]>
Commit | Line | Data |
---|---|---|
d76d1650 AJ |
1 | /* |
2 | * PowerPC implementation of KVM hooks | |
3 | * | |
4 | * Copyright IBM Corp. 2007 | |
90dc8812 | 5 | * Copyright (C) 2011 Freescale Semiconductor, Inc. |
d76d1650 AJ |
6 | * |
7 | * Authors: | |
8 | * Jerone Young <[email protected]> | |
9 | * Christian Ehrhardt <[email protected]> | |
10 | * Hollis Blanchard <[email protected]> | |
11 | * | |
12 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
13 | * See the COPYING file in the top-level directory. | |
14 | * | |
15 | */ | |
16 | ||
eadaada1 | 17 | #include <dirent.h> |
d76d1650 AJ |
18 | #include <sys/types.h> |
19 | #include <sys/ioctl.h> | |
20 | #include <sys/mman.h> | |
4656e1f0 | 21 | #include <sys/vfs.h> |
d76d1650 AJ |
22 | |
23 | #include <linux/kvm.h> | |
24 | ||
25 | #include "qemu-common.h" | |
1de7afc9 | 26 | #include "qemu/timer.h" |
9c17d615 PB |
27 | #include "sysemu/sysemu.h" |
28 | #include "sysemu/kvm.h" | |
d76d1650 AJ |
29 | #include "kvm_ppc.h" |
30 | #include "cpu.h" | |
9c17d615 PB |
31 | #include "sysemu/cpus.h" |
32 | #include "sysemu/device_tree.h" | |
d5aea6f3 | 33 | #include "mmu-hash64.h" |
d76d1650 | 34 | |
f61b4bed | 35 | #include "hw/sysbus.h" |
0d09e41a PB |
36 | #include "hw/ppc/spapr.h" |
37 | #include "hw/ppc/spapr_vio.h" | |
31f2cb8f | 38 | #include "sysemu/watchdog.h" |
b36f100e | 39 | #include "trace.h" |
f61b4bed | 40 | |
d76d1650 AJ |
41 | //#define DEBUG_KVM |
42 | ||
43 | #ifdef DEBUG_KVM | |
da56ff91 | 44 | #define DPRINTF(fmt, ...) \ |
d76d1650 AJ |
45 | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
46 | #else | |
da56ff91 | 47 | #define DPRINTF(fmt, ...) \ |
d76d1650 AJ |
48 | do { } while (0) |
49 | #endif | |
50 | ||
eadaada1 AG |
51 | #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/" |
52 | ||
94a8d39a JK |
53 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
54 | KVM_CAP_LAST_INFO | |
55 | }; | |
56 | ||
fc87e185 AG |
57 | static int cap_interrupt_unset = false; |
58 | static int cap_interrupt_level = false; | |
90dc8812 | 59 | static int cap_segstate; |
90dc8812 | 60 | static int cap_booke_sregs; |
e97c3636 | 61 | static int cap_ppc_smt; |
354ac20a | 62 | static int cap_ppc_rma; |
0f5cb298 | 63 | static int cap_spapr_tce; |
f1af19d7 | 64 | static int cap_hior; |
d67d40ea | 65 | static int cap_one_reg; |
3b961124 | 66 | static int cap_epr; |
31f2cb8f | 67 | static int cap_ppc_watchdog; |
9b00ea49 | 68 | static int cap_papr; |
e68cb8b4 | 69 | static int cap_htab_fd; |
fc87e185 | 70 | |
c821c2bd AG |
71 | /* XXX We have a race condition where we actually have a level triggered |
72 | * interrupt, but the infrastructure can't expose that yet, so the guest | |
73 | * takes but ignores it, goes to sleep and never gets notified that there's | |
74 | * still an interrupt pending. | |
c6a94ba5 | 75 | * |
c821c2bd AG |
76 | * As a quick workaround, let's just wake up again 20 ms after we injected |
77 | * an interrupt. That way we can assure that we're always reinjecting | |
78 | * interrupts in case the guest swallowed them. | |
c6a94ba5 AG |
79 | */ |
80 | static QEMUTimer *idle_timer; | |
81 | ||
d5a68146 | 82 | static void kvm_kick_cpu(void *opaque) |
c6a94ba5 | 83 | { |
d5a68146 | 84 | PowerPCCPU *cpu = opaque; |
d5a68146 | 85 | |
c08d7424 | 86 | qemu_cpu_kick(CPU(cpu)); |
c6a94ba5 AG |
87 | } |
88 | ||
5ba4576b AF |
89 | static int kvm_ppc_register_host_cpu_type(void); |
90 | ||
cad1e282 | 91 | int kvm_arch_init(KVMState *s) |
d76d1650 | 92 | { |
fc87e185 | 93 | cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ); |
fc87e185 | 94 | cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL); |
90dc8812 | 95 | cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE); |
90dc8812 | 96 | cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS); |
e97c3636 | 97 | cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT); |
354ac20a | 98 | cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA); |
0f5cb298 | 99 | cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE); |
d67d40ea | 100 | cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG); |
f1af19d7 | 101 | cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR); |
3b961124 | 102 | cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR); |
31f2cb8f | 103 | cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG); |
9b00ea49 DG |
104 | /* Note: we don't set cap_papr here, because this capability is |
105 | * only activated after this by kvmppc_set_papr() */ | |
e68cb8b4 | 106 | cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD); |
fc87e185 AG |
107 | |
108 | if (!cap_interrupt_level) { | |
109 | fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the " | |
110 | "VM to stall at times!\n"); | |
111 | } | |
112 | ||
5ba4576b AF |
113 | kvm_ppc_register_host_cpu_type(); |
114 | ||
d76d1650 AJ |
115 | return 0; |
116 | } | |
117 | ||
1bc22652 | 118 | static int kvm_arch_sync_sregs(PowerPCCPU *cpu) |
d76d1650 | 119 | { |
1bc22652 AF |
120 | CPUPPCState *cenv = &cpu->env; |
121 | CPUState *cs = CPU(cpu); | |
861bbc80 | 122 | struct kvm_sregs sregs; |
5666ca4a SW |
123 | int ret; |
124 | ||
125 | if (cenv->excp_model == POWERPC_EXCP_BOOKE) { | |
64e07be5 AG |
126 | /* What we're really trying to say is "if we're on BookE, we use |
127 | the native PVR for now". This is the only sane way to check | |
128 | it though, so we potentially confuse users that they can run | |
129 | BookE guests on BookS. Let's hope nobody dares enough :) */ | |
5666ca4a SW |
130 | return 0; |
131 | } else { | |
90dc8812 | 132 | if (!cap_segstate) { |
64e07be5 AG |
133 | fprintf(stderr, "kvm error: missing PVR setting capability\n"); |
134 | return -ENOSYS; | |
5666ca4a | 135 | } |
5666ca4a SW |
136 | } |
137 | ||
1bc22652 | 138 | ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); |
5666ca4a SW |
139 | if (ret) { |
140 | return ret; | |
141 | } | |
861bbc80 AG |
142 | |
143 | sregs.pvr = cenv->spr[SPR_PVR]; | |
1bc22652 | 144 | return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); |
5666ca4a SW |
145 | } |
146 | ||
93dd5e85 | 147 | /* Set up a shared TLB array with KVM */ |
1bc22652 | 148 | static int kvm_booke206_tlb_init(PowerPCCPU *cpu) |
93dd5e85 | 149 | { |
1bc22652 AF |
150 | CPUPPCState *env = &cpu->env; |
151 | CPUState *cs = CPU(cpu); | |
93dd5e85 SW |
152 | struct kvm_book3e_206_tlb_params params = {}; |
153 | struct kvm_config_tlb cfg = {}; | |
154 | struct kvm_enable_cap encap = {}; | |
155 | unsigned int entries = 0; | |
156 | int ret, i; | |
157 | ||
158 | if (!kvm_enabled() || | |
a60f24b5 | 159 | !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) { |
93dd5e85 SW |
160 | return 0; |
161 | } | |
162 | ||
163 | assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN); | |
164 | ||
165 | for (i = 0; i < BOOKE206_MAX_TLBN; i++) { | |
166 | params.tlb_sizes[i] = booke206_tlb_size(env, i); | |
167 | params.tlb_ways[i] = booke206_tlb_ways(env, i); | |
168 | entries += params.tlb_sizes[i]; | |
169 | } | |
170 | ||
171 | assert(entries == env->nb_tlb); | |
172 | assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t)); | |
173 | ||
174 | env->tlb_dirty = true; | |
175 | ||
176 | cfg.array = (uintptr_t)env->tlb.tlbm; | |
177 | cfg.array_len = sizeof(ppcmas_tlb_t) * entries; | |
178 | cfg.params = (uintptr_t)¶ms; | |
179 | cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV; | |
180 | ||
181 | encap.cap = KVM_CAP_SW_TLB; | |
182 | encap.args[0] = (uintptr_t)&cfg; | |
183 | ||
1bc22652 | 184 | ret = kvm_vcpu_ioctl(cs, KVM_ENABLE_CAP, &encap); |
93dd5e85 SW |
185 | if (ret < 0) { |
186 | fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n", | |
187 | __func__, strerror(-ret)); | |
188 | return ret; | |
189 | } | |
190 | ||
191 | env->kvm_sw_tlb = true; | |
192 | return 0; | |
193 | } | |
194 | ||
4656e1f0 BH |
195 | |
196 | #if defined(TARGET_PPC64) | |
a60f24b5 | 197 | static void kvm_get_fallback_smmu_info(PowerPCCPU *cpu, |
4656e1f0 BH |
198 | struct kvm_ppc_smmu_info *info) |
199 | { | |
a60f24b5 AF |
200 | CPUPPCState *env = &cpu->env; |
201 | CPUState *cs = CPU(cpu); | |
202 | ||
4656e1f0 BH |
203 | memset(info, 0, sizeof(*info)); |
204 | ||
205 | /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so | |
206 | * need to "guess" what the supported page sizes are. | |
207 | * | |
208 | * For that to work we make a few assumptions: | |
209 | * | |
210 | * - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR" | |
211 | * KVM which only supports 4K and 16M pages, but supports them | |
212 | * regardless of the backing store characteritics. We also don't | |
213 | * support 1T segments. | |
214 | * | |
215 | * This is safe as if HV KVM ever supports that capability or PR | |
216 | * KVM grows supports for more page/segment sizes, those versions | |
217 | * will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we | |
218 | * will not hit this fallback | |
