
b32cbae1 1122 uint64_t offset;
8b81a7b6 1123
b32cbae1
EB
1124 entry = be64_to_cpu(l2_table[j]);
1125 old_entry = entry;
1126 entry &= ~QCOW_OFLAG_COPIED;
1127 offset = entry & L2E_OFFSET_MASK;
8b81a7b6 1128
b32cbae1 1129 switch (qcow2_get_cluster_type(entry)) {
bbd995d8
EB
1130 case QCOW2_CLUSTER_COMPRESSED:
1131 nb_csectors = ((entry >> s->csize_shift) &
1132 s->csize_mask) + 1;
1133 if (addend != 0) {
1134 ret = update_refcount(bs,
b32cbae1 1135 (entry & s->cluster_offset_mask) & ~511,
2aabe7c7 1136 nb_csectors * 512, abs(addend), addend < 0,
6cfcb9b8 1137 QCOW2_DISCARD_SNAPSHOT);
bbd995d8 1138 if (ret < 0) {
a97c67ee
HR
1139 goto fail;
1140 }
bbd995d8
EB
1141 }
1142 /* compressed clusters are never modified */
1143 refcount = 2;
1144 break;
1145
1146 case QCOW2_CLUSTER_NORMAL:
fdfab37d 1147 case QCOW2_CLUSTER_ZERO_ALLOC:
bbd995d8 1148 if (offset_into_cluster(s, offset)) {
fdfab37d
EB
1149 qcow2_signal_corruption(bs, true, -1, -1, "Cluster "
1150 "allocation offset %#" PRIx64
bbd995d8
EB
1151 " unaligned (L2 offset: %#"
1152 PRIx64 ", L2 index: %#x)",
1153 offset, l2_offset, j);
1154 ret = -EIO;
1155 goto fail;
1156 }
a97c67ee 1157
bbd995d8 1158 cluster_index = offset >> s->cluster_bits;
fdfab37d 1159 assert(cluster_index);
bbd995d8
EB
1160 if (addend != 0) {
1161 ret = qcow2_update_cluster_refcount(bs,
2aabe7c7 1162 cluster_index, abs(addend), addend < 0,
32b6444d 1163 QCOW2_DISCARD_SNAPSHOT);
7324c10f 1164 if (ret < 0) {
018faafd
KW
1165 goto fail;
1166 }
bbd995d8 1167 }
f7d0fe02 1168
bbd995d8
EB
1169 ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1170 if (ret < 0) {
1171 goto fail;
1172 }
1173 break;
1174
fdfab37d 1175 case QCOW2_CLUSTER_ZERO_PLAIN:
bbd995d8
EB
1176 case QCOW2_CLUSTER_UNALLOCATED:
1177 refcount = 0;
1178 break;
8b81a7b6 1179
bbd995d8
EB
1180 default:
1181 abort();
8b81a7b6
HR
1182 }
1183
1184 if (refcount == 1) {
b32cbae1 1185 entry |= QCOW_OFLAG_COPIED;
8b81a7b6 1186 }
b32cbae1 1187 if (entry != old_entry) {
8b81a7b6
HR
1188 if (addend > 0) {
1189 qcow2_cache_set_dependency(bs, s->l2_table_cache,
1190 s->refcount_block_cache);
f7d0fe02 1191 }
b32cbae1 1192 l2_table[j] = cpu_to_be64(entry);
72e80b89
AG
1193 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache,
1194 l2_table);
f7d0fe02
KW
1195 }
1196 }
29c1a730 1197
a3f1afb4 1198 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
29c1a730 1199
f7d0fe02 1200 if (addend != 0) {
c6e9d8ae
HR
1201 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1202 s->cluster_bits,
2aabe7c7 1203 abs(addend), addend < 0,
c6e9d8ae
HR
1204 QCOW2_DISCARD_SNAPSHOT);
1205 if (ret < 0) {
1206 goto fail;
1207 }
f7d0fe02 1208 }
7324c10f
HR
1209 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1210 &refcount);
1211 if (ret < 0) {
018faafd
KW
1212 goto fail;
1213 } else if (refcount == 1) {
f7d0fe02
KW
1214 l2_offset |= QCOW_OFLAG_COPIED;
1215 }
1216 if (l2_offset != old_l2_offset) {
1217 l1_table[i] = l2_offset;
1218 l1_modified = 1;
1219 }
1220 }
1221 }
93913dfd 1222
2154f24e 1223 ret = bdrv_flush(bs);
93913dfd
KW
1224fail:
1225 if (l2_table) {
1226 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1227 }
1228
0b919fae
KW
1229 s->cache_discards = false;
1230 qcow2_process_discards(bs, ret);
1231
43a0cac4 1232 /* Update L1 only if it isn't deleted anyway (addend = -1) */
c2b6ff51
KW
1233 if (ret == 0 && addend >= 0 && l1_modified) {
1234 for (i = 0; i < l1_size; i++) {
f7d0fe02 1235 cpu_to_be64s(&l1_table[i]);
c2b6ff51
KW
1236 }
1237
d9ca2ea2 1238 ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
9a4f4c31 1239 l1_table, l1_size2);
c2b6ff51
KW
1240
1241 for (i = 0; i < l1_size; i++) {
f7d0fe02 1242 be64_to_cpus(&l1_table[i]);
c2b6ff51 1243 }
f7d0fe02
KW
1244 }
1245 if (l1_allocated)
7267c094 1246 g_free(l1_table);
93913dfd 1247 return ret;
f7d0fe02
KW
1248}
1249
1250
1251
1252
1253/*********************************************************/
1254/* refcount checking functions */
1255
1256
c2551b47 1257static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
5fee192e
HR
1258{
1259 /* This assertion holds because there is no way we can address more than
1260 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1261 * offsets have to be representable in bytes); due to every cluster
1262 * corresponding to one refcount entry, we are well below that limit */
1263 assert(entries < (UINT64_C(1) << (64 - 9)));
1264
1265 /* Thanks to the assertion this will not overflow, because
1266 * s->refcount_order < 7.
1267 * (note: x << s->refcount_order == x * s->refcount_bits) */
1268 return DIV_ROUND_UP(entries << s->refcount_order, 8);
1269}
1270
1271/**
1272 * Reallocates *array so that it can hold new_size entries. *size must contain
1273 * the current number of entries in *array. If the reallocation fails, *array
1274 * and *size will not be modified and -errno will be returned. If the
1275 * reallocation is successful, *array will be set to the new buffer, *size
1276 * will be set to new_size and 0 will be returned. The size of the reallocated
1277 * refcount array buffer will be aligned to a cluster boundary, and the newly
1278 * allocated area will be zeroed.
1279 */
ff99129a 1280static int realloc_refcount_array(BDRVQcow2State *s, void **array,
5fee192e
HR
1281 int64_t *size, int64_t new_size)
1282{
b6d36def 1283 int64_t old_byte_size, new_byte_size;
7453c96b 1284 void *new_ptr;
5fee192e
HR
1285
1286 /* Round to clusters so the array can be directly written to disk */
1287 old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1288 * s->cluster_size;
1289 new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1290 * s->cluster_size;
1291
1292 if (new_byte_size == old_byte_size) {
1293 *size = new_size;
1294 return 0;
1295 }
1296
1297 assert(new_byte_size > 0);
1298
b6d36def
HR
1299 if (new_byte_size > SIZE_MAX) {
1300 return -ENOMEM;
1301 }
1302
5fee192e
HR
1303 new_ptr = g_try_realloc(*array, new_byte_size);
1304 if (!new_ptr) {
1305 return -ENOMEM;
1306 }
1307
1308 if (new_byte_size > old_byte_size) {
b6d36def 1309 memset((char *)new_ptr + old_byte_size, 0,
5fee192e
HR
1310 new_byte_size - old_byte_size);
1311 }
1312
1313 *array = new_ptr;
1314 *size = new_size;
1315
1316 return 0;
1317}
f7d0fe02
KW
1318
1319/*
1320 * Increases the refcount for a range of clusters in a given refcount table.
