]>
Commit | Line | Data |
---|---|---|
158142c2 FB |
1 | |
2 | /*============================================================================ | |
3 | ||
4 | This C source fragment is part of the SoftFloat IEC/IEEE Floating-point | |
5 | Arithmetic Package, Release 2b. | |
6 | ||
7 | Written by John R. Hauser. This work was made possible in part by the | |
8 | International Computer Science Institute, located at Suite 600, 1947 Center | |
9 | Street, Berkeley, California 94704. Funding was partially provided by the | |
10 | National Science Foundation under grant MIP-9311980. The original version | |
11 | of this code was written as part of a project to build a fixed-point vector | |
12 | processor in collaboration with the University of California at Berkeley, | |
13 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | |
14 | is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ | |
15 | arithmetic/SoftFloat.html'. | |
16 | ||
17 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has | |
18 | been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES | |
19 | RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS | |
20 | AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, | |
21 | COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE | |
22 | EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE | |
23 | INSTITUTE (possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR | |
24 | OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. | |
25 | ||
26 | Derivative works are acceptable, even for commercial purposes, so long as | |
27 | (1) the source code for the derivative work includes prominent notice that | |
28 | the work is derivative, and (2) the source code includes prominent notice with | |
29 | these four paragraphs for those parts of this code that are retained. | |
30 | ||
31 | =============================================================================*/ | |
32 | ||
33 | /*---------------------------------------------------------------------------- | |
34 | | Shifts `a' right by the number of bits given in `count'. If any nonzero | |
35 | | bits are shifted off, they are ``jammed'' into the least significant bit of | |
36 | | the result by setting the least significant bit to 1. The value of `count' | |
37 | | can be arbitrarily large; in particular, if `count' is greater than 32, the | |
38 | | result will be either 0 or 1, depending on whether `a' is zero or nonzero. | |
39 | | The result is stored in the location pointed to by `zPtr'. | |
40 | *----------------------------------------------------------------------------*/ | |
41 | ||
42 | INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr ) | |
43 | { | |
44 | bits32 z; | |
45 | ||
46 | if ( count == 0 ) { | |
47 | z = a; | |
48 | } | |
49 | else if ( count < 32 ) { | |
50 | z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 ); | |
51 | } | |
52 | else { | |
53 | z = ( a != 0 ); | |
54 | } | |
55 | *zPtr = z; | |
56 | ||
57 | } | |
58 | ||
59 | /*---------------------------------------------------------------------------- | |
60 | | Shifts `a' right by the number of bits given in `count'. If any nonzero | |
61 | | bits are shifted off, they are ``jammed'' into the least significant bit of | |
62 | | the result by setting the least significant bit to 1. The value of `count' | |
63 | | can be arbitrarily large; in particular, if `count' is greater than 64, the | |
64 | | result will be either 0 or 1, depending on whether `a' is zero or nonzero. | |
65 | | The result is stored in the location pointed to by `zPtr'. | |
66 | *----------------------------------------------------------------------------*/ | |
67 | ||
68 | INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr ) | |
69 | { | |
70 | bits64 z; | |
71 | ||
72 | if ( count == 0 ) { | |
73 | z = a; | |
74 | } | |
75 | else if ( count < 64 ) { | |
76 | z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 ); | |
77 | } | |
78 | else { | |
79 | z = ( a != 0 ); | |
80 | } | |
81 | *zPtr = z; | |
82 | ||
83 | } | |
84 | ||