219 | * | |
220 | * - Else we are running HV KVM. This means we only support page | |
221 | * sizes that fit in the backing store. Additionally we only | |
222 | * advertize 64K pages if the processor is ARCH 2.06 and we assume | |
223 | * P7 encodings for the SLB and hash table. Here too, we assume | |
224 | * support for any newer processor will mean a kernel that | |
225 | * implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit | |
226 | * this fallback. | |
227 | */ | |
a60f24b5 | 228 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO)) { |
4656e1f0 BH |
229 | /* No flags */ |
230 | info->flags = 0; | |
231 | info->slb_size = 64; | |
232 | ||
233 | /* Standard 4k base page size segment */ | |
234 | info->sps[0].page_shift = 12; | |
235 | info->sps[0].slb_enc = 0; | |
236 | info->sps[0].enc[0].page_shift = 12; | |
237 | info->sps[0].enc[0].pte_enc = 0; | |
238 | ||
239 | /* Standard 16M large page size segment */ | |
240 | info->sps[1].page_shift = 24; | |
241 | info->sps[1].slb_enc = SLB_VSID_L; | |
242 | info->sps[1].enc[0].page_shift = 24; | |
243 | info->sps[1].enc[0].pte_enc = 0; | |
244 | } else { | |
245 | int i = 0; | |
246 | ||
247 | /* HV KVM has backing store size restrictions */ | |
248 | info->flags = KVM_PPC_PAGE_SIZES_REAL; | |
249 | ||
250 | if (env->mmu_model & POWERPC_MMU_1TSEG) { | |
251 | info->flags |= KVM_PPC_1T_SEGMENTS; | |
252 | } | |
253 | ||
254 | if (env->mmu_model == POWERPC_MMU_2_06) { | |
255 | info->slb_size = 32; | |
256 | } else { | |
257 | info->slb_size = 64; | |
258 | } | |
259 | ||
260 | /* Standard 4k base page size segment */ | |
261 | info->sps[i].page_shift = 12; | |
262 | info->sps[i].slb_enc = 0; | |
263 | info->sps[i].enc[0].page_shift = 12; | |
264 | info->sps[i].enc[0].pte_enc = 0; | |
265 | i++; | |
266 | ||
267 | /* 64K on MMU 2.06 */ | |
268 | if (env->mmu_model == POWERPC_MMU_2_06) { | |
269 | info->sps[i].page_shift = 16; | |
270 | info->sps[i].slb_enc = 0x110; | |
271 | info->sps[i].enc[0].page_shift = 16; | |
272 | info->sps[i].enc[0].pte_enc = 1; | |
273 | i++; | |
274 | } | |
275 | ||
276 | /* Standard 16M large page size segment */ | |
277 | info->sps[i].page_shift = 24; | |
278 | info->sps[i].slb_enc = SLB_VSID_L; | |
279 | info->sps[i].enc[0].page_shift = 24; | |
280 | info->sps[i].enc[0].pte_enc = 0; | |
281 | } | |
282 | } | |
283 | ||
a60f24b5 | 284 | static void kvm_get_smmu_info(PowerPCCPU *cpu, struct kvm_ppc_smmu_info *info) |
4656e1f0 | 285 | { |
a60f24b5 | 286 | CPUState *cs = CPU(cpu); |
4656e1f0 BH |
287 | int ret; |
288 | ||
a60f24b5 AF |
289 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) { |
290 | ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_SMMU_INFO, info); | |
4656e1f0 BH |
291 | if (ret == 0) { |
292 | return; | |
293 | } | |
294 | } | |
295 | ||
a60f24b5 | 296 | kvm_get_fallback_smmu_info(cpu, info); |
4656e1f0 BH |
297 | } |
298 | ||
299 | static long getrampagesize(void) | |
300 | { | |
301 | struct statfs fs; | |
302 | int ret; | |
303 | ||
304 | if (!mem_path) { | |
305 | /* guest RAM is backed by normal anonymous pages */ | |
306 | return getpagesize(); | |
307 | } | |
308 | ||
309 | do { | |
310 | ret = statfs(mem_path, &fs); | |
311 | } while (ret != 0 && errno == EINTR); | |
312 | ||
313 | if (ret != 0) { | |
314 | fprintf(stderr, "Couldn't statfs() memory path: %s\n", | |
315 | strerror(errno)); | |
316 | exit(1); | |
317 | } | |
318 | ||
319 | #define HUGETLBFS_MAGIC 0x958458f6 | |
320 | ||
321 | if (fs.f_type != HUGETLBFS_MAGIC) { | |
322 | /* Explicit mempath, but it's ordinary pages */ | |
323 | return getpagesize(); | |
324 | } | |
325 | ||
326 | /* It's hugepage, return the huge page size */ | |
327 | return fs.f_bsize; | |
328 | } | |
329 | ||
330 | static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift) | |
331 | { | |
332 | if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) { | |
333 | return true; | |
334 | } | |
335 | ||
336 | return (1ul << shift) <= rampgsize; | |
337 | } | |
338 | ||
a60f24b5 | 339 | static void kvm_fixup_page_sizes(PowerPCCPU *cpu) |
4656e1f0 BH |
340 | { |
341 | static struct kvm_ppc_smmu_info smmu_info; | |
342 | static bool has_smmu_info; | |
a60f24b5 | 343 | CPUPPCState *env = &cpu->env; |
4656e1f0 BH |
344 | long rampagesize; |
345 | int iq, ik, jq, jk; | |
346 | ||
347 | /* We only handle page sizes for 64-bit server guests for now */ | |
348 | if (!(env->mmu_model & POWERPC_MMU_64)) { | |
349 | return; | |
350 | } | |
351 | ||
352 | /* Collect MMU info from kernel if not already */ | |
353 | if (!has_smmu_info) { | |
a60f24b5 | 354 | kvm_get_smmu_info(cpu, &smmu_info); |
4656e1f0 BH |
355 | has_smmu_info = true; |
356 | } | |
357 | ||
358 | rampagesize = getrampagesize(); | |
359 | ||
360 | /* Convert to QEMU form */ | |
361 | memset(&env->sps, 0, sizeof(env->sps)); | |
362 | ||
363 | for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) { | |
364 | struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq]; | |
365 | struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik]; | |
366 | ||
367 | if (!kvm_valid_page_size(smmu_info.flags, rampagesize, | |
368 | ksps->page_shift)) { | |
369 | continue; | |
370 | } | |
371 | qsps->page_shift = ksps->page_shift; | |
372 | qsps->slb_enc = ksps->slb_enc; | |
373 | for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) { | |
374 | if (!kvm_valid_page_size(smmu_info.flags, rampagesize, | |
375 | ksps->enc[jk].page_shift)) { | |
376 | continue; | |
377 | } | |
378 | qsps->enc[jq].page_shift = ksps->enc[jk].page_shift; | |
379 | qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc; | |
380 | if (++jq >= PPC_PAGE_SIZES_MAX_SZ) { | |
381 | break; | |
382 | } | |
383 | } | |
384 | if (++iq >= PPC_PAGE_SIZES_MAX_SZ) { | |
385 | break; | |
386 | } | |
387 | } | |
388 | env->slb_nr = smmu_info.slb_size; | |
389 | if (smmu_info.flags & KVM_PPC_1T_SEGMENTS) { | |
390 | env->mmu_model |= POWERPC_MMU_1TSEG; | |
391 | } else { | |
392 | env->mmu_model &= ~POWERPC_MMU_1TSEG; | |
393 | } | |
394 | } | |
395 | #else /* defined (TARGET_PPC64) */ | |
396 | ||
a60f24b5 | 397 | static inline void kvm_fixup_page_sizes(PowerPCCPU *cpu) |
4656e1f0 BH |
398 | { |
399 | } | |
400 | ||
401 | #endif /* !defined (TARGET_PPC64) */ | |
402 | ||
b164e48e EH |
403 | unsigned long kvm_arch_vcpu_id(CPUState *cpu) |
404 | { | |
0f20ba62 | 405 | return ppc_get_vcpu_dt_id(POWERPC_CPU(cpu)); |
b164e48e EH |
406 | } |
407 | ||
20d695a9 | 408 | int kvm_arch_init_vcpu(CPUState *cs) |
5666ca4a | 409 | { |
20d695a9 AF |
410 | PowerPCCPU *cpu = POWERPC_CPU(cs); |
411 | CPUPPCState *cenv = &cpu->env; | |
5666ca4a SW |
412 | int ret; |
413 | ||
4656e1f0 | 414 | /* Gather server mmu info from KVM and update the CPU state */ |
a60f24b5 | 415 | kvm_fixup_page_sizes(cpu); |
4656e1f0 BH |
416 | |
417 | /* Synchronize sregs with kvm */ | |
1bc22652 | 418 | ret = kvm_arch_sync_sregs(cpu); |
5666ca4a SW |
419 | if (ret) { |
420 | return ret; | |
421 | } | |
861bbc80 | 422 | |
bc72ad67 | 423 | idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu); |
c821c2bd | 424 | |
93dd5e85 SW |
425 | /* Some targets support access to KVM's guest TLB. */ |
426 | switch (cenv->mmu_model) { | |
427 | case POWERPC_MMU_BOOKE206: | |
1bc22652 | 428 | ret = kvm_booke206_tlb_init(cpu); |
93dd5e85 SW |
429 | break; |
430 | default: | |
431 | break; | |
432 | } | |
433 | ||
861bbc80 | 434 | return ret; |
d76d1650 AJ |
435 | } |
436 | ||
20d695a9 | 437 | void kvm_arch_reset_vcpu(CPUState *cpu) |
caa5af0f JK |
438 | { |
439 | } | |
440 | ||
1bc22652 | 441 | static void kvm_sw_tlb_put(PowerPCCPU *cpu) |
93dd5e85 | 442 | { |
1bc22652 AF |
443 | CPUPPCState *env = &cpu->env; |
444 | CPUState *cs = CPU(cpu); | |
93dd5e85 SW |
445 | struct kvm_dirty_tlb dirty_tlb; |
446 | unsigned char *bitmap; | |
447 | int ret; | |
448 | ||
449 | if (!env->kvm_sw_tlb) { | |
450 | return; | |
451 | } | |
452 | ||
453 | bitmap = g_malloc((env->nb_tlb + 7) / 8); | |
454 | memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8); | |
455 | ||
456 | dirty_tlb.bitmap = (uintptr_t)bitmap; | |
457 | dirty_tlb.num_dirty = env->nb_tlb; | |
458 | ||
1bc22652 | 459 | ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb); |
93dd5e85 SW |
460 | if (ret) { |
461 | fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n", | |
462 | __func__, strerror(-ret)); | |
463 | } | |
464 | ||
465 | g_free(bitmap); | |
466 | } | |
467 | ||
d67d40ea DG |
468 | static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr) |
469 | { | |
470 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
471 | CPUPPCState *env = &cpu->env; | |
472 | union { | |
473 | uint32_t u32; | |
474 | uint64_t u64; | |
475 | } val; | |
476 | struct kvm_one_reg reg = { | |
477 | .id = id, | |
478 | .addr = (uintptr_t) &val, | |
479 | }; | |
480 | int ret; | |
481 | ||
482 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