1321 * This is used to construct a temporary refcount table out of L1 and L2 tables
b6af0975 1322 * which can be compared to the refcount table saved in the image.
f7d0fe02 1323 *
9ac228e0 1324 * Modifies the number of errors in res.
f7d0fe02 1325 */
8a5bb1f1
VSO
1326int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1327 void **refcount_table,
1328 int64_t *refcount_table_size,
1329 int64_t offset, int64_t size)
f7d0fe02 1330{
ff99129a 1331 BDRVQcow2State *s = bs->opaque;
7453c96b 1332 uint64_t start, last, cluster_offset, k, refcount;
5fee192e 1333 int ret;
f7d0fe02 1334
fef4d3d5
HR
1335 if (size <= 0) {
1336 return 0;
1337 }
f7d0fe02 1338
ac95acdb
HT
1339 start = start_of_cluster(s, offset);
1340 last = start_of_cluster(s, offset + size - 1);
f7d0fe02
KW
1341 for(cluster_offset = start; cluster_offset <= last;
1342 cluster_offset += s->cluster_size) {
1343 k = cluster_offset >> s->cluster_bits;
641bb63c 1344 if (k >= *refcount_table_size) {
5fee192e
HR
1345 ret = realloc_refcount_array(s, refcount_table,
1346 refcount_table_size, k + 1);
1347 if (ret < 0) {
641bb63c 1348 res->check_errors++;
5fee192e 1349 return ret;
f7d0fe02 1350 }
641bb63c
HR
1351 }
1352
7453c96b
HR
1353 refcount = s->get_refcount(*refcount_table, k);
1354 if (refcount == s->refcount_max) {
641bb63c
HR
1355 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1356 "\n", cluster_offset);
03bb78ed
HR
1357 fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1358 "width or qemu-img convert to create a clean copy if the "
1359 "image cannot be opened for writing\n");
641bb63c 1360 res->corruptions++;
7453c96b 1361 continue;
f7d0fe02 1362 }
7453c96b 1363 s->set_refcount(*refcount_table, k, refcount + 1);
f7d0fe02 1364 }
fef4d3d5
HR
1365
1366 return 0;
f7d0fe02
KW
1367}
1368
801f7044
SH
1369/* Flags for check_refcounts_l1() and check_refcounts_l2() */
1370enum {
fba31bae 1371 CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */
801f7044
SH
1372};
1373
f7d0fe02
KW
1374/*
1375 * Increases the refcount in the given refcount table for the all clusters
1376 * referenced in the L2 table. While doing so, performs some checks on L2
1377 * entries.
1378 *
1379 * Returns the number of errors found by the checks or -errno if an internal
1380 * error occurred.
1381 */
9ac228e0 1382static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
7453c96b
HR
1383 void **refcount_table,
1384 int64_t *refcount_table_size, int64_t l2_offset,
1385 int flags)
f7d0fe02 1386{
ff99129a 1387 BDRVQcow2State *s = bs->opaque;
afdf0abe 1388 uint64_t *l2_table, l2_entry;
fba31bae 1389 uint64_t next_contiguous_offset = 0;
ad27390c 1390 int i, l2_size, nb_csectors, ret;
f7d0fe02
KW
1391
1392 /* Read L2 table from disk */
1393 l2_size = s->l2_size * sizeof(uint64_t);
7267c094 1394 l2_table = g_malloc(l2_size);
f7d0fe02 1395
cf2ab8fc 1396 ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
ad27390c
HR
1397 if (ret < 0) {
1398 fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1399 res->check_errors++;
f7d0fe02 1400 goto fail;
ad27390c 1401 }
f7d0fe02
KW
1402
1403 /* Do the actual checks */
1404 for(i = 0; i < s->l2_size; i++) {
afdf0abe
KW
1405 l2_entry = be64_to_cpu(l2_table[i]);
1406
1407 switch (qcow2_get_cluster_type(l2_entry)) {
1408 case QCOW2_CLUSTER_COMPRESSED:
1409 /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1410 if (l2_entry & QCOW_OFLAG_COPIED) {
1411 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
1412 "copied flag must never be set for compressed "
1413 "clusters\n", l2_entry >> s->cluster_bits);
1414 l2_entry &= ~QCOW_OFLAG_COPIED;
1415 res->corruptions++;
1416 }
f7d0fe02 1417
afdf0abe
KW
1418 /* Mark cluster as used */
1419 nb_csectors = ((l2_entry >> s->csize_shift) &
1420 s->csize_mask) + 1;
1421 l2_entry &= s->cluster_offset_mask;
8a5bb1f1
VSO
1422 ret = qcow2_inc_refcounts_imrt(bs, res,
1423 refcount_table, refcount_table_size,
1424 l2_entry & ~511, nb_csectors * 512);
fef4d3d5
HR
1425 if (ret < 0) {
1426 goto fail;
1427 }
fba31bae
SH
1428
1429 if (flags & CHECK_FRAG_INFO) {
1430 res->bfi.allocated_clusters++;
4db35162 1431 res->bfi.compressed_clusters++;
fba31bae
SH
1432
1433 /* Compressed clusters are fragmented by nature. Since they
1434 * take up sub-sector space but we only have sector granularity
1435 * I/O we need to re-read the same sectors even for adjacent
1436 * compressed clusters.
1437 */
1438 res->bfi.fragmented_clusters++;
1439 }
afdf0abe 1440 break;
f7d0fe02 1441
fdfab37d 1442 case QCOW2_CLUSTER_ZERO_ALLOC:
afdf0abe
KW
1443 case QCOW2_CLUSTER_NORMAL:
1444 {
afdf0abe 1445 uint64_t offset = l2_entry & L2E_OFFSET_MASK;
f7d0fe02 1446
fba31bae
SH
1447 if (flags & CHECK_FRAG_INFO) {
1448 res->bfi.allocated_clusters++;
1449 if (next_contiguous_offset &&
1450 offset != next_contiguous_offset) {
1451 res->bfi.fragmented_clusters++;
1452 }
1453 next_contiguous_offset = offset + s->cluster_size;
1454 }
1455
afdf0abe 1456 /* Mark cluster as used */
8a5bb1f1
VSO
1457 ret = qcow2_inc_refcounts_imrt(bs, res,
1458 refcount_table, refcount_table_size,
1459 offset, s->cluster_size);
fef4d3d5
HR
1460 if (ret < 0) {
1461 goto fail;
1462 }
afdf0abe
KW
1463
1464 /* Correct offsets are cluster aligned */
ac95acdb 1465 if (offset_into_cluster(s, offset)) {
afdf0abe
KW
1466 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
1467 "properly aligned; L2 entry corrupted.\n", offset);
1468 res->corruptions++;
1469 }
1470 break;
1471 }
1472
fdfab37d 1473 case QCOW2_CLUSTER_ZERO_PLAIN:
afdf0abe
KW
1474 case QCOW2_CLUSTER_UNALLOCATED:
1475 break;
1476
1477 default:
1478 abort();
f7d0fe02
KW
1479 }
1480 }
1481
7267c094 1482 g_free(l2_table);
9ac228e0 1483 return 0;
f7d0fe02
KW
1484
1485fail:
7267c094 1486 g_free(l2_table);
ad27390c 1487 return ret;
f7d0fe02
KW
1488}
1489
1490/*
1491 * Increases the refcount for the L1 table, its L2 tables and all referenced
1492 * clusters in the given refcount table. While doing so, performs some checks
1493 * on L1 and L2 entries.
1494 *
1495 * Returns the number of errors found by the checks or -errno if an internal
1496 * error occurred.