85 | /*---------------------------------------------------------------------------- | |
86 | | Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64 | |
87 | | _plus_ the number of bits given in `count'. The shifted result is at most | |
88 | | 64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The | |
89 | | bits shifted off form a second 64-bit result as follows: The _last_ bit | |
90 | | shifted off is the most-significant bit of the extra result, and the other | |
91 | | 63 bits of the extra result are all zero if and only if _all_but_the_last_ | |
92 | | bits shifted off were all zero. This extra result is stored in the location | |
93 | | pointed to by `z1Ptr'. The value of `count' can be arbitrarily large. | |
94 | | (This routine makes more sense if `a0' and `a1' are considered to form | |
95 | | a fixed-point value with binary point between `a0' and `a1'. This fixed- | |
96 | | point value is shifted right by the number of bits given in `count', and | |
97 | | the integer part of the result is returned at the location pointed to by | |
98 | | `z0Ptr'. The fractional part of the result may be slightly corrupted as | |
99 | | described above, and is returned at the location pointed to by `z1Ptr'.) | |
100 | *----------------------------------------------------------------------------*/ | |
101 | ||
102 | INLINE void | |
103 | shift64ExtraRightJamming( | |
104 | bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | |
105 | { | |
106 | bits64 z0, z1; | |
107 | int8 negCount = ( - count ) & 63; | |
108 | ||
109 | if ( count == 0 ) { | |
110 | z1 = a1; | |
111 | z0 = a0; | |
112 | } | |
113 | else if ( count < 64 ) { | |
114 | z1 = ( a0<<negCount ) | ( a1 != 0 ); | |
115 | z0 = a0>>count; | |
116 | } | |
117 | else { | |
118 | if ( count == 64 ) { | |
119 | z1 = a0 | ( a1 != 0 ); | |
120 | } | |
121 | else { | |
122 | z1 = ( ( a0 | a1 ) != 0 ); | |
123 | } | |
124 | z0 = 0; | |
125 | } | |
126 | *z1Ptr = z1; | |
127 | *z0Ptr = z0; | |
128 | ||
129 | } | |
130 | ||
131 | /*---------------------------------------------------------------------------- | |
132 | | Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the | |
133 | | number of bits given in `count'. Any bits shifted off are lost. The value | |
134 | | of `count' can be arbitrarily large; in particular, if `count' is greater | |
135 | | than 128, the result will be 0. The result is broken into two 64-bit pieces | |
136 | | which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. | |
137 | *----------------------------------------------------------------------------*/ | |
138 | ||
139 | INLINE void | |
140 | shift128Right( | |
141 | bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | |
142 | { | |
143 | bits64 z0, z1; | |
144 | int8 negCount = ( - count ) & 63; | |
145 | ||
146 | if ( count == 0 ) { | |
147 | z1 = a1; | |
148 | z0 = a0; | |
149 | } | |
150 | else if ( count < 64 ) { | |
151 | z1 = ( a0<<negCount ) | ( a1>>count ); | |
152 | z0 = a0>>count; | |
153 | } | |
154 | else { | |
155 | z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0; | |
156 | z0 = 0; | |
157 | } | |
158 | *z1Ptr = z1; | |
159 | *z0Ptr = z0; | |
160 | ||
161 | } | |
162 | ||
163 | /*---------------------------------------------------------------------------- | |
164 | | Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the | |
165 | | number of bits given in `count'. If any nonzero bits are shifted off, they | |
166 | | are ``jammed'' into the least significant bit of the result by setting the | |
167 | | least significant bit to 1. The value of `count' can be arbitrarily large; | |
168 | | in particular, if `count' is greater than 128, the result will be either | |
169 | | 0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or | |
170 | | nonzero. The result is broken into two 64-bit pieces which are stored at | |
171 | | the locations pointed to by `z0Ptr' and `z1Ptr'. | |
172 | *----------------------------------------------------------------------------*/ | |
173 | ||
174 | INLINE void | |
175 | shift128RightJamming( | |