483 | if (ret != 0) { | |
b36f100e | 484 | trace_kvm_failed_spr_get(spr, strerror(errno)); |
d67d40ea DG |
485 | } else { |
486 | switch (id & KVM_REG_SIZE_MASK) { | |
487 | case KVM_REG_SIZE_U32: | |
488 | env->spr[spr] = val.u32; | |
489 | break; | |
490 | ||
491 | case KVM_REG_SIZE_U64: | |
492 | env->spr[spr] = val.u64; | |
493 | break; | |
494 | ||
495 | default: | |
496 | /* Don't handle this size yet */ | |
497 | abort(); | |
498 | } | |
499 | } | |
500 | } | |
501 | ||
502 | static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr) | |
503 | { | |
504 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
505 | CPUPPCState *env = &cpu->env; | |
506 | union { | |
507 | uint32_t u32; | |
508 | uint64_t u64; | |
509 | } val; | |
510 | struct kvm_one_reg reg = { | |
511 | .id = id, | |
512 | .addr = (uintptr_t) &val, | |
513 | }; | |
514 | int ret; | |
515 | ||
516 | switch (id & KVM_REG_SIZE_MASK) { | |
517 | case KVM_REG_SIZE_U32: | |
518 | val.u32 = env->spr[spr]; | |
519 | break; | |
520 | ||
521 | case KVM_REG_SIZE_U64: | |
522 | val.u64 = env->spr[spr]; | |
523 | break; | |
524 | ||
525 | default: | |
526 | /* Don't handle this size yet */ | |
527 | abort(); | |
528 | } | |
529 | ||
530 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
531 | if (ret != 0) { | |
b36f100e | 532 | trace_kvm_failed_spr_set(spr, strerror(errno)); |
d67d40ea DG |
533 | } |
534 | } | |
535 | ||
70b79849 DG |
536 | static int kvm_put_fp(CPUState *cs) |
537 | { | |
538 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
539 | CPUPPCState *env = &cpu->env; | |
540 | struct kvm_one_reg reg; | |
541 | int i; | |
542 | int ret; | |
543 | ||
544 | if (env->insns_flags & PPC_FLOAT) { | |
545 | uint64_t fpscr = env->fpscr; | |
546 | bool vsx = !!(env->insns_flags2 & PPC2_VSX); | |
547 | ||
548 | reg.id = KVM_REG_PPC_FPSCR; | |
549 | reg.addr = (uintptr_t)&fpscr; | |
550 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
551 | if (ret < 0) { | |
da56ff91 | 552 | DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno)); |
70b79849 DG |
553 | return ret; |
554 | } | |
555 | ||
556 | for (i = 0; i < 32; i++) { | |
557 | uint64_t vsr[2]; | |
558 | ||
559 | vsr[0] = float64_val(env->fpr[i]); | |
560 | vsr[1] = env->vsr[i]; | |
561 | reg.addr = (uintptr_t) &vsr; | |
562 | reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); | |
563 | ||
564 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
565 | if (ret < 0) { | |
da56ff91 | 566 | DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR", |
70b79849 DG |
567 | i, strerror(errno)); |
568 | return ret; | |
569 | } | |
570 | } | |
571 | } | |
572 | ||
573 | if (env->insns_flags & PPC_ALTIVEC) { | |
574 | reg.id = KVM_REG_PPC_VSCR; | |
575 | reg.addr = (uintptr_t)&env->vscr; | |
576 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
577 | if (ret < 0) { | |
da56ff91 | 578 | DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno)); |
70b79849 DG |
579 | return ret; |
580 | } | |
581 | ||
582 | for (i = 0; i < 32; i++) { | |
583 | reg.id = KVM_REG_PPC_VR(i); | |
584 | reg.addr = (uintptr_t)&env->avr[i]; | |
585 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
586 | if (ret < 0) { | |
da56ff91 | 587 | DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno)); |
70b79849 DG |
588 | return ret; |
589 | } | |
590 | } | |
591 | } | |
592 | ||
593 | return 0; | |
594 | } | |
595 | ||
596 | static int kvm_get_fp(CPUState *cs) | |
597 | { | |
598 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
599 | CPUPPCState *env = &cpu->env; | |
600 | struct kvm_one_reg reg; | |
601 | int i; | |
602 | int ret; | |
603 | ||
604 | if (env->insns_flags & PPC_FLOAT) { | |
605 | uint64_t fpscr; | |
606 | bool vsx = !!(env->insns_flags2 & PPC2_VSX); | |
607 | ||
608 | reg.id = KVM_REG_PPC_FPSCR; | |
609 | reg.addr = (uintptr_t)&fpscr; | |
610 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
611 | if (ret < 0) { | |
da56ff91 | 612 | DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno)); |
70b79849 DG |
613 | return ret; |
614 | } else { | |
615 | env->fpscr = fpscr; | |
616 | } | |
617 | ||
618 | for (i = 0; i < 32; i++) { | |
619 | uint64_t vsr[2]; | |
620 | ||
621 | reg.addr = (uintptr_t) &vsr; | |
622 | reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); | |
623 | ||
624 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
625 | if (ret < 0) { | |
da56ff91 | 626 | DPRINTF("Unable to get %s%d from KVM: %s\n", |
70b79849 DG |
627 | vsx ? "VSR" : "FPR", i, strerror(errno)); |
628 | return ret; | |
629 | } else { | |
630 | env->fpr[i] = vsr[0]; | |
631 | if (vsx) { | |
632 | env->vsr[i] = vsr[1]; | |
633 | } | |
634 | } | |
635 | } | |
636 | } | |
637 | ||
638 | if (env->insns_flags & PPC_ALTIVEC) { | |
639 | reg.id = KVM_REG_PPC_VSCR; | |
640 | reg.addr = (uintptr_t)&env->vscr; | |
641 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
642 | if (ret < 0) { | |
da56ff91 | 643 | DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno)); |
70b79849 DG |
644 | return ret; |
645 | } | |
646 | ||
647 | for (i = 0; i < 32; i++) { | |
648 | reg.id = KVM_REG_PPC_VR(i); | |
649 | reg.addr = (uintptr_t)&env->avr[i]; | |
650 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
651 | if (ret < 0) { | |
da56ff91 | 652 | DPRINTF("Unable to get VR%d from KVM: %s\n", |
70b79849 DG |
653 | i, strerror(errno)); |
654 | return ret; | |
655 | } | |
656 | } | |
657 | } | |
658 | ||
659 | return 0; | |
660 | } | |
661 | ||
9b00ea49 DG |
662 | #if defined(TARGET_PPC64) |
663 | static int kvm_get_vpa(CPUState *cs) | |
664 | { | |
665 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
666 | CPUPPCState *env = &cpu->env; | |
667 | struct kvm_one_reg reg; | |
668 | int ret; | |
669 | ||
670 | reg.id = KVM_REG_PPC_VPA_ADDR; | |
671 | reg.addr = (uintptr_t)&env->vpa_addr; | |
672 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
673 | if (ret < 0) { | |
da56ff91 | 674 | DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno)); |
9b00ea49 DG |
675 | return ret; |
676 | } | |
677 | ||
678 | assert((uintptr_t)&env->slb_shadow_size | |
679 | == ((uintptr_t)&env->slb_shadow_addr + 8)); | |
680 | reg.id = KVM_REG_PPC_VPA_SLB; | |
681 | reg.addr = (uintptr_t)&env->slb_shadow_addr; | |
682 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
683 | if (ret < 0) { | |
da56ff91 | 684 | DPRINTF("Unable to get SLB shadow state from KVM: %s\n", |
9b00ea49 DG |
685 | strerror(errno)); |
686 | return ret; | |
687 | } | |
688 | ||
689 | assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8)); | |
690 | reg.id = KVM_REG_PPC_VPA_DTL; | |
691 | reg.addr = (uintptr_t)&env->dtl_addr; | |
692 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | |
693 | if (ret < 0) { | |
da56ff91 | 694 | DPRINTF("Unable to get dispatch trace log state from KVM: %s\n", |
9b00ea49 DG |
695 | strerror(errno)); |
696 | return ret; | |
697 | } | |
698 | ||
699 | return 0; | |
700 | } | |
701 | ||
702 | static int kvm_put_vpa(CPUState *cs) | |
703 | { | |
704 | PowerPCCPU *cpu = POWERPC_CPU(cs); | |
705 | CPUPPCState *env = &cpu->env; | |
706 | struct kvm_one_reg reg; | |
707 | int ret; | |
708 | ||
709 | /* SLB shadow or DTL can't be registered unless a master VPA is | |
710 | * registered. That means when restoring state, if a VPA *is* | |
711 | * registered, we need to set that up first. If not, we need to | |
712 | * deregister the others before deregistering the master VPA */ | |
713 | assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr)); | |
714 | ||
715 | if (env->vpa_addr) { | |
716 | reg.id = KVM_REG_PPC_VPA_ADDR; | |
717 | reg.addr = (uintptr_t)&env->vpa_addr; | |
718 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
719 | if (ret < 0) { | |
da56ff91 | 720 | DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno)); |
9b00ea49 DG |
721 | return ret; |
722 | } | |
723 | } | |
724 | ||
725 | assert((uintptr_t)&env->slb_shadow_size | |
726 | == ((uintptr_t)&env->slb_shadow_addr + 8)); | |
727 | reg.id = KVM_REG_PPC_VPA_SLB; | |
728 | reg.addr = (uintptr_t)&env->slb_shadow_addr; | |
729 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
730 | if (ret < 0) { | |
da56ff91 | 731 | DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno)); |
9b00ea49 DG |
732 | return ret; |
733 | } | |
734 | ||
735 | assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8)); | |
736 | reg.id = KVM_REG_PPC_VPA_DTL; | |
737 | reg.addr = (uintptr_t)&env->dtl_addr; | |
738 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
739 | if (ret < 0) { | |
da56ff91 | 740 | DPRINTF("Unable to set dispatch trace log state to KVM: %s\n", |
9b00ea49 DG |
741 | strerror(errno)); |
742 | return ret; | |
743 | } | |
744 | ||
745 | if (!env->vpa_addr) { | |
746 | reg.id = KVM_REG_PPC_VPA_ADDR; | |
747 | reg.addr = (uintptr_t)&env->vpa_addr; | |
748 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