1497 */
1498static int check_refcounts_l1(BlockDriverState *bs,
9ac228e0 1499 BdrvCheckResult *res,
7453c96b 1500 void **refcount_table,
641bb63c 1501 int64_t *refcount_table_size,
f7d0fe02 1502 int64_t l1_table_offset, int l1_size,
801f7044 1503 int flags)
f7d0fe02 1504{
ff99129a 1505 BDRVQcow2State *s = bs->opaque;
fef4d3d5 1506 uint64_t *l1_table = NULL, l2_offset, l1_size2;
4f6ed88c 1507 int i, ret;
f7d0fe02
KW
1508
1509 l1_size2 = l1_size * sizeof(uint64_t);
1510
1511 /* Mark L1 table as used */
8a5bb1f1
VSO
1512 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1513 l1_table_offset, l1_size2);
fef4d3d5
HR
1514 if (ret < 0) {
1515 goto fail;
1516 }
f7d0fe02
KW
1517
1518 /* Read L1 table entries from disk */
fef4d3d5 1519 if (l1_size2 > 0) {
de82815d
KW
1520 l1_table = g_try_malloc(l1_size2);
1521 if (l1_table == NULL) {
1522 ret = -ENOMEM;
ad27390c 1523 res->check_errors++;
de82815d
KW
1524 goto fail;
1525 }
cf2ab8fc 1526 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
ad27390c
HR
1527 if (ret < 0) {
1528 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1529 res->check_errors++;
702ef63f 1530 goto fail;
ad27390c 1531 }
702ef63f
KW
1532 for(i = 0;i < l1_size; i++)
1533 be64_to_cpus(&l1_table[i]);
1534 }
f7d0fe02
KW
1535
1536 /* Do the actual checks */
1537 for(i = 0; i < l1_size; i++) {
1538 l2_offset = l1_table[i];
1539 if (l2_offset) {
f7d0fe02 1540 /* Mark L2 table as used */
afdf0abe 1541 l2_offset &= L1E_OFFSET_MASK;
8a5bb1f1
VSO
1542 ret = qcow2_inc_refcounts_imrt(bs, res,
1543 refcount_table, refcount_table_size,
1544 l2_offset, s->cluster_size);
fef4d3d5
HR
1545 if (ret < 0) {
1546 goto fail;
1547 }
f7d0fe02
KW
1548
1549 /* L2 tables are cluster aligned */
ac95acdb 1550 if (offset_into_cluster(s, l2_offset)) {
f7d0fe02
KW
1551 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1552 "cluster aligned; L1 entry corrupted\n", l2_offset);
9ac228e0 1553 res->corruptions++;
f7d0fe02
KW
1554 }
1555
1556 /* Process and check L2 entries */
9ac228e0 1557 ret = check_refcounts_l2(bs, res, refcount_table,
801f7044 1558 refcount_table_size, l2_offset, flags);
f7d0fe02
KW
1559 if (ret < 0) {
1560 goto fail;
1561 }
f7d0fe02
KW
1562 }
1563 }
7267c094 1564 g_free(l1_table);
9ac228e0 1565 return 0;
f7d0fe02
KW
1566
1567fail:
7267c094 1568 g_free(l1_table);
ad27390c 1569 return ret;
f7d0fe02
KW
1570}
1571
4f6ed88c
HR
1572/*
1573 * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1574 *
1575 * This function does not print an error message nor does it increment
44751917
HR
1576 * check_errors if qcow2_get_refcount fails (this is because such an error will
1577 * have been already detected and sufficiently signaled by the calling function
4f6ed88c
HR
1578 * (qcow2_check_refcounts) by the time this function is called).
1579 */
e23e400e
HR
1580static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1581 BdrvCheckMode fix)
4f6ed88c 1582{
ff99129a 1583 BDRVQcow2State *s = bs->opaque;
4f6ed88c
HR
1584 uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1585 int ret;
0e06528e 1586 uint64_t refcount;
4f6ed88c
HR
1587 int i, j;
1588
1589 for (i = 0; i < s->l1_size; i++) {
1590 uint64_t l1_entry = s->l1_table[i];
1591 uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
e23e400e 1592 bool l2_dirty = false;
4f6ed88c
HR
1593
1594 if (!l2_offset) {
1595 continue;
1596 }
1597
7324c10f
HR
1598 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1599 &refcount);
1600 if (ret < 0) {
4f6ed88c
HR
1601 /* don't print message nor increment check_errors */
1602 continue;
1603 }
1604 if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
e23e400e 1605 fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
0e06528e 1606 "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
e23e400e
HR
1607 fix & BDRV_FIX_ERRORS ? "Repairing" :
1608 "ERROR",
4f6ed88c 1609 i, l1_entry, refcount);
e23e400e
HR
1610 if (fix & BDRV_FIX_ERRORS) {
1611 s->l1_table[i] = refcount == 1
1612 ? l1_entry | QCOW_OFLAG_COPIED
1613 : l1_entry & ~QCOW_OFLAG_COPIED;
1614 ret = qcow2_write_l1_entry(bs, i);
1615 if (ret < 0) {
1616 res->check_errors++;
1617 goto fail;
1618 }
1619 res->corruptions_fixed++;
1620 } else {
1621 res->corruptions++;
1622 }
4f6ed88c
HR
1623 }
1624
cf2ab8fc 1625 ret = bdrv_pread(bs->file, l2_offset, l2_table,
4f6ed88c
HR
1626 s->l2_size * sizeof(uint64_t));
1627 if (ret < 0) {
1628 fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1629 strerror(-ret));
1630 res->check_errors++;
1631 goto fail;
1632 }
1633
1634 for (j = 0; j < s->l2_size; j++) {
1635 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1636 uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
3ef95218 1637 QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
4f6ed88c 1638
fdfab37d
EB
1639 if (cluster_type == QCOW2_CLUSTER_NORMAL ||
1640 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
7324c10f
HR
1641 ret = qcow2_get_refcount(bs,
1642 data_offset >> s->cluster_bits,
1643 &refcount);
1644 if (ret < 0) {
4f6ed88c
HR
1645 /* don't print message nor increment check_errors */
1646 continue;
1647 }
1648 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
e23e400e 1649 fprintf(stderr, "%s OFLAG_COPIED data cluster: "
0e06528e 1650 "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
e23e400e
HR
1651 fix & BDRV_FIX_ERRORS ? "Repairing" :
1652 "ERROR",
4f6ed88c 1653 l2_entry, refcount);
e23e400e
HR
1654 if (fix & BDRV_FIX_ERRORS) {
1655 l2_table[j] = cpu_to_be64(refcount == 1
1656 ? l2_entry | QCOW_OFLAG_COPIED
1657 : l2_entry & ~QCOW_OFLAG_COPIED);
1658 l2_dirty = true;
1659 res->corruptions_fixed++;
1660 } else {
1661 res->corruptions++;
1662 }
4f6ed88c
HR
1663 }
1664 }
1665 }
e23e400e
HR
1666
1667 if (l2_dirty) {
231bb267
HR
1668 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1669 l2_offset, s->cluster_size);
e23e400e
HR
1670 if (ret < 0) {
1671 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1672 "overlap check failed: %s\n", strerror(-ret));
1673 res->check_errors++;
1674 goto fail;
1675 }
1676
d9ca2ea2 1677 ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
9a4f4c31 1678 s->cluster_size);
e23e400e
HR
1679 if (ret < 0) {
1680 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1681 strerror(-ret));
1682 res->check_errors++;
1683 goto fail;
1684 }
1685 }
4f6ed88c
HR
1686 }
1687
1688 ret = 0;
1689
1690fail:
1691 qemu_vfree(l2_table);
1692 return ret;
1693}
1694
6ca56bf5
HR
1695/*
1696 * Checks consistency of refblocks and accounts for each refblock in
1697 * *refcount_table.