176 | bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | |
177 | { | |
178 | bits64 z0, z1; | |
179 | int8 negCount = ( - count ) & 63; | |
180 | ||
181 | if ( count == 0 ) { | |
182 | z1 = a1; | |
183 | z0 = a0; | |
184 | } | |
185 | else if ( count < 64 ) { | |
186 | z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 ); | |
187 | z0 = a0>>count; | |
188 | } | |
189 | else { | |
190 | if ( count == 64 ) { | |
191 | z1 = a0 | ( a1 != 0 ); | |
192 | } | |
193 | else if ( count < 128 ) { | |
194 | z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 ); | |
195 | } | |
196 | else { | |
197 | z1 = ( ( a0 | a1 ) != 0 ); | |
198 | } | |
199 | z0 = 0; | |
200 | } | |
201 | *z1Ptr = z1; | |
202 | *z0Ptr = z0; | |
203 | ||
204 | } | |
205 | ||
206 | /*---------------------------------------------------------------------------- | |
207 | | Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right | |
208 | | by 64 _plus_ the number of bits given in `count'. The shifted result is | |
209 | | at most 128 nonzero bits; these are broken into two 64-bit pieces which are | |
210 | | stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted | |
211 | | off form a third 64-bit result as follows: The _last_ bit shifted off is | |
212 | | the most-significant bit of the extra result, and the other 63 bits of the | |
213 | | extra result are all zero if and only if _all_but_the_last_ bits shifted off | |
214 | | were all zero. This extra result is stored in the location pointed to by | |
215 | | `z2Ptr'. The value of `count' can be arbitrarily large. | |
216 | | (This routine makes more sense if `a0', `a1', and `a2' are considered | |
217 | | to form a fixed-point value with binary point between `a1' and `a2'. This | |
218 | | fixed-point value is shifted right by the number of bits given in `count', | |
219 | | and the integer part of the result is returned at the locations pointed to | |
220 | | by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly | |
221 | | corrupted as described above, and is returned at the location pointed to by | |
222 | | `z2Ptr'.) | |
223 | *----------------------------------------------------------------------------*/ | |
224 | ||
225 | INLINE void | |
226 | shift128ExtraRightJamming( | |
227 | bits64 a0, | |
228 | bits64 a1, | |
229 | bits64 a2, | |
230 | int16 count, | |
231 | bits64 *z0Ptr, | |
232 | bits64 *z1Ptr, | |
233 | bits64 *z2Ptr | |
234 | ) | |
235 | { | |
236 | bits64 z0, z1, z2; | |
237 | int8 negCount = ( - count ) & 63; | |
238 | ||
239 | if ( count == 0 ) { | |
240 | z2 = a2; | |
241 | z1 = a1; | |
242 | z0 = a0; | |
243 | } | |
244 | else { | |
245 | if ( count < 64 ) { | |
246 | z2 = a1<<negCount; | |
247 | z1 = ( a0<<negCount ) | ( a1>>count ); | |
248 | z0 = a0>>count; | |
249 | } | |
250 | else { | |
251 | if ( count == 64 ) { | |
252 | z2 = a1; | |
253 | z1 = a0; | |
254 | } | |
255 | else { | |
256 | a2 |= a1; | |
257 | if ( count < 128 ) { | |
258 | z2 = a0<<negCount; | |
259 | z1 = a0>>( count & 63 ); | |
260 | } | |
261 | else { | |
262 | z2 = ( count == 128 ) ? a0 : ( a0 != 0 ); | |
263 | z1 = 0; | |
264 | } | |
265 | } | |
266 | z0 = 0; | |
267 | } | |
268 | z2 |= ( a2 != 0 ); | |
269 | } | |
270 | *z2Ptr = z2; | |
271 | *z1Ptr = z1; | |
272 | *z0Ptr = z0; | |
273 | ||
274 | } | |
275 | ||
276 | /*---------------------------------------------------------------------------- | |
277 | | Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the | |
278 | | number of bits given in `count'. Any bits shifted off are lost. The value | |
279 | | of `count' must be less than 64. The result is broken into two 64-bit | |
280 | | pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. | |
281 | *----------------------------------------------------------------------------*/ | |
282 | ||
283 | INLINE void | |
284 | shortShift128Left( | |
285 | bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) | |
286 | { | |
287 | ||
288 | *z1Ptr = a1<<count; | |
289 | *z0Ptr = | |
290 | ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) ); | |
291 | ||
292 | } | |