749 | if (ret < 0) { | |
da56ff91 | 750 | DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno)); |
9b00ea49 DG |
751 | return ret; |
752 | } | |
753 | } | |
754 | ||
755 | return 0; | |
756 | } | |
757 | #endif /* TARGET_PPC64 */ | |
758 | ||
20d695a9 | 759 | int kvm_arch_put_registers(CPUState *cs, int level) |
d76d1650 | 760 | { |
20d695a9 AF |
761 | PowerPCCPU *cpu = POWERPC_CPU(cs); |
762 | CPUPPCState *env = &cpu->env; | |
d76d1650 AJ |
763 | struct kvm_regs regs; |
764 | int ret; | |
765 | int i; | |
766 | ||
1bc22652 AF |
767 | ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); |
768 | if (ret < 0) { | |
d76d1650 | 769 | return ret; |
1bc22652 | 770 | } |
d76d1650 AJ |
771 | |
772 | regs.ctr = env->ctr; | |
773 | regs.lr = env->lr; | |
da91a00f | 774 | regs.xer = cpu_read_xer(env); |
d76d1650 AJ |
775 | regs.msr = env->msr; |
776 | regs.pc = env->nip; | |
777 | ||
778 | regs.srr0 = env->spr[SPR_SRR0]; | |
779 | regs.srr1 = env->spr[SPR_SRR1]; | |
780 | ||
781 | regs.sprg0 = env->spr[SPR_SPRG0]; | |
782 | regs.sprg1 = env->spr[SPR_SPRG1]; | |
783 | regs.sprg2 = env->spr[SPR_SPRG2]; | |
784 | regs.sprg3 = env->spr[SPR_SPRG3]; | |
785 | regs.sprg4 = env->spr[SPR_SPRG4]; | |
786 | regs.sprg5 = env->spr[SPR_SPRG5]; | |
787 | regs.sprg6 = env->spr[SPR_SPRG6]; | |
788 | regs.sprg7 = env->spr[SPR_SPRG7]; | |
789 | ||
90dc8812 SW |
790 | regs.pid = env->spr[SPR_BOOKE_PID]; |
791 | ||
d76d1650 AJ |
792 | for (i = 0;i < 32; i++) |
793 | regs.gpr[i] = env->gpr[i]; | |
794 | ||
4bddaf55 AK |
795 | regs.cr = 0; |
796 | for (i = 0; i < 8; i++) { | |
797 | regs.cr |= (env->crf[i] & 15) << (4 * (7 - i)); | |
798 | } | |
799 | ||
1bc22652 | 800 | ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); |
d76d1650 AJ |
801 | if (ret < 0) |
802 | return ret; | |
803 | ||
70b79849 DG |
804 | kvm_put_fp(cs); |
805 | ||
93dd5e85 | 806 | if (env->tlb_dirty) { |
1bc22652 | 807 | kvm_sw_tlb_put(cpu); |
93dd5e85 SW |
808 | env->tlb_dirty = false; |
809 | } | |
810 | ||
f1af19d7 DG |
811 | if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) { |
812 | struct kvm_sregs sregs; | |
813 | ||
814 | sregs.pvr = env->spr[SPR_PVR]; | |
815 | ||
816 | sregs.u.s.sdr1 = env->spr[SPR_SDR1]; | |
817 | ||
818 | /* Sync SLB */ | |
819 | #ifdef TARGET_PPC64 | |
d83af167 | 820 | for (i = 0; i < ARRAY_SIZE(env->slb); i++) { |
f1af19d7 | 821 | sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid; |
69b31b90 AK |
822 | if (env->slb[i].esid & SLB_ESID_V) { |
823 | sregs.u.s.ppc64.slb[i].slbe |= i; | |
824 | } | |
f1af19d7 DG |
825 | sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid; |
826 | } | |
827 | #endif | |
828 | ||
829 | /* Sync SRs */ | |
830 | for (i = 0; i < 16; i++) { | |
831 | sregs.u.s.ppc32.sr[i] = env->sr[i]; | |
832 | } | |
833 | ||
834 | /* Sync BATs */ | |
835 | for (i = 0; i < 8; i++) { | |
ef8beb0e AG |
836 | /* Beware. We have to swap upper and lower bits here */ |
837 | sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32) | |
838 | | env->DBAT[1][i]; | |
839 | sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32) | |
840 | | env->IBAT[1][i]; | |
f1af19d7 DG |
841 | } |
842 | ||
1bc22652 | 843 | ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); |
f1af19d7 DG |
844 | if (ret) { |
845 | return ret; | |
846 | } | |
847 | } | |
848 | ||
849 | if (cap_hior && (level >= KVM_PUT_RESET_STATE)) { | |
d67d40ea DG |
850 | kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); |
851 | } | |
f1af19d7 | 852 | |
d67d40ea DG |
853 | if (cap_one_reg) { |
854 | int i; | |
855 | ||
856 | /* We deliberately ignore errors here, for kernels which have | |
857 | * the ONE_REG calls, but don't support the specific | |
858 | * registers, there's a reasonable chance things will still | |
859 | * work, at least until we try to migrate. */ | |
860 | for (i = 0; i < 1024; i++) { | |
861 | uint64_t id = env->spr_cb[i].one_reg_id; | |
862 | ||
863 | if (id != 0) { | |
864 | kvm_put_one_spr(cs, id, i); | |
865 | } | |
f1af19d7 | 866 | } |
9b00ea49 DG |
867 | |
868 | #ifdef TARGET_PPC64 | |
869 | if (cap_papr) { | |
870 | if (kvm_put_vpa(cs) < 0) { | |
da56ff91 | 871 | DPRINTF("Warning: Unable to set VPA information to KVM\n"); |
9b00ea49 DG |
872 | } |
873 | } | |
874 | #endif /* TARGET_PPC64 */ | |
f1af19d7 DG |
875 | } |
876 | ||
d76d1650 AJ |
877 | return ret; |
878 | } | |
879 | ||
20d695a9 | 880 | int kvm_arch_get_registers(CPUState *cs) |
d76d1650 | 881 | { |
20d695a9 AF |
882 | PowerPCCPU *cpu = POWERPC_CPU(cs); |
883 | CPUPPCState *env = &cpu->env; | |
d76d1650 | 884 | struct kvm_regs regs; |
ba5e5090 | 885 | struct kvm_sregs sregs; |
90dc8812 | 886 | uint32_t cr; |
138b38b6 | 887 | int i, ret; |
d76d1650 | 888 | |
1bc22652 | 889 | ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); |
d76d1650 AJ |
890 | if (ret < 0) |
891 | return ret; | |
892 | ||
90dc8812 SW |
893 | cr = regs.cr; |
894 | for (i = 7; i >= 0; i--) { | |
895 | env->crf[i] = cr & 15; | |
896 | cr >>= 4; | |
897 | } | |
ba5e5090 | 898 | |
d76d1650 AJ |
899 | env->ctr = regs.ctr; |
900 | env->lr = regs.lr; | |
da91a00f | 901 | cpu_write_xer(env, regs.xer); |
d76d1650 AJ |
902 | env->msr = regs.msr; |
903 | env->nip = regs.pc; | |
904 | ||
905 | env->spr[SPR_SRR0] = regs.srr0; | |
906 | env->spr[SPR_SRR1] = regs.srr1; | |
907 | ||
908 | env->spr[SPR_SPRG0] = regs.sprg0; | |
909 | env->spr[SPR_SPRG1] = regs.sprg1; | |
910 | env->spr[SPR_SPRG2] = regs.sprg2; | |
911 | env->spr[SPR_SPRG3] = regs.sprg3; | |
912 | env->spr[SPR_SPRG4] = regs.sprg4; | |
913 | env->spr[SPR_SPRG5] = regs.sprg5; | |
914 | env->spr[SPR_SPRG6] = regs.sprg6; | |
915 | env->spr[SPR_SPRG7] = regs.sprg7; | |
916 | ||
90dc8812 SW |
917 | env->spr[SPR_BOOKE_PID] = regs.pid; |
918 | ||
d76d1650 AJ |
919 | for (i = 0;i < 32; i++) |
920 | env->gpr[i] = regs.gpr[i]; | |
921 | ||
70b79849 DG |
922 | kvm_get_fp(cs); |
923 | ||
90dc8812 | 924 | if (cap_booke_sregs) { |
1bc22652 | 925 | ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); |
90dc8812 SW |
926 | if (ret < 0) { |
927 | return ret; | |
928 | } | |
929 | ||
930 | if (sregs.u.e.features & KVM_SREGS_E_BASE) { | |
931 | env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0; | |
932 | env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1; | |
933 | env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr; | |
934 | env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear; | |
935 | env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr; | |
936 | env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr; | |
937 | env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr; | |
938 | env->spr[SPR_DECR] = sregs.u.e.dec; | |
939 | env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff; | |
940 | env->spr[SPR_TBU] = sregs.u.e.tb >> 32; | |
941 | env->spr[SPR_VRSAVE] = sregs.u.e.vrsave; | |
942 | } | |
943 | ||
944 | if (sregs.u.e.features & KVM_SREGS_E_ARCH206) { | |
945 | env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir; | |
946 | env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0; | |
947 | env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1; | |
948 | env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar; | |
949 | env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr; | |
950 | } | |
951 | ||
952 | if (sregs.u.e.features & KVM_SREGS_E_64) { | |
953 | env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr; | |
954 | } | |
955 | ||
956 | if (sregs.u.e.features & KVM_SREGS_E_SPRG8) { | |
957 | env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8; | |
958 | } | |
959 | ||
960 | if (sregs.u.e.features & KVM_SREGS_E_IVOR) { | |
961 | env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0]; | |
962 | env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1]; | |
963 | env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2]; | |
964 | env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3]; | |
965 | env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4]; | |
966 | env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5]; | |
967 | env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6]; | |
968 | env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7]; | |
969 | env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8]; | |
970 | env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9]; | |
971 | env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10]; | |
972 | env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11]; | |
973 | env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12]; | |
974 | env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13]; | |
975 | env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14]; | |
976 | env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15]; | |
977 | ||
978 | if (sregs.u.e.features & KVM_SREGS_E_SPE) { | |
979 | env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0]; | |