1698 */
1699static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
f307b255 1700 BdrvCheckMode fix, bool *rebuild,
7453c96b 1701 void **refcount_table, int64_t *nb_clusters)
6ca56bf5 1702{
ff99129a 1703 BDRVQcow2State *s = bs->opaque;
001c158d 1704 int64_t i, size;
fef4d3d5 1705 int ret;
6ca56bf5 1706
f7d0fe02 1707 for(i = 0; i < s->refcount_table_size; i++) {
6882c8fa 1708 uint64_t offset, cluster;
f7d0fe02 1709 offset = s->refcount_table[i];
6882c8fa 1710 cluster = offset >> s->cluster_bits;
746c3cb5
KW
1711
1712 /* Refcount blocks are cluster aligned */
ac95acdb 1713 if (offset_into_cluster(s, offset)) {
166acf54 1714 fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
746c3cb5 1715 "cluster aligned; refcount table entry corrupted\n", i);
9ac228e0 1716 res->corruptions++;
f307b255 1717 *rebuild = true;
6882c8fa
KW
1718 continue;
1719 }
1720
6ca56bf5 1721 if (cluster >= *nb_clusters) {
001c158d
HR
1722 fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1723 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1724
1725 if (fix & BDRV_FIX_ERRORS) {
5fee192e 1726 int64_t new_nb_clusters;
ed3d2ec9 1727 Error *local_err = NULL;
001c158d
HR
1728
1729 if (offset > INT64_MAX - s->cluster_size) {
1730 ret = -EINVAL;
1731 goto resize_fail;
1732 }
1733
ed3d2ec9 1734 ret = bdrv_truncate(bs->file, offset + s->cluster_size,
7ea37c30 1735 PREALLOC_MODE_OFF, &local_err);
001c158d 1736 if (ret < 0) {
ed3d2ec9 1737 error_report_err(local_err);
001c158d
HR
1738 goto resize_fail;
1739 }
9a4f4c31 1740 size = bdrv_getlength(bs->file->bs);
001c158d
HR
1741 if (size < 0) {
1742 ret = size;
1743 goto resize_fail;
1744 }
1745
5fee192e
HR
1746 new_nb_clusters = size_to_clusters(s, size);
1747 assert(new_nb_clusters >= *nb_clusters);
001c158d 1748
5fee192e
HR
1749 ret = realloc_refcount_array(s, refcount_table,
1750 nb_clusters, new_nb_clusters);
1751 if (ret < 0) {
001c158d 1752 res->check_errors++;
5fee192e 1753 return ret;
001c158d 1754 }
001c158d
HR
1755
1756 if (cluster >= *nb_clusters) {
1757 ret = -EINVAL;
1758 goto resize_fail;
1759 }
1760
1761 res->corruptions_fixed++;
8a5bb1f1
VSO
1762 ret = qcow2_inc_refcounts_imrt(bs, res,
1763 refcount_table, nb_clusters,
1764 offset, s->cluster_size);
001c158d
HR
1765 if (ret < 0) {
1766 return ret;
1767 }
1768 /* No need to check whether the refcount is now greater than 1:
1769 * This area was just allocated and zeroed, so it can only be
8a5bb1f1 1770 * exactly 1 after qcow2_inc_refcounts_imrt() */
001c158d
HR
1771 continue;
1772
1773resize_fail:
1774 res->corruptions++;
f307b255 1775 *rebuild = true;
001c158d
HR
1776 fprintf(stderr, "ERROR could not resize image: %s\n",
1777 strerror(-ret));
1778 } else {
1779 res->corruptions++;
1780 }
6882c8fa 1781 continue;
746c3cb5
KW
1782 }
1783
f7d0fe02 1784 if (offset != 0) {
8a5bb1f1
VSO
1785 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1786 offset, s->cluster_size);
fef4d3d5
HR
1787 if (ret < 0) {
1788 return ret;
1789 }
7453c96b 1790 if (s->get_refcount(*refcount_table, cluster) != 1) {
f307b255 1791 fprintf(stderr, "ERROR refcount block %" PRId64
7453c96b
HR
1792 " refcount=%" PRIu64 "\n", i,
1793 s->get_refcount(*refcount_table, cluster));
f307b255
HR
1794 res->corruptions++;
1795 *rebuild = true;
746c3cb5 1796 }
f7d0fe02
KW
1797 }
1798 }
1799
6ca56bf5
HR
1800 return 0;
1801}
1802
057a3fe5
HR
1803/*
1804 * Calculates an in-memory refcount table.
1805 */
1806static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
f307b255 1807 BdrvCheckMode fix, bool *rebuild,
7453c96b 1808 void **refcount_table, int64_t *nb_clusters)
057a3fe5 1809{
ff99129a 1810 BDRVQcow2State *s = bs->opaque;
057a3fe5
HR
1811 int64_t i;
1812 QCowSnapshot *sn;
1813 int ret;
1814
9696df21 1815 if (!*refcount_table) {
5fee192e
HR
1816 int64_t old_size = 0;
1817 ret = realloc_refcount_array(s, refcount_table,
1818 &old_size, *nb_clusters);
1819 if (ret < 0) {
9696df21 1820 res->check_errors++;
5fee192e 1821 return ret;
9696df21 1822 }
057a3fe5
HR
1823 }
1824
1825 /* header */
8a5bb1f1
VSO
1826 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1827 0, s->cluster_size);
fef4d3d5
HR
1828 if (ret < 0) {
1829 return ret;
1830 }
057a3fe5
HR
1831
1832 /* current L1 table */
641bb63c 1833 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
057a3fe5
HR
1834 s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO);
1835 if (ret < 0) {
1836 return ret;
1837 }
1838
1839 /* snapshots */
1840 for (i = 0; i < s->nb_snapshots; i++) {
1841 sn = s->snapshots + i;
641bb63c 1842 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
fef4d3d5 1843 sn->l1_table_offset, sn->l1_size, 0);
057a3fe5
HR
1844 if (ret < 0) {
1845 return ret;
1846 }
1847 }
8a5bb1f1
VSO
1848 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1849 s->snapshots_offset, s->snapshots_size);
fef4d3d5
HR
1850 if (ret < 0) {
1851 return ret;
1852 }
057a3fe5
HR
1853
1854 /* refcount data */
8a5bb1f1
VSO
1855 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1856 s->refcount_table_offset,
1857 s->refcount_table_size * sizeof(uint64_t));
fef4d3d5
HR
1858 if (ret < 0) {
1859 return ret;
1860 }
057a3fe5 1861
4652b8f3
DB
1862 /* encryption */
1863 if (s->crypto_header.length) {
8a5bb1f1
VSO
1864 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1865 s->crypto_header.offset,
1866 s->crypto_header.length);
4652b8f3
DB
1867 if (ret < 0) {
1868 return ret;
1869 }
1870 }
1871
88ddffae
VSO
1872 /* bitmaps */
1873 ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
1874 if (ret < 0) {
1875 return ret;
1876 }
1877
f307b255 1878 return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
057a3fe5
HR
1879}
1880
6ca56bf5
HR
1881/*
1882 * Compares the actual reference count for each cluster in the image against the
1883 * refcount as reported by the refcount structures on-disk.
1884 */
1885static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
f307b255
HR
1886 BdrvCheckMode fix, bool *rebuild,
1887 int64_t *highest_cluster,
7453c96b 1888 void *refcount_table, int64_t nb_clusters)
6ca56bf5 1889{
ff99129a 1890 BDRVQcow2State *s = bs->opaque;
6ca56bf5 1891 int64_t i;
0e06528e 1892 uint64_t refcount1, refcount2;
7324c10f 1893 int ret;
6ca56bf5
HR
1894
1895 for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
7324c10f
HR
1896 ret = qcow2_get_refcount(bs, i, &refcount1);
1897 if (ret < 0) {
166acf54 1898 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
7324c10f 1899 i, strerror(-ret));
9ac228e0 1900 res->check_errors++;
f74550fd 1901 continue;
018faafd
KW
1902 }
1903
7453c96b 1904 refcount2 = s->get_refcount(refcount_table, i);
c6bb9ad1
FS
1905
1906 if (refcount1 > 0 || refcount2 > 0) {
6ca56bf5 1907 *highest_cluster = i;
c6bb9ad1
FS
1908 }
1909
f7d0fe02 1910 if (refcount1 != refcount2) {
166acf54
KW
1911 /* Check if we're allowed to fix the mismatch */
1912 int *num_fixed = NULL;
f307b255
HR
1913 if (refcount1 == 0) {
1914 *rebuild = true;
1915 } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
166acf54
KW
1916 num_fixed = &res->leaks_fixed;
1917 } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
1918 num_fixed = &res->corruptions_fixed;
1919 }
1920
0e06528e
HR
1921 fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
1922 " reference=%" PRIu64 "\n",
166acf54
KW
1923 num_fixed != NULL ? "Repairing" :
1924 refcount1 < refcount2 ? "ERROR" :
1925 "Leaked",
f7d0fe02 1926 i, refcount1, refcount2);
166acf54
KW
1927
1928 if (num_fixed) {
1929 ret = update_refcount(bs, i << s->cluster_bits, 1,
2aabe7c7
HR
1930 refcount_diff(refcount1, refcount2),
1931 refcount1 > refcount2,
6cfcb9b8 1932 QCOW2_DISCARD_ALWAYS);
166acf54
KW
1933 if (ret >= 0) {
1934 (*num_fixed)++;
1935 continue;
1936 }
1937 }
1938
1939 /* And if we couldn't, print an error */
9ac228e0
KW
1940 if (refcount1 < refcount2) {
1941 res->corruptions++;
1942 } else {
1943 res->leaks++;
1944 }
f7d0fe02
KW
1945 }
1946 }
6ca56bf5
HR
1947}
1948
c7c0681b
HR
1949/*
1950 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
1951 * the on-disk refcount structures.
1952 *
1953 * On input, *first_free_cluster tells where to start looking, and need not
1954 * actually be a free cluster; the returned offset will not be before that
1955 * cluster. On output, *first_free_cluster points to the first gap found, even
1956 * if that gap was too small to be used as the returned offset.
1957 *
1958 * Note that *first_free_cluster is a cluster index whereas the return value is
1959 * an offset.