293 | ||
294 | /*---------------------------------------------------------------------------- | |
295 | | Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left | |
296 | | by the number of bits given in `count'. Any bits shifted off are lost. | |
297 | | The value of `count' must be less than 64. The result is broken into three | |
298 | | 64-bit pieces which are stored at the locations pointed to by `z0Ptr', | |
299 | | `z1Ptr', and `z2Ptr'. | |
300 | *----------------------------------------------------------------------------*/ | |
301 | ||
302 | INLINE void | |
303 | shortShift192Left( | |
304 | bits64 a0, | |
305 | bits64 a1, | |
306 | bits64 a2, | |
307 | int16 count, | |
308 | bits64 *z0Ptr, | |
309 | bits64 *z1Ptr, | |
310 | bits64 *z2Ptr | |
311 | ) | |
312 | { | |
313 | bits64 z0, z1, z2; | |
314 | int8 negCount; | |
315 | ||
316 | z2 = a2<<count; | |
317 | z1 = a1<<count; | |
318 | z0 = a0<<count; | |
319 | if ( 0 < count ) { | |
320 | negCount = ( ( - count ) & 63 ); | |
321 | z1 |= a2>>negCount; | |
322 | z0 |= a1>>negCount; | |
323 | } | |
324 | *z2Ptr = z2; | |
325 | *z1Ptr = z1; | |
326 | *z0Ptr = z0; | |
327 | ||
328 | } | |
329 | ||
330 | /*---------------------------------------------------------------------------- | |
331 | | Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit | |
332 | | value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so | |
333 | | any carry out is lost. The result is broken into two 64-bit pieces which | |
334 | | are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. | |
335 | *----------------------------------------------------------------------------*/ | |
336 | ||
337 | INLINE void | |
338 | add128( | |
339 | bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) | |
340 | { | |
341 | bits64 z1; | |
342 | ||
343 | z1 = a1 + b1; | |
344 | *z1Ptr = z1; | |
345 | *z0Ptr = a0 + b0 + ( z1 < a1 ); | |
346 | ||
347 | } | |
348 | ||
349 | /*---------------------------------------------------------------------------- | |
350 | | Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the | |
351 | | 192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is | |
352 | | modulo 2^192, so any carry out is lost. The result is broken into three | |
353 | | 64-bit pieces which are stored at the locations pointed to by `z0Ptr', | |
354 | | `z1Ptr', and `z2Ptr'. | |
355 | *----------------------------------------------------------------------------*/ | |
356 | ||
357 | INLINE void | |
358 | add192( | |
359 | bits64 a0, | |
360 | bits64 a1, | |
361 | bits64 a2, | |
362 | bits64 b0, | |
363 | bits64 b1, | |
364 | bits64 b2, | |
365 | bits64 *z0Ptr, | |
366 | bits64 *z1Ptr, | |
367 | bits64 *z2Ptr | |
368 | ) | |
369 | { | |
370 | bits64 z0, z1, z2; | |
371 | int8 carry0, carry1; | |
372 | ||
373 | z2 = a2 + b2; | |
374 | carry1 = ( z2 < a2 ); | |
375 | z1 = a1 + b1; | |
376 | carry0 = ( z1 < a1 ); | |
377 | z0 = a0 + b0; | |
378 | z1 += carry1; | |
379 | z0 += ( z1 < carry1 ); | |
380 | z0 += carry0; | |
381 | *z2Ptr = z2; | |
382 | *z1Ptr = z1; | |
383 | *z0Ptr = z0; | |
384 | ||
385 | } | |
386 | ||
387 | /*---------------------------------------------------------------------------- | |
388 | | Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the | |
389 | | 128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo | |
390 | | 2^128, so any borrow out (carry out) is lost. The result is broken into two | |
391 | | 64-bit pieces which are stored at the locations pointed to by `z0Ptr' and | |
392 | | `z1Ptr'. | |
393 | *----------------------------------------------------------------------------*/ | |
394 | ||
395 | INLINE void | |
396 | sub128( | |
397 | bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) | |
398 | { | |
399 | ||
400 | *z1Ptr = a1 - b1; | |
401 | *z0Ptr = a0 - b0 - ( a1 < b1 ); | |
402 | ||
403 | } | |
404 | ||
405 | /*---------------------------------------------------------------------------- | |
406 | | Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2' | |
407 | | from the 192-bit value formed by concatenating `a0', `a1', and `a2'. | |