980 | env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1]; | |
981 | env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2]; | |
982 | } | |
983 | ||
984 | if (sregs.u.e.features & KVM_SREGS_E_PM) { | |
985 | env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3]; | |
986 | } | |
987 | ||
988 | if (sregs.u.e.features & KVM_SREGS_E_PC) { | |
989 | env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4]; | |
990 | env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5]; | |
991 | } | |
992 | } | |
993 | ||
994 | if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) { | |
995 | env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0; | |
996 | env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1; | |
997 | env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2; | |
998 | env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff; | |
999 | env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4; | |
1000 | env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6; | |
1001 | env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32; | |
1002 | env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg; | |
1003 | env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0]; | |
1004 | env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1]; | |
1005 | } | |
1006 | ||
1007 | if (sregs.u.e.features & KVM_SREGS_EXP) { | |
1008 | env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr; | |
1009 | } | |
1010 | ||
1011 | if (sregs.u.e.features & KVM_SREGS_E_PD) { | |
1012 | env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc; | |
1013 | env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc; | |
1014 | } | |
1015 | ||
1016 | if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { | |
1017 | env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr; | |
1018 | env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar; | |
1019 | env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0; | |
1020 | ||
1021 | if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) { | |
1022 | env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1; | |
1023 | env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2; | |
1024 | } | |
1025 | } | |
fafc0b6a | 1026 | } |
90dc8812 | 1027 | |
90dc8812 | 1028 | if (cap_segstate) { |
1bc22652 | 1029 | ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); |
90dc8812 SW |
1030 | if (ret < 0) { |
1031 | return ret; | |
1032 | } | |
1033 | ||
f3c75d42 AK |
1034 | if (!env->external_htab) { |
1035 | ppc_store_sdr1(env, sregs.u.s.sdr1); | |
1036 | } | |
ba5e5090 AG |
1037 | |
1038 | /* Sync SLB */ | |
82c09f2f | 1039 | #ifdef TARGET_PPC64 |
4b4d4a21 AK |
1040 | /* |
1041 | * The packed SLB array we get from KVM_GET_SREGS only contains | |
1042 | * information about valid entries. So we flush our internal | |
1043 | * copy to get rid of stale ones, then put all valid SLB entries | |
1044 | * back in. | |
1045 | */ | |
1046 | memset(env->slb, 0, sizeof(env->slb)); | |
d83af167 | 1047 | for (i = 0; i < ARRAY_SIZE(env->slb); i++) { |
4b4d4a21 AK |
1048 | target_ulong rb = sregs.u.s.ppc64.slb[i].slbe; |
1049 | target_ulong rs = sregs.u.s.ppc64.slb[i].slbv; | |
1050 | /* | |
1051 | * Only restore valid entries | |
1052 | */ | |
1053 | if (rb & SLB_ESID_V) { | |
1054 | ppc_store_slb(env, rb, rs); | |
1055 | } | |
ba5e5090 | 1056 | } |
82c09f2f | 1057 | #endif |
ba5e5090 AG |
1058 | |
1059 | /* Sync SRs */ | |
1060 | for (i = 0; i < 16; i++) { | |
1061 | env->sr[i] = sregs.u.s.ppc32.sr[i]; | |
1062 | } | |
1063 | ||
1064 | /* Sync BATs */ | |
1065 | for (i = 0; i < 8; i++) { | |
1066 | env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff; | |
1067 | env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32; | |
1068 | env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff; | |
1069 | env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32; | |
1070 | } | |
fafc0b6a | 1071 | } |
ba5e5090 | 1072 | |
d67d40ea DG |
1073 | if (cap_hior) { |
1074 | kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); | |
1075 | } | |
1076 | ||
1077 | if (cap_one_reg) { | |
1078 | int i; | |
1079 | ||
1080 | /* We deliberately ignore errors here, for kernels which have | |
1081 | * the ONE_REG calls, but don't support the specific | |
1082 | * registers, there's a reasonable chance things will still | |
1083 | * work, at least until we try to migrate. */ | |
1084 | for (i = 0; i < 1024; i++) { | |
1085 | uint64_t id = env->spr_cb[i].one_reg_id; | |
1086 | ||
1087 | if (id != 0) { | |
1088 | kvm_get_one_spr(cs, id, i); | |
1089 | } | |
1090 | } | |
9b00ea49 DG |
1091 | |
1092 | #ifdef TARGET_PPC64 | |
1093 | if (cap_papr) { | |
1094 | if (kvm_get_vpa(cs) < 0) { | |
da56ff91 | 1095 | DPRINTF("Warning: Unable to get VPA information from KVM\n"); |
9b00ea49 DG |
1096 | } |
1097 | } | |
1098 | #endif | |
d67d40ea DG |
1099 | } |
1100 | ||
d76d1650 AJ |
1101 | return 0; |
1102 | } | |
1103 | ||
1bc22652 | 1104 | int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level) |
fc87e185 AG |
1105 | { |
1106 | unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET; | |
1107 | ||
1108 | if (irq != PPC_INTERRUPT_EXT) { | |
1109 | return 0; | |
1110 | } | |
1111 | ||
1112 | if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) { | |
1113 | return 0; | |
1114 | } | |
1115 | ||
1bc22652 | 1116 | kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq); |
fc87e185 AG |
1117 | |
1118 | return 0; | |
1119 | } | |
1120 | ||
16415335 AG |
1121 | #if defined(TARGET_PPCEMB) |
1122 | #define PPC_INPUT_INT PPC40x_INPUT_INT | |
1123 | #elif defined(TARGET_PPC64) | |
1124 | #define PPC_INPUT_INT PPC970_INPUT_INT | |
1125 | #else | |
1126 | #define PPC_INPUT_INT PPC6xx_INPUT_INT | |
1127 | #endif | |
1128 | ||
20d695a9 | 1129 | void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) |
d76d1650 | 1130 | { |
20d695a9 AF |
1131 | PowerPCCPU *cpu = POWERPC_CPU(cs); |
1132 | CPUPPCState *env = &cpu->env; | |
d76d1650 AJ |
1133 | int r; |
1134 | unsigned irq; | |
1135 | ||
5cbdb3a3 | 1136 | /* PowerPC QEMU tracks the various core input pins (interrupt, critical |
d76d1650 | 1137 | * interrupt, reset, etc) in PPC-specific env->irq_input_state. */ |
fc87e185 AG |
1138 | if (!cap_interrupt_level && |
1139 | run->ready_for_interrupt_injection && | |
259186a7 | 1140 | (cs->interrupt_request & CPU_INTERRUPT_HARD) && |
16415335 | 1141 | (env->irq_input_state & (1<<PPC_INPUT_INT))) |
d76d1650 AJ |
1142 | { |
1143 | /* For now KVM disregards the 'irq' argument. However, in the | |
1144 | * future KVM could cache it in-kernel to avoid a heavyweight exit | |
1145 | * when reading the UIC. | |
1146 | */ | |
fc87e185 | 1147 | irq = KVM_INTERRUPT_SET; |
d76d1650 | 1148 | |
da56ff91 | 1149 | DPRINTF("injected interrupt %d\n", irq); |
1bc22652 | 1150 | r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq); |
55e5c285 AF |
1151 | if (r < 0) { |
1152 | printf("cpu %d fail inject %x\n", cs->cpu_index, irq); | |
1153 | } | |
c821c2bd AG |
1154 | |
1155 | /* Always wake up soon in case the interrupt was level based */ | |
bc72ad67 | 1156 | timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + |
c821c2bd | 1157 | (get_ticks_per_sec() / 50)); |
d76d1650 AJ |
1158 | } |
1159 | ||
1160 | /* We don't know if there are more interrupts pending after this. However, | |
1161 | * the guest will return to userspace in the course of handling this one | |
1162 | * anyways, so we will get a chance to deliver the rest. */ | |
d76d1650 AJ |
1163 | } |
1164 | ||
20d695a9 | 1165 | void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
d76d1650 | 1166 | { |
d76d1650 AJ |
1167 | } |
1168 | ||
20d695a9 | 1169 | int kvm_arch_process_async_events(CPUState *cs) |
0af691d7 | 1170 | { |
259186a7 | 1171 | return cs->halted; |
0af691d7 MT |
1172 | } |
1173 | ||
259186a7 | 1174 | static int kvmppc_handle_halt(PowerPCCPU *cpu) |
d76d1650 | 1175 | { |
259186a7 AF |
1176 | CPUState *cs = CPU(cpu); |
1177 | CPUPPCState *env = &cpu->env; | |
1178 | ||
1179 | if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) { | |
1180 | cs->halted = 1; | |
27103424 | 1181 | cs->exception_index = EXCP_HLT; |
d76d1650 AJ |
1182 | } |
1183 | ||
bb4ea393 | 1184 | return 0; |
d76d1650 AJ |
1185 | } |
1186 | ||
1187 | /* map dcr access to existing qemu dcr emulation */ | |
1328c2bf | 1188 | static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data) |
d76d1650 AJ |
1189 | { |
1190 | if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) | |
1191 | fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn); | |
1192 | ||
bb4ea393 | 1193 | return 0; |
d76d1650 AJ |
1194 | } |
1195 | ||
1328c2bf | 1196 | static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data) |
d76d1650 AJ |
1197 | { |
1198 | if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) | |
1199 | fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn); | |
1200 | ||
bb4ea393 | 1201 | return 0; |
d76d1650 AJ |
1202 | } |
1203 | ||
20d695a9 | 1204 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
d76d1650 | 1205 | { |
20d695a9 AF |
1206 | PowerPCCPU *cpu = POWERPC_CPU(cs); |
1207 | CPUPPCState *env = &cpu->env; | |
bb4ea393 | 1208 | int ret; |
d76d1650 AJ |
1209 | |
1210 | switch (run->exit_reason) { | |
1211 | case KVM_EXIT_DCR: | |
1212 | if (run->dcr.is_write) { | |
da56ff91 | 1213 | DPRINTF("handle dcr write\n"); |
d76d1650 AJ |
1214 | ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data); |
1215 | } else { | |
da56ff91 | 1216 | DPRINTF("handle dcr read\n"); |
d76d1650 AJ |
1217 | ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data); |
1218 | } | |
1219 | break; | |
1220 | case KVM_EXIT_HLT: | |
da56ff91 | 1221 | DPRINTF("handle halt\n"); |
259186a7 | 1222 | ret = kvmppc_handle_halt(cpu); |
d76d1650 | 1223 | break; |
c6304a4a | 1224 | #if defined(TARGET_PPC64) |
f61b4bed | 1225 | case KVM_EXIT_PAPR_HCALL: |
da56ff91 | 1226 | DPRINTF("handle PAPR hypercall\n"); |
20d695a9 | 1227 | run->papr_hcall.ret = spapr_hypercall(cpu, |
aa100fa4 | 1228 | run->papr_hcall.nr, |
f61b4bed | 1229 | run->papr_hcall.args); |
78e8fde2 | 1230 | ret = 0; |
f61b4bed AG |
1231 | break; |
1232 | #endif | |
5b95b8b9 | 1233 | case KVM_EXIT_EPR: |
da56ff91 | 1234 | DPRINTF("handle epr\n"); |
933b19ea | 1235 | run->epr.epr = ldl_phys(cs->as, env->mpic_iack); |
5b95b8b9 AG |
1236 | ret = 0; |
1237 | break; | |
31f2cb8f | 1238 | case KVM_EXIT_WATCHDOG: |
da56ff91 | 1239 | DPRINTF("handle watchdog expiry\n"); |
31f2cb8f BB |
1240 | watchdog_perform_action(); |
1241 | ret = 0; | |
1242 | break; | |
1243 | ||
73aaec4a JK |
1244 | default: |
1245 | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | |
1246 | ret = -1; | |
1247 | break; | |
d76d1650 AJ |
1248 | } |
1249 | ||
1250 | return ret; | |
1251 | } | |
1252 | ||
31f2cb8f BB |
1253 | int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) |
1254 | { | |
1255 | CPUState *cs = CPU(cpu); | |
1256 | uint32_t bits = tsr_bits; | |
1257 | struct kvm_one_reg reg = { | |
1258 | .id = KVM_REG_PPC_OR_TSR, | |
1259 | .addr = (uintptr_t) &bits, | |
1260 | }; | |
1261 | ||
1262 | return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
1263 | } | |
1264 | ||
1265 | int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) | |
1266 | { | |
1267 | ||
1268 | CPUState *cs = CPU(cpu); | |
1269 | uint32_t bits = tsr_bits; | |
1270 | struct kvm_one_reg reg = { | |
1271 | .id = KVM_REG_PPC_CLEAR_TSR, | |
1272 | .addr = (uintptr_t) &bits, | |
1273 | }; | |
1274 | ||
1275 | return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
1276 | } | |
1277 | ||
1278 | int kvmppc_set_tcr(PowerPCCPU *cpu) | |
1279 | { | |
1280 | CPUState *cs = CPU(cpu); | |
1281 | CPUPPCState *env = &cpu->env; | |
1282 | uint32_t tcr = env->spr[SPR_BOOKE_TCR]; | |
1283 | ||
1284 | struct kvm_one_reg reg = { | |
1285 | .id = KVM_REG_PPC_TCR, | |
1286 | .addr = (uintptr_t) &tcr, | |
1287 | }; | |
1288 | ||
1289 | return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | |
1290 | } | |
1291 | ||
1292 | int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu) | |
1293 | { | |
1294 | CPUState *cs = CPU(cpu); | |
1295 | struct kvm_enable_cap encap = {}; | |
1296 | int ret; | |
1297 | ||
1298 | if (!kvm_enabled()) { | |
1299 | return -1; | |
1300 | } | |
1301 | ||
1302 | if (!cap_ppc_watchdog) { | |
1303 | printf("warning: KVM does not support watchdog"); | |
1304 | return -1; | |
1305 | } | |
1306 | ||
1307 | encap.cap = KVM_CAP_PPC_BOOKE_WATCHDOG; | |
1308 | ret = kvm_vcpu_ioctl(cs, KVM_ENABLE_CAP, &encap); | |
1309 | if (ret < 0) { | |
1310 | fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n", | |
1311 | __func__, strerror(-ret)); | |
1312 | return ret; | |
1313 | } | |
1314 | ||
1315 | return ret; | |
1316 | } | |
1317 | ||
dc333cd6 AG |
1318 | static int read_cpuinfo(const char *field, char *value, int len) |
1319 | { | |
1320 | FILE *f; | |
1321 | int ret = -1; | |
1322 | int field_len = strlen(field); | |
1323 | char line[512]; | |
1324 | ||
1325 | f = fopen("/proc/cpuinfo", "r"); | |
1326 | if (!f) { | |
1327 | return -1; | |
1328 | } | |
1329 | ||
1330 | do { | |
1331 | if(!fgets(line, sizeof(line), f)) { | |
1332 | break; | |
1333 | } | |
1334 | if (!strncmp(line, field, field_len)) { | |
ae215068 | 1335 | pstrcpy(value, len, line); |
dc333cd6 AG |
1336 | ret = 0; |
1337 | break; | |
1338 | } | |
1339 | } while(*line); | |
1340 | ||
1341 | fclose(f); | |
1342 | ||
1343 | return ret; | |
1344 | } | |
1345 | ||
1346 | uint32_t kvmppc_get_tbfreq(void) | |
1347 | { | |
1348 | char line[512]; | |
1349 | char *ns; | |
1350 | uint32_t retval = get_ticks_per_sec(); | |
1351 | ||
1352 | if (read_cpuinfo("timebase", line, sizeof(line))) { | |
1353 | return retval; | |
1354 | } | |
1355 | ||
1356 | if (!(ns = strchr(line, ':'))) { | |
1357 | return retval; | |
1358 | } | |
1359 | ||
1360 | ns++; | |
1361 | ||
1362 | retval = atoi(ns); | |
1363 | return retval; | |
1364 | } | |
4513d923 | 1365 | |
eadaada1 AG |
1366 | /* Try to find a device tree node for a CPU with clock-frequency property */ |
1367 | static int kvmppc_find_cpu_dt(char *buf, int buf_len) | |
1368 | { | |
1369 | struct dirent *dirp; | |
1370 | DIR *dp; | |
1371 | ||
1372 | if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) { | |
1373 | printf("Can't open directory " PROC_DEVTREE_CPU "\n"); | |
1374 | return -1; | |
1375 | } | |
1376 | ||
1377 | buf[0] = '\0'; | |
1378 | while ((dirp = readdir(dp)) != NULL) { | |
1379 | FILE *f; | |
1380 | snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU, | |
1381 | dirp->d_name); | |
1382 | f = fopen(buf, "r"); | |
1383 | if (f) { | |
1384 | snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name); | |
1385 | fclose(f); | |
1386 | break; | |
1387 | } | |
1388 | buf[0] = '\0'; | |
1389 | } | |
1390 | closedir(dp); | |
1391 | if (buf[0] == '\0') { | |
1392 | printf("Unknown host!\n"); | |
1393 | return -1; | |
1394 | } | |
1395 | ||
1396 | return 0; | |
1397 | } | |
1398 | ||
9bc884b7 DG |
1399 | /* Read a CPU node property from the host device tree that's a single |
1400 | * integer (32-bit or 64-bit). Returns 0 if anything goes wrong | |
1401 | * (can't find or open the property, or doesn't understand the | |
1402 | * format) */ | |
1403 | static uint64_t kvmppc_read_int_cpu_dt(const char *propname) | |
eadaada1 | 1404 | { |
9bc884b7 DG |
1405 | char buf[PATH_MAX]; |
1406 | union { | |
1407 | uint32_t v32; | |
1408 | uint64_t v64; | |
1409 | } u; | |
eadaada1 AG |
1410 | FILE *f; |
1411 | int len; | |
1412 | ||
1413 | if (kvmppc_find_cpu_dt(buf, sizeof(buf))) { | |
9bc884b7 | 1414 | return -1; |
eadaada1 AG |
1415 | } |
1416 | ||
9bc884b7 DG |
1417 | strncat(buf, "/", sizeof(buf) - strlen(buf)); |
1418 | strncat(buf, propname, sizeof(buf) - strlen(buf)); | |
eadaada1 AG |
1419 | |
1420 | f = fopen(buf, "rb"); | |
1421 | if (!f) { | |
1422 | return -1; | |
1423 | } | |
1424 | ||
9bc884b7 | 1425 | len = fread(&u, 1, sizeof(u), f); |
eadaada1 AG |
1426 | fclose(f); |
1427 | switch (len) { | |
9bc884b7 DG |
1428 | case 4: |
1429 | /* property is a 32-bit quantity */ | |
1430 | return be32_to_cpu(u.v32); | |
1431 | case 8: | |
1432 | return be64_to_cpu(u.v64); | |
eadaada1 AG |
1433 | } |
1434 | ||
1435 | return 0; | |
1436 | } | |
1437 | ||
9bc884b7 DG |
1438 | uint64_t kvmppc_get_clockfreq(void) |
1439 | { | |
1440 | return kvmppc_read_int_cpu_dt("clock-frequency"); | |
1441 | } | |
1442 | ||
6659394f DG |
1443 | uint32_t kvmppc_get_vmx(void) |
1444 | { | |
1445 | return kvmppc_read_int_cpu_dt("ibm,vmx"); | |
1446 | } | |
1447 | ||
1448 | uint32_t kvmppc_get_dfp(void) | |
1449 | { | |
1450 | return kvmppc_read_int_cpu_dt("ibm,dfp"); | |
1451 | } | |
1452 | ||
1a61a9ae SY |
1453 | static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo) |
1454 | { | |
1455 | PowerPCCPU *cpu = ppc_env_get_cpu(env); | |
1456 | CPUState *cs = CPU(cpu); | |
1457 | ||
1458 | if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) && | |
1459 | !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) { | |
1460 | return 0; | |
1461 | } | |
1462 | ||
1463 | return 1; | |
1464 | } | |
1465 | ||
1466 | int kvmppc_get_hasidle(CPUPPCState *env) | |
1467 | { | |
1468 | struct kvm_ppc_pvinfo pvinfo; | |
1469 | ||
1470 | if (!kvmppc_get_pvinfo(env, &pvinfo) && | |
1471 | (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) { | |
1472 | return 1; | |
1473 | } | |
1474 | ||
1475 | return 0; | |
1476 | } | |
1477 | ||
1328c2bf | 1478 | int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len) |
45024f09 AG |
1479 | { |
1480 | uint32_t *hc = (uint32_t*)buf; | |
45024f09 AG |
1481 | struct kvm_ppc_pvinfo pvinfo; |
1482 | ||
1a61a9ae | 1483 | if (!kvmppc_get_pvinfo(env, &pvinfo)) { |
45024f09 | 1484 | memcpy(buf, pvinfo.hcall, buf_len); |
45024f09 AG |
1485 | return 0; |
1486 | } | |
45024f09 AG |
1487 | |
1488 | /* | |
1489 | * Fallback to always fail hypercalls: | |
1490 | * | |
1491 | * li r3, -1 | |
1492 | * nop | |
1493 | * nop | |
1494 | * nop | |
1495 | */ | |
1496 | ||
1497 | hc[0] = 0x3860ffff; | |
1498 | hc[1] = 0x60000000; | |
1499 | hc[2] = 0x60000000; | |
1500 | hc[3] = 0x60000000; | |
1501 | ||
1502 | return 0; | |
1503 | } | |
1504 | ||
1bc22652 | 1505 | void kvmppc_set_papr(PowerPCCPU *cpu) |
f61b4bed | 1506 | { |
1bc22652 | 1507 | CPUState *cs = CPU(cpu); |
94135e81 | 1508 | struct kvm_enable_cap cap = {}; |
f61b4bed AG |
1509 | int ret; |
1510 | ||
f61b4bed | 1511 | cap.cap = KVM_CAP_PPC_PAPR; |
1bc22652 | 1512 | ret = kvm_vcpu_ioctl(cs, KVM_ENABLE_CAP, &cap); |
f61b4bed AG |
1513 | |
1514 | if (ret) { | |
a47dddd7 | 1515 | cpu_abort(cs, "This KVM version does not support PAPR\n"); |
94135e81 | 1516 | } |
9b00ea49 DG |
1517 | |
1518 | /* Update the capability flag so we sync the right information | |
1519 | * with kvm */ | |
1520 | cap_papr = 1; | |
f61b4bed AG |
1521 | } |
1522 | ||
5b95b8b9 AG |
1523 | void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy) |
1524 | { | |
5b95b8b9 AG |
1525 | CPUState *cs = CPU(cpu); |
1526 | struct kvm_enable_cap cap = {}; | |
1527 | int ret; | |
1528 | ||
1529 | cap.cap = KVM_CAP_PPC_EPR; | |
1530 | cap.args[0] = mpic_proxy; | |
1531 | ret = kvm_vcpu_ioctl(cs, KVM_ENABLE_CAP, &cap); | |
1532 | ||
1533 | if (ret && mpic_proxy) { | |
a47dddd7 | 1534 | cpu_abort(cs, "This KVM version does not support EPR\n"); |
5b95b8b9 AG |
1535 | } |
1536 | } | |
1537 | ||
e97c3636 DG |
1538 | int kvmppc_smt_threads(void) |
1539 | { | |
1540 | return cap_ppc_smt ? cap_ppc_smt : 1; | |
1541 | } | |
1542 | ||
7f763a5d | 1543 | #ifdef TARGET_PPC64 |
354ac20a DG |
1544 | off_t kvmppc_alloc_rma(const char *name, MemoryRegion *sysmem) |
1545 | { | |
1546 | void *rma; | |
1547 | off_t size; | |
1548 | int fd; | |
1549 | struct kvm_allocate_rma ret; | |
1550 | MemoryRegion *rma_region; | |
1551 | ||
1552 | /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported | |
1553 | * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but | |
1554 | * not necessary on this hardware | |
1555 | * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware | |
1556 | * | |
1557 | * FIXME: We should allow the user to force contiguous RMA | |
1558 | * allocation in the cap_ppc_rma==1 case. | |
1559 | */ | |
1560 | if (cap_ppc_rma < 2) { | |
1561 | return 0; | |
1562 | } | |
1563 | ||
1564 | fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret); | |
1565 | if (fd < 0) { | |
1566 | fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n", | |
1567 | strerror(errno)); | |
1568 | return -1; | |
1569 | } | |
1570 | ||
1571 | size = MIN(ret.rma_size, 256ul << 20); | |
1572 | ||
1573 | rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); | |
1574 | if (rma == MAP_FAILED) { | |
1575 | fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno)); | |
1576 | return -1; | |
1577 | }; | |
1578 | ||
1579 | rma_region = g_new(MemoryRegion, 1); | |
2c9b15ca | 1580 | memory_region_init_ram_ptr(rma_region, NULL, name, size, rma); |
6148b23d | 1581 | vmstate_register_ram_global(rma_region); |
354ac20a DG |
1582 | memory_region_add_subregion(sysmem, 0, rma_region); |
1583 | ||
1584 | return size; | |
1585 | } | |
1586 | ||
7f763a5d DG |
1587 | uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift) |
1588 | { | |
f36951c1 DG |
1589 | struct kvm_ppc_smmu_info info; |
1590 | long rampagesize, best_page_shift; | |
1591 | int i; | |
1592 | ||
7f763a5d DG |
1593 | if (cap_ppc_rma >= 2) { |
1594 | return current_size; | |
1595 | } | |
f36951c1 DG |
1596 | |
1597 | /* Find the largest hardware supported page size that's less than | |
1598 | * or equal to the (logical) backing page size of guest RAM */ | |
182735ef | 1599 | kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info); |
f36951c1 DG |
1600 | rampagesize = getrampagesize(); |
1601 | best_page_shift = 0; | |
1602 | ||
1603 | for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) { | |
1604 | struct kvm_ppc_one_seg_page_size *sps = &info.sps[i]; | |
1605 | ||
1606 | if (!sps->page_shift) { | |
1607 | continue; | |
1608 | } | |
1609 | ||
1610 | if ((sps->page_shift > best_page_shift) | |
1611 | && ((1UL << sps->page_shift) <= rampagesize)) { | |
1612 | best_page_shift = sps->page_shift; | |
1613 | } | |
1614 | } | |
1615 | ||
7f763a5d | 1616 | return MIN(current_size, |
f36951c1 | 1617 | 1ULL << (best_page_shift + hash_shift - 7)); |
7f763a5d DG |
1618 | } |
1619 | #endif | |
1620 | ||
0f5cb298 DG |
1621 | void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd) |
1622 | { | |
1623 | struct kvm_create_spapr_tce args = { | |
1624 | .liobn = liobn, | |
1625 | .window_size = window_size, | |
1626 | }; | |
1627 | long len; | |
1628 | int fd; | |
1629 | void *table; | |
1630 | ||
b5aec396 DG |
1631 | /* Must set fd to -1 so we don't try to munmap when called for |
1632 | * destroying the table, which the upper layers -will- do | |
1633 | */ | |
1634 | *pfd = -1; | |
0f5cb298 DG |
1635 | if (!cap_spapr_tce) { |
1636 | return NULL; | |
1637 | } | |
1638 | ||
1639 | fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args); | |
1640 | if (fd < 0) { | |
b5aec396 DG |
1641 | fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n", |
1642 | liobn); | |
0f5cb298 DG |
1643 | return NULL; |
1644 | } | |
1645 | ||
a83000f5 | 1646 | len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(uint64_t); |
0f5cb298 DG |
1647 | /* FIXME: round this up to page size */ |
1648 | ||
74b41e56 | 1649 | table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); |
0f5cb298 | 1650 | if (table == MAP_FAILED) { |
b5aec396 DG |
1651 | fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n", |
1652 | liobn); | |
0f5cb298 DG |
1653 | close(fd); |
1654 | return NULL; | |
1655 | } | |
1656 | ||
1657 | *pfd = fd; | |
1658 | return table; | |
1659 | } | |
1660 | ||
1661 | int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t window_size) | |
1662 | { | |
1663 | long len; | |
1664 | ||
1665 | if (fd < 0) { | |
1666 | return -1; | |
1667 | } | |
1668 | ||
a83000f5 | 1669 | len = (window_size / SPAPR_TCE_PAGE_SIZE)*sizeof(uint64_t); |
0f5cb298 DG |
1670 | if ((munmap(table, len) < 0) || |
1671 | (close(fd) < 0)) { | |
b5aec396 DG |
1672 | fprintf(stderr, "KVM: Unexpected error removing TCE table: %s", |
1673 | strerror(errno)); | |
0f5cb298 DG |
1674 | /* Leak the table */ |
1675 | } | |
1676 | ||
1677 | return 0; | |
1678 | } | |
1679 | ||
7f763a5d DG |
1680 | int kvmppc_reset_htab(int shift_hint) |
1681 | { | |
1682 | uint32_t shift = shift_hint; | |
1683 | ||
ace9a2cb DG |
1684 | if (!kvm_enabled()) { |
1685 | /* Full emulation, tell caller to allocate htab itself */ | |
1686 | return 0; | |
1687 | } | |
1688 | if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) { | |
7f763a5d DG |
1689 | int ret; |
1690 | ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift); | |
ace9a2cb DG |
1691 | if (ret == -ENOTTY) { |
1692 | /* At least some versions of PR KVM advertise the | |
1693 | * capability, but don't implement the ioctl(). Oops. | |
1694 | * Return 0 so that we allocate the htab in qemu, as is | |
1695 | * correct for PR. */ | |
1696 | return 0; | |
1697 | } else if (ret < 0) { | |
7f763a5d DG |
1698 | return ret; |
1699 | } | |
1700 | return shift; | |
1701 | } | |
1702 | ||
ace9a2cb DG |
1703 | /* We have a kernel that predates the htab reset calls. For PR |
1704 | * KVM, we need to allocate the htab ourselves, for an HV KVM of | |
1705 | * this era, it has allocated a 16MB fixed size hash table | |
1706 | * already. Kernels of this era have the GET_PVINFO capability | |
1707 | * only on PR, so we use this hack to determine the right | |
1708 | * answer */ | |
1709 | if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) { | |
1710 | /* PR - tell caller to allocate htab */ | |
1711 | return 0; | |
1712 | } else { | |
1713 | /* HV - assume 16MB kernel allocated htab */ | |
1714 | return 24; | |
1715 | } | |
7f763a5d DG |
1716 | } |
1717 | ||
a1e98583 DG |
1718 | static inline uint32_t mfpvr(void) |
1719 | { | |
1720 | uint32_t pvr; | |
1721 | ||
1722 | asm ("mfpvr %0" | |
1723 | : "=r"(pvr)); | |
1724 | return pvr; | |
1725 | } | |
1726 | ||
a7342588 DG |
1727 | static void alter_insns(uint64_t *word, uint64_t flags, bool on) |
1728 | { | |
1729 | if (on) { | |
1730 | *word |= flags; | |
1731 | } else { | |
1732 | *word &= ~flags; | |
1733 | } | |
1734 | } | |
1735 | ||
2985b86b | 1736 | static void kvmppc_host_cpu_initfn(Object *obj) |
a1e98583 | 1737 | { |
2985b86b AF |
1738 | assert(kvm_enabled()); |
1739 | } | |
1740 | ||
1741 | static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data) | |
1742 | { | |
1743 | PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc); | |
a7342588 DG |
1744 | uint32_t vmx = kvmppc_get_vmx(); |
1745 | uint32_t dfp = kvmppc_get_dfp(); | |
0cbad81f DG |
1746 | uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size"); |
1747 | uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size"); | |
a1e98583 | 1748 | |
cfe34f44 | 1749 | /* Now fix up the class with information we can query from the host */ |
3bc9ccc0 | 1750 | pcc->pvr = mfpvr(); |
a7342588 | 1751 | |
70bca53f AG |
1752 | if (vmx != -1) { |
1753 | /* Only override when we know what the host supports */ | |
cfe34f44 AF |
1754 | alter_insns(&pcc->insns_flags, PPC_ALTIVEC, vmx > 0); |
1755 | alter_insns(&pcc->insns_flags2, PPC2_VSX, vmx > 1); | |
70bca53f AG |
1756 | } |
1757 | if (dfp != -1) { | |
1758 | /* Only override when we know what the host supports */ | |
cfe34f44 | 1759 | alter_insns(&pcc->insns_flags2, PPC2_DFP, dfp); |
70bca53f | 1760 | } |
0cbad81f DG |
1761 | |
1762 | if (dcache_size != -1) { | |
1763 | pcc->l1_dcache_size = dcache_size; | |
1764 | } | |
1765 | ||
1766 | if (icache_size != -1) { | |
1767 | pcc->l1_icache_size = icache_size; | |
1768 | } | |
a1e98583 DG |
1769 | } |
1770 | ||
3b961124 SY |
1771 | bool kvmppc_has_cap_epr(void) |
1772 | { | |
1773 | return cap_epr; | |
1774 | } | |
1775 | ||
7c43bca0 AK |
1776 | bool kvmppc_has_cap_htab_fd(void) |
1777 | { | |
1778 | return cap_htab_fd; | |
1779 | } | |
1780 | ||
5ba4576b AF |
1781 | static int kvm_ppc_register_host_cpu_type(void) |
1782 | { | |
1783 | TypeInfo type_info = { | |
1784 | .name = TYPE_HOST_POWERPC_CPU, | |
1785 | .instance_init = kvmppc_host_cpu_initfn, | |
1786 | .class_init = kvmppc_host_cpu_class_init, | |
1787 | }; | |
1788 | uint32_t host_pvr = mfpvr(); | |
1789 | PowerPCCPUClass *pvr_pcc; | |
1790 | ||
1791 | pvr_pcc = ppc_cpu_class_by_pvr(host_pvr); | |
3bc9ccc0 AK |
1792 | if (pvr_pcc == NULL) { |
1793 | pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr); | |
1794 | } | |
5ba4576b AF |
1795 | if (pvr_pcc == NULL) { |
1796 | return -1; | |
1797 | } | |
1798 | type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc)); | |
1799 | type_register(&type_info); | |
1800 | return 0; | |
1801 | } | |
1802 | ||
feaa64c4 DG |
1803 | int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function) |
1804 | { | |
1805 | struct kvm_rtas_token_args args = { | |
1806 | .token = token, | |
1807 | }; | |
1808 | ||
1809 | if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) { | |
1810 | return -ENOENT; | |
1811 | } | |
1812 | ||
1813 | strncpy(args.name, function, sizeof(args.name)); | |
1814 | ||
1815 | return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args); | |
1816 | } | |
12b1143b | 1817 | |
e68cb8b4 AK |
1818 | int kvmppc_get_htab_fd(bool write) |
1819 | { | |
1820 | struct kvm_get_htab_fd s = { | |
1821 | .flags = write ? KVM_GET_HTAB_WRITE : 0, | |
1822 | .start_index = 0, | |
1823 | }; | |
1824 | ||
1825 | if (!cap_htab_fd) { | |
1826 | fprintf(stderr, "KVM version doesn't support saving the hash table\n"); | |
1827 | return -1; | |
1828 | } | |
1829 | ||
1830 | return kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s); | |
1831 | } | |
1832 | ||
1833 | int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns) | |
1834 | { | |
bc72ad67 | 1835 | int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
e68cb8b4 AK |
1836 | uint8_t buf[bufsize]; |
1837 | ssize_t rc; | |
1838 | ||
1839 | do { | |
1840 | rc = read(fd, buf, bufsize); | |
1841 | if (rc < 0) { | |
1842 | fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n", | |
1843 | strerror(errno)); | |
1844 | return rc; | |
1845 | } else if (rc) { | |
1846 | /* Kernel already retuns data in BE format for the file */ | |
1847 | qemu_put_buffer(f, buf, rc); | |
1848 | } | |
1849 | } while ((rc != 0) | |
1850 | && ((max_ns < 0) | |
bc72ad67 | 1851 | || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns))); |
e68cb8b4 AK |
1852 | |
1853 | return (rc == 0) ? 1 : 0; | |
1854 | } | |
1855 | ||
1856 | int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index, | |
1857 | uint16_t n_valid, uint16_t n_invalid) | |
1858 | { | |
1859 | struct kvm_get_htab_header *buf; | |
1860 | size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64; | |
1861 | ssize_t rc; | |
1862 | ||
1863 | buf = alloca(chunksize); | |
1864 | /* This is KVM on ppc, so this is all big-endian */ | |
1865 | buf->index = index; | |
1866 | buf->n_valid = n_valid; | |
1867 | buf->n_invalid = n_invalid; | |
1868 | ||
1869 | qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid); | |
1870 | ||
1871 | rc = write(fd, buf, chunksize); | |
1872 | if (rc < 0) { | |
1873 | fprintf(stderr, "Error writing KVM hash table: %s\n", | |
1874 | strerror(errno)); | |
1875 | return rc; | |
1876 | } | |
1877 | if (rc != chunksize) { | |
1878 | /* We should never get a short write on a single chunk */ | |
1879 | fprintf(stderr, "Short write, restoring KVM hash table\n"); | |
1880 | return -1; | |
1881 | } | |
1882 | return 0; | |
1883 | } | |
1884 | ||
20d695a9 | 1885 | bool kvm_arch_stop_on_emulation_error(CPUState *cpu) |
4513d923 GN |
1886 | { |
1887 | return true; | |
1888 | } | |
a1b87fe0 | 1889 | |
20d695a9 | 1890 | int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) |
a1b87fe0 JK |
1891 | { |
1892 | return 1; | |
1893 | } | |
1894 | ||
1895 | int kvm_arch_on_sigbus(int code, void *addr) | |
1896 | { | |
1897 | return 1; | |
1898 | } | |
82169660 SW |
1899 | |
1900 | void kvm_arch_init_irq_routing(KVMState *s) | |
1901 | { | |
1902 | } | |
c65f9a07 GK |
1903 | |
1904 | int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp) | |
1905 | { | |
1906 | return -EINVAL; | |
1907 | } | |
1908 | ||
1909 | int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp) | |
1910 | { | |
1911 | return -EINVAL; | |
1912 | } | |
1913 | ||
1914 | int kvm_arch_insert_hw_breakpoint(target_ulong addr, target_ulong len, int type) | |
1915 | { | |
1916 | return -EINVAL; | |
1917 | } | |
1918 | ||
1919 | int kvm_arch_remove_hw_breakpoint(target_ulong addr, target_ulong len, int type) | |
1920 | { | |
1921 | return -EINVAL; | |
1922 | } | |
1923 | ||
1924 | void kvm_arch_remove_all_hw_breakpoints(void) | |
1925 | { | |
1926 | } | |
1927 | ||
1928 | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) | |
1929 | { | |
1930 | } | |
7c43bca0 AK |
1931 | |
1932 | struct kvm_get_htab_buf { | |
1933 | struct kvm_get_htab_header header; | |
1934 | /* | |
1935 | * We require one extra byte for read | |
1936 | */ | |
1937 | target_ulong hpte[(HPTES_PER_GROUP * 2) + 1]; | |
1938 | }; | |
1939 | ||
1940 | uint64_t kvmppc_hash64_read_pteg(PowerPCCPU *cpu, target_ulong pte_index) | |
1941 | { | |
1942 | int htab_fd; | |
1943 | struct kvm_get_htab_fd ghf; | |
1944 | struct kvm_get_htab_buf *hpte_buf; | |
1945 | ||
1946 | ghf.flags = 0; | |
1947 | ghf.start_index = pte_index; | |
1948 | htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf); | |
1949 | if (htab_fd < 0) { | |
1950 | goto error_out; | |
1951 | } | |
1952 | ||
1953 | hpte_buf = g_malloc0(sizeof(*hpte_buf)); | |
1954 | /* | |
1955 | * Read the hpte group | |
1956 | */ | |
1957 | if (read(htab_fd, hpte_buf, sizeof(*hpte_buf)) < 0) { | |
1958 | goto out_close; | |
1959 | } | |
1960 | ||
1961 | close(htab_fd); | |
1962 | return (uint64_t)(uintptr_t) hpte_buf->hpte; | |
1963 | ||
1964 | out_close: | |
1965 | g_free(hpte_buf); | |
1966 | close(htab_fd); | |
1967 | error_out: | |
1968 | return 0; | |
1969 | } | |
1970 | ||
1971 | void kvmppc_hash64_free_pteg(uint64_t token) | |
1972 | { | |
1973 | struct kvm_get_htab_buf *htab_buf; | |
1974 | ||
1975 | htab_buf = container_of((void *)(uintptr_t) token, struct kvm_get_htab_buf, | |
1976 | hpte); | |
1977 | g_free(htab_buf); | |
1978 | return; | |
1979 | } | |
c1385933 AK |
1980 | |
1981 | void kvmppc_hash64_write_pte(CPUPPCState *env, target_ulong pte_index, | |
1982 | target_ulong pte0, target_ulong pte1) | |
1983 | { | |
1984 | int htab_fd; | |
1985 | struct kvm_get_htab_fd ghf; | |
1986 | struct kvm_get_htab_buf hpte_buf; | |
1987 | ||
1988 | ghf.flags = 0; | |
1989 | ghf.start_index = 0; /* Ignored */ | |
1990 | htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf); | |
1991 | if (htab_fd < 0) { | |
1992 | goto error_out; | |
1993 | } | |
1994 | ||
1995 | hpte_buf.header.n_valid = 1; | |
1996 | hpte_buf.header.n_invalid = 0; | |
1997 | hpte_buf.header.index = pte_index; | |
1998 | hpte_buf.hpte[0] = pte0; | |
1999 | hpte_buf.hpte[1] = pte1; | |
2000 | /* | |
2001 | * Write the hpte entry. | |
2002 | * CAUTION: write() has the warn_unused_result attribute. Hence we | |
2003 | * need to check the return value, even though we do nothing. | |
2004 | */ | |
2005 | if (write(htab_fd, &hpte_buf, sizeof(hpte_buf)) < 0) { | |
2006 | goto out_close; | |
2007 | } | |
2008 | ||
2009 | out_close: | |
2010 | close(htab_fd); | |
2011 | return; | |
2012 | ||
2013 | error_out: | |
2014 | return; | |
2015 | } |