1960 */
1961static int64_t alloc_clusters_imrt(BlockDriverState *bs,
1962 int cluster_count,
7453c96b 1963 void **refcount_table,
c7c0681b
HR
1964 int64_t *imrt_nb_clusters,
1965 int64_t *first_free_cluster)
1966{
ff99129a 1967 BDRVQcow2State *s = bs->opaque;
c7c0681b
HR
1968 int64_t cluster = *first_free_cluster, i;
1969 bool first_gap = true;
1970 int contiguous_free_clusters;
5fee192e 1971 int ret;
c7c0681b
HR
1972
1973 /* Starting at *first_free_cluster, find a range of at least cluster_count
1974 * continuously free clusters */
1975 for (contiguous_free_clusters = 0;
1976 cluster < *imrt_nb_clusters &&
1977 contiguous_free_clusters < cluster_count;
1978 cluster++)
1979 {
7453c96b 1980 if (!s->get_refcount(*refcount_table, cluster)) {
c7c0681b
HR
1981 contiguous_free_clusters++;
1982 if (first_gap) {
1983 /* If this is the first free cluster found, update
1984 * *first_free_cluster accordingly */
1985 *first_free_cluster = cluster;
1986 first_gap = false;
1987 }
1988 } else if (contiguous_free_clusters) {
1989 contiguous_free_clusters = 0;
1990 }
1991 }
1992
1993 /* If contiguous_free_clusters is greater than zero, it contains the number
1994 * of continuously free clusters until the current cluster; the first free
1995 * cluster in the current "gap" is therefore
1996 * cluster - contiguous_free_clusters */
1997
1998 /* If no such range could be found, grow the in-memory refcount table
1999 * accordingly to append free clusters at the end of the image */
2000 if (contiguous_free_clusters < cluster_count) {
c7c0681b
HR
2001 /* contiguous_free_clusters clusters are already empty at the image end;
2002 * we need cluster_count clusters; therefore, we have to allocate
2003 * cluster_count - contiguous_free_clusters new clusters at the end of
2004 * the image (which is the current value of cluster; note that cluster
2005 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2006 * the image end) */
5fee192e
HR
2007 ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2008 cluster + cluster_count
2009 - contiguous_free_clusters);
2010 if (ret < 0) {
2011 return ret;
c7c0681b 2012 }
c7c0681b
HR
2013 }
2014
2015 /* Go back to the first free cluster */
2016 cluster -= contiguous_free_clusters;
2017 for (i = 0; i < cluster_count; i++) {
7453c96b 2018 s->set_refcount(*refcount_table, cluster + i, 1);
c7c0681b
HR
2019 }
2020
2021 return cluster << s->cluster_bits;
2022}
2023
2024/*
2025 * Creates a new refcount structure based solely on the in-memory information
2026 * given through *refcount_table. All necessary allocations will be reflected
2027 * in that array.
2028 *
2029 * On success, the old refcount structure is leaked (it will be covered by the
2030 * new refcount structure).
2031 */
2032static int rebuild_refcount_structure(BlockDriverState *bs,
2033 BdrvCheckResult *res,
7453c96b 2034 void **refcount_table,
c7c0681b
HR
2035 int64_t *nb_clusters)
2036{
ff99129a 2037 BDRVQcow2State *s = bs->opaque;
c7c0681b
HR
2038 int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2039 int64_t refblock_offset, refblock_start, refblock_index;
2040 uint32_t reftable_size = 0;
2041 uint64_t *on_disk_reftable = NULL;
7453c96b
HR
2042 void *on_disk_refblock;
2043 int ret = 0;
c7c0681b
HR
2044 struct {
2045 uint64_t reftable_offset;
2046 uint32_t reftable_clusters;
2047 } QEMU_PACKED reftable_offset_and_clusters;
2048
2049 qcow2_cache_empty(bs, s->refcount_block_cache);
2050
2051write_refblocks:
2052 for (; cluster < *nb_clusters; cluster++) {
7453c96b 2053 if (!s->get_refcount(*refcount_table, cluster)) {
c7c0681b
HR
2054 continue;
2055 }
2056
2057 refblock_index = cluster >> s->refcount_block_bits;
2058 refblock_start = refblock_index << s->refcount_block_bits;
2059
2060 /* Don't allocate a cluster in a refblock already written to disk */
2061 if (first_free_cluster < refblock_start) {
2062 first_free_cluster = refblock_start;
2063 }
2064 refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2065 nb_clusters, &first_free_cluster);
2066 if (refblock_offset < 0) {
2067 fprintf(stderr, "ERROR allocating refblock: %s\n",
2068 strerror(-refblock_offset));
2069 res->check_errors++;
2070 ret = refblock_offset;
2071 goto fail;
2072 }
2073
2074 if (reftable_size <= refblock_index) {
2075 uint32_t old_reftable_size = reftable_size;
2076 uint64_t *new_on_disk_reftable;
2077
2078 reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2079 s->cluster_size) / sizeof(uint64_t);
2080 new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2081 reftable_size *
2082 sizeof(uint64_t));
2083 if (!new_on_disk_reftable) {
2084 res->check_errors++;
2085 ret = -ENOMEM;
2086 goto fail;
2087 }
2088 on_disk_reftable = new_on_disk_reftable;
2089
2090 memset(on_disk_reftable + old_reftable_size, 0,
2091 (reftable_size - old_reftable_size) * sizeof(uint64_t));
2092
2093 /* The offset we have for the reftable is now no longer valid;
2094 * this will leak that range, but we can easily fix that by running
2095 * a leak-fixing check after this rebuild operation */
2096 reftable_offset = -1;
2097 }
2098 on_disk_reftable[refblock_index] = refblock_offset;
2099
2100 /* If this is apparently the last refblock (for now), try to squeeze the
2101 * reftable in */
2102 if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2103 reftable_offset < 0)
2104 {
2105 uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2106 sizeof(uint64_t));
2107 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2108 refcount_table, nb_clusters,
2109 &first_free_cluster);
2110 if (reftable_offset < 0) {
2111 fprintf(stderr, "ERROR allocating reftable: %s\n",
2112 strerror(-reftable_offset));
2113 res->check_errors++;
2114 ret = reftable_offset;
2115 goto fail;
2116 }
2117 }
2118
2119 ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2120 s->cluster_size);
2121 if (ret < 0) {
2122 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2123 goto fail;
2124 }
2125
7453c96b
HR
2126 /* The size of *refcount_table is always cluster-aligned, therefore the
2127 * write operation will not overflow */
2128 on_disk_refblock = (void *)((char *) *refcount_table +
2129 refblock_index * s->cluster_size);
c7c0681b 2130
18d51c4b 2131 ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE,
7453c96b 2132 on_disk_refblock, s->cluster_sectors);
c7c0681b
HR
2133 if (ret < 0) {
2134 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2135 goto fail;
2136 }
2137
2138 /* Go to the end of this refblock */
2139 cluster = refblock_start + s->refcount_block_size - 1;
2140 }
2141
2142 if (reftable_offset < 0) {
2143 uint64_t post_refblock_start, reftable_clusters;
2144
2145 post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2146 reftable_clusters = size_to_clusters(s,
2147 reftable_size * sizeof(uint64_t));
2148 /* Not pretty but simple */
2149 if (first_free_cluster < post_refblock_start) {
2150 first_free_cluster = post_refblock_start;
2151 }
2152 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2153 refcount_table, nb_clusters,
2154 &first_free_cluster);
2155 if (reftable_offset < 0) {
2156 fprintf(stderr, "ERROR allocating reftable: %s\n",
2157 strerror(-reftable_offset));
2158 res->check_errors++;
2159 ret = reftable_offset;
2160 goto fail;
2161 }
2162
2163 goto write_refblocks;
2164 }
2165
2166 assert(on_disk_reftable);
2167
2168 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2169 cpu_to_be64s(&on_disk_reftable[refblock_index]);
2170 }
2171
2172 ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2173 reftable_size * sizeof(uint64_t));
2174 if (ret < 0) {
2175 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2176 goto fail;
2177 }
2178
2179 assert(reftable_size < INT_MAX / sizeof(uint64_t));
d9ca2ea2 2180 ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
c7c0681b
HR
2181 reftable_size * sizeof(uint64_t));
2182 if (ret < 0) {
2183 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2184 goto fail;
2185 }
2186
2187 /* Enter new reftable into the image header */
f1f7a1dd
PM
2188 reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2189 reftable_offset_and_clusters.reftable_clusters =
2190 cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
d9ca2ea2
KW
2191 ret = bdrv_pwrite_sync(bs->file,
2192 offsetof(QCowHeader, refcount_table_offset),
c7c0681b
HR
2193 &reftable_offset_and_clusters,
2194 sizeof(reftable_offset_and_clusters));
2195 if (ret < 0) {
2196 fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2197 goto fail;
2198 }
2199
2200 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2201 be64_to_cpus(&on_disk_reftable[refblock_index]);
2202 }
2203 s->refcount_table = on_disk_reftable;
2204 s->refcount_table_offset = reftable_offset;
2205 s->refcount_table_size = reftable_size;
7061a078 2206 update_max_refcount_table_index(s);
c7c0681b
HR
2207
2208 return 0;
2209
2210fail:
2211 g_free(on_disk_reftable);
2212 return ret;
2213}
2214
6ca56bf5
HR
2215/*
2216 * Checks an image for refcount consistency.
2217 *
2218 * Returns 0 if no errors are found, the number of errors in case the image is
2219 * detected as corrupted, and -errno when an internal error occurred.
2220 */
2221int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2222 BdrvCheckMode fix)
2223{
ff99129a 2224 BDRVQcow2State *s = bs->opaque;
c7c0681b 2225 BdrvCheckResult pre_compare_res;
6ca56bf5 2226 int64_t size, highest_cluster, nb_clusters;
7453c96b 2227 void *refcount_table = NULL;
f307b255 2228 bool rebuild = false;
6ca56bf5
HR
2229 int ret;
2230
9a4f4c31 2231 size = bdrv_getlength(bs->file->bs);
6ca56bf5
HR
2232 if (size < 0) {
2233 res->check_errors++;
2234 return size;
2235 }
2236
2237 nb_clusters = size_to_clusters(s, size);
2238 if (nb_clusters > INT_MAX) {
2239 res->check_errors++;
2240 return -EFBIG;
2241 }
2242
2243 res->bfi.total_clusters =
2244 size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2245
f307b255
HR
2246 ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2247 &nb_clusters);
6ca56bf5
HR
2248 if (ret < 0) {
2249 goto fail;
2250 }
2251
c7c0681b
HR
2252 /* In case we don't need to rebuild the refcount structure (but want to fix
2253 * something), this function is immediately called again, in which case the
2254 * result should be ignored */
2255 pre_compare_res = *res;
2256 compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
6ca56bf5 2257 nb_clusters);
f7d0fe02 2258
c7c0681b 2259 if (rebuild && (fix & BDRV_FIX_ERRORS)) {
791230d8
HR
2260 BdrvCheckResult old_res = *res;
2261 int fresh_leaks = 0;
2262
c7c0681b
HR
2263 fprintf(stderr, "Rebuilding refcount structure\n");
2264 ret = rebuild_refcount_structure(bs, res, &refcount_table,
2265 &nb_clusters);
2266 if (ret < 0) {
2267 goto fail;
2268 }
791230d8
HR
2269
2270 res->corruptions = 0;
2271 res->leaks = 0;
2272
2273 /* Because the old reftable has been exchanged for a new one the
2274 * references have to be recalculated */
2275 rebuild = false;
7453c96b 2276 memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
791230d8
HR
2277 ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2278 &nb_clusters);
2279 if (ret < 0) {
2280 goto fail;
2281 }
2282
2283 if (fix & BDRV_FIX_LEAKS) {
2284 /* The old refcount structures are now leaked, fix it; the result
2285 * can be ignored, aside from leaks which were introduced by
2286 * rebuild_refcount_structure() that could not be fixed */
2287 BdrvCheckResult saved_res = *res;
2288 *res = (BdrvCheckResult){ 0 };
2289
2290 compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2291 &highest_cluster, refcount_table, nb_clusters);
2292 if (rebuild) {
2293 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2294 "broken\n");
2295 }
2296
2297 /* Any leaks accounted for here were introduced by
2298 * rebuild_refcount_structure() because that function has created a
2299 * new refcount structure from scratch */
2300 fresh_leaks = res->leaks;
2301 *res = saved_res;
2302 }
2303
2304 if (res->corruptions < old_res.corruptions) {
2305 res->corruptions_fixed += old_res.corruptions - res->corruptions;
2306 }
2307 if (res->leaks < old_res.leaks) {
2308 res->leaks_fixed += old_res.leaks - res->leaks;
2309 }
2310 res->leaks += fresh_leaks;
c7c0681b
HR
2311 } else if (fix) {
2312 if (rebuild) {
2313 fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2314 res->check_errors++;
2315 ret = -EIO;
2316 goto fail;
2317 }
2318
2319 if (res->leaks || res->corruptions) {
2320 *res = pre_compare_res;
2321 compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2322 refcount_table, nb_clusters);
2323 }
f307b255
HR
2324 }
2325
4f6ed88c 2326 /* check OFLAG_COPIED */
e23e400e 2327 ret = check_oflag_copied(bs, res, fix);
4f6ed88c
HR
2328 if (ret < 0) {
2329 goto fail;
2330 }
2331
c6bb9ad1 2332 res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
80fa3341
KW
2333 ret = 0;
2334
2335fail:
7267c094 2336 g_free(refcount_table);
f7d0fe02 2337
80fa3341 2338 return ret;
f7d0fe02
KW
2339}
2340
a40f1c2a
HR
2341#define overlaps_with(ofs, sz) \
2342 ranges_overlap(offset, size, ofs, sz)
2343
2344/*
2345 * Checks if the given offset into the image file is actually free to use by
2346 * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2347 * i.e. a sanity check without relying on the refcount tables.
2348 *
231bb267
HR
2349 * The ign parameter specifies what checks not to perform (being a bitmask of
2350 * QCow2MetadataOverlap values), i.e., what sections to ignore.
a40f1c2a
HR
2351 *
2352 * Returns:
2353 * - 0 if writing to this offset will not affect the mentioned metadata
2354 * - a positive QCow2MetadataOverlap value indicating one overlapping section
2355 * - a negative value (-errno) indicating an error while performing a check,
2356 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2357 */
231bb267 2358int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
a40f1c2a
HR
2359 int64_t size)
2360{
ff99129a 2361 BDRVQcow2State *s = bs->opaque;
3e355390 2362 int chk = s->overlap_check & ~ign;
a40f1c2a
HR
2363 int i, j;
2364
2365 if (!size) {
2366 return 0;
2367 }
2368
2369 if (chk & QCOW2_OL_MAIN_HEADER) {
2370 if (offset < s->cluster_size) {
2371 return QCOW2_OL_MAIN_HEADER;
2372 }
2373 }
2374
2375 /* align range to test to cluster boundaries */
2376 size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size);
2377 offset = start_of_cluster(s, offset);
2378
2379 if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2380 if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2381 return QCOW2_OL_ACTIVE_L1;
2382 }
2383 }
2384
2385 if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2386 if (overlaps_with(s->refcount_table_offset,
2387 s->refcount_table_size * sizeof(uint64_t))) {
2388 return QCOW2_OL_REFCOUNT_TABLE;
2389 }
2390 }
2391
2392 if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2393 if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2394 return QCOW2_OL_SNAPSHOT_TABLE;
2395 }
2396 }
2397
2398 if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2399 for (i = 0; i < s->nb_snapshots; i++) {
2400 if (s->snapshots[i].l1_size &&
2401 overlaps_with(s->snapshots[i].l1_table_offset,
2402 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2403 return QCOW2_OL_INACTIVE_L1;
2404 }
2405 }
2406 }
2407
2408 if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2409 for (i = 0; i < s->l1_size; i++) {
2410 if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2411 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2412 s->cluster_size)) {
2413 return QCOW2_OL_ACTIVE_L2;
2414 }
2415 }
2416 }
2417
2418 if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
7061a078
AG
2419 unsigned last_entry = s->max_refcount_table_index;
2420 assert(last_entry < s->refcount_table_size);
2421 assert(last_entry + 1 == s->refcount_table_size ||
2422 (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2423 for (i = 0; i <= last_entry; i++) {
a40f1c2a
HR
2424 if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2425 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2426 s->cluster_size)) {
2427 return QCOW2_OL_REFCOUNT_BLOCK;
2428 }
2429 }
2430 }
2431
2432 if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2433 for (i = 0; i < s->nb_snapshots; i++) {
2434 uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2435 uint32_t l1_sz = s->snapshots[i].l1_size;
998b959c 2436 uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
de82815d 2437 uint64_t *l1 = g_try_malloc(l1_sz2);
a40f1c2a
HR
2438 int ret;
2439
de82815d
KW
2440 if (l1_sz2 && l1 == NULL) {
2441 return -ENOMEM;
2442 }
2443
cf2ab8fc 2444 ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
a40f1c2a
HR
2445 if (ret < 0) {
2446 g_free(l1);
2447 return ret;
2448 }
2449
2450 for (j = 0; j < l1_sz; j++) {
1e242b55
HR
2451 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2452 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
a40f1c2a
HR
2453 g_free(l1);
2454 return QCOW2_OL_INACTIVE_L2;
2455 }
2456 }
2457
2458 g_free(l1);
2459 }
2460 }
2461
2462 return 0;
2463}
2464
2465static const char *metadata_ol_names[] = {
2466 [QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header",
2467 [QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table",
2468 [QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table",
2469 [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2470 [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2471 [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2472 [QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table",
2473 [QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table",
2474};
2475
2476/*
2477 * First performs a check for metadata overlaps (through
2478 * qcow2_check_metadata_overlap); if that fails with a negative value (error
2479 * while performing a check), that value is returned. If an impending overlap
2480 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2481 * and -EIO returned.
2482 *
2483 * Returns 0 if there were neither overlaps nor errors while checking for
2484 * overlaps; or a negative value (-errno) on error.
2485 */
231bb267 2486int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
a40f1c2a
HR
2487 int64_t size)
2488{
231bb267 2489 int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
a40f1c2a
HR
2490
2491 if (ret < 0) {
2492 return ret;
2493 } else if (ret > 0) {
786a4ea8 2494 int metadata_ol_bitnr = ctz32(ret);
a40f1c2a
HR
2495 assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2496
adb43552
HR
2497 qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2498 "write on metadata (overlaps with %s)",
2499 metadata_ol_names[metadata_ol_bitnr]);
a40f1c2a
HR
2500 return -EIO;
2501 }
2502
2503 return 0;
2504}
791c9a00
HR
2505
2506/* A pointer to a function of this type is given to walk_over_reftable(). That
2507 * function will create refblocks and pass them to a RefblockFinishOp once they
2508 * are completed (@refblock). @refblock_empty is set if the refblock is
2509 * completely empty.
2510 *
2511 * Along with the refblock, a corresponding reftable entry is passed, in the
2512 * reftable @reftable (which may be reallocated) at @reftable_index.
2513 *
2514 * @allocated should be set to true if a new cluster has been allocated.
2515 */
2516typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2517 uint64_t reftable_index, uint64_t *reftable_size,
2518 void *refblock, bool refblock_empty,
2519 bool *allocated, Error **errp);
2520
2521/**
2522 * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2523 * it is not empty) and inserts its offset into the new reftable. The size of
2524 * this new reftable is increased as required.
2525 */
2526static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2527 uint64_t reftable_index, uint64_t *reftable_size,
2528 void *refblock, bool refblock_empty, bool *allocated,
2529 Error **errp)
2530{
2531 BDRVQcow2State *s = bs->opaque;
2532 int64_t offset;
2533
2534 if (!refblock_empty && reftable_index >= *reftable_size) {
2535 uint64_t *new_reftable;
2536 uint64_t new_reftable_size;
2537
2538 new_reftable_size = ROUND_UP(reftable_index + 1,
2539 s->cluster_size / sizeof(uint64_t));
2540 if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2541 error_setg(errp,
2542 "This operation would make the refcount table grow "
2543 "beyond the maximum size supported by QEMU, aborting");
2544 return -ENOTSUP;
2545 }
2546
2547 new_reftable = g_try_realloc(*reftable, new_reftable_size *
2548 sizeof(uint64_t));
2549 if (!new_reftable) {
2550 error_setg(errp, "Failed to increase reftable buffer size");
2551 return -ENOMEM;
2552 }
2553
2554 memset(new_reftable + *reftable_size, 0,
2555 (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2556
2557 *reftable = new_reftable;
2558 *reftable_size = new_reftable_size;
2559 }
2560
2561 if (!refblock_empty && !(*reftable)[reftable_index]) {
2562 offset = qcow2_alloc_clusters(bs, s->cluster_size);
2563 if (offset < 0) {
2564 error_setg_errno(errp, -offset, "Failed to allocate refblock");
2565 return offset;
2566 }
2567 (*reftable)[reftable_index] = offset;
2568 *allocated = true;
2569 }
2570
2571 return 0;
2572}
2573
2574/**
2575 * This "operation" for walk_over_reftable() writes the refblock to disk at the
2576 * offset specified by the new reftable's entry. It does not modify the new
2577 * reftable or change any refcounts.
2578 */
2579static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2580 uint64_t reftable_index, uint64_t *reftable_size,
2581 void *refblock, bool refblock_empty, bool *allocated,
2582 Error **errp)
2583{
2584 BDRVQcow2State *s = bs->opaque;
2585 int64_t offset;
2586 int ret;
2587
2588 if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2589 offset = (*reftable)[reftable_index];
2590
2591 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
2592 if (ret < 0) {
2593 error_setg_errno(errp, -ret, "Overlap check failed");
2594 return ret;
2595 }
2596
d9ca2ea2 2597 ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
791c9a00
HR
2598 if (ret < 0) {
2599 error_setg_errno(errp, -ret, "Failed to write refblock");
2600 return ret;
2601 }
2602 } else {
2603 assert(refblock_empty);
2604 }
2605
2606 return 0;
2607}
2608
2609/**
2610 * This function walks over the existing reftable and every referenced refblock;
2611 * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2612 * create an equal new entry in the passed @new_refblock. Once that
2613 * @new_refblock is completely filled, @operation will be called.
2614 *
2615 * @status_cb and @cb_opaque are used for the amend operation's status callback.
2616 * @index is the index of the walk_over_reftable() calls and @total is the total
2617 * number of walk_over_reftable() calls per amend operation. Both are used for
2618 * calculating the parameters for the status callback.
2619 *
2620 * @allocated is set to true if a new cluster has been allocated.
2621 */
2622static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2623 uint64_t *new_reftable_index,
2624 uint64_t *new_reftable_size,
2625 void *new_refblock, int new_refblock_size,
2626 int new_refcount_bits,
2627 RefblockFinishOp *operation, bool *allocated,
2628 Qcow2SetRefcountFunc *new_set_refcount,
2629 BlockDriverAmendStatusCB *status_cb,
2630 void *cb_opaque, int index, int total,
2631 Error **errp)
2632{
2633 BDRVQcow2State *s = bs->opaque;
2634 uint64_t reftable_index;
2635 bool new_refblock_empty = true;
2636 int refblock_index;
2637 int new_refblock_index = 0;
2638 int ret;
2639
2640 for (reftable_index = 0; reftable_index < s->refcount_table_size;
2641 reftable_index++)
2642 {
2643 uint64_t refblock_offset = s->refcount_table[reftable_index]
2644 & REFT_OFFSET_MASK;
2645
2646 status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2647 (uint64_t)total * s->refcount_table_size, cb_opaque);
2648
2649 if (refblock_offset) {
2650 void *refblock;
2651
2652 if (offset_into_cluster(s, refblock_offset)) {
2653 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2654 PRIx64 " unaligned (reftable index: %#"
2655 PRIx64 ")", refblock_offset,
2656 reftable_index);
2657 error_setg(errp,
2658 "Image is corrupt (unaligned refblock offset)");
2659 return -EIO;
2660 }
2661
2662 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2663 &refblock);
2664 if (ret < 0) {
2665 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2666 return ret;
2667 }
2668
2669 for (refblock_index = 0; refblock_index < s->refcount_block_size;
2670 refblock_index++)
2671 {
2672 uint64_t refcount;
2673
2674 if (new_refblock_index >= new_refblock_size) {
2675 /* new_refblock is now complete */
2676 ret = operation(bs, new_reftable, *new_reftable_index,
2677 new_reftable_size, new_refblock,
2678 new_refblock_empty, allocated, errp);
2679 if (ret < 0) {
2680 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2681 return ret;
2682 }
2683
2684 (*new_reftable_index)++;
2685 new_refblock_index = 0;
2686 new_refblock_empty = true;
2687 }
2688
2689 refcount = s->get_refcount(refblock, refblock_index);
2690 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2691 uint64_t offset;
2692
2693 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2694
2695 offset = ((reftable_index << s->refcount_block_bits)
2696 + refblock_index) << s->cluster_bits;
2697
2698 error_setg(errp, "Cannot decrease refcount entry width to "
2699 "%i bits: Cluster at offset %#" PRIx64 " has a "
2700 "refcount of %" PRIu64, new_refcount_bits,
2701 offset, refcount);
2702 return -EINVAL;
2703 }
2704
2705 if (new_set_refcount) {
2706 new_set_refcount(new_refblock, new_refblock_index++,
2707 refcount);
2708 } else {
2709 new_refblock_index++;
2710 }
2711 new_refblock_empty = new_refblock_empty && refcount == 0;
2712 }
2713
2714 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2715 } else {
2716 /* No refblock means every refcount is 0 */
2717 for (refblock_index = 0; refblock_index < s->refcount_block_size;
2718 refblock_index++)
2719 {
2720 if (new_refblock_index >= new_refblock_size) {
2721 /* new_refblock is now complete */
2722 ret = operation(bs, new_reftable, *new_reftable_index,
2723 new_reftable_size, new_refblock,
2724 new_refblock_empty, allocated, errp);
2725 if (ret < 0) {
2726 return ret;
2727 }
2728
2729 (*new_reftable_index)++;
2730 new_refblock_index = 0;
2731 new_refblock_empty = true;
2732 }
2733
2734 if (new_set_refcount) {
2735 new_set_refcount(new_refblock, new_refblock_index++, 0);
2736 } else {
2737 new_refblock_index++;
2738 }
2739 }
2740 }
2741 }
2742
2743 if (new_refblock_index > 0) {
2744 /* Complete the potentially existing partially filled final refblock */
2745 if (new_set_refcount) {
2746 for (; new_refblock_index < new_refblock_size;
2747 new_refblock_index++)
2748 {
2749 new_set_refcount(new_refblock, new_refblock_index, 0);
2750 }
2751 }
2752
2753 ret = operation(bs, new_reftable, *new_reftable_index,
2754 new_reftable_size, new_refblock, new_refblock_empty,
2755 allocated, errp);
2756 if (ret < 0) {
2757 return ret;
2758 }
2759
2760 (*new_reftable_index)++;
2761 }
2762
2763 status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
2764 (uint64_t)total * s->refcount_table_size, cb_opaque);
2765
2766 return 0;
2767}
2768
2769int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
2770 BlockDriverAmendStatusCB *status_cb,
2771 void *cb_opaque, Error **errp)
2772{
2773 BDRVQcow2State *s = bs->opaque;
2774 Qcow2GetRefcountFunc *new_get_refcount;
2775 Qcow2SetRefcountFunc *new_set_refcount;
2776 void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
2777 uint64_t *new_reftable = NULL, new_reftable_size = 0;
2778 uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
2779 uint64_t new_reftable_index = 0;
2780 uint64_t i;
2781 int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
2782 int new_refblock_size, new_refcount_bits = 1 << refcount_order;
2783 int old_refcount_order;
2784 int walk_index = 0;
2785 int ret;
2786 bool new_allocation;
2787
2788 assert(s->qcow_version >= 3);
2789 assert(refcount_order >= 0 && refcount_order <= 6);
2790
2791 /* see qcow2_open() */
2792 new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
2793
2794 new_get_refcount = get_refcount_funcs[refcount_order];
2795 new_set_refcount = set_refcount_funcs[refcount_order];
2796
2797
2798 do {
2799 int total_walks;
2800
2801 new_allocation = false;
2802
2803 /* At least we have to do this walk and the one which writes the
2804 * refblocks; also, at least we have to do this loop here at least
2805 * twice (normally), first to do the allocations, and second to
2806 * determine that everything is correctly allocated, this then makes
2807 * three walks in total */
2808 total_walks = MAX(walk_index + 2, 3);
2809
2810 /* First, allocate the structures so they are present in the refcount
2811 * structures */
2812 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2813 &new_reftable_size, NULL, new_refblock_size,
2814 new_refcount_bits, &alloc_refblock,
2815 &new_allocation, NULL, status_cb, cb_opaque,
2816 walk_index++, total_walks, errp);
2817 if (ret < 0) {
2818 goto done;
2819 }
2820
2821 new_reftable_index = 0;
2822
2823 if (new_allocation) {
2824 if (new_reftable_offset) {
2825 qcow2_free_clusters(bs, new_reftable_offset,
2826 allocated_reftable_size * sizeof(uint64_t),
2827 QCOW2_DISCARD_NEVER);
2828 }
2829
2830 new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
2831 sizeof(uint64_t));
2832 if (new_reftable_offset < 0) {
2833 error_setg_errno(errp, -new_reftable_offset,
2834 "Failed to allocate the new reftable");
2835 ret = new_reftable_offset;
2836 goto done;
2837 }
2838 allocated_reftable_size = new_reftable_size;
2839 }
2840 } while (new_allocation);
2841
2842 /* Second, write the new refblocks */
2843 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2844 &new_reftable_size, new_refblock,
2845 new_refblock_size, new_refcount_bits,
2846 &flush_refblock, &new_allocation, new_set_refcount,
2847 status_cb, cb_opaque, walk_index, walk_index + 1,
2848 errp);
2849 if (ret < 0) {
2850 goto done;
2851 }
2852 assert(!new_allocation);
2853
2854
2855 /* Write the new reftable */
2856 ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
2857 new_reftable_size * sizeof(uint64_t));
2858 if (ret < 0) {
2859 error_setg_errno(errp, -ret, "Overlap check failed");
2860 goto done;
2861 }
2862
2863 for (i = 0; i < new_reftable_size; i++) {
2864 cpu_to_be64s(&new_reftable[i]);
2865 }
2866
d9ca2ea2 2867 ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
791c9a00
HR
2868 new_reftable_size * sizeof(uint64_t));
2869
2870 for (i = 0; i < new_reftable_size; i++) {
2871 be64_to_cpus(&new_reftable[i]);
2872 }
2873
2874 if (ret < 0) {
2875 error_setg_errno(errp, -ret, "Failed to write the new reftable");
2876 goto done;
2877 }
2878
2879
2880 /* Empty the refcount cache */
2881 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
2882 if (ret < 0) {
2883 error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
2884 goto done;
2885 }
2886
2887 /* Update the image header to point to the new reftable; this only updates
2888 * the fields which are relevant to qcow2_update_header(); other fields
2889 * such as s->refcount_table or s->refcount_bits stay stale for now
2890 * (because we have to restore everything if qcow2_update_header() fails) */
2891 old_refcount_order = s->refcount_order;
2892 old_reftable_size = s->refcount_table_size;
2893 old_reftable_offset = s->refcount_table_offset;
2894
2895 s->refcount_order = refcount_order;
2896 s->refcount_table_size = new_reftable_size;
2897 s->refcount_table_offset = new_reftable_offset;
2898
2899 ret = qcow2_update_header(bs);
2900 if (ret < 0) {
2901 s->refcount_order = old_refcount_order;
2902 s->refcount_table_size = old_reftable_size;
2903 s->refcount_table_offset = old_reftable_offset;
2904 error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
2905 goto done;
2906 }
2907
2908 /* Now update the rest of the in-memory information */
2909 old_reftable = s->refcount_table;
2910 s->refcount_table = new_reftable;
7061a078 2911 update_max_refcount_table_index(s);
791c9a00
HR
2912
2913 s->refcount_bits = 1 << refcount_order;
2914 s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
2915 s->refcount_max += s->refcount_max - 1;
2916
2917 s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
2918 s->refcount_block_size = 1 << s->refcount_block_bits;
2919
2920 s->get_refcount = new_get_refcount;
2921 s->set_refcount = new_set_refcount;
2922
2923 /* For cleaning up all old refblocks and the old reftable below the "done"
2924 * label */
2925 new_reftable = old_reftable;
2926 new_reftable_size = old_reftable_size;
2927 new_reftable_offset = old_reftable_offset;
2928
2929done:
2930 if (new_reftable) {
2931 /* On success, new_reftable actually points to the old reftable (and
2932 * new_reftable_size is the old reftable's size); but that is just
2933 * fine */
2934 for (i = 0; i < new_reftable_size; i++) {
2935 uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
2936 if (offset) {
2937 qcow2_free_clusters(bs, offset, s->cluster_size,
2938 QCOW2_DISCARD_OTHER);
2939 }
2940 }
2941 g_free(new_reftable);
2942
2943 if (new_reftable_offset > 0) {
2944 qcow2_free_clusters(bs, new_reftable_offset,
2945 new_reftable_size * sizeof(uint64_t),
2946 QCOW2_DISCARD_OTHER);
2947 }
2948 }
2949
2950 qemu_vfree(new_refblock);
2951 return ret;
2952}
This page took 0.936873 seconds and 4 git commands to generate.