408 | | Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The | |
409 | | result is broken into three 64-bit pieces which are stored at the locations | |
410 | | pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'. | |
411 | *----------------------------------------------------------------------------*/ | |
412 | ||
413 | INLINE void | |
414 | sub192( | |
415 | bits64 a0, | |
416 | bits64 a1, | |
417 | bits64 a2, | |
418 | bits64 b0, | |
419 | bits64 b1, | |
420 | bits64 b2, | |
421 | bits64 *z0Ptr, | |
422 | bits64 *z1Ptr, | |
423 | bits64 *z2Ptr | |
424 | ) | |
425 | { | |
426 | bits64 z0, z1, z2; | |
427 | int8 borrow0, borrow1; | |
428 | ||
429 | z2 = a2 - b2; | |
430 | borrow1 = ( a2 < b2 ); | |
431 | z1 = a1 - b1; | |
432 | borrow0 = ( a1 < b1 ); | |
433 | z0 = a0 - b0; | |
434 | z0 -= ( z1 < borrow1 ); | |
435 | z1 -= borrow1; | |
436 | z0 -= borrow0; | |
437 | *z2Ptr = z2; | |
438 | *z1Ptr = z1; | |
439 | *z0Ptr = z0; | |
440 | ||
441 | } | |
442 | ||
443 | /*---------------------------------------------------------------------------- | |
444 | | Multiplies `a' by `b' to obtain a 128-bit product. The product is broken | |
445 | | into two 64-bit pieces which are stored at the locations pointed to by | |
446 | | `z0Ptr' and `z1Ptr'. | |
447 | *----------------------------------------------------------------------------*/ | |
448 | ||
449 | INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr ) | |
450 | { | |
451 | bits32 aHigh, aLow, bHigh, bLow; | |
452 | bits64 z0, zMiddleA, zMiddleB, z1; | |
453 | ||
454 | aLow = a; | |
455 | aHigh = a>>32; | |
456 | bLow = b; | |
457 | bHigh = b>>32; | |
458 | z1 = ( (bits64) aLow ) * bLow; | |
459 | zMiddleA = ( (bits64) aLow ) * bHigh; | |
460 | zMiddleB = ( (bits64) aHigh ) * bLow; | |
461 | z0 = ( (bits64) aHigh ) * bHigh; | |
462 | zMiddleA += zMiddleB; | |
463 | z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 ); | |
464 | zMiddleA <<= 32; | |
465 | z1 += zMiddleA; | |
466 | z0 += ( z1 < zMiddleA ); | |
467 | *z1Ptr = z1; | |
468 | *z0Ptr = z0; | |
469 | ||
470 | } | |
471 | ||
472 | /*---------------------------------------------------------------------------- | |
473 | | Multiplies the 128-bit value formed by concatenating `a0' and `a1' by | |
474 | | `b' to obtain a 192-bit product. The product is broken into three 64-bit | |
475 | | pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and | |
476 | | `z2Ptr'. | |
477 | *----------------------------------------------------------------------------*/ | |
478 | ||
479 | INLINE void | |
480 | mul128By64To192( | |
481 | bits64 a0, | |
482 | bits64 a1, | |
483 | bits64 b, | |
484 | bits64 *z0Ptr, | |
485 | bits64 *z1Ptr, | |
486 | bits64 *z2Ptr | |
487 | ) | |
488 | { | |
489 | bits64 z0, z1, z2, more1; | |
490 | ||
491 | mul64To128( a1, b, &z1, &z2 ); | |
492 | mul64To128( a0, b, &z0, &more1 ); | |
493 | add128( z0, more1, 0, z1, &z0, &z1 ); | |
494 | *z2Ptr = z2; | |
495 | *z1Ptr = z1; | |
496 | *z0Ptr = z0; | |
497 | ||
498 | } | |
499 | ||
500 | /*---------------------------------------------------------------------------- | |
501 | | Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the | |
502 | | 128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit | |
503 | | product. The product is broken into four 64-bit pieces which are stored at | |
504 | | the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'. | |
505 | *----------------------------------------------------------------------------*/ | |
506 | ||
507 | INLINE void | |
508 | mul128To256( | |
509 | bits64 a0, | |
510 | bits64 a1, | |
511 | bits64 b0, | |
512 | bits64 b1, | |
513 | bits64 *z0Ptr, | |
514 | bits64 *z1Ptr, | |
515 | bits64 *z2Ptr, | |
516 | bits64 *z3Ptr | |
517 | ) | |
518 | { | |
519 | bits64 z0, z1, z2, z3; | |
520 | bits64 more1, more2; | |
521 | ||
522 | mul64To128( a1, b1, &z2, &z3 ); | |
523 | mul64To128( a1, b0, &z1, &more2 ); | |
524 | add128( z1, more2, 0, z2, &z1, &z2 ); | |
525 | mul64To128( a0, b0, &z0, &more1 ); | |
526 | add128( z0, more1, 0, z1, &z0, &z1 ); | |
527 | mul64To128( a0, b1, &more1, &more2 ); | |
528 | add128( more1, more2, 0, z2, &more1, &z2 ); | |
529 | add128( z0, z1, 0, more1, &z0, &z1 ); | |
530 | *z3Ptr = z3; | |
531 | *z2Ptr = z2; | |
532 | *z1Ptr = z1; | |
533 | *z0Ptr = z0; | |
534 | ||
535 | } | |
536 | ||
537 | /*---------------------------------------------------------------------------- | |
538 | | Returns an approximation to the 64-bit integer quotient obtained by dividing | |
539 | | `b' into the 128-bit value formed by concatenating `a0' and `a1'. The | |
540 | | divisor `b' must be at least 2^63. If q is the exact quotient truncated | |
541 | | toward zero, the approximation returned lies between q and q + 2 inclusive. | |
542 | | If the exact quotient q is larger than 64 bits, the maximum positive 64-bit | |
543 | | unsigned integer is returned. | |
544 | *----------------------------------------------------------------------------*/ | |
545 | ||
546 | static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b ) | |
547 | { | |
548 | bits64 b0, b1; | |
549 | bits64 rem0, rem1, term0, term1; | |
550 | bits64 z; | |
551 | ||
552 | if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF ); | |
553 | b0 = b>>32; | |
554 | z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32; | |
555 | mul64To128( b, z, &term0, &term1 ); | |
556 | sub128( a0, a1, term0, term1, &rem0, &rem1 ); | |
557 | while ( ( (sbits64) rem0 ) < 0 ) { | |
558 | z -= LIT64( 0x100000000 ); | |
559 | b1 = b<<32; | |
560 | add128( rem0, rem1, b0, b1, &rem0, &rem1 ); | |
561 | } | |
562 | rem0 = ( rem0<<32 ) | ( rem1>>32 ); | |
563 | z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0; | |
564 | return z; | |
565 | ||
566 | } | |
567 | ||
568 | /*---------------------------------------------------------------------------- | |
569 | | Returns an approximation to the square root of the 32-bit significand given | |
570 | | by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of | |
571 | | `aExp' (the least significant bit) is 1, the integer returned approximates | |
572 | | 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp' | |
573 | | is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either | |
574 | | case, the approximation returned lies strictly within +/-2 of the exact | |
575 | | value. | |
576 | *----------------------------------------------------------------------------*/ | |
577 | ||
578 | static bits32 estimateSqrt32( int16 aExp, bits32 a ) | |
579 | { | |
580 | static const bits16 sqrtOddAdjustments[] = { | |
581 | 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0, | |
582 | 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67 | |
583 | }; | |
584 | static const bits16 sqrtEvenAdjustments[] = { | |
585 | 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E, | |
586 | 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002 | |
587 | }; | |
588 | int8 index; | |
589 | bits32 z; | |
590 | ||
591 | index = ( a>>27 ) & 15; | |
592 | if ( aExp & 1 ) { | |
593 | z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ]; | |
594 | z = ( ( a / z )<<14 ) + ( z<<15 ); | |
595 | a >>= 1; | |
596 | } | |
597 | else { | |
598 | z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ]; | |
599 | z = a / z + z; | |
600 | z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 ); | |
601 | if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 ); | |
602 | } | |
603 | return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 ); | |
604 | ||
605 | } | |
606 | ||
607 | /*---------------------------------------------------------------------------- | |
608 | | Returns the number of leading 0 bits before the most-significant 1 bit of | |
609 | | `a'. If `a' is zero, 32 is returned. | |
610 | *----------------------------------------------------------------------------*/ | |
611 | ||
612 | static int8 countLeadingZeros32( bits32 a ) | |
613 | { | |
614 | static const int8 countLeadingZerosHigh[] = { | |
615 | 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, | |
616 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | |
617 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
618 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
619 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
620 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
621 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
622 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
623 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
624 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
625 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
626 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
627 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
628 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
629 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
630 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 | |
631 | }; | |
632 | int8 shiftCount; | |
633 | ||
634 | shiftCount = 0; | |
635 | if ( a < 0x10000 ) { | |
636 | shiftCount += 16; | |
637 | a <<= 16; | |
638 | } | |
639 | if ( a < 0x1000000 ) { | |
640 | shiftCount += 8; | |
641 | a <<= 8; | |
642 | } | |
643 | shiftCount += countLeadingZerosHigh[ a>>24 ]; | |
644 | return shiftCount; | |
645 | ||
646 | } | |
647 | ||
648 | /*---------------------------------------------------------------------------- | |
649 | | Returns the number of leading 0 bits before the most-significant 1 bit of | |
650 | | `a'. If `a' is zero, 64 is returned. | |
651 | *----------------------------------------------------------------------------*/ | |
652 | ||
653 | static int8 countLeadingZeros64( bits64 a ) | |
654 | { | |
655 | int8 shiftCount; | |
656 | ||
657 | shiftCount = 0; | |
658 | if ( a < ( (bits64) 1 )<<32 ) { | |
659 | shiftCount += 32; | |
660 | } | |
661 | else { | |
662 | a >>= 32; | |
663 | } | |
664 | shiftCount += countLeadingZeros32( a ); | |
665 | return shiftCount; | |
666 | ||
667 | } | |
668 | ||
669 | /*---------------------------------------------------------------------------- | |
670 | | Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' | |
671 | | is equal to the 128-bit value formed by concatenating `b0' and `b1'. | |
672 | | Otherwise, returns 0. | |
673 | *----------------------------------------------------------------------------*/ | |
674 | ||
675 | INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | |
676 | { | |
677 | ||
678 | return ( a0 == b0 ) && ( a1 == b1 ); | |
679 | ||
680 | } | |
681 | ||
682 | /*---------------------------------------------------------------------------- | |
683 | | Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less | |
684 | | than or equal to the 128-bit value formed by concatenating `b0' and `b1'. | |
685 | | Otherwise, returns 0. | |
686 | *----------------------------------------------------------------------------*/ | |
687 | ||
688 | INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | |
689 | { | |
690 | ||
691 | return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) ); | |
692 | ||
693 | } | |
694 | ||
695 | /*---------------------------------------------------------------------------- | |
696 | | Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less | |
697 | | than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise, | |
698 | | returns 0. | |
699 | *----------------------------------------------------------------------------*/ | |
700 | ||
701 | INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | |
702 | { | |
703 | ||
704 | return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) ); | |
705 | ||
706 | } | |
707 | ||
708 | /*---------------------------------------------------------------------------- | |
709 | | Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is | |
710 | | not equal to the 128-bit value formed by concatenating `b0' and `b1'. | |
711 | | Otherwise, returns 0. | |
712 | *----------------------------------------------------------------------------*/ | |
713 | ||
714 | INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) | |
715 | { | |
716 | ||
717 | return ( a0 != b0 ) || ( a1 != b1 ); | |
718 | ||
719 | } | |
720